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We prove a strong invariance principle for the Kantorovich distance between the empirical distribution and the marginal distribution of stationary α-mixing sequences.

Running head. ASIP for the empirical W1 distance.

Introduction and notations

Let (Xi) i∈Z be a strictly stationary sequence of real-valued random variables. Define the two σ-algebras F0 = σ(Xi, i ≤ 0) and G k = σ(Xi, i ≥ k), and recall that the strong mixing coefficients (α(k)) k≥0 of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] be the empirical measure based on X1, . . . , Xn. In this paper, we prove a strong invariance principle for the Kantorovich distance W1(µn, µ) between µn and µ under a condition on the mixing coefficients α(k). Recall that the Kantorovich distance (also called Wasserstein distance of order 1) between two probability measures µ and ν is defined by

W1(µ, ν) = inf π∈M (µ,ν)
|x -y|π(dx, dy) ,

where M (µ, ν) is the set of probability measures on R 2 with marginals µ and ν. We shall use the following well known representation for probabilities on the real line:

W1(µ, ν) = |Fµ(x) -Fν (x)|dx , (1.2) 
where Fµ is the cumulative distribution function of µ. Let H : t → P([X0| > t) be the tail function of |X0|. In the case where (Xi) i∈Z is a sequence of independent and identically distributed (i.i.d.) random variables, del Barrio et al. [START_REF] Del Barrio | Central limit theorems for the Wasserstein distance between the empirical and the true distributions[END_REF] used the representation (1.2) and a general result of Jain [START_REF] Jain | Central limit theorems and related questions in Banach space[END_REF] for Banach-valued random variables to prove a central limit theorem for √ nW1(µn, µ). More precisely, they showed that √ nW1(µn, µ) converges in distribution to the L1(dt) norm of an L1(dt)-valued Gaussian random variable, provided that

∞ 0 H(t) dt < ∞ . (1.3)
They also proved that √ nW1(µn, µ) is stochastically bounded iff (1.3) holds, proving that this condition is necessary and sufficient for the weak convergence of √ nW1(µn, µ). Still in the i.i.d. case, we easily deduce from Chapters 8 and 10 in Ledoux and Talagrand [START_REF] Ledoux | Probability in Banach spaces. Isoperimetry and processes[END_REF] that: if (1.3) holds, then the sequence

√ n √ 2 log log n W1(µn, µ) (1.4)
satisfies a compact law of the iterated logarithm.

For strongly mixing sequences in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], we proved in [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF] the central limit theorem for √ nW1(µn, µ) under the condition

∞ 0 ∞ k=0 (α(k) ∧ H(t)) dt < ∞ (1.5)
(where a ∧ b means the minimum between two reals a and b), and we give sufficient conditions for (1.5) to hold. Note that, in [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF], we used a weaker version of the α-mixing coefficients, that enables to deal with a large class of non-mixing processes in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF].

In Section 2 of this paper, we prove a strong invariance principle for W1(µn, µ) under the condition (1.5). The compact law of the iterated logarithm for (1.4) easily follows from this strong invariance principle. In Section 3, we apply our general result to derive the almost sure rate of convergence of the empirical estimator of the Conditional Value at Risk (CV aR) for stationary α-mixing sequences.

In the rest of the paper, we shall use the following notation: for two sequences (an) n≥1 and (bn) n≥1 of positive reals, an bn means there exists a positive constant C not depending on n such that an ≤ Cbn for any n ≥ 1.

Main result

Our main result is the following strong invariance principle for W1(µn, µ). Theorem 2.1. Assume that (1.5) is satisfied. Then, enlarging the probability space if necessary, there exists a sequence of i.i.d. L1(dt)-valued centered Gaussian random variables (Zi) i≥1 with covariance function defined as follows: for any f, g ∈ L∞(dt),

Γ(f, g) = Cov f (t)Z1(t) dt, g(t)Z1(t) dt = k∈Z f (t)g(s)Cov(1 X 0 ≤t , 1 X k ≤s ) ds dt , (2.1 
) and such that nW1(µn, µ) - Remark 2.2. In [START_REF] Cuny | Invariance principles under the Maxwell-Woodroofe condition in Banach spaces[END_REF], Cuny proved a strong invariance principle for W1(µn, µ). under the condition

