
HAL Id: hal-03933761
https://hal.science/hal-03933761

Submitted on 10 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite field arithmetic in large characteristic for classical
and post-quantum cryptography

Sylvain Duquesne

To cite this version:
Sylvain Duquesne. Finite field arithmetic in large characteristic for classical and post-quantum cryp-
tography. WAIFI, 2022, Chengdu, China. pp.79-106, �10.1007/978-3-031-22944-2_5�. �hal-03933761�

https://hal.science/hal-03933761
https://hal.archives-ouvertes.fr

Finite �eld arithmetic in large characteristic for

classical and post-quantum cryptography?

Sylvain Duquesne

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
sylvain.duquesne@univ-rennes1.fr

https://perso.univ-rennes1.fr/sylvain.duquesne/

Abstract. Both classical and post-quantum cryptography massively use
large characteristic �nite �elds or rings. Consequently, basic arithmetic
on these �elds or rings (integer or polynomial multiplication, modular re-
duction) may signi�cantly impact cryptographic devices' e�ciency and
power consumption. In this paper, we will present the most used and the
less common methods, clarify their advantages and drawbacks and ex-
plain which ones are the more relevant depending on the implementation
context and the chosen cryptographic primitive. We also explain why re-
cent proposals such as RNS, PMNS or Montgomery-friendly primes may
be a good alternative to classical methods depending on the context and
suggest directions for further research to improve them.

Keywords: Finite Field · Arithmetic · Cryptography · Modular reduc-
tion · Multi precision · Polynomial rings

Introduction

Most of the public key cryptosystems use large �nite �elds or rings as well as
their polynomial extensions. The consequence of this massive usage is that basic
arithmetic on these �elds and rings may impact the e�ciency and power con-
sumption of cryptographic devices. Nevertheless, the sizes and degrees involved
are very diverse. For example

� Discrete logarithm on the multiplicative subgroup of a �nite �eld, as well as
RSA, uses 1024 to 4096-bits integers.

� Elliptic curve cryptography uses 256 to 512-bits prime �elds.
� Pairing-based cryptography uses 256 to 1024-bits prime �elds together with
small degrees extension �elds.

� Isogeny-based post-quantum cryptography uses 400 to 1000-bits prime �elds
and quadratic extensions.

� Lattice-based post-quantum cryptography uses 13 to 60-bits prime �elds and
large-degree polynomial rings.

? This work was supported in part by French project ANR-11-LABX-0020-01 "Centre
Henri Lebesgue"

2 S. Duquesne

Because of this large spectrum, there is a wide collection of algorithms for per-
forming �nite �eld or ring arithmetic which have each their range of interest
depending on the context. Many arithmetic operations (squarings, inversions,
additions, Frobenius map, square roots, ...) are involved in various protocols. In
this paper, we will concentrate on multiplications and modular reduction be-
cause there are the most impacting operations in practice.

We will present the most used methods (schoolbook, interpolation based,
Montgomery) as well as less common ones (RNS, PMNS) and some that are
speci�c to particular modules (Mersenne and pseudo-Mersenne primes, Mont-
gomery friendly primes). We will discuss their advantages and drawbacks and
explain which ones are the most relevant depending on the implementation con-
text and the chosen cryptographic primitive. We will detail how they can be
combined and in which direction they should or could be improved in further
works. For some of them, we give some trails for such improvements. We also
explain to what extent recent techniques (PMNS, Montgomery-friendly primes)
are competitive with more classical ones and spotlight their advantages depend-
ing on the context.

The paper �rst recalls multi-precision arithmetic and then concentrates on
modular reduction methods and polynomial operations.

1 Multiprecision and large integer multiplication

Hardware devices have the native capacity to perform arithmetic operations on
bounded inputs, usually the processor's word size (denoted w in this paper). This
word size is classically between 8 and 128 bits; most common architectures use
32 or 64-bit words nowadays. However, classical cryptography and isogeny-based
cryptography use much larger integers. Multiprecision is the way a device deals
with such large integers. It consists in writing large integers in base β (where
β = 2w) and then using speci�c algorithms to get the result of a speci�c opera-
tion involving large inputs.

