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Abstract: Vehicle detection is an important but challenging problem in Earth observation due to the
intricately small sizes and varied appearances of the objects of interest. In this paper, we use these
issues to our advantage by considering them results of latent image augmentation. In particular,
we propose using supervised contrastive loss in combination with a mutual guidance matching
process to helps learn stronger object representations and tackles the misalignment of localization
and classification in object detection. Extensive experiments are performed to understand the
combination of the two strategies and show the benefits for vehicle detection on aerial and satellite
images, achieving performance on par with state-of-the-art methods designed for small and very
small object detection. As the proposed method is domain-agnostic, it might also be used for visual
representation learning in generic computer vision problems.

Keywords: contrastive learning; mutual guidance; spatial misalignment; vehicle detection

1. Introduction

Object detection consists of two tasks: localization and classification. As they are
different in nature [1] yet contribute toward the overall detection performance, deep
architectures usually have two distinct prediction heads, which share the same features
extracted from an input. The separated branches, despite the shared parameters, have
shown inefficiency as classification scores might not well reflect proper localization [2,3],
while the intersection-over-union (IOU) scores of anchor boxes might miss the semantic
information [4].

The misalignment of localization and classification may be aggravated depending
on the domain of application. Vehicle detection is a challenging but important problem
in Earth observation. It is instrumental for traffic surveillance and management [5], road
safety [6], traffic modeling [7], and urban planning [8] due to large coverage from aerial
viewpoints [9]. The intrinsic challenges include, but are not limited to, the small and
diverse sizes of vehicles, inter-class similarity, illumination variation, and background
complexity [10,11].

A simple method to combine the localization and classification score to mutually
guide the training process, recently introduced by Zhang et al. [4], has shown effectiveness
in alleviating the task misalignment problem on generic computer vision datasets MS-
COCO [12] and PASCAL-VOC [13]. Its ability to cope with the intricacies of remote sensing
vehicle detection yet remains unexplored.

In this paper, we propose a framework inspired by the mutual guidance idea [4] for
vehicle detection from remote sensing images (Figure 1). The idea is that the intersection-
over-union (IOU) of an anchor box should contribute toward the predicted category and
vice versa; the learned semantic information could help in providing more fitting bound-
ing boxes.
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Figure 1. Vehicle detection from the VEDAI’s aerial images performed by the proposed contrastive
mutual guidance loss. Class labels include car (1), truck (2), pickup (3), tractor (4), camping (5), boat (6),
van (7), other (8).

To improve the semantic understanding and overcome the varied object sizes and ap-
pearances, we also propose a loss module based on the contrastive learning notion [14,15]:
for each detected object, the other objects of the same class are pulled closer in the embed-
ding space, while those of different classes are pushed away. The underlying intuition
is that the features of the same-class objects should be close together in the latent space,
and by explicitly imposing this, the network is forced to learn representations that better
underline intra-class characteristics.

Contrastive learning is a discriminative approach to visual representation learning,
which has proven effective for pre-training networks before transferring to an actual down-
stream task [16–20]. The well-known SimCLR framework [16] proposes applying image
augmentation to create an image’s positive counterpart, eliminating the need for manual
annotations for pretext tasks, hence self-supervision. Our hypothesis is that different objects
of the same class from aerial points of view could be considered as a result of composi-
tions of multiple augmentation operations, such as cropping, scaling, re-coloring, adding
noises, etc., which, as shown by SimCLR, should be beneficial for representation learning
(Figure 2). Thus, by pulling together same-class objects and pushing away the others, the
network could learn to overcome the environmental diversity and better recognize the
objects of interest.

As we rely on ground truth labels to form positive and negative contrastive pairs,
the proposed contrastive loss could be seen as being inspired by supervised contrastive
learning [17], but applied here to object detection. The differences are that the contrastive
pairs are drawn from object-instance level, not image level, and that contrastive loss is
employed as an auxiliary loss in combination with the mutually guided detection loss.
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Figure 2. Different objects of the same class, “car”, from an aerial point of view could be considered as
passing through various compositions of image augmentation, such as cropping, rotation, re-coloring,
noise adding, etc.

The contributions of the paper are fourfold, i.e.,

• applying the mutual guidance idea to a remote sensing context;
• formulating supervised contrastive learning as an auxiliary loss in a detection problem,

which, to the best of our knowledge, is the first approach using supervised contrastive
learning for object detection, especially in the context of Earth observation;

• improving existing detection networks for vehicle detection by combining mutual
guidance and contrastive learning, termed contrastive mutual guidance or CMG;

• providing new state-of-the-art results on benchmarked datasets including VEDAI
(aerial images) [21] and xView (satellite images) [22].

