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ABSTRACT

Change Detection represents a relevant topic for the analy-
sis of multi-temporal analysis of Polarimetric SAR (PolSAR)
data. However, most of the CD approaches for PolSAR im-
agery do not take into account textural information, which
can be useful for have larger performance robustness. In this
work, we propose a novel approach for unsupervised change
detection considering polarimetric and textural information
from multi-temporal PolSAR imagery. The approach is based
on the joint use of features from coherency matrix and gradi-
ent tensor and the definition of a multi-temporal distance. A
binary unsupervised thresholding is used for discriminating
change and no-change classes. Experimental results obtained
on a multi-temporal PolSAR dataset over Los Angeles area
illustrate the effectiveness of the proposed approach.

Index Terms— Polarimetric SAR, change detection, gra-
dient tensor, unsupervised detection

1. INTRODUCTION

Multi-temporal environmental monitoring plays an important
role in remote sensing, with different applications associated
both to natural and urban scenes [1]. This makes Change De-
tection (CD) one of the hot topics for the remote sensing im-
agery. In particular, the large amount of data available from
satellite and airborne sensors drives the research towards the
development of automatic CD strategies.
Polarimetric SAR (PolSAR) represents one of the most in-
teresting sensors for CD applications, as it is a microwave
active system that guarantees acquisitions for all light and
weather conditions with large scattering information. A large
effort in the literature has been devoted to the development
of classification techniques based on PolSAR imagery [2]. A
smaller effort has been spent in the development of PolSAR-
based CD strategies, based on the scattering information of
the single pixel. These are typically based on the definition
of the log-likelihood ratio [3], statistical modeling [4] or po-
larimetric distance measures [5, 6]. However, texture rep-
resents an additional information source for target discrim-
ination in SAR imagery. Some of state-of-the-art texture-
based classification approaches considers the combination of

the radiometric information with textures from Gray Level
Co-occurrence Matrix (GLCM) [7], Gabor filters [8] or gra-
dient tensors [9, 10]. To the best of our knowledge, a very
small effort has been spent in combining radiometric and tex-
tural information for CD in PolSAR data. In this work, we
present a novel CD approach from multi-temporal PolSAR
images. The approach considers a weighted multi-looking of
the coherency information in both pre- and post-event. Next,
a feature vector for the two images is built by considering
both the radiometric and the textural information The radio-
metric information is given by the multi-looked terms of the
covariance matrix. The textural information is given by the
gradient tensors of the covariance matrix, extracted based on
the min-ratio operator along multiple directions [10]. A sta-
tistical distance between the two feature vectors is defined as
a Change Index (CI) and thresholded.
The reminder of this paper is organized as follows. Section
2 describes the proposed methodology for the PolSAR based
change detection. Section 3 provides some experimental re-
sults on a full-pol dataset from UAVSAR sensor. Section 4
presents the conclusions and possible future developments of
the proposed work.

2. METHODOLOGY

Let us consider two images from PolSAR sensor acquired
on two times t1, t2, t1 < t2, respectively. The proposed ap-
proach aims at identifying the set of changed and unchanged
pixels, associated to classes ωc, ωu, respectively. Fig. 1
shows the block scheme for the proposed approach. Four
main stages are composing the scheme, namely: i) generation
of the multi-look Coherency matrix for single-time images;
ii) generation of the texture descriptors for the single-time
images, based on the De Zenzo gradient tensor [10]; iii) def-
inition of the CI feature; iv) thresholding and generation of
the CD map.

2.1. Estimation of multi-look weighted coherency

Let us consider a PolSAR image acquired at time ti, i = 1, 2.
PolSAR measures complex scattering by transmitting and/or
receiving radiation on multiple polarizations (e.g., H and V



Fig. 1: Block scheme for the proposed approach.

linear polarizations). The complex information can be repre-
sented, under the Pauli basis, in form of a scattering vector
kp = [Shh], being the Spq the complex scattering coefficient
measured transmitting on polarization q and receiving on po-
larization q [11]. The scattering vector is a proper descriptor
for coherent targets, but it fails in presence of distributed tar-
gets, where the scattering of each cell is composed by terms
associated to multiple scatterers. In this case, the scattering
information is described by a second-order statistics as the
hermitian Coherency matrix T .

T =
1

L

∑
L

kP k
H
P =

T11 T12 T13
T21 T22 T23
T31 T32 T33

 (1)

being kP = 1√
(2)

[SHH + SV V ;SHH − SV V ; 2SHV ] the

scattering vector in the Pauli basis and (·)H the hermitian
operator.

2.2. Texture description based on gradient tensor

Texture information can be often considered as a precious
support for making image analysis more robust by taking into
account neighborhood information. In the literature, several
texture descriptors have been defined, in terms of transform
domain [12], image statistics [13] or GLCM [7]. In this work,
a gradient tensor measure is selected as texture descriptor for
multi-channel data, thanks to its small computational cost and
the possibility to extract inter-channel correlation information
on the gradient coefficients. Let I be a data-cube containing
the independent elements of the T hermitian matrix.

I = [|T11| , |T12, | , |T13| , |T22| , |T23| , |T33|] (2)

Let Ii be the i-th channel of I . For each position (x, y), spatial
derivatives of I along x- and y-axis, namely Iix and Iiy , are
derived. From the derivatives, a gradient tensor J is obtained
by summing the derivative information along the different im-

age channels.

J =

[∑6
i=1 (Iix)

2 ∑6
i=1 IixIiy∑6

i=1 IixIiy
∑6

i=1 (Iiy)
2

]
=

[
J11 J12
J21 J22

]
(3)

Because of the SAR image statistics, a min-ratio operator is
considered for computing the spatial derivatives with respect
to pixel neighborhood.