For example, to add 2 n-words integers a < βn and b < βn, we have to add
them word by word

a+ b =

n−1∑
i=0

aiβ
i +

n−1∑
i=0

biβ
i =

n−1∑
i=0

(ai + bi)β
i (1)

Unfortunately, this is not so easy because of carries. Indeed, ai + bi may be
greater than or equal to β. The right formula is then

a+ b =

n−1∑
i=0

aiβ
i +

n−1∑
i=0

biβ
i =

n∑
i=0

(ai + bi + qi−1 mod β)βi

Finite �eld arithmetic for cryptography 3

where qi−1 = 0 or 1 is the quotient of the Euclidean division of ai−1+bi−1+qi−2
by β. Contrary to Equation (1), a+ b is now written in base β because its coef-
�cients are less than β.

The carry is just 0 or 1, so it is not a big deal to add it to the next coe�-
cient, and the complexity of multi-precision addition remains linear in n. Never-
theless, its potential propagation makes di�cult the parallelization of this naive
algorithm. Moreover, parallelization is very important today because multi-core
devices are very current. It is possible to partially get around this problem using
carry-save variants of this algorithm. Their concept is to delay and accumulate
carries to the end of the computation [67].

1.1 Schoolbook multiplication

We can follow the same process for multiplying 2 large integers. Let us consider
a and b, two n-word integers written in base β. Then ab can be computed by a
succession of basic word multiplications and additions in the way pupils learn
multiplication in base 10 at school (which gives the name to the method)

n−1∑
i=0

aiβ
i
n−1∑
i=0

biβ
i =

2n−2∑
i=0

ciβ
i with ci =

∑
k+l=i

akbl (2)

The complexity is n2 word multiplications but again ab is not written in base β
in formula (2) because ci will generally overcome β. In order to take carries into
account, we use Algorithm 1.
As was the case for multiprecision addition, the complexity is not a�ected (n2

basic word multiplications) but managing carries makes this algorithm di�cult
to parallelize again. Note that if a speci�c squaring algorithm is used, it will be
more e�cient than using Algorithm 1 because if a = b, aibj and ajbi are the
same and then are computed only once.

1.2 Karatsuba multiplication

There is a well-known way to reduce the number of basic multiplications required
for multiplying large integers. It is due to Karatsuba [52]. To multiply 2-word
integers with the schoolbook method, we do

(a0 + a1β)(b0 + b1β) = a0b0 + (a0b1 + a1b0)β + a1b1β
2

Karatsuba's method consists in computing the middle term as

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1

This saves one multiplication (at the cost of 3 extra additions) because a0b0 and
a1b1 are already computed as the constant term and the term in β2, respec-
tively. This process can be recursively applied to deal with larger integers (the

4 S. Duquesne

Algorithm 1: Schoolbook multiplication of large integers

Input: 2 integers 0 ≤ a, b < βn written in base β = 2w:

Input: a =

n−1∑
i=0

aiβ
i, b =

n−1∑
i=0

biβ
i, with 0 ≤ ai, bi < β

Result: r = ab < β2n written in base β: r =
2n−1∑
i=0

riβ
i, with 0 ≤ ri < β

ri ← 0 ∀i ∈ [0..2n− 1]
for i = 0 to n− 1 do

carry ← 0
for j = 0 to n− 1 do

t← ri+j + ajbi + carry
carry ← t quo β
ri+j ← t mod β

end for

ri+j+1 ← carry
end for

return {ri}i=0..2n−1

well-known divide-and-conquer strategy). We then get the schoolbook method's
complexity of nlog2 3 basic word multiplications instead of n2. The main draw-
back is that the number of addition will grow much faster than the number of
multiplications will decrease.

Then, depending on the context and the relative cost of additions and multi-
plications, the schoolbook or the Karatsuba method should be preferred. More
precisely, the Karatsuba method can be used for the �rst steps of the divide-
and-conquer strategy for large integers, but it is not necessarily adequate for the
last steps. Indeed, operands are smaller so that the relative cost of additions is
higher than those of multiplications. Then, in practice, both methods are com-
bined. The threshold for switching from Karatsuba to a schoolbook depends on
the implementation context. More details on this shallow Karatsuba approach
and the choice of the threshold can be found in [69, 75]. For example, for the
current ECC key sizes, Karatsuba approach is not competitive for software im-
plementation [44].

Many other ways exist to improve the complexity of large integer multiplica-
tions at the cost of extra additions or other small operations. We do not present
them here because there are not used in cryptography (their threshold of use
is too far regarding the sizes of integers used in cryptography), but also be-
cause we will give them in Section 4 in the polynomial context, which is more
straightforward (in particular, no carries are involved).

Finite �eld arithmetic for cryptography 5

2 Modular reduction in the general case

The speci�city of the �nite �eld arithmetic is the reduction step modulo the
characteristic p of the �eld. However, note that the algorithms for reducing
modulo p presented in this section do not require p to be prime and are indeed
not always used in cryptography for primes (e.g. for RSA ciphering).