∞ k=0 1 √ k + 1 ∞ 0 α(k) ∧ H(t) dt < ∞ (2.2)
(in fact, he proved the result for a weaker version of the α-mixing coefficient, the same as that used in [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF] for the central limit theorem). It follows from Section 5 of [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF], that the condition (1.5) is always less restrictive than (2.2). As a consequence of Theorem 2.1, we get the compact law of the iterated logarithm. Let K be the unit ball of the reproducing kernel Hilbert space (RKHS) associated with Γ, and C be the image of K by the L1(dt) norm. The following corollary holds: Corollary 2.1. Assume that (1.5) is satisfied. Then the sequence

√ n √ 2 log log n W1(µn, µ)
is almost surely relatively compact, with limit set C. The proof of Theorem 2.1 is based on two ingredients: a martingale approximation in L1(dt), as in [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF], and the following version of the bounded law of the iterated logarithm, which has an interest in itself. Proposition 2.1. Assume that (1.5) holds, and let

V = ∞ 0 ∞ k=0 (α(k) ∧ H(t)) dt .
(2.3)

Then, there exists a universal constant η such that for any ε > 0, Combining the arguments in [START_REF] Berthet | Central limit theorem and almost sure results for bivariate empirical W1 distances[END_REF] and the proof of Theorem 2.1, one can prove the following strong invariance principle for n (W1(µn,X , µn,Y ) -W1(µX , µY )).

n≥2 1 n P max 1≤k≤n kW1(µ k , µ) > (ηV + ε) n log log n < ∞ . ( 2 
Let ϕ be the continuous function from L1(dt) to R defined by

ϕ(x) = sign{FX (t) -FY (t)} x(t)1 F X (t) =F Y (t) + |x(t)|1 F X (t)=F Y (t) dt ,
where FX (resp. FY ) is the cumulative distribution function of µX (resp. µY ). Assume that

∞ 0 ∞ k=0 (α(k) ∧ HX (t)) dt < ∞ and ∞ 0 ∞ k=0 (α(k) ∧ HY (t)) dt < ∞ .
Then, enlarging the probability space if necessary, there exists a sequence of i.i.d. L1(dt)-valued centered Gaussian random variables (Zi) i≥1 with covariance function given by: for any f, g ∈ L∞(dt),

Γ(f, g) = Cov f (t)Z1(t) dt, g(t)Z1(t) dt = k∈Z f (t)g(s)Cov(1 X 0 ≤t -1 Y 0 ≤t , 1 X k ≤s -1 Y k ≤s ) ds dt ,
and such that

n (W1(µn,X , µn,Y ) -W1(µX , µY )) -ϕ n k=1 Z k = o( n log log n) almost surely.
3 Rates of convergence of the empirical estimator of the Conditional Value at Risk

The Conditional Value at Risk at level u ∈ (0, 1] of a real-valued integrable random variable X (CV aRu(X)) is a "risk measure" (according to the definition of Acerbi and Tasche [START_REF] Acerbi | On the coherence of Expected Shortfall[END_REF]), which is widely used in mathematical finance. It is sometimes called Expected Shortfall of Average Value at Risk. We refer to the paper [START_REF] Acerbi | On the coherence of Expected Shortfall[END_REF] for a clear definition of that indicator, and for its relation with other well known measures, such as the Value at Risk, the Worst Conditional Expectation, the Tail Conditional Expectation... According to Acerbi and Tasche [START_REF] Acerbi | On the coherence of Expected Shortfall[END_REF], CV aRu(X) can be expressed as

CV aRu(X) = - 1 u u 0 F -1 X (x)dx ,
where FX is the cumulative distribution function of the variable X, and F -1 X is its usual cadlag inverse:

F -1 X (u) = inf{x ∈ R : FX (x) ≥ u}.
Concerning the difference between the Conditional Value at Risk of two random variables X and Y , the following elementary inequality holds (see for instance [START_REF] Rio | About the conditional value at risk of partial sums[END_REF]):

|CV aRu(X) -CV aRu(Y )| ≤ 1 u 1 0 |F -1 X (x) -F -1 Y (x)|dx = 1 u W1(µX , µY ) , (3.1) 
where µX (resp. µY ) is the distribution of X (resp. Y ).