Iix(x, y) = 1−min{Ii(x+ 1, y)

Ii(x− 1, y)
,
Ii(x− 1, y)

Ii(x+ 1, y)
} (4)

Iiy(x, y) = 1−min{Ii(x+ 1, y)

Ii(x, y − 1)
,
Ii(x, y − 1)

Ii(x, y + 1)
} (5)

2.3. Generation of the combined change index

Based on the texture-based global information in J and po-
larimetric pixel-based information in T , a feature vector F
is constructed. In order to reduce the dimensionality of the
vector, while keeping most of the information, just diagonal
elements from T are considered.

F =
[√
|T11|,

√
|T22|,

√
|T33|, |J11| , |J12| , |J22|

]
(6)

In order to consider the local dispersion of the vector F , co-
variance matrixCF is considered. This is estimated on a mov-
ing square window around pixel (x, y), as follows:

ΣF (x, y) =
1

K − 1

∑
i∈Ni

(Fi − µF )T (Fi − µF ) (7)

being µF = 1
K−1

∑
i∈Ni

Fi the vector mean.
Let ΣF1,ΣF2 be feature covariance matrices obtained at
times t1, t2, derived from vectors F (t1), F (t2), respectively.
A multi-temporal compound change index dF is defined as
log-euclidean distance of the two single-time vectors.

dF = ‖log(CF2)− log(CF1)‖F (8)

On one hand, dF shows high values in presence of changes,
because of the large distances between the two covariance ma-
trices. On the other hand, it shows values close to zero for
unchanged targets.



2.4. CI thresholding and generation of the CD map

An unsupervised strategy for the detection of changed ar-
eas is applied on dF , considering the binary problem with
classes ωu, ωc. In particular, Otsu thresholding is considered
as thresholding strategy. For binary Otsu thresholding, the
probability density function of dF can be modeled as a mix-
ture of two components:

P (dF ) = P (ωu)p(dF |ωu) + P (ωc)p(dF |ωc) (9)

being P (ω), p(dF |ω) the prior probability and the marginal
distribution for the class ω, ω ∈ {ωu, ωc}. An optimal thresh-
old dFT is selected by minimizing the weighted sum of class
variance for the two classes var(ωu), var(ωc).

dF = arg min
dF

[P (ωu)var(ωu) + P (ωc)var(ωc)] (10)

3. EXPERIMENTAL RESULTS

A validation campaign for the proposed approach has been
conducted with a full-polarimetric multi-temporal dataset ac-
quired by UAVSAR mission over Los Angeles, California
(U.S.A.). The two images, acquired in 2009 (see Fig. 2-
a) and 2015 (see Fig. 2-b), have size 559 × 400 pixels and
show changes due to urbanization phenomenon, with the cre-
ation of new urban areas and the removal of vegetated areas
for future built-up areas. The two images have been both
acquired with a spatial resolution of 0.4 × 1.6 meters and
pre-processed with calibration and co-registration. Fig. 2-c
shows the reference map obtained by photo-interpretation of
the Pauli RGB of the single-time PolSAR images. The pro-
posed approach has been compared with other state-of-the-art
CD techniques based on full-polarimetric imagery. In par-
ticular, several techniques were considered, namely a Log-
Likelihood Ratio (LLR) test [3], the Hotelling-Lawley trace
(HLT) [14] and PCA-based K-means based of geodesic dis-
tance measure (GD-PCAK) [5]. For all the approaches, per-
formance has been evaluated in terms of overall accuracy OA
ad Cohen’s coefficient Kappa.

For both single-time images, coherency matrix has been
generated, resulting in a final multi-looking resolution of 3×
3 meters. Gradient tensor has been computed and diagonal
components have been used to create the vectors F (t1), F (t2).
Feature covariance matrices ΣF1,ΣF2 have been derived by
considering a local neighborhood of 7 × 7 pixels. Fig. 3-
a shows the output CD map. Good detection performance
can be inferred from its comparison with the reference map.
In particular, a good tradeoff in terms of detail preservation
and homogeneity for the changed regions is inferred. This
resulted in numerical values OA = 0.9728 and Kappa =
0.7133 (see Table 1). Table 2 illustrates the performance com-
parison of the proposed approach with respect to the litera-
ture. The proposed approach shows an increment of 0.5% for
OA and 21% for Kappa with respect to LLR approach (see

(a) (b)

(c) (d)

Fig. 2: Pauli RGB for (a) pre-event and (b) post-event image;
(c) reference map; (d) log-euclidean distance dF .

(a) (b)

(c) (d)

Fig. 3: CD Map using: (a) proposed approach; (b) HLT; (c)
GD-PCAK; (d) LLR.

Fig. 3-d). Larger improvements are registered with respect to
the HLT (see Fig. 3-b) and the GD-PCAK (see Fig. 3-c).



Table 1: Confusion Matrix for the proposed approach.

ω̂u ω̂c

ωu 209403 3082
ωc 2997 8118

OA 0.9728
Kappa 0.7133

Table 2: Overview of Performance assessment.

Method OA Kappa
Proposed 0.9728 0.7133

HLT 0.9564 0.2112
LLR 0.9673 0.4989

GD-PCAK 0.9115 0.4067

4. CONCLUSIONS

In this work, a novel CD approach for multi-temporal Pol-
SAR images has been presented. The method considers the
use of overall gradient tensor information from multiple po-
larimetric channels. A multi-temporal distance measure is
based on compound textural-polarimetric features from the
single-time matrices and thresholded for obtaining the final
CD map. Preliminary experimental results show good detec-
tion capabilities, with performance larger than other literature
techniques. Future developments aim at analyzing the dis-
tance measure based on the PolSAR image statistics and inte-
grating advanced polarimetric features in the approach.
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