2.1 Schoolbook reduction

The reduction of an integer modulo p consists in �nding the remainder of the
Euclidean division of this integer by p. Again, the easiest way is to use the
algorithm learned at school. Assume we want to reduce a m-word integer a
modulo a n-word integer p (with of course m ≥ n) written in base β:

a =

m−1∑
i=0

aiβ
i and p =

n−1∑
i=0

piβ
i

We assume that we have at our disposal a basic division of a 2-word integer by a
1-word integer, provided that the quotient is a 1-word integer. The principle of
the schoolbook division is essentially to divide the main signi�cant word am−1
of a by the one of p (or the 2 main ones if am−1 < pn−1). The quotient q gives a
�rst approximation of the result, and a is updated as a− qp (up to some powers
of β), and the process is iterated until a becomes less than p. This process is
precise in Algorithm 2.

Algorithm 2: Schoolbook reduction

Input: a =

m−1∑
i=0

aiβ
i and p =

n−1∑
i=0

piβ
i

Result: a reduced modulo p
Compute q0, r0 s.t. am−1 = pn−1q0 + r0 with r0 < pn−1

a← a− q0pβm−n

for i = 1 to m− n do
Compute qi, ri s.t. am−iβ + am−i−1 = pn−1qi + ri with ri < pn−1

s← a− qipβm−n−i

while s < 0 do

qi ← qi − 1 s← s+ pβm−n−i

end while

a← s
end for

return a

The loop of this algorithm is m−n+1-long and each step is, up to additions,
made of one basic division (computing qi and ri) and n basic multiplications

6 S. Duquesne

(multiplying the 1-word integer qi by the n-word integer p). The overall com-
plexity is then m−n+1 basic divisions and n(m−n+1) basic multiplications. If
a is the result of a multiplication in Fp, we have m = 2n, and the complexity is
then n divisions and n2 multiplications. This is not so bad compared to multipli-
cation. However, basic divisions are usually very expensive, so we want to avoid
them. It can be, for example, done thanks to the Newton method applied to the
function f(x) = 1

x − b, which computes the inverse of b without any division.
However, the best way to do it is to use the so-called Montgomery or Barrett
reductions.

2.2 Montgomery reduction

During the '80s, Peter Montgomery [58] and Paul Barrett [18] introduce new
methods to perform a Euclidean division without basic divisions. Their approach
are slightly di�erent but the principle is the same: write a

p as
a
βn

βn

p . If the second

term is precomputed (it does not depend on a), the division by p is then replaced
by a division by βn, which is trivial in base β. Of course, this approach works for
real divisions, not directly for Euclidean ones. Then, they need to consider cor-
recting terms to get the right result. Barrett and Montgomery's approaches have
their advantages and drawbacks. The main drawback of Montgomery reduction
is that it requires changing the representation of numbers, but it is mitigated
if several operations are performed successively. This is classically the case in
cryptographic primitives, so the Montgomery reduction is the most popular in
this domain, and we will detail it in this subsection.

To simplify, we assume we want to reduce modulo p the result a of multipli-
cation of 2 integers less than p (which is the most common use case). The basic
version of the Montgomery reduction is given by Algorithm 3.

Algorithm 3: Montgomery reduction modulo p

Input: a < pβn, βn−1 ≤ p < βn

Input: the precomputed value p′ = −p−1 mod βn

Result: r < 2p such that r = aβ−n mod p
q ← ap′ mod βn

r ← (a+ qp)/βn

It is easy to prove that the output r < 2p and r = aβ−n mod p. But these
two properties are not exactly the expected ones for the reduction of a mod p.
For the �rst one, we can of course subtract p if necessary to get r < p. As an
alternative, the output of Algorithm 3 can be used directly as input for the next
step by adding a condition on p, speci�cally 4p < βn.

Finite �eld arithmetic for cryptography 7

The fact that r = aβ−n instead of a modulo p can be overcome by using the
so-called Montgomery representation of numbers de�ned by x = xβn mod p.
This representation is, of course, stable for the addition (x+y = x+ y), but it is
also stable for the modular multiplication using Algorithm refalgo:Montgo. In-
deed, when we multiply x and y in Montgomery representation, we get a β2n fac-
tor. But βn is removed during the Montgomery reduction process, so we �nally
get the Montgomery representation of xy and we then have x y = x y mod p.
Thanks to this stability, we can chain several operations in Montgomery repre-
sentation. Changing representation may only be necessary at the beginning and
end of the complete cryptographic computation. Moreover, this change of repre-
sentation can be easily obtained thanks to Algorithm 3. Indeed, the Montgomery
representation of x < p is obtained with x (β2n mod p) as an input. Similarly, we
can recover x using Algorithm 3 with x as an input. Hence, we usually ignore the
conversion cost from Montgomery to classic representation (and reciprocally) in
cryptographic applications.