Consider now the problem of estimating CV aRu(X) from the random variables X1, ..., Xn, where (Xi) i∈Z is a stationary sequence of α-mixing random variables with common distribution µ = µX . A natural estimator is then

CV aRu,n = - 1 u u 0 F -1 n (x)dx ,
where Fn is the empirical distribution function based on X1, . . . , Xn. From (3.1), we get the upper bound [START_REF] Ledoux | Probability in Banach spaces. Isoperimetry and processes[END_REF]) that the constant κ(Γ) can be expressed as Let (Ω, A, P) be the underlying probability space. By a standard argument, one may assume that Xi = X0 • T , where T : Ω → Ω is a bijective, bi-measurable transformation, preserving the probability P.

CV aRu(X) -CV aRu,n ≤ 1 u 1 0 |F -1 X (x) -F -1 n (x)|dx = 1 u W1(
κ(Γ) = sup f : f ∞≤1 Var f (t)Z(t)dt 1/2 ≤ |Z(t)|dt 4 
Let also Fi = σ(X k , k ≤ i). Let Y0(t) = 1 X 0 ≤t -F (t), and Y k (t) = Y0(t) • T k = 1 X k ≤t -F (t)
. With these notations and the representation (1.2) one has that

nW1(µn, µ) = n k=1 Y k (t) dt . (4.1)
From Section 4 in [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF], we know that, if (1.5) holds, then

Y0(t) = D0(t) + A(t) -A(t) • T, (4.2) 
where D0 is such that E(D1(t)|F-1) = 0 almost surely and D0(t) 2 dt < ∞, and A is such that A(t) 1 dt < ∞. Moreover, the covariance operator of D0 is exactly Γ: for any f, g ∈ L∞(dt),

Γ(f, g) = Cov f (t)D0(t) dt, g(t)D0(t) dt . (4.3) Let D k (t) = D0 • T k . From (4.2), it follows that n k=1 Y k = n k=1 D k + A • T -A • T n . (4.4) 
From [4, Proposition 3.3], we know that, enlarging the probability space if necessary, there exists a sequence of i.i.d. L1(dt)-valued centered Gaussian random variables (Zi) i≥1 with covariance function Γ such that Now, as will be clear from the proof, Proposition 2.1 also holds on the space L 1 ([-M, M ] c , dt), and implies that there exists a universal constant η such that, for any positive ε,

lim sup n→∞ 1 √ n log log n [-M,M ] c n k=1 Y k (t) dt ≤ ε + η ∞ M ∞ k=0
min {α(k), H(t)} dt almost surely. Hence the proof of (4.6) will be complete if we prove that, for any M > 0, lim sup

n→∞ 1 √ n log log n M -M |A(t) • T n | dt = 0 almost surely. (4.9)
To prove (4.9), we work in the space H = L2([-M, M ], dt), and we denote by • H and •, • the usual norm and scalar product on H. Since E( D0 2 H ) < ∞, we know from [START_REF] Cuny | Invariance principles under the Maxwell-Woodroofe condition in Banach spaces[END_REF] that n k=1 D k satisfies the compact law of the iterated logarithm in H. Since k≥0 α(k) < ∞ and Y0 is bounded in H, we infer from [START_REF] Dedecker | On the almost sure invariance principle for stationary sequences of Hilbert-valued random variables[END_REF] that n k=1 Y k satisfies also the compact law of the iterated logarithm in H. Now, arguing exactly as in the end of the proof of [START_REF] Dedecker | On the almost sure invariance principle for stationary sequences of Hilbert-valued random variables[END_REF]Theorem 4], one has: for any f in H 

Proof of Proposition 2.1

For any n ∈ N, let us introduce the following notations:

R(u) = min{q ∈ N * : α(q) ≤ u}Q(u) and R -1 (x) = inf{u ∈ [0, 1] : R(u) ≤ x} .
For a positive real a that will be specified later, let

mn = a n log log n , vn = R -1 (mn) , Mn = Q(vn) . (4.14) 
For any M > 0, let gM (y) = (y ∧ M ) ∨ (-M ). For any integer i, define

X i = gM n (Xi) and X i = Xi -X i . (4.15) 
We first recall that, by the dual expression of W1(µn, µ), nW1(µn, µ) = sup

f ∈Λ 1 n i=1 (f (Xi) -E(f (Xi))) .
where Λ1 is the set of Lipschitz functions such that |f (x) -f (y)| ≤ |x -y|. Hence,

nW1(µn, µ) ≤ sup f ∈Λ 1 n i=1 f (X i ) -E(f (X i )) + sup f ∈Λ 1 n i=1 f (Xi) -f (X i ) -E(f (Xi) -f (X i )) .
Therefore, setting,