2. Related Work
2.1. Vehicle Detection in Remote Sensing

Deep-learning-based vehicle detection from aerial and satellite images has been an
active research topic in remote sensing for Earth observation within the last decade due to
intrinsically challenging natures such as intricately small vehicle sizes, various types and
orientations, heterogeneous backgrounds, etc. General approaches include adapting state-
of-the-art detectors from the computer vision community to apply to Earth observation
context [11,23,24]. Similar to the general object detection task [25], most of the proposed
methods could be divided into one-stage and two-stage approaches and are generally based
on anchor box prediction. Famous anchor-based detector families such as Faster-RCNN,
SSD, and YOLO have been widely exploited in remote sensing object detection, including
vehicles. In [26,27], the authors proposed to modify and improve the Faster-RCNN detector
for vehicle detection from aerial remote sensing images. Multi-scaled feature fusion and
data augmentation techniques such as oversampling or homography transformation have
proven to help two-stage detectors to provide better object proposals.

In [28,29], YOLOv3 and YOLOv4 were modified and adapted to tackle small vehicle
detection from both Unmanned Aerial Vehicle (UAV) and satellite images with the objective
of providing a real-time operational context. In the proposed YOLO-fine [28] and YOLO-
RTUAV [29] models, the authors attempted to remove unnecessary network layers from
the backbones of YOLOv3 and YOLOv4-tiny, respectively, while adding some others to
focus on small object searching. In [23], the Tiramisu segmentation model as well as the
YOLOv3 detector were experimented and compared for their capacity to detect very small
vehicles from 50-cm Pleiades satellite images. The authors finally proposed a late fusion
technique to obtain the combined benefits from both models. In [30], the authors focused on
the detection of dense construction vehicles from UAV images using an orientation-aware
feature fusion based on the one-stage SSD models.

As the use of anchor boxes introduces many hyper-parameters and design choices,
such as the number of boxes, sizes, and aspect ratios [9], some recent works have also inves-
tigated anchor-free detection frameworks with feature enhancement or multi-scaled dense
path feature aggregation to better characterize vehicle features in latent spaces [9,31,32].
We refer interested readers to these studies for more details about anchor-free methods.
As anchor-free networks usually require various extra constraints on the loss functions,
well-established anchor-based approaches remain popular in the computer vision com-
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munity for their stability. Therefore, within the scope of this paper, we base our work on
anchor-based approaches.

2.2. Misalignment in Object Detection

Object detection involves two tasks: classification and localization. Apparently, precise
detection results require high-quality joint predictions of both tasks. Most object detection
models regard these two tasks as independent ones and ignore their potential interactions,
leading to the misalignment between classification and localization tasks. Indeed, detection
results with correct classification but imprecise localization or with precise localization but
wrong classification will both reduce the overall precision, and should be prevented.

The authors of IoU-Net [2] were the first to study this task-wise misalignment problem.
Their solution is to use an additional prediction head to estimate the localization confidence
(i.e., the intersection-over-union (IoU) between the regressed box and the true box), and
then aggregate this localization confidence into the final classification score. In this way,
the classification prediction contains information from the localization prediction, and the
misalignment is greatly alleviated.

Along this direction, the authors of Double-Head RCNN [1] propose to apply different
network architectures for classification and localization networks. Specifically, they find
the fully connected layers more suitable for the classification task, and the convolutional
layers more suitable for the localization task.

TSD [3] further proposes to use disentangled proposals for classification and localiza-
tion predictions. To achieve the best performance of both tasks, two dedicated region of
interest (RoI) proposals are estimated for classification and localization tasks, respectively,
and the final detection result comes from the combination of both proposals.

The recently proposed MutualGuidance [4] addresses the misalignment problem from
the perspective of label assignment. It introduces an adaptive matching strategy between
anchor boxes and true objects, where the labels for one task are assigned according to the
prediction quality on the other task, and vice versa. Compared to the aforementioned
methods, the main advantage of MutualGuidance is that its improvement only involves
the loss computation, while the architecture of the detection network remains unchanged,
so it can be generalized to different detection models and application cases. These features
motivate us to rely on this method in our study, and to explore its potential in Earth
observation.

2.3. Contrastive Learning

Contrastive learning has been predominantly employed to transfer representations
learned from a pretext task, usually without provided labels, to a different actual task, by
finetuning using accompanied annotations [14–16,18–20,33]. The pretext tasks involving
mostly feature vectors in embedding space are usually trained with metric distance learning
such as N-pair loss [34] or triplet [35].

Depending on the downstream tasks, the corresponding pretexts are chosen accord-
ingly. Chen et al. [16] propose a simple framework, called SimCLR, exploiting image
augmentation to pretrain a network using the temperature-scaled N-pair loss and demon-
strate an improvement in classifying images. An image paired with the augmented version
and used against its pairing with other images in a mini-batch for optimization helps in
learning decent visual representations. The representations can be further improved when
they participate in the contrastive loss by non-linear transformed proxy. This notion is
employed in our paper as the projection head.