Concerning the complexity, 2 multiplications are involved in the algorithm,
but there are incomplete ones. The �rst one (ap′) is reduced mod βn, so it is
unnecessary to compute its most signi�cant part. For the second one, we know in
advance that a+qp will be exactly divisible by βn (by de�nition of q), so its least
signi�cant part is zero and may not need to be computed. The other operations
in Algorithm 3 have negligible cost in base β, so the overall cost should be the
one of only one full multiplication, say n2. Nevertheless, this analysis does not
take carries into account. For example, the least signi�cant part of the second
operation is zero but may produce some carries, so it must be computed anyway.
For concrete applications and precise complexity analysis, we use Algorithm 4:
a word-by-word version which requires n2+n basic word multiplications [27, 29].

Algorithm 4: Word version of the Montgomery reduction modulo p

Input: a < pβn, βn−1 ≤ p < βn

Input: the precomputed value p′ = −p−1 mod β
Result: r = aβ−n mod p and 0 ≤ r < p

r ← a;
for i = 0 to n− 1 do

r0 ← r mod β
q ← p′r0 mod β
r ← (r + qp)/β

end for

r′ ← r − p+ βn

if r′ ≥ βn then // else r < p
r ← r′ mod βn // r ← r − p if r ≥ p

return r

8 S. Duquesne

There also exists a version of Algorithm 4 that is interleaved with the multi-
plication steps ([27, 56]) to get a complete modular multiplication algorithm. It
has some advantages (smaller intermediate results) and drawbacks (only com-
patible with schoolbook multiplication). We do not give it here, but details can
be found in chapter 5 of [42], for example.

The Montgomery reduction has been used mainly in cryptography for decades
as long as the module does not have a speci�c form allowing fast reduction.
The only constraint is that p is odd so that it can be inverted modulo β. It
is, for example, regularly used in RSA implementations, Elliptic Curve Cryp-
tography, pairing-based protocols or, more recently, isogeny key exchanges or
lattice-based cryptography using primes modules. For example, the reference
and optimized implementation of the NIST candidates Frodo and NTRUprime
for post-quantum standardization [61] are using Montgomery reduction. How-
ever, we still have carries issues with this technique. To avoid them, one can use
the well-known Chinese reminder theorem.

2.3 The Residue Number Systems (RNS)

The principle of Residue Number Systems (RNS) is to represent an integer a by
its residues (a1, a2, . . . , an)modulo a set of coprime numbers B = (m1,m2, . . . ,mn).
This set is called a RNS basis and we have ai = a mod mi which we will also
denote |a|mi for clarity. We generally assume that 0 ≤ a < M =

∏n
i=1mi. The

main interest of such a system is that it independently distributes large integer
operations on the small residue values. In particular, large integer operations
become linear relatively to their sizes, and there is no carry propagation. These
systems were introduced and developed in [43, 71, 72]. A good introduction can
be found in [55].

However, they cannot be used directly in the cryptographic context because
we need to reduce modulo a prime p that cannot be factorized in small moduli
by de�nition. For constructing an arithmetic over Fp, we assume that p < M =∏n
i=1mi and we use a variant of the Montgomery reduction algorithm presented

in Subsection 2.2 to replace reductions modulo p by reductions moduloM instead
of βn [4, 5, 53, 64]. Montgomery reduction algorithm cannot be used without
adaptation. Otherwise, we would have to divide by M on the RNS basis. This
is not possible because M =

∏n
i=1mi is not invertible modulo mi. It is then

necessary to introduce an auxiliary RNS basis to handle the inverse of M . The
consequence is that arithmetic operations (e.g. the initial multiplication) must be
performed on the two bases. This doubles the cost of arithmetic operations, but
this is not an important issue since this cost is now linear, contrary to classical
arithmetic. The biggest issue is that some changes of basis become necessary
before and after dividing by M .