F n (t) = 1 n n k=1 1 {X k ≤t} and F (t) = P(X 1 ≤ t) ,
and noticing that

k F k -F 1 = sup f ∈Λ 1 k i=1 f (X i ) -E(f (X i ) , we get max 1≤k≤n kW1(µ k , µ) ≤ max 1≤k≤n k F k -F 1 + n i=1 (|X i | + E(|X i |) . (4.16) 
Now, note that

n≥2 1 √ n log log n E(|X n |) ≤ n≥2 1 √ n log log n +∞ 0 P |X0|1 |X 0 |>Q(vn) > t dt ≤ n≥2 1 √ n log log n +∞ Q(vn) H(t)dt ≤ n≥2 1 √ n log log n vn 0 Q(u)du ≤ n≥2 1 √ n log log n 1 0 Q(u)1 mn≤R(u) du 1 0 R(u)Q(u)du .
But, according to Propositions 5.1 and 5.2 in [START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF], condition (1.5) implies that

1 0 R(u)Q(u)du < ∞ . (4.17) 
Hence, to prove (2.4) it suffices to show that there exists an universal constant η such that for any ε > 0, Taking into account the definition of mn, it follows that there exists n0 depending on a, V and η, such that for any n ≥ n0, 8mn ≤ κV √ n log log n. This proves the proposition in the case where qn = n.

From now on, we assume that qn < n. Therefore qn = min{k ∈ N * : α(k) ≤ vn} and then α(qn) ≤ vn. For any integer i, define 

Ui(t) = iqn k=(i-1)qn+1 1 X k ≤t -E 1 X k ≤t .
k F k -F 1 ≥ 4V κ n log log n ≤ I1(n) + I2(n) + I3(n) , (4.24) 
where

I1(n) = P   Mn -Mn [n/qn] i=1 |Ui(t) -U * i (t)| dt ≥ V κ n log log n   I2(n) = P Mn -Mn max 2≤2j≤[n/qn] j i=1 U * 2i (t) dt ≥ V κ n log log n I3(n) = P Mn -Mn max 1≤2j-1≤[n/qn] j i=1 U * 2i-1 (t) dt ≥ V κ n log log n .
Using Markov's inequality and (4.22), we get

I1(n) n √ n log log n Mnα(qn) n √ n log log n vnQ(vn) n √ n log log n R -1 (mn) 0 Q(u)du .
Hence, by (4.17),

n≥2 1 n I1(n) n≥2 1 √ n log log n R -1 (mn) 0 Q(u)du 1 0 R(u)Q(u)du < ∞ .
To handle now the term I2(n) (as well as I3(n)) in the decomposition (4.24), we shall use again Markov's inequality but this time at the order p ≥ 2. Hence for p ≥ 2, taking into account the stationarity, we get Note that u < H(t) ⇐⇒ t < Q(u). Consequently u < H(t) implies that Q -2 (u) < t -2 . Hence 

I2(n) ≤ 1 (V κ) p (n log log n) p/2   Q(vn) -Q(vn) max 2≤2j≤[n/qn] j i=1 Ũ2i ( 

  are defined by α(k) = sup A∈F 0 ,B∈G k |P(A ∩ B) -P(A)P(B)| . (1.1)Let µ be the common distribution of the Xi's, and let

Z

  k (t) dt = o( n log log n) almost surely.

. 4 )

 4 Remark 2.3. (The bivariate case). Let (Xi, Yi) i∈Z be a stationary sequence of R 2 -valued random variables, and define the coefficients α(k) as in (1.1), with the two σ-algebras F0 = σ(Xi, Yi, i ≤ 0) and G k = σ(Xi, Yi, i ≥ k). Let µX (resp. µY ) be the common distribution of the Xi's (resp. the Yi's), and let

Proofs 4 . 1

 41 Proof of Theorem 2.1

1 √ 1 √

 11 result will follow from (4.1), (4.4) and (4.5) if we can prove that lim n→∞ n log log n |A(t) • T n | dt = 0 almost surely. (4.6) To prove (4.6), we start by considering the integral over [-M, M ] c , for M > 0. Applying again [4, Proposition 3.3], we infer that lim sup n→∞ 2n log log n [-M,M ] c n k=1 D k (t) dt ≤ [-M,M ] c D0(t) 2 dt almost surely. (4.7)

  n [-M,M ] c |A(t) • T n | dt = 0 almost surely.