Contrastive learning trained on image-level tasks, i.e., a single feature vector per
image, however, is shown to be sub-optimal for downstream tasks requiring instance-level
or dense pixel-level prediction, such as detection [18] or segmentation [20], 3respectively.
The reasons are attributed to the missing of dedicated properties such as spatial sensitivity,
translation, and scale invariance. Consequently, different pretext schemes are proposed
to effectively pretrain a network conforming to particular downstream tasks, including
but not limited to DenseCL [36], SoCo [18], DetCo [19], and PixPro [20]. The common
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feature of these methods is the use of explicit image augmentation to generate positive
pairs, following SimCLR’s proposal, for pretraining networks. In our method, we acquire
the augmentation principles yet consider the aerial views of different same-class objects as
their augmented versions; hence, no extra views are generated during training. Moreover,
the contrastive loss is not used as pretext but as auxiliary loss to improve the semantic
information in the mutual guidance process.

In contrast to most works that apply contrastive learning in a self-supervised context,
Khosla et al. [17] leverage label information and formulate the batch contrastive approach
in the supervised setting by pulling together features of the same class and pushing apart
those from different classes in the embedding space. They also unify the contrastive loss
function to be used for either self-supervised or supervised learning while consistently
outperforming cross-entropy on image classification. The contrastive loss employed in
our paper could be considered as being inspired by the same work but repurposed for a
detection problem.

3. Method

In this paper, we follow the generic one-stage architecture for anchor-based object
detection comprising a backbone network for feature extraction and 2 output heads for
localization and classification. The overview of our framework is shown in Figure 3. For
illustration purposes, a 2-image batch size, single spatial resolution features, and 6 anchor
boxes are shown, yet the idea is seamlessly applicable to larger batch sizes with different
numbers of anchor boxes, and multi-scaled feature extraction such as FPN [37].

Remote Sens. 2022, 1, 0 5 of 21

effectively pre-train a network conforming to particular downstream tasks, including but
not limiting to DenseCL [36], SoCo [18], DetCo [19], and PixPro [20]. The common of these
methods is the use of explicit image augmentation to generate positive pairs, following the
SimCLR’s proposal, for pretraining networks. In our method, we acquire the augmentation
principles yet consider the aerial views of different same-class objects as their augmented
versions, hence no extra views are generated during training. Besides, the contrastive loss
is not used as pretext but as auxiliary loss to improve semantic information in the mutual
guidance process.

In contrast to most works that apply contrastive learning in a self-supervised context,
Khosla et al. [17] leverage label information and formulate the batch contrastive approach in
the supervised setting by pulling together features of the same class and pushing apart those
from different classes in the embedding space. They also unify the contrastive loss function
to be used for either self-supervised or supervised learning while consistently outperform
cross-entropy on image classification. The contrastive loss employed in our paper could be
considered being inspired from the same work but repurposed for a detection problem.

3. Method

In this paper, we follow the generic one-stage architecture for anchor-based object
detection comprising a backbone network for feature extraction and 2 output heads for
localization and classification. The overview of our framework is shown in Figure 3. For
illustration purpose, a 2-image batch size, single spatial-resolution features and 6 anchor
boxes are shown, yet the idea is seamlessly applicable to larger batch size with different
number of anchor boxes, and multi-scaled feature extraction, such as FPN [37].

Localization head
Mutual Guidance

Contrastive Loss

1× 1× nc

1× 1× 4

Positive pair

Negative pair

Ground truths

1
×

1
×

25
6

3
×

3
×

25
6n

a

1
×

1
×

n c
n a

1
×

1
×

25
6

3
×

3
×

25
6

1
×

1
×

4n
a

3
×

3
×

25
6

3
×

3
×

25
6

L1 Loss

GFocal Loss

Classification headBackbone

conv+BN+SiLU

Figure 3. An overview of our framework: the backbone network encodes a batching input before
passing the extracted features to the localization and classification heads, which predict 4-tuple
bounding box values and nc-class confidence scores for each anchor box. The mutual guidance
module re-ranks the anchor boxes based on semantic information from the classification branch and
improves confidence score with localization information. The ground truth categories of the anchor
boxes are used to supervise the contrastive loss. The pipeline is illustrated with batch size of 2 and
the number of anchor boxes na = 6.

The 2 output heads have the same network architecture: two parallel branches with
two 3× 3 convolution layers, followed by one 1× 1 convolution layer for localization

Figure 3. An overview of our framework: the backbone network encodes a batching input before
passing the extracted features to the localization and classification heads, which predict 4-tuple
bounding box values and nc-class confidence scores for each anchor box. The mutual guidance
module re-ranks the anchor boxes based on semantic information from the classification branch and
improves the confidence score with localization information. The ground truth categories of the
anchor boxes are used to supervise the contrastive loss. The pipeline is illustrated with a batch size of
2 and the number of anchor boxes na = 6.

The 2 output heads have the same network architecture: two parallel branches with
two 3× 3 convolution layers, followed by one 1× 1 convolution layer for localization and
classification predictions. The former classifies each anchor box into foreground (positive)
or background (negative), while the latter refines anchor boxes via bounding-box regression
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to better suit target boxes. Instead of optimizing the 2 head networks independently, mutual
guidance [4] introduces a task-based bidirectional supervision strategy to align the model
predictions of localization and classification tasks.