As a derivative of the Montgomery reduction algorithm, this algorithm has
the same drawbacks that can be solved in the same way. The Montgomery rep-

Finite �eld arithmetic for cryptography 9

Algorithm 5: RNS reduction based on Montgomery approach

Input: 2 coprime RNS basis B and B′ such that p < M < M ′

Input: p given in basis B′ and −p−1 precomputed in basis B
Input: a < Mp represented in both RNS basis
Result: r = aM−1 (mod p) represented in both RNS basis, with r < 2p

1 q ← a×(−p−1) in B
2 [q in B] −→ [q in B′] // First basis extension

3 r ← (a+ q×p)×M−1 in B′
4 [r in B]←− [r in B′] // Second basis extension

resentation of a in this case is a = aM mod p and is stable for Montgomery
addition and multiplication. And again, changing representation is rare and easy
to perform with a or a(M2 mod p) as input of Algorithm 5 [9].

Instructions 1 and 3 of Algorithm 5 are component-by-component operations
performed independently for each basis element, so they are very e�cient (linear
complexity). On the other hand, the basis extensions of instructions 2 and 4 have
quadratic complexity. To convert a RNS representation to another RNS basis, we
usually use a Lagrange interpolation: if (a1, a2, . . . , an) is the RNS representation
of a in the basis B = {m1, . . . ,mn}, then,

a =

n∑
i=1

∣∣aiM−1i ∣∣
mi
Mi − αM where Mi =

M

mi

Furthermore, the main challenge is to compute α e�ciently. There are several
approaches in the literature. In [53], it is shown that the �rst conversion can be
only an approximation because q is then multiplied by p. However, the second
conversion needs to be exact and can be done if w < 2p < (1 − 1

ρ)M
′ for some

ρ ≥ 2 and ci
2w < 1

n (1−
1
ρ) assuming mi = 2w − ci. The same idea is used in [12],

but the conditions are relaxed. In [73], a binary tree construction is used with a
logarithmic depth with a modulo reduction at each level. Finally, it is shown in
[7] that the overall complexity of Algorithm 5 can be optimized up to 7

5n
2 + 8

5n
multiplications at the moduli level.

For e�ciency reasons, the size of the elements of the RNS basis is related
to the word size (usually 1 or 2 words), and they must be chosen carefully so
that reductions modulo the mi are cheap. Moduli of special form as in Section 3
are usually chosen so that the reduction modulo mi is, in this case, obtained
with few shifts and additions. For example, Kawamura et al [53] are using mod-
uli mi = 2w − ci with ci < 2w/2. In [12], a double Montgomery reduction is
suggested to avoid internal modular reduction constraints and pseudo-Mersenne
use. J. van der Hoven suggests in [73] to use s-gentle moduli, for example for
s = 2, mi = 22w − ε2i with 0 ≤ εi < 2(w−1)/2.

10 S. Duquesne

RNS arithmetic has many advantages compared to standard arithmetic. In
particular, multiplication becomes a linear operation instead of a quadratic one.
However, also, no more carriers are involved, and conjointly with the indepen-
dence of the components, it makes RNS arithmetic very easy to implement and
parallelize, especially in hardware, as shown in [45]. We can also introduce re-
dundancy in the representation by adding new moduli. This allows for the in-
troduction of randomization in the representation of elements that can be used
as protection against di�erential side-channel attacks. Moreover, an RNS-based
architecture is very �exible: with a given structure of n modular digit operators,
it is possible to handle any value of p < M . Hence, the same architecture can be
used for di�erent cryptographic primitives, di�erent levels of security and several
base �elds for each of these levels. The main drawback is the cost of the basis
extensions, which makes the RNS reduction signi�cantly more expensive than
the classical Montgomery reduction. However, remember that RNS multiplica-
tion is much cheaper than classical multiprecision multiplication. So, there is a
gap between the reduction and the multiplication cost, which does not occur in
classical systems. We can take advantage of this gap by accumulating multipli-
cations before reducing it. This method is called lazy reduction and is detailed
in Section ??.