  ) i≥1 be a complete orthonormal basis of H and PN (f ) = N k=1 f, e k e k be the projection of f on the space spanned by the first N elements of the basis. From (4.10), we get thatlim n→∞ PN (A • T n ) √ n log log n = 0 almost surely. (4.11) On another hand, applying again [4, Proposition 3.3] (as done in (4.7)), we get lim PN )A • T n H √ n log log n = 0 almost surely, which, together with (4.11), implies (4.9). The proof of Theorem 2.1 is complete.

  k -F 1 > ηV n log log n < ∞ . (4.18) For this purpose, let qn = min{k ∈ N * : α(k) ≤ vn} ∧ n . (4.19)Since R is right continuous, we have R(R -1 (w)) ≤ w for any w, henceqnMn = R(vn) = R(R -1 (mn)) ≤ mn . (4.20) Assume first that qn = n. Bounding f (X i ) -E(f (X i )) by 2Mn, we obtain max 1≤k≤n k F k -F 1 ≤ 2nMn = 2qnMn ≤ 2mn . (4.21)

( 4 . 2 Qc11

 42 25)Using similar arguments as to handle the quantity I2(n) in the proof of[START_REF] Dedecker | Behavior of the Wasserstein distance between the empirical and the marginal distributions of stationary α-dependent sequences[END_REF] Proposition 3.4], we have κ) p (n log log n) p/nκ p (log log n) p/2 .Let nowp = pn = max{c log log n, 2}, where c will be specified later. Set n1 = min{n ≥ 2 : c log log n ≥ 2}. It follows thatn≥n 1 1 n(V κ) p (n log log n) p/2 Q(vn) -Q(vn) J1(t) 1/p dt p log log n ,which is finite provided we take κ such that 2c 1 √ 2c κ = α -1 with α > 1 and c > (log α) -1 . On another hand, proceeding as in (4.26), we deduce that, for any t > 0, {X i ≤t} -P(X i ≤ t) {X i ≤t} -P(X i ≤ t)

- 2 )

 2 -1 Q(vn) 1-2/p .

  Let kn = [n/qn]. For any t, applying Rio's coupling lemma (see[START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF] Lemma 5.2]) recursively, we can construct random variables (U * i (t)) 1≤i≤kn such that • U * i (t) has the same distribution as U i for all 1 ≤ i ≤ kn,

	and notice that				
							Mn	j
		max 1≤k≤n	k F k -F 1 ≤ 2qnMn +	-Mn	1≤j≤[n/qn] max	i=1	Ui(t) dt .
	• the random variables (U * 2i (t)) 2≤2i≤kn are independent, as well as the random variables
	(U * 2i-1 (t)) 1≤2i-1≤kn ,			
	• we can suitably control Ui(t) -U * i (t) 1 as follows: for any i ≥ 1,
				Ui(t) -U * i (t) 1 ≤ 4qnα(qn) .	(4.22)
	Substituting U * i (t) to Ui(t), we obtain		
						j
	max 1≤k≤n	k F k -F 1 ≤ 2qnMn +	max 2≤2j≤[n/qn]	i=1	U * 2i (t)
							j	[n/qn]
				+	max 1≤2j-1≤[n/qn]	i=1	U * 2i-1 (t) +	i=1	|Ui(t) -U *

i (t)| . (4.23) Therefore, setting κ = η/4, for n ≥ n0, P max 1≤k≤n

  t) Applying Rosenthal's inequality (see for instance[START_REF] Pinelis | Optimum bounds for the distributions of martingales in Banach spaces[END_REF] Theorem 4.1]) and taking into account the stationarity, there exist two positive universal constants c1 and c2 not depending on p such that

		j		p	
	max 2≤2j≤[n/qn]	i=1	U * 2i (t)	p	≤ c p 1 p p/2 (n/qn) p/2 U2(t) p 2 + c p 2 p p (n/qn) U2(t) p p := J1(t) + J2(t) .
						 p
					dt		.
					p

, where Z is an L1(dt)-valued centered random variable with covariance function Γ.

Set n2 = min{n ≥ 2 : c log log n ≥ 4}. It follows that

Hence, since qnMn ≤ mn, we get

which is finite by taking into account (4.17), and if we choose a = (c1κV )/(2c2

This ends the proof of the proposition.