3.1. Generation of Detection Targets

A general supervised object detection provides, for each input image, a list of ground
truth bounding boxes B ∈ RnB×4 accompanied by a list of labels L ∈ RnB , where nB is the
number of ground truth boxes annotated for the image. Each box is represented by a 4-tuple
(l, t, w, h) (in MS-COCO [12] format) or (xc, yc, w, h) (in YOLO [38] format), where (l, t) and
(xc, yc) are the (x, y) coordinates of a box’s top-left corner and center, respectively, and
w, h are the box’s width and height. The ground truth boxes are arbitrary and unordered
and thus usually adapted into targets of a different form that is more compatible for
optimization in a deep network. The process is called matching.

The idea is to define a list of fixed-size boxes called anchors, A ∈ RnA×4, for each vector
in a CNN output feature map, where nA is the total number of predefined anchors per
image. For a 512× 512 input image with na = 6 predefined anchor sizes per vector, a
3-level FPN-based feature extraction network with output scale of (8, 16, 32) can produce
up to (

512
8
× 512

8
+

512
16
× 512

16
+

512
32
× 512

32

)
× 6 = 32,256 (1)

anchors. As the anchors are defined at every vector in an output feature map, they are
directly compatible with loss calculation and thus are used as targets for optimization.

Conventional matching. Depending on how similar each anchor is to the real ground
truth boxes, it is marked as a positive (i.e., object) or negative target (i.e., background). The
most common similarity metric is the Jaccard index [39], which measures the ratio of the
overlapping area of 2 boxes (an anchor and a ground truth box) over their area of union, as
shown in Equation (2).

J (X, Y) =
X ∩Y
X ∪Y

. (2)

Specifically, the matrix M containing the Jaccard indices between all pairs of ground
truth and anchor boxes is computed. We define the Jaccard index over the Cartesian
product of two sets of boxes as the Jaccard indices of all the pairs of boxes in the sets as
follows:

J (X ×Y) = {J (X, Y)|X ∈ X and Y ∈ Y }. (3)

Thus, M = J (B× A). An anchor is matched to a ground truth box if (1) this anchor is
the closest that the ground truth box can have (among all anchors) or (2) this ground truth
box is the closest that the anchor can have (among all other ground truths). A threshold can
be applied to further filter out the matched anchors with low intersection-over-union scores.
Subsequently, each anchor is associated with, at most, 1 ground truth box, i.e., positive target,
or none, i.e., background or negative target. Some of the positive targets can be marked as
ignored and do not contribute to the optimization process. The concrete algorithm is shown
in Algorithm 1.

Mutual matching. Mutual guidance [4] formulates the process of label assignment in
a mutual supervision manner. In particular, it constrains anchors that are well localized to
be well classified (localize to classify), and those well classified to be well localized (classify
to localize).

Localize to classify. The target anchor box corresponding to a feature vector that well
localizes an object must be covering semantically important parts of the underlying object;
therefore, it should be prioritized as a target for classification. A step-by-step procedure
is shown in Algorithm 2. To this end, the Jaccard matrices between all ground truth and
predicted boxes are computed, i.e., M̂ = J (B× B̂) (see Algorithm 2, Line 1). The top-K
anchors per ground truth box are shortlisted as positive classification targets, while the rest
are considered negative targets. Concretely, we keep the Jaccard score of the best ground
truth box (if any) for each anchor and zero out the other ground truth boxes, i.e., a column
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in the Jaccard matrix now has at most a single non-zero entry (Line 3–5). Then, each ground
box will have all anchors besides the K with the highest score removed (Line 6–7). The
remaining ground truth box per anchor is associated with it. We also use their Jaccard
scores as soft-label targets for the loss function by replacing 1s in one-hot vectors with the
corresponding scores. The loss is shown in Section 3.2.

Algorithm 1 Generating targets with common matching

Input: list of ground truth boxes B ∈ RnB×4, and corresponding labels L ∈ RnB ,
list of anchors A ∈ RnA×4,
negative and positive threshold θn, θp, where θn ≤ θp

Output: list of target boxes B̃ ∈ RnA×4,
and corresponding target labels L̃ ∈ RnA for each anchor

1: M← J (B× A) # M ∈ RnB×nA

2: L̃←
[
0 0 · · · 0

]
3: B̃← A # the target boxes are the anchor boxes
4: for each column index c of M do
5: iou← max(M∗c) # Processing condition 2
6: i← argmax(M∗c)
7: if iou ≥ θ
8: L̃c ← Li
9: B̃c∗ ← Bi

10: else if iou < θn
11: L̃c ← −1
12: for each row index r of M do
13: iou← max(Mr∗) # Overwritten with condition 1
14: i← argmax(Mr∗)
15: if iou ≥ θ
16: L̃i ← Lr
17: B̃i ← Br
18: else if iou < θn
19: L̃i ← −1

Algorithm 2 Generating classification targets from predicted localization

Input: list of ground truth boxes B ∈ RnB×4, and corresponding labels L ∈ RnB ,
list of anchors A ∈ RnA×4,
list of predicted boxes B̂ ∈ RnA×4

Output: list of target labels for all anchors L̃ ∈ RnA

1: M̂← J (B× B̂) # M̂ ∈ RnB×nA

2: L̃←
[
0 0 · · · 0

]
3: for each column index c of M̂ do
4: i← argmax

(
M̂∗c

)
5: M̂kc ← 0, ∀ k 6= i
6: for each row index r of M̂ do
7: M̂rk ← 0, ∀ k /∈ topk(M̂r∗)
8: for each column index c of M̂ do
9: i← argmax

(
M̂∗c

)
10: L̃c ← Li

Classify to localize. Likewise, a feature vector at the output layer that induces correct
classification indicates the notable location and shape of the corresponding target anchor
box. As such, the anchor should be prioritized for bounding box regression. To this end, the
Jaccard similarity between a ground truth and anchor box is scaled by the confidence score
of the anchor’s corresponding feature vector for the given ground truth box. Concretely,
a curated list C̃ ∈ RnB×nA of confidence scores for the class of each given ground truth
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box is obtained from the all-class input scores Ĉ ∈ RnA×nC , as shown in Algorithm 3 on
Line 2–4, where nC is the number of classes in the classification task. The Jaccard similarity
between a ground truth and anchor box M (similar to conventional detection matching) is
scaled by the corresponding confidence score and clamped to the range [0, 1] (Line 5, where
� indicates the Hadamard product). The rest of the algorithm proceeds as shown in the
previous algorithm with the updated similarity matrix M̃ in lieu of the predicted similarity
matrix M̂.

Algorithm 3 Generating localization targets from predicted class labels

Input: list of ground truth boxes B ∈ RnB×4, and corresponding labels L ∈ RnB ,
list of anchors A ∈ RnA×4,
list of confidence scores for all classes Ĉ ∈ RnA×nC ,

Output: list of target box specifications for all anchors B̃ ∈ RnA×4

1: M← J (B× A) # M ∈ RnB×nA

2: for each row index r of M do
3: l ← Lr∗

4: C̃r∗ ← exp

(
Ĉl∗
σ

)
# C̃ ∈ RnB×nA

5: M̃← max
(
0, min

(
1, M� C̃

))
6: L̃←

[
0 0 · · · 0

]
7: for each column index c of M̃ do
8: i← argmax

(
M̃∗c

)
9: M̃kc ← 0, ∀ k 6= i

10: for each row index r of M̃ do
11: M̃rk ← 0, ∀ k /∈ topk(M̃r∗)
12: for each column index c of M̃ do
13: i← argmax

(
M̃∗c

)
14: B̃c∗ ← Bi∗

3.2. Losses

Classification loss. For classification, we adopt the Generalized Focal Loss [40] with
soft target given by the Jaccard scores of predicted localization and ground truth boxes.
The loss is given by Equation (4):

Lclass(ŷ, ỹ) = −|ỹ− ŷ|2
nC

∑
i

ỹi log ŷi, (4)

where ỹ ∈ RnC is the one-hot target label given by C̃, softened by the predicted Jaccard
scores, and ŷ ∈ RnC is the anchor’s confidence score.

Localization loss. We employ the balanced L1 loss [41], derived from the conventional
smooth L1 loss, for the localization task to promote the crucial regression gradients from
accurate samples (inliers) by separating inliers from outliers, and we clip the large gradients
produced by outliers with a maximum value of β. This is expected to rebalance the involved
samples and tasks, thus achieving a more balanced training within classification, overall
localization, and accurate localization. We first define the balanced loss Lb(x) as follows:

Lb(x) =


α

b
(b|x|+ 1) ln

(
b
|x|
β

+ 1
)
− α|x|, if |x| < β

γ|x|+ γ

b
− α ∗ β, otherwise,

(5)

where α = 0.5, β = 0.11, γ = 1.5, and b is constant such that

α ln(b + 1) = γ. (6)

The localization loss using balanced L1 loss is defined as Lloc = Lb(pred− target).
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Contrastive Loss. The mutual guidance process assigns to each anchor box a con-
fidence score si ∈ [0, 1] from the prediction of the feature vector associated with it, and
a category label ci > 0 if the anchor box is deemed to be an object target or ci = 0 if
background target. Let Bφ

k = {i 6= k : ci = φ} be the index set of all anchor boxes other
than k, whose labels follow the condition φ and z be a feature vector at the before-last layer
in the classification branch (Figure 3). Following SupCo [17], we experiment with two
versions of the loss function, Lout, with summation being outside of the logarithm, and Lin
inside, whose equations are given as follows:

Lin =
−1
|B| ∑

i∈B
log

 1∣∣Bci
i

∣∣ ∑j∈Bci
i

δ
(
zi, zj

)
∑k∈Bi

δ(zi, zk)

, (7)

Lout =
−1
|B| ∑

i∈B

1∣∣Bci
i

∣∣ ∑
j∈Bci

i

log
δ
(
zi, zj

)
∑k∈Bi

δ(zi, zk)
, (8)

where δ(v1, v2) = exp
(

1
τ

v1 · v2

‖v1‖‖v2‖

)
is the temperature-scaled similarity function. In this

paper we choose τ = 1.

4. Experiments
4.1. Setup

In this section, the proposed modules are analyzed and tested using the YOLOX small
(-s) and medium (-m) backbones, which are adopted exactly from the YOLOv5 backbone
and its scaling rules, as well as the YOLOv3 backbone (DarkNet53+SPP bottleneck) due to
its simplicity and broad compatibility, and hence popularity, in various applied domains.
More detailed descriptions can be referred to in the YOLOX paper [42]. We also perform
an ablation study to analyze the effects of different components and a comparative study
with state-of-the-art detectors including EfficientDet [43], YOLOv3 [38], YOLO-fine [28]
YOLOv4, and Scaled-YOLOv4 [44].

For fair comparison, the input image size is fixed to 512× 512 pixels for all experiments.
Dataset. We use the VEDAI aerial image dataset [21] and xView satellite image

dataset [22] to conduct our experiments. For VEDAI, there exist two RGB versions with
12.5-cm and 25-cm spatial resolutions. We name them as VEDAI12 and VEDAI25, respec-
tively, in our experimental results. The original data contain 3757 vehicles of 9 different
classes, including car, truck, pickup, tractor, camper, ship, van, plane, and others. As done by
the authors in [28], we merge class plane into class others since there are only a few plane
instances. Next, the images from the xView dataset were collected from the WorldView-3
satellite at 30-cm spatial resolution. We followed the setup in [28] to gather 19 vehicle
classes into a single vehicle class. The dataset contains a total number of around 35,000 vehi-
cles. It should be noted that our intention to benchmark these two datasets is based on their
complementary characteristics. The VEDAI dataset contains aerial images with multiple
classes of vehicles from different types of backgrounds (urban, rural, desert, forest, etc.).
Moreover, the numbers of images and objects are quite limited (e.g., 1200 and 3757, respec-
tively). Meanwhile, the xView dataset involves satellite images of lower resolution, with a
single merged class of very small vehicle sizes. It also contains more images and objects
(e.g., 7400 and 35,000, respectively).

Metric. We report per-class average precision (AP) and their mean values (mAP)
following the PASCAL VOC [13] metric. An intersection-over-union (IOU) threshold
computed by the Jaccard index [39] is used for identifying positive boxes during evaluation.
IOU values vary between 0 (no overlapping) and 1 (tight overlapping). Within the context
of vehicle detection in remote sensing images, we follow [28] to set a small threshold, i.e.,
testing threshold is set to 0.1 unless stated otherwise.
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To be more informative, we also show the widely used precision–recall (PR) curves
in later experiments. The recall and precision are computed by Equations (9) and (10),
respectively.

Recall =
number of correct detections

number of existing objects
=

TP
TP + FN

(9)

Precision =
number of correct detections
number of detected objects

=
TP

TP + FP
, (10)

where TP, FP, and FN denote true positive, false positive, and false negative, respectively.
The PR curve plots the precision values, which usually decrease, at each recall rate.

Higher recall rates correspond to lower testing confidence thresholds, thus indicating a
higher likelihood of false positives and a lower precision rate. On the other hand, lower
recall rates mean stricter testing thresholds and a reduced likelihood of false positives, thus
resulting in better precision. The visualization of the precision–recall curve gives a global
vision of the compromise between precision and recall.

4.2. Mutual Guidance

In this section, we show the impact of mutual guidance on the remote sensing data
by applying it directly for vehicle detection, apart from the other modules. The baseline is
the same backbone with a generic setup, as used in [4]. As they use focal loss [45] in their
setup, we include the mutual guidance with the same loss for a fair comparison.

The results in Table 1 show the improvement when switching from the IOU-based
scheme to mutual guidance. The impact is diminished with YOLOX-m as was already
efficient to begin with. The use of GFocal loss shows even further improvement for both
architectures.

Table 1. Mutual guidance for different backbone architectures on VEDAI25 dataset. The best
performance per column is shown in boldface.

Matching Strategy Loss YOLOX-s YOLOX-m YOLOv3

IOU-Based Focal 70.20 74.30 70.78
Mutual Guidance Focal 71.48 74.47 74.13
Mutual Guidance GFocal 73.04 79.82 74.88

4.3. Contrastive Loss

Similar to the previous subsection, here, we aim to test the ability of contrastive loss in
the context of vehicle detection. To this end, the contrastive loss is used together with the
detection losses using the IOU-based matching strategy. Following [17], we also test the
two possibilities of loss function, namely Lin (Equation (7)) and Lout (Equation (8)). The
results are shown in Table 2.

Table 2. YOLOX-s performance on VEDAI25 with different contrastive loss functions.

Matching Strategy Loss YOLOX-s YOLOX-m YOLOv3

IOU-Based Focal 70.20 74.30 70.78
GFocal +Lin 71.53 79.89 75.53
GFocal +Lout 74.20 77.81 74.41

The contrastive loss seems to have the reverse effect of mutual guidance on the two
YOLOX backbones. The additional auxiliary loss does not improve the performance of
YOLOX-s as highly as YOLOX-m, and, for the case of the outside loss, it even has negative
impacts. This shows that YOLOX-m does not suffer from the misalignment problem
as much as YOLOX-s does; thus, it can benefit more from the improvement in visual
representation brought about by the contrastive loss.
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4.4. Mutual Guidance Meets Contrastive Learning

The results of YOLOX with the mutual guidance strategy and contrastive learning
are shown in Table 3. Contrastive loss shows great benefit to the network when the
misalignment between localization and classification is alleviated by mutual guidance. The
improvement seems balanced between both backbones. Although the inside contrastive
loss seems to dominate over the outside one in the previous experiment, it becomes
inferior when the semantic information from the classification branch and projection head
is properly utilized in the localization process, conforming to the finding from [17]. The
combination of mutual guidance and outside contrastive loss is coined contrastive mutual
guidance, or CMG.

Table 3. Performance of YOLOX backbones on VEDAI25 when training with mutual guidance (MG)
and contrastive loss.

Matching Strategy Loss YOLOX-s YOLOX-m YOLOv3

Mutual Guidance GFocal 73.04 79.82 74.88
GFocal +Lin 75.57 80.95 76.26
GFocal +Lout 76.67 81.57 77.41

Multiple datasets. We further show the results on different datasets with different
resolutions in Table 4 and the corresponding precision-recall curve in Figure 4.

Table 4. Performance of YOLOX-s vanilla with mutual guidance (MG) and contrastive mutual
guidance (CMG) on the 3 datasets. The contrastive mutual guidance strategy consistently out-
performs other configurations, showing its benefit.

Configuration VEDAI12 VEDAI25 xView30

vanilla 78.68 70.20 79.96
+MG 79.70 73.04 83.49

+CMG 81.25 76.67 83.67
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Figure 4. Precision-Recall curve of YOLOX-s on 3 datasets, from left to right: VEDAI12, VEDAI25,
and xView30. The methods with +CMG gain improvement over the others at around recall level of
0.5 for the VEDAI datasets and both +MG and +CMG outperform the vanilla method on the xView
dataset.

The methods with +CMG gain improvement over the others at around recall level of
0.5 for the VEDAI datasets and both +MG and +CMG outperforms vanilla method on the
xView dataset.

Some qualitative results on the VEDAI25 and xView dataset can be found in Figure 5
and Figure 6, respectively. Several objects are missing in the second and third columns
while the CMG strategy (last column) is able to recognize objects of complex shapes and
appearances.

Figure 4. Precision–recall curve of YOLOX-s on 3 datasets, from left to right: VEDAI12, VEDAI25,
and xView30. The methods with +CMG gain improvement over the others at around recall level of
0.5 for the VEDAI datasets and both +MG and +CMG outperform the vanilla method on the xView
dataset.

The methods with +CMG gain an improvement over the others at around a recall level
of 0.5 for the VEDAI datasets and both +MG and +CMG outperform the vanilla method on
the xView dataset.

Some qualitative results on the VEDAI25 and xView datasets can be found in Figures 5
and 6, respectively. Several objects are missing in the second and third columns, while the
CMG strategy (last column) is able to recognize objects of complex shape and appearance.

Comparison to the state-of-the-art. In Table 5, we compare our method with several
state-of-the-art methods on the three datasets. Our YOLOX backbone with the CMG
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strategy outperforms others on the VEDAI datasets and is on par with YOLO-fine on xView.
From the qualitative results in Figures 7 and 8, respectively, for the VEDAI and xView, it
can be seen that although the xView dataset contains extremely small objects, our method,
without deliberate operations for tiny object detection, can approach the state-of-the-art
method specifically designed for small vehicle detection [28]. A breakdown of performance
for each class of VEDAI is shown in Table 6.

Table 5. Performance of different YOLOX backbones with CMG compared to the state-of-the-art
methods. Our method outperforms or is on par with the methods designed for tiny object recognition.

Architecture VEDAI12 VEDAI25 xView30

EfficientDet 74.01 51.36 82.45
YOLOv3 73.11 62.09 78.93

YOLO-fine 76.00 68.18 84.14
YOLOv4 79.93 73.14 79.19

Scaled-YOLOv4 78.57 72.78 81.39

YOLOX-s+CMG (ours) 81.25 76.67 83.67
YOLOX-m+CMG (ours) 83.07 81.57 84.79
YOLOv3+CMG (ours) 78.09 77.41 83.54

Table 6. Per-class performance of YOLOX backbones with CMG on VEDAI25 dataset. Our method
outperforms the state-of-the-art for all classes.

Model Car Truck Pickup Tractor Camping Boat Van Other mAP

EfficientDet 69.08 61.20 65.74 47.18 69.08 33.65 16.55 36.67 51.36
YOLOv3 75.22 73.53 65.69 57.02 59.27 47.20 71.55 47.20 62.09

YOLOv3-tiny 64.11 41.21 48.38 30.04 42.37 24.64 68.25 40.77 44.97
YOLOv3-spp 79.03 68.57 72.30 61.67 63.41 44.26 60.68 42.43 61.57

YOLO-fine 76.77 63.45 74.35 78.12 64.74 70.04 77.91 45.04 68.18
YOLOv4 87.50 80.47 78.63 65.80 81.07 75.92 66.56 49.16 73.14

Scaled-YOLOv4 86.78 79.37 81.54 73.83 71.58 76.53 63.90 48.70 72.78

YOLOX-s+CMG (ours) 88.92 85.92 79.66 77.16 81.21 65.22 64.90 70.33 76.67
YOLOX-m+CMG (ours) 91.26 85.34 84.91 76.22 85.03 78.68 82.02 69.08 81.57
YOLOv3 +CMG (ours) 92.20 85.98 87.34 77.27 85.56 53.74 73.94 64.13 77.41

Two failure cases are shown in the last columns of Figures 7 and 8. We can see that our
method has difficulty in recognizing the “other” class (VEDAI), which comprises various
object types, and might wrongly detect objects of extreme resemblance (xView).
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Figure 5. Qualitative results of YOLOX-s on VEDAI25. The contrastive mutual guidance helps to
recognize intricate objects. The number and color of each box correspond to one of the classes, i.e.,
(1) car, (2) truck, (3) pickup, (4) tractor, (5) camper, (6) ship, (7) van, and (8) plane.
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Figure 6. Qualitative results of YOLOX-s on xView. The contrastive mutual guidance helps to
recognize intricate objects. The number and color of each box indicate the vehicle class.
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Figure 7. Qualitative results of our methods and state-of-the-art methods on VEDAI25. The number
and color of each box correspond to one of the classes, i.e. (1) car, (2) truck, (3) pickup, (4) tractor,
(5) camper, (6) ship, (7) van, and (8) plane. The last column shows a failure case. Our method has
difficulties in recognizing the “other” class, which comprises various object types.
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Figure 8. Qualitative results of our methods and state-of-the-art methods on xView. The number
and color of each box indicates the vehicle class. The last column shows a failure case. Our method
could recognize objects of various shapes and would wrongly detect objects of extreme resemblance
(although this might have been because of the faulty annotations).
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5. Discussion

Although supervised contrastive loss has been shown to be able to replace cross-
entropy for classification problems [17], in this paper, contrastive loss is applied as an
auxiliary loss besides the main localization and classification losses. This is because only a
small number of anchors are involved in the contrastive process due to the large number of
anchors, especially negative anchors.

However, contrastive loss shows weakness when the annotations are noisy, such as
those of the xView dataset. Several boxes are missing for (what appear to be) legitimate
objects, as shown in Figure 9.
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Figure 7. Examples of faulty annotations in the xView dataset: non-vehicle annotation (red border ),
missing annotations of container trucks (green border), and cars (blue border).

Comparison to the state-of-the-art. In Table 5, we compare our method with several
state-of-the-art methods on the 3 datasets. Our YOLOX backbone with CMG strategy
outperforms on the VEDAI datasets and on par with YOLO-fine on xView. From qualitative
results in Figure 8 and Figure 9, respectively for the VEDAI and xView, it can be seen
that although the xView dataset contains extremely small objects, our method, without
deliberate operations for tiny object detection, can approach the state-of-the-art method
specifically designed for small vehicle detection [29]. A breakdown performance for each
class of VEDAI is shown in Table 6.

Figure 9. Examples of faulty annotations in the xView dataset: non-vehicle annotation (red border),
missing annotations of container trucks (green border), and cars (blue border). The number and color
of each box indicates the vehicle class.

It is shown from the experimental results that inward contrastive loss is not always
inferior to its outward counterpart, as shown in [17]. We speculate that this could be due to
the auxiliary role of contrastive loss in the detection problem and/or the characteristics of
small objects in remote sensing images.

6. Conclusions

This paper presents a combination of a mutual guidance matching strategy and
supervised contrastive loss for the vehicle detection problem. The mutual guidance helps
in better connecting the localization and classification branches of a detection network,
while contrastive loss improves the visual representation, which provides better semantic
information. The vehicle detection task is generally complicated due to the varied object
sizes and similar appearances from the aerial point of view. This, however, provides an
opportunity for contrastive learning, as it can be regarded as image augmentation, which
has been shown to be beneficial for learning visual representations. Although the paper
is presented in a remote sensing context, we believe that this idea could be expanded to
generic computer vision applications.
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