RNS systems have been successfully used in various cryptographic primitives,
especially in hardware implementation (because it is necessary to have an e�-
cient reduction modulo the mi, which is challenging to achieve in software).
The �rst target was RSA (see [9] for example). The results are fascinating and
competitive. However, the integers are very large in RSA, so a large basis are
required for high-security levels, and it cannot always be realized with classical
pseudo-Mersenne primes as in [53], especially if the word size is small. At this
point, it would be very interesting to �nd other families of moduli allowing fast
reduction, to develop variants of the RNS method, which is less demanding in
terms of basis size (for example, by considering 2-words moduli). Some works al-
ready went in such direction recently [6, 12, 73] but for sure many improvements
remain to be �nd and would be interesting not only for RSA.
RNS has also been successfully used in elliptic curve cryptography [7, 8, 45] and
even allows to break of speed records in pairing-based cryptography [31]. Again,
work remains to be done to adapt and optimize the elliptic curve and pairing
formulas to exploit the complexity gap between the RNS multiplication and re-
duction steps more e�ciently. RNS will also probably give interesting results
in isogeny-based cryptography because, as in pairing-based cryptography, small
degree extension �elds are used in this context so that, as explained in Sec-
tion 5, the lazy reduction can be systematically used, and this is advantaging
RNS arithmetic.
More recently, an RNS-based implementation has been proposed for some pro-
tocols of Fully Homomorphic Encryption [49]. However, it generally has few
interests in lattice-based cryptography because no large integers are used in this

Finite �eld arithmetic for cryptography 11

case, so we do not get the gain of fast multiplication.

Finally, RNS arithmetic may be helpful for constrained devices and hardware
and when we plan to use the base �eld level parallelization.

2.4 PMNS

Another way to avoid carriers is to work with polynomials. The so-called PMNS
(Polynomial Modular Number System) represents integers modulo p by a poly-
nomial that gives the integers once evaluated in a given value γ < p: a polyno-
mial P represents P (γ) mod p [10]. For e�ciency reasons, P must satisfy some
constraints:

� The degree of P is (strictly) bounded degree by a given integer n.
� The coe�cients of P are bounded by a given parameter ρ:

||P ||∞ < ρ ' n
√
p.

Note that ρ cannot be less than (n
√
p+1)/2 otherwise all the elements of Fp

cannot be represented [63]

For example, if we choose γ = 7, then −X − 1 represents 11 modulo 19. Note
that X2 also represents 11 so this representation is a redundant system [39, 63].

Thanks to this representation, large integer arithmetic is replaced by poly-
nomial arithmetic, which has many advantages (no carries, parallelization, inde-
pendence of the components). The main problem is the growing of degrees and
coe�cients when operations are performed on the representative polynomials.
Then degrees and coe�cients may outreach the given constraints for a represen-
tative to be valid. So reduction techniques are necessary.

The easiest operation is to reduce the degree. This is called the external
reduction, and this is done by reducing modulo a given polynomial E. This
polynomial must be chosen as a monomial of degree n so that the degree of
the reduced polynomial is less than n − 1. It must also cancel γ modulo p so
that the reduced polynomial represents the same element in Fp. For example, if
this polynomial is well chosen and sparse, this reduction step is very e�cient.
It should also be chosen with small coe�cients for e�ciency reasons but, above
all, to minimize the growth of the coe�cients induced by this step [37].
This is, for example, the case if we consider a polynomial of the form Xn − λ,
ideally with λ very small [10] or a power of 2. In this case, these systems are
called AMNS (Adapted Modular Number System) [10]. In any case, the external
reduction cost is usually only some extra additions [63].

Reducing the coe�cients is more complicated and costly. This step is called
internal reduction. The idea is the same. Namely, we use a polynomial M that
cancels in γ. We then hope that dividing by M will give a polynomial with

12 S. Duquesne

smaller coe�cients representing the same integer modulo p. Various methods
have been proposed to do it e�ciently [10, 11, 18, 60]. The most conclusive one
is based on the Montgomery reduction [60]: Algorithm 6 requires an auxiliary
integer φ, which is usually a power of 2 and uses Montgomery's usual trick to
replace expensive divisions by M with cheap divisions by φ.:

Algorithm 6: Internal reduction using Montgomery reduction

Input: R ∈ Zn−1[X] with ||R||∞ ≥ ρ
Input: the precomputed polynomial M ′ = −M−1 mod (E, φ)
Result: S ∈ Zn−1[X] s.t. S(γ) = R(γ)φ−1 mod p

Q← R×M ′ mod(E, φ)
S ← (R+Q×M)/φ mod E

Assuming that a Montgomery representation of elements is used (R = Rφ),
this algorithm outputs a polynomial S representing the same element as the
input and whose coe�cients are reduced if M and φ are satisfying the following
conditions (for AMNS):

ρ > 2n|λ| ||M ||∞ and φ > 2n|λ|ρ

Contrary to the external reduction (which has linear complexity), the internal
reduction is quadratic, as an instance of the Montgomery technique. As for the
RNS reduction, we will not get any complexity gain compared to the classical
Montgomery reduction of Section 2.2, but we get simpler arithmetic that can
easily be parallelized.
Moreover, this representation is naturally redundant so that we can protect the
arithmetic against di�erential side-channel attacks. For example, we can add a
random polynomial that cancels in γ modulo p [37]. It is also shown in [38] that
this representation allows base �eld arithmetic without conditional branching,
which can be very interesting in the grey box context.

Until recently, the main drawback of this method was the parameter genera-
tion. We apply LLL to the lattice of polynomials cancelled by γ to get M. But it
is not so trivial to ensure that the polynomialM ′ exists as an integer polynomial
and that the parameter φ is a power of 2 to minimize the costs. A generator has
been very recently given in [38].
In terms of cryptographic applications, there are still few implementations in
the literature because of this parameter generation issue. However, it is very
promising for ECC, pairing or isogeny context [22], especially for constrained
devices and when parallelization is considered at the base �eld level. It may also
be a good alternative if side-channel resistance is needed at the base �eld level,
thanks to the redundancy of the representation.

Finite �eld arithmetic for cryptography 13

3 Modular reduction for special primes

The underlying base �eld can be chosen without restrictions in some crypto-
graphic contexts. In this case, the module p can be taken in a speci�c form that
allows much better complexity for reduction thanks to a dedicated algorithm.
Usually, only several shifts and additions are needed for the modular reduction
instead of O(n2) multiplications as in Section 2. The most known form is one
of the generalized Mersenne primes we will describe now, but we will see that
there are not the only ones. The main drawback of this strategy is that it re-
quires an implementation/architecture dedicated to the speci�city of p, which
cannot be used for other base �elds. Consequently, it is not always practical in
either software or hardware implementation, and many users may prefer �exible
products.

3.1 Mersenne and pseudo-Mersenne primes

The more e�cient modules for reduction are the so-called Mersenne primes.
They have the form p = 2e − 1 and are historically used to break large prime
numbers records. In this case, the reduction Algorithm 7 splits the input after e
bits and uses that 2e = 1 mod p. Then adding the low and the high parts gives
a reduced form of the input. It is not completely reduced since it is less than 2p
instead of p, so an extra subtraction may be necessary to get the right result.
Note that this subtraction is not directly done with p but with 2e − 1, which is
mathematically equivalent but practically easier.

Algorithm 7: Reduction modulo a Mersenne prime p = 2e − 1

Input: 0 ≤ a < 2ep
Result: r = a mod p and 0 ≤ r < p

Write a = a12
e + a0

r ← a0 + a1
r′ ← r + 1 // r′ ← r − p+ 2e

if r′ ≥ 2e then // if r ≥ p
r ← r′ mod 2e // r ← r − p

return r

The complexity of this algorithm is only one (large) addition. This is of course
much cheaper than all other reduction algorithms, especially if e is a multiple
of the word-size. However, Mersenne primes are very rare in the cryptographic
range. Only 3 of them can be encounter in the cryptographic literature:

� 2521−1 introduced in [66] and used as a standard for elliptic curve cryptog-
raphy at the 256-bits security level.

� 2127−1 used for hyperelliptic curves at the 128-bit security level [20, 65].

14 S. Duquesne

� 231−1 used as part of a RNS basis on 32-bit architecture.

In order to get more candidates, Mersenne primes can be generalized to any
prime having the form 2e − c for small values of c. Replacing 2e by c in the
writing of a large integer a in base 2e will indeed reduce the size of a.

a = a0 + a12
e ⇒ a = a0 + a1c mod p

However, a1c is not reduced enough, so this reduction step needs to be applied
again to this term. It is easy to prove that if |c| is less than 2

e
2 , then a third

reduction step is not necessary, and we can then use Algorithm 8 involving only
2 reduction steps. In this case, the result is less than 3p (as the sum of 3 integers
less than p), so 2 steps of subtraction of p may be necessary.

Algorithm 8:Reduction modulo p=2e− c, pseudo-Mersenne s.t. |c|<2
e
2

Input: 0 ≤ a < 2ep
Result: r = a mod p and 0 ≤ r < p

Write a = a0 + a12
e

b← a0 + a1c
Write b = b0 + b12

e

r = b0 + b1c
r′ ← r + c; // r′ ← r − p+ 2e

if r′ ≥ 2e then // if r ≥ p
r ← r′ − 2e // r ← r − p
r′ ← r + c // repeat the previous steps if r is still ≥ p
if r′ ≥ 2e then

r ← r′ − 2e

end if
return r

The �nal cost of Algorithm 8 is then 2 multiplications by c (and some ad-
ditions). Consequently, c must be chosen carefully so that multiplications by c
are fast to compute. Of course, it can be chosen very small, as suggested by
Crandall [35]. This is, for example, the case of the prime 2255−19 introduced by
Bernstein to de�ne the famous elliptic curve Curve25519 [19]. However, it can
also be chosen very sparse in the base of the machine word. This is, for example,
the case of Solinas primes [32, 70], which are built as evaluation in the power of 2
(ideally in β) of sparse polynomials with very small coe�cients. The polynomial
should be irreducible [59]. For example, if we choose the polynomial X3−X − 1
and apply it to 264, we get a pseudo-Mersenne prime with c = 264 + 1 so that
multiplying by c just adds up to 64-bit architecture. This prime and other Soli-
nas ones are suggested by the NIST [62] and included in many standards for
elliptic curve cryptography.

Pseudo-Mersenne class is also the main provider of moduli (non necessarily
primes) for RNS basis because of their e�cient reduction algorithm and the fact

Finite �eld arithmetic for cryptography 15

that they can be freely chosen (as long as there are coprime). However, pseudo-
Mersenne primes cannot be used in cryptographic contexts where modules have
inherent constraints (e.g. RSA, pairings, Ring-lattices, isogenies).

3.2 Montgomery-friendly prime numbers

In this subsection, we are interested in the so-called Montgomery-friendly primes
[6, 25, 26, 50]. They are build in the form p = 2e2α±1 with e2 larger than the word
size w so that the Montgomery reduction Algorithm 4 is particularly e�cient.
Indeed, this algorithm involves multiplication by the inverse of pmodulo β. In the
case of Montgomery-friendly primes, p is ±1 modulo β so that this multiplication
is free. Then, the only operation to perform in the for loop is the computation
of (r + qp)/β where q = r mod β. As p = β2e2−wα − 1 and assuming that
r =

∑
riβ

i at the beginning of each step of the for loop, this operation can be
computed as:

(r + qp)/β =
(∑

riβ
i + r0β2

e2−wα− r0
)
/β =

∑
i 6=0

riβ
i−1 + r02

e2−wα

Algorithm 4 can then be rewritten as Algorithm 9 and the cost of each step of

Algorithm 9:Word version of the Montgomery reduction if p = 2e2α−1
Input: 0 ≤ a < pβn, βn−1 ≤ p < βn with β = 2w and w ≤ e2
Result: r = aβ−n mod p and 0 ≤ r < p

r ← a
for i = 0 to n− 1 do

r0 ← r mod β
r ← (r − r0)/β + r0 × α2e2−w

end for

r′ ← r + (βn − p) ;
if r′ ≥ βn then

r ← r′ − βn

return r

the for loop is reduced to one multiplication of α2e2 mod w by the single word
value r0. Assuming α2e2 mod w �ts on nα words, Algorithm 9 then requires nnα
word multiplications. Of course the case p = 2e2α+ 1 is very similar.

As detailed in [6], the choice of α and e2 is crucial to get an e�cient reduction
algorithm.

� If α is a power of 2, the multiplication by α is very e�cient, but we �nally
get a Mersenne prime.

� If α = 2e
′
2 − c with c small, we get an equivalent of pseudo-Mersenne primes.

� If α = 2e
′
2 − c with c sparse involving only coe�cients of the word size, we

get an equivalent of the Solinas primes.

16 S. Duquesne

� If e2 (and e
′
2
) is a multiple of the word size, this will reduce the word size nα

to the one of α.

If both α and e2 are wisely chosen as above, the Montgomery reduction Algo-
rithm 9 is very e�cient by construction (each step of the for loop costs only one
multiplication of a single word by c). Note that it will not give better e�ciency
than classical pseudo-Mersenne primes. It only provides more choices of good
primes. This can be useful in many cryptographic contexts.

Such primes have been used in elliptic curve cryptography for years, such as

� p192 = 264(2128 − 1) − 1, which was already a Solinas prime used in most
standards [62],

� p448 = 2224(2224 − 1)− 1, used for the curve Ed448 [51],

� p480 = 2448(232− 1)− 1 or p512 = 232(2480− 1)− 1 for higher security levels.

Other Montgomery-friendly primes, which do not appear as pseudo-Mersenne
primes, together with elliptic curves de�ned over the corresponding prime �eld,
can be found in the recent cryptographic literature [26, 28, 50]. For example the
primes 2240(216 − 88)− 1 and 2240(214 − 127)− 1 are recommended for the 128-
bits security level. However, the parameters e2 and e

′
2
were not multiples of the

word size in these proposals. The most accomplished example