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Abstract. In this paper, we propose two new versions of Miller algorithm in order to secure pairing
computations against existing side-channel attacks (SCA). We have chosen to use the co-Z arithmetic
on elliptic curves from which we derive two methods for pairing computations: one based on Euclidean
addition chains and one based on Zeckendorf representation. We show that our propositions are resis-
tant to existing side-channel attacks against pairing-based cryptography. We consider differential power
analysis and fault attacks. The complexities of our solutions are compared with state-of-the-art one. We
demonstrate that our new proposed versions are more efficient by 17%.
Keywords: Miller algorithm, Euclidean addition chains, Fibonacci number, optimal Ate pairing, side-
channel attacks.

1 Introduction

Pairing-based cryptography (PBC) provides several protocols such as short signature protocols and hierarchical
encryption [1,2], making it a promising tool for the Internet of things (IoT) or cloud computing. In the first
case, pairings would be implemented on constrained devices [3] such as microcontrollers and would be subject
to invasive and non-invasive Side-Channel Attacks (SCA) [4,5,6,7,8,9]. Efficient and secure pairing computation
has thus been an active research area [10,8,11].

The most efficient pairing computation algorithms are usually based on the Tate model [12] and rely on the
Miller algorithm in order to compute the rational function fs,Q such that Div(fs,Q) = s(Q)−([s]Q)−(s−1)(O),
where P and Q are two points of an elliptic curve defined over a finite field Fq and O represents the identity
element for the group of rational points of the elliptic curve. This function is computed thanks to the double-
and-add loop called Miller loop [13] and followed by a final exponentiation.

Such algorithms are known to be natural targets to SCA ([14,15,16,17,18,9]). Our contribution is to provide
a new approach to Miller loop to replace the usual double-and-add loop by a loop based on addition chains. Such
approaches, e.g., based on the double-and-add algorithm, have been proven to be an interesting alternative to
standard scalar multiplication methods when security is in balance with speed, especially when combining to co-
Z arithmetic [19]. Concretely, we provide two versions of the Miller algorithm, one based on Euclidean addition
chain and the other version based on the Zeckendorf representation of the parameter controlling the number of
iterations. We show that both versions are resistant to Side-Chanel Attacks. Though the computational cost
of these versions of the Miller algorithm is higher than that of the classic Miller algorithm, they are the most
efficient among other countermeasures like masking against SCA.

The paper is organized as follows. Section 2 and 3 are devoted to the necessary mathematical background
on pairing computations, co-Z arithmetic, and scalar multiplication using Euclidean additions chains (EAC).
In Section 4, we present the new versions of the Miller algorithm, their complexities, and we compare them
with the standard version. Section 6 is devoted to the state of the art on SCA and in Section 7 we analyze the
security of our algorithms against some of those attacks. Finally, in Section 8, we provide detailed comparisons
between our counter-measure, and other counter-measures used in the literature.

Notations:
In this paper we denote by:

– Me a multiplication in the field Fpe .
– Se a squaring in the field Fpe .

A multiplication, a squaring and an inversion in Fp are respectively denoted by M , S and I.
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2 Background on pairing computations

Let E be an elliptic curve defined over a prime field Fp, with p a large prime number. Let r be a large prime
divisor of #E(Fp). In practice, (E, p, r) are provided using parametric families [20]. Let k be the smallest
integer such that r divides pk−1, k is called the embedding degree of E relative to r. Let G1 = E(Fp)[r] be the
r-torsion subgroup of E(Fp). Let G2 = E′(Fpk/d)[r]∩ Ker(πp − [p]) where E′ is the twist of E (if it exists) of
degree d, πp represents the Frobenius map over E and [p] is the scalar multiplication by p over E. The subgroup
of F?pk consisting of r-th roots of unity is denoted by G3 = µr. Let s be an integer constructed for the optimal

Ate pairing [21] and depending on r and p. Then the (optimal) Ate pairing [21] is given by

Tr : G1 ×G2 → G3; (P,Q) 7→ fs,Q(P )(p
k−1)/r.

The pairing computation is divided into two main steps [8, Chap. 3]. First, one has to compute fs,Q(P ) using
an iterative algorithm denoted as the Miller algorithm and described in Algorithm 1 below. As any algorithm
based on the double-and-add algorithm, the overall cost directly depends on the length and Hamming weight
of integer s.

Algorithm 1 : Miller algorithm (P,Q)→ fs,Q(P )

Require: P ∈ G1, Q ∈ G2, s = (sn−1, . . . , . . . s0): binary representation of s
Ensure: fs,Q(P ) ∈ G3(⊂ F∗pk )
1: f1 ← 1
2: T ← Q
3: for i = n− 2 down to 0 do
4: T ← [2]T
5: f1 ← f2

1 · l1(P ) where l1 is the tangent to the point T .
6: if ri = 1 then
7: T ← T + Q
8: f1 ← f1 · l2(P ) where l2 is the line passing through T and P .
9: end if

10: end for
11: return f1

The second step of computing the Tate pairing and its variants is the final exponentiation and consists of

raising the final result of the main loop, fs,Q(P ), to the power of pk−1
r . The computation of this part can be

simplified thanks to the k-th cyclotomic polynomial [3].

3 Co-Z arithmetic on elliptic curves

Given an elliptic curve E over a finite field Fq there are many ways to compute the addition of two points.
To avoid the computation of inversions in Fq when considering affine coordinates, it is standard to represent
the points of E in Jacobian coordinates. A point (x, y) given in affine coordinates is represented in Jacobian
coordinates by a triplet (X : Y : Z) such that x = X/Z2 and y = Y/Z3, the point at infinity being then
represented by (0 : 1 : 0). A typical point addition costs 11 multiplications (M) and 5 squarings (S) in Fq.
Considerable literature now exists on the various point addition formulae, coordinate systems and curve shapes
that can be used in a different context [22].

In the particular case of two points sharing the same Z-coordinate, the addition can be performed using
only 5M+2S [19]. This operation is usually referred to as co-Z addition or ZADD. Finding two points sharing
the same Z-coordinate is very unlikely but, when combined with the right scheme, one can perform a whole
scalar multiplication using the co-Z addition. In this work, we considered two of those schemes: one based on
Euclidean addition chains (EAC) and another based on the Zeckendorf representation of integers [19].

3.1 Euclidean addition chains

A Euclidean addition chain (EAC) computing an integer k is a sequence n = (n1, n2, . . . , nw) such that n1 = 1,
n2 = 2, n3 = 3, nw = k and ∀ 3 6 i 6 w−1, if ni = ni−1+nj , for some j < i−1, then we have ni+1 = ni+ni−1
(big step) or ni+1 = ni + nj (small step). Such an addition chain, computing an integer greater than 3, can
easily be represented by a binary chain c4, c5, . . . , cw representing the succession of big steps (noted 0) and
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small steps (noted 1) starting from (1, 2, 3). For instance, the EAC (1, 2, 3, 4, 7, 10, 13, 23) can be represented
as (1, 0, 1, 1, 0). Another example is the Fibonacci sequence (1, 2, 3, 5, 8, 13, 21, . . . ) which is only made of big
steps.

Example 31 The addition chain (1, 2, 3, 4, 7, 11, 15, 19, 34, 53) is an Euclidean addition chain computing
53. For example, in step 4, we have computed 4 = 3 + 1. Then for step 5, we must add 3 or 1 to 4, that means
that from step 4, we can compute 7 = 4 + 3 or 5 = 4 + 1. In our example, we have chosen to compute, 7 = 4 + 3
(which is a big step). For step 6, we have computed 11 = 7 + 4 (big step), etc.

Finding such chains is simple: choose an integer g co-prime with k and then apply the subtractive form of
Euclid’s algorithm to those numbers.

Example 32 We have presented 53 as an Euclidean addition chain. Let g = 34, gcd(34, 53) = 1. Let apply
now the subtractive form of Euclid’s algorithm:

53− 34 = 19

34− 19 = 15

19− 15 = 4

15− 4 = 11

11− 4 = 7

7− 4 = 3

4− 3 = 1

3− 1 = 2

2− 1 = 1

1− 1 = 0

The Euclidean addition chain computing 53 is (1, 2, 3, 4, 7, 11, 15, 19, 34, 53). We find this chain by
reading the first number of each line of the subtractive form of Euclid’s algorithm.

It has been shown that those chains can be an efficient alternative to the classical binary chain used in
most scalar multiplication algorithms when side-channel attack resistance is an issue [19,23]. Algorithm 2 [19]
describes how to perform a scalar multiplication using an EAC.

The main drawback of this approach is that, although it is easy to find an EAC computing a given integer k,
finding a short one seems to be a challenging problem [24] making it difficult to use EAC for scalar multiplication
directly. However, in the case of PBC, the Miller algorithm uses a fixed scalar which means that it is worth
investigating finding an efficient EAC computing the parameter s. However, this method will become less
efficient when s grows in size as finding a short EAC will become harder.

Algorithm 2 [19] Calculation of [k]P where k is presented as an Euclidean Additions Chain.

Require: P ∈ E, c = (c4, . . . , . . . cw) an EAC computing k
Ensure: [k]P ∈ E

(U1, U2)← ([2]P, P )
for i = 4 to w do

if ci = 0 then
(U1, U2)← (U1 + U2, U1)

else
(U1, U2)← (U1 + U2, U2)

end if
end for
U1 ← U1 + U2

return U1

3.2 Zeckendorf Representation

Let k be an integer and (Fi)i≥0 the Fibonacci sequence, a classical result states that k can be uniquely written

in the form k =
∑l
i=2 diFi, with di ∈ {0, 1} and didi+1 = 0 [25]. An integer k written in this form is said to



4 N. El Mrabet et al.

be in Zeckendorf representation and will be denoted as k = (dl−1, . . . , d2)Z . Such a representation is easy to
compute as it can be obtained using a greedy algorithm [19].

As mentioned in [25] and [19], the disadvantage of the Zeckendorf representation is that it requires 44% more
digits than the binary method requires. However, contrary to EAC, it is easy to bound its length [25]. Given the
Zeckendorf representation of k, one can perform a scalar multiplication using the following Algorithm 3 [19].

Algorithm 3 [19] Computing [k]P using Zeckendorf representation

Require: P ∈ E, k = (dn, . . . , . . . d2)Z Zeckendorf representation of k with dn = 1
Ensure: [k]P ∈ E
1: (U1, U2)← (P, P )
2: for i = n− 1 to 2 do
3: if di = 1 then
4: (U1, U2)← (U1 + P,U2)
5: end if
6: (U1, U2)← (U1 + U2, U1)
7: end for
8: return U1

4 Co-Z approach to the Miller Algorithm

In this section, we will present two variants of the Miller algorithm. We should remember that the basic idea
of Miller’s algorithm is to consider the binary representation of the Miller loop length parameter s and apply
the double-and-add algorithm. The main idea of our work is to consider different representations of s to take
advantage of co-Z formulae adapted for pairing computations.

4.1 Miller-Euclide

The idea is to adapt the scalar multiplication scheme described in Algorithm 2 to Miller loop and take advantage
of the co-Z coordinates to limit the computational cost. Our approach, referred to as Miller-Euclide, is shown
in Algorithm 4.

Algorithm 4 : Miller-Euclide, The computation of fs,Q(P ) using an Euclidean addition chain.

Require: P ∈ G1, Q ∈ G2, c = (c4, . . . , . . . cw) the euclidean addition chain computing s,
Ensure: fs,Q(P )
1: (T1, T2)← ([2]Q,Q)
2: (f1, f2)← (lQ,Q(P ), 1)
3: for i = 4 to w do
4: if ci = 0 then
5: (f1, f2)← (f1 × f2 × `T1,T2(P ), f1)
6: (T1, T2)← (T1 + T2, T1)
7: else
8: (f1, f2)← (f1 × f2 × `T1,T2(P ), f2)
9: (T1, T2)← (T1 + T2, T2)

10: end if
11: end for
12: f1 ← f1 × f2 × `T1+T2,T1(P )
13: return f1

First, let us notice that the initialization consists of one doubling and the evaluation of the tangent line
passing through Q. It has been shown [19] that the doubling is compatible with the co-Z coordinates without
additional cost so that the initialization can be performed in 2 multiplications and 5 squarings for the doubling.
We add to this cost 3 multiplications and one squaring for the evaluation of the tangent. The details of this
computation are presented in Algorithm 5.

The main loop of the new Miller-Euclide algorithm is only made of addition steps, one for each bit of the
EAC, so that the computational cost of our method is simply linked to the length of the EAC representing s.
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Algorithm 5 Initialization step of Algorithm 4 lines 1 and 2

Require: P = (xP , yP ) and Q = (XQ, YQ, ZQ)
Ensure: T1 = [2]Q,T2 = Q sharing the same z-coordinate Z′, f1 = `Q,Q(P ), XP = xPZ

′2 and YP = yPZ
′3

1: A← X2
Q (Sk/d)

2: B ← Y 2
Q (Sk/d)

3: C ← B2 (Sk/d)
4: D ← 2((X1 + B)2 −A− C) (Sk/d)
5: E ← 3A
6: F ← E2 (Sk/d)
7: X2Q ← F − 2D
8: Y2Q ← E(D −X2Q)− 8C (Mk/d)
9: Z2Q ← 2YQZQ (Mk/d)

10: XP ← xPZ
2
2Q (Sk/d + Mk/d)

11: YP ← yPZ
3
2Q (2Mk/d)

12: f1, f2 ← Yp + Xp − 3A2 + 16C, 1
13: T2 = (X2, Y2)← D, 8C
14: T1 = (X1, Y1)← X2Q, Y2Q

In order to evaluate the cost of our method we must evaluate the cost of a full addition step. Let T1 =
(X1, Y1, Z) and T2 = (X2, Y2, Z) be two points with the same z-coordinate. From [19] we have that the
coordinates (X3, Y3, Z3) of the point T3 = T1 + T2 can be computed using the following equations:

A = (X2 −X1)2, B = X1A, C = X2A, D = (Y2 − Y1)2

X3 = D −B − C ,
Y3 = (Y2 − Y1)(B −X3)− Y1(C −B) ,
Z3 = Z(X2 −X1) .

This computation requires 5 multiplications and 2 squarings over Fpk/d . On top of that the quantities
X1A = X1(X2 −X1)2 and Y1(C −B) = Y1(X2 −X1)3 computed during the addition can be seen as the x and
y-coordinates of the point (X1(X2−X1)2, Y1(X2−X1)3, Z(X2−X1)) ∼ (X1, Y1, Z). Thus it is possible to add
P1 and P1 + P2 with the same formulae during the next iteration of the main loop.

Let us now consider the value of lT1,T2
(P ) given by the equation of the line joining T1 and T2 evaluated on

P = (xP , yP ). The standard equation of such line in affine coordinates is given by

yp =
y1 − y2
x1 − x2

xP +
y2x1 − y1x2
x1 − x2

, (1)

To convert this equation to co-Z coordinate, we just need to apply the transformation (xi, yi) 7→
(
Xi

Z2 ,
Yi

Z3

)
which gives us

yp =
Y1 − Y2

Z(X1 −X2)
xP +

Y2X1 − Y1X2

Z3(X1 −X2)

⇔ yp(X1 −X2)Z3 = (Y1 − Y2)Z2xp + Y2X1 − Y1X2

⇔ yp(X1 −X2)Z3 = (Y1 − Y2)(xpZ
2 −X1)− Y1(X1 −X2)

⇔ ypZ
′3 = (Y1 − Y2)(xpZ

′2 −X ′1)− Y ′1

where X ′1 = X1(X1−X2)2, Y ′1 = Y1(X1−X2)3 and Z ′ = Z(X1−X2). Now we remark that all those values have
been computed during the point addition as well as the values of (X1 −X2)2 and (X1 −X2)3. If we suppose
that the values of ypZ

3 and xpZ
2 were stored from the previous iteration of the main loop, the evaluation

of the line joining the points T1 and T2 required exactly 3 multiplications over Fpk/d . Moreover, the value of
Z ′ = Z(X1 − X2) itself is not needed during the whole process, so that we can spare one multiplication per
iteration, for a total cost of 7 multiplications and 2 squarings over Fpk/d .

Finally, we have to compute f1 × f2 × `T1,T2(P ) which requires one sparse multiplication between elements
of Fpk/d and Fpk and one full multiplication over Fpk .

Algorithm 6 sums up the computations required to perform one addition step with their respective costs.
Therefore, each addition step of Algorithm 4 requires Mk +Mk,k/d + 7Mk/d + 2Sk/d operations. At the end

the total cost of the algorithm is 5Mk/d + 6Sk/d + (n− 2)(Mk +Mk,k/d + 7Mk/d + 2Sk/d).
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Algorithm 6 Computing one addition step of Algorithm 4

Require: T1, T2 with same z-coordinate Z, Xp = xpZ
2, Yp = yPZ

3 and f1, f2 ∈ Fpk

Ensure: Z′ = Z(X1 − X2), T3 = T1 + T2, T1 = (X3, Y3, Z
′), T2 = (X1Z

′2
, Y1Z

′3, Z′), Xp = xpZ
′2, Yp = yPZ

′3, f1 =
f1 × f2 × `T1,T2(P )

1: A← (X1 −X2)2 (Sk/d)
2: B ← X1A (Mk/d)
3: C ← X2A (Mk/d)
4: D ← (Y1 − Y2)2 (Sk/d)
5: E ← C −B
6: F ← Y1E
7: X3 ← D −B − C
8: Y3 ← (Y2 − Y1)(B −X3)− F (2Mk/d)
9: XP ← XPA (Mk/d)

10: YP ← YPE (Mk/d)
11: L← YP − (Y1 − Y2)(XP −X3)− Y3 (Mk/d)
12: f3 ← f1L (Mk,k/d)
13: f3 ← f1f2 (Mk)
14: f1, f2 ← f3, f1
15: X2, Y2 ← B,F
16: X1, Y1 ← X3, Y3

4.2 Miller-Fibonacci

Let us now adapt Algorithm 3 to the Miller loop to present our new Algorithm 7 which computes fs,Q(P ) using
the Zeckendorf representation of s.

Algorithm 7 : Miller-Fibonacci: The computation of fs,Q(P ) using Fibonacci sequences

Require: P ∈ G1, Q ∈ G2, (dn, . . . , . . . d2) The Zeckendorf representation of s,
Ensure: fu,Q(P )
1: (T1, T2)← (Q,Q)
2: (f1, f2)← (1, 1)
3: for i = n− 1 down to 2 do
4: if di = 1 then
5: (f1, f2)← (f1 × lT1,T2(P ), f2)
6: (T1, T2)← (T1 + Q,T2)
7: end if
8: (f1, f2)← (f1 × f2 × lT1,T2(P ), f1)
9: (T1, T2)← (T1 + T2, T1)

10: end for
11: return f1

First, let us note that the first computation will be a doubling instead of an addition, independently of the
value of sn−1, but for the sake of simplicity, we only use the additive notation. For this particular step, we use
Algorithm 5.

Each step of this algorithm is similar to Miller-Euclide. If the current digit is a 0, we use the procedure
described in Algorithm 6. If the current digit is a 1 then we have to perform an additional sparse multiplication
and then the evaluation of the line passing through two points of the elliptic curve. To do so, we must first
upgrade the coordinates of T1 and Q so that they share the same z-coordinate as well as the values of Xp and
Yp (this is easily done in 7 multiplications and 2 squarings) and then use the formulae given in Algorithm 6.
On top of that, we have to keep track of the z-coordinate of T1 during the whole process which adds another
multiplication. In the end the cost when the di = 0 is Mk+Mk,k/d+8Mk/d+2Sk/d plus 7Mk/d+2Sk/d if di = 1.
The total cost of Algorithm 7 is then 5Mk/d+6Sk/d+(n−2)(Mk+Mk,k/d+7Mk/d+2Sk/d)+hz(s)(7Mk/d+2Sk/d)
where hz(s) is the hamming weight of the Zeckendorf representation of s.

5 Comparison

In this section, we compare three versions of the Miller algorithm that allow us to compute the rational function
fs,Q evaluated at P : Miller’s algorithm, Miller-Euclide, and Miller-Fibonacci. For the sake of simplicity, we
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restraint our comparisons to the computation of the Optimal Ate pairing over BN curves [26] and BLS 12
curves [27].

After Barbulescu and Duquesne results presented in [28], it is recommended to use BLS12 for computing
Optimal Ate pairing for the 128-bit security level instead of BN curves. However, BN curves are still considered
in practice for several schemes [29,30]. That’s why, in this paper, we consider the two curves in our computation.

Both of these curves have the embedding degree k = 12, therefore, the arithmetic in their extension tower
has the same complexity (since we don’t consider additions in our cost evaluation). The tower extension used
for pairing computation on both curves is given by: The field Fp12 is built using the following extension tower.

– Fp2 = Fp[α]/(α2 + 1)
– Fp6 = Fp2 [β]/

(
β3 − (α+ 1))

)
– Fp12 = Fp6 [γ]/

(
γ2 − β

)
In Table 1, we also present the cost of each operation needed for computing Miller algorithm using projective

coordinates [31] and also the cost of the operations needed for our new versions of Miller’s algorithm.

Operation Cost in Fp

Multiplication in Fp12 54M

Sparse Multiplication in Fp12 39M

Squaring in Fp12 36M

Multiplication in Fp2 3M

Squaring in Fp2 2M

Addition step for Miller classic ( Projective coordinates) 80M

Doubling step for Miller classic ( Projective coordinates) 100M

Initialization step for Miller-Euclide/Fibonacci 27M

Addition step for Miller-Euclide 118M

Addition step for Miller-Fibonacci(for ui = 0) 121M

Addition step for Miller-Fibonacci (for ui = 1) 146M

Table 1. Cost of necessary operations for Miller loop

Note that these two curves, BN and BLS12, have a twist of degree d = 6 and the twist isomorphism is given
by the following map.

Ψ : E′
(
Fp2
)
→ E(Fp12)

(xQ′ , yQ′) 7→ (γ2xQ′ , γ
3yQ′)

5.1 BN curves

A Barreto-Naehrig (BN) curve [26] is an elliptic curve E : y2 = x3 + b defined over a finite prime field Fp such
that

– b ∈ Fp,
– E(Fp) has prime order n = #E(Fp),
– p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1, and
n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1 for some u ∈ Z.

We choose the following elliptic curve which is efficient in practice [31]:

E(F) : y2 = x3 + 2.

The twisted elliptic curve is defined by the equation:

E′(Fp2) : y2 = x3 + (1− i).

Recall that the Optimal Ate pairing over BN curves is the following map:

E(Fp)[r]× Ψ(E′(Fp2))[r] −→ F?p12

(P,Q) 7−→ =
(

(f6u+2,Q(P )l[6u+2]Q,πp(Q)(P )l[6u+2]Q,π2
p(Q)(P ))

) p12−1
r
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Using the costs presented in Table 1, we obtain the comparison between the different versions of Miller’s
algorithm to compute f6u+2,Q(P ), in terms of operations in Fp. This comparison is presented in Table 2. We
recall that the pairing parameter in our case is s = 6u + 2 with u = −2114 + 2101 − 214 − 1. In this case,
it is possible to find a EAC of length 168 (using the subtractive euclidean algorithm with parameter s with
s = 174601120802286487002979030408532519 when we consider u = 47085091321987640844053613709579372).
Moreover, the Zeckendorf representation of s = 6u + 2 = Fibo(169) + Fibo(61) + Fibo(99) with a chosen
parameter u = 15533701296897238962071235758772159, has a length of 168 and its hamming weight is 3.
Thus, we have:

Method Complexity in Fp

Miller classic Algo. 1 12068M

Miller-Euclide Algo. 4 19991M +65,5%

Miller-Fibonacci Algo. 7 20683M +71,3%

Table 2. Cost of each Miller algorithm for BN curves

From this Table 2, we can notice that the classical Miller algorithm is more efficient than our two new
versions. However, it is not secure when considering DPA attack. We show in the next section that our method
protects against this attack.

5.2 BLS 12 Curves

In 2002, Barreto, Lynn and Scott presented in [27] a method to generate pairing-friendly elliptic curves over a
prime field Fp with embedding degree k = 12. BLS12 are defined over Fp by the following equation:

E : y2 = x3 + b

and by a parameter u ∈ Z such that:p = (u− 1)2(u4 − u2 + 1)/3 + u
r = u4 − u2 + 1
t = u+ 1

(2)

where t is the trace of the Frobenius map on the curve. The parameter u is chosen such that p and r are prime
and have the sizes corresponding to the desired security level. For the 128-bit security level and as recommended
in [28], p and r are of at least 461 and 308 and the proposed parameter u = −277 + 250 + 233. The choosed
BLS12 elliptic curve is defined over Fp by E(F) : y2 = x3 + 4 which admits a twist of degree d = 6 and given
by E′(Fp2) : y2 = x3 + 4(1− i).

The Optimal Ate pairing on BLS12 curves is defined by the following map.

E(Fp)[r]× Ψ(E′(Fp2))[r] −→ F?p12

(P,Q) 7−→ = ((fu,Q(P ))
p12−1

r .

Using the costs presented in Table 1, we obtain the comparison between the different versions of the Miller
algorithm to compute fu,Q(P ), in terms of operations in Fp. This comparison is presented in Table 3. We
recall that the pairing parameter in our case is u = −277 + 250 + 230. In this case, it is possible to find a
EAC of length 112 (using the subtractive euclidean algorithm with parameter u′ = 204035480723636378792533
and s′ = 126100861998131272870737). Note that u′ is chosen such that p and r are primes. Moreover, the
Zeckendorf representation of u = 70492524767089125860497 = Fibo(3) + Fibo(7) + Fibo(24) + Fibo(111) has
length 111 and its hamming weight is 4 (u is chosen such that we obtain an efficient Zeckendorf representation
where p and r are primes. Thus, we have:

From this Table 3, we can notice that the classical Miller algorithm is more efficient than our two new
versions. However, it is not secure when considering DPA attack. We show in the next section that our method
protects against this attack.
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Method Complexity in Fp

Miller classic Algo. 1 7438M

Miller-Euclide Algo. 4 13147M +76,8%

Miller-Fibonacci Algo. 7 13936M +87,3%

Table 3. Cost of each Miller algorithm for BLS12

6 SCA against Miller’s algorithm

The SCA re the perturbation analysis that are invasive and observation analysis that are non-invasive. Non-
invasive attacks against pairing, such as DPA, CPA, template attack, have been widely studied [14,15,4,32,6,33,34,17,9],
so as the invasive attacks (basically fault attacks) [7,8]. In this section, we briefly recall the non-invasive attacks
against pairing, then, we will illustrate the fact that our new algorithms seem to be resistant to existing attacks.

6.1 Non-invasive attacks

Non-invasive attacks can use for instance the power consumption or electromagnetic emission of a device.
Those attacks are also called observation analysis, they include Differential Power Analysis, Correlation Power
Analysis, Template attacks and can be performed in vertical or horizontal mode. We will describe the resis-
tance of our algorithms by using the DPA attack model to resume the non invasive attacks. Those attacks can
allow an attacker to compute the intermediate values within cryptographic computations through statistical
analysis of data collected from multiple cryptographic operations. In pairing-based cryptography, the secret
is one of the inputs, either the point P either the point Q. The public data is the other point. The vulner-
abilities of a pairing implemented with a classical Miller algorithm have been illustrated in several articles
[35,36,37,4,32,33,34,38,39,17]. The scheme is as follow:

1. First choose the secret (P or Q).
2. Then find during the algorithm an operation that involves both the secret data and a data that can be ma-

nipulated freely during the attack. This operation is the target of the attack. In pairing-based cryptography,
the freely chosen data are the coordinates of the public point.

3. For a vertical attack: the operation is executed at a specific time t0, the statistical analysis is performed
on a collection of traces for the same secret point and hundred to millions of public point.

4. For a horizontal attack: the same secret data is used more than once during a single algorithm execution,
the statistical analysis is performed using one public entry at different times ti.

6.2 Existing Countermeasure

To avoid SCA in pairing-based cryptography, several counter-measures have been proposed in the literature:

1. The counter-measure proposed by Öztürk et al. in [40]. The principle of this counter-measure is to avoid any
perturbation against Miller’s algorithm using resilient counters. The disadvantage of this counter-measure is
that it is a proof of concept implementation and doesn’t have a theoretical basis for measuring its security.

2. The second counter-measure is proposed by Gosh et al. in [41]. It consists of implementing a modified
version of the Miller algorithm. Unfortunately, this method introduces an additional calculation which is
expensive and which, moreover, does not really improve security for the Miller algorithm.

3. The use of the homogeneity property of projective coordinates (or Jacobian coordinates) of the point P or
of the point Q, is a counter-measure against this attack on Miller’s algorithm [35]. This counter-measure
causes a modification of the result of the Miller algorithm: thus, we obtain a multiple of the final result of
Miller algorithm. However, this is not a problem because this multiple being in the subfield of Fpk , will be
eliminated by the final exponentiation.
The advantage of this counter-measure is that it is not expensive. However, unfortunately, El Mrabet et al.
have shown in [42] that this is not enough to protect Miller’s algorithm.

4. Another efficient counter-measure is to choose two integers a et b such that a × b = 1 mod r [35]. Then,
the idea is to compute the pairings between the points [a]P and [b]Q instead of computing the pairing
between P and Q. This operation is possible thanks to the bilinearity of pairings, we have:

e([a]P, [b]Q) = e(P, Q)ab.
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Also, thanks to the final exponentiation, the exponent, ab will be canceled. Finally, we obtain:

e(P, Q)ab×(
pk−1

r ) = e(P, Q)(
pk−1

r ).

5. Finally, we cite the most considered counter-measure: masking [35]. When the secret is the point P , this
counter-measure consists of choosing a random point R of the elliptic curve E such that e(P,R) is defined,
then computing the pairing between P and Q passing through the point R. Using the property of bilinearity,
we obtain:

e(P, Q) = e(P, Q+R)× e(P, −R).

Therefore, this counter-measure consists of computing two pairings instead of one and then performing
their product.

The last two counter-measures are the most considered in practice. In a theoretical study of the various
existing counter-measures, El Mrabet et al. suggested in [7] to consider the counter-measure by masking to
protect the Miller algorithm against SCA attacks. The counter-measure based on the bilinearity of pairings
implies the computation of two scalar multiplications, one on E(Fp), and one on E(Fpk), both of them are
scalar multiplication by an integer of order r. Make these two computations secure against side channel attack
is a classical problem in elliptic curve cryptography. In [43], Feix at al. demonstrate that even a secure scalar
multiplication can be sensitive to side channel attack. The use of that counter-measure in pairing-based cryp-
tography would imply to add two other sensitive computations with their counter-measure [19,23,44]. On the
other side the masking counter-measure, imply one addition over E and in the worst case two pairing compu-
tations shorter than the scalar multiplication. As a consequence, we consider the masking counter-measure in
the sequel of the article.

7 Resistance of our methods against non-invasive attacks

Since Miller-Fibonacci algorithm is based on the operation used in the Miller-Euclide so that proving that it is
secure against a non invasive would show that the Miller-Euclide is also secured.

The Miller-Fibonacci algorithm is based on writing the pairing parameter s as a sequence of Fibonacci
numbers. In our new algorithm, we have only additions steps. Therefore we only have to evaluate the line
passing through the points T1 and T2 (or T1 and Q) of respective coordinates (X1, Y1, Z) and (X2, Y2, Z)
evaluated on the public point P .
Therefore, the only equation involving known data that the non invasive attack can use is the following one:

lT1,T2
(P ) = yPZ

3(X1 −X2)3 − Y1(X1 −X2)3

−(Y1 − Y2)
(
xPZ

2(X1 −X2)2 −X1(X1 −X2)2
)

The DPA attack model in pairing-based cryptography [35,4], is efficient when we have an operation that
involved a known data and one of the temporary variables X1, X2, Y1, Y2 or Z. If the secret is the point Q, the
known values are xp and yp. With a DPA we can find Z2(X1−X2)2 using the multiplication xPZ

2(X1−X2)2

and Z3(X1 − X2)3 using yPZ
3(X1 − X2)3. This gives us access to the value Z(X1 − X2). Recall that our

algorithm is described using the co-Z arithmetic, as a consequence the value of Z is the same for the points at
each execution step of the Miller-Fibonacci algorithm. We analyze now which information can be found given
two hypotheses on Z, either ZQ = 1 or ZQ 6= 1. If ZQ = 1, i.e. Z = 1, then using a vertical DPA attack we
can find the values (X1 −X2), (X1 −X2)2, and (X1 −X2)3. Then using another DPA we can find either Y1
using Y1(X1 − X2)3 or X1 using X1(X1 − X2)2. With Z = 1 and X1 or Y1 and the elliptic curve equation,
we can find Y1 or X1. The attack would be successful. But if ZQ 6= 1, we cannot perform the attack. Indeed,
we made the hypothesis that Q is secret, then ZQ is also secret and different from 1. We do not know either
Z, neither X1 and X2 as they are derived from Q. We can make hypotheses on the value of Z and then on
(X1 − X2), but we cannot try all the possible values of Z in Fp. As a consequence, as long as ZQ 6= 1, our
Miller-Fibonacci algorithm, based on presenting the parameter pairing s with the Zeckendorf representation,
is natively protected against a DPA attack. Indeed, once we eliminate the leakage of information during the
operations yPZ

3(X1 − X2)3 and xPZ
2(X1 − X2)2, the other registers depend only on the secret point and

consequently are protected against any vertical DPA analysis. In fact, our algorithm is also secure against
horizontal attacks. Indeed, in horizontal attacks, the hypothesis is that a same entry is used more than once
during one single execution of the algorithm. Using the co-Z arithmetic, we use the same Z coordinates during
one step of the Miller algorithm. It is not sufficient to perform an horizontal SCA.

The same analysis can be done for Miller-Euclide which is also protected against SCA as long as Z 6= 1.
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8 Comparison

In the Section 7, we have proved that our new algorithms resist against DPA attacks. In this section, we
compare their respective complexities with a classical Miller algorithm protected again DPA attack. We choose
to compare these two counter-measures in the context of computing Optimal Ate pairing on BN and BLS 12
curves for the reasons explained in the Introduction

Remark 81 Our methods for computing the Miller loop using Euclidean addition chains or Fibonacci Sequences
are available for computing all pairings and in any elliptic curve.

We have to evaluate f6u+2,Q(P ) using Miller algorithm where 6u+ 2 is an integer of 114 bits and Hamming
weight 4.
We present the following table the cost of our counter-measure by comparing it with the counter-measure by
masking.

Algorithm DPA secure Cost BN Cost BLS12

Miller no 12068Mp 7708Mp

Miller+masking yes 24136Mp 15416Mp

Miller-Euclide yes 19991Mp 13147Mp

Miller-Fibonacci yes 20683Mp 13936Mp

Table 4. Comparison between the costs of the counter-measures

Table 4 shows that our counter-measures are more efficient than the counter-measure proposed in the
literature. The Miller-Euclide and the Miller-Fibonacci algorithm are, respectively, 16% and 17% faster than
the Miller standard algorithm combined with the masking.

9 Conclusion

In this paper, we have proposed two new versions of Miller’s algorithm: Miller-Euclide and Miller-Fibonacci.
The complexity of these algorithms depends on the Miller loop parameter. Therefore, we showed how to choose
a short representation for the parameter s which makes our algorithms as efficient in terms of complexity as
possible.
We proved also in this paper that these two algorithms resist against Differential Power Analysis attacks.

We compare the complexity of our new algorithm Miller-Fibonacci with the most efficient counter-measure
of the classical Miller algorithm. We proved that our proposal Miller-Fibonacci algorithm is more efficient than
the counter-measure by masking about 10.7% in the worst case and in the best case about 20%. // We only
investigate the vertical power analysis, we leave as an open problem the analysis of our algorithms against
horizontal power analysis. Indeed, this kind of analysis needs implementations and practical attacks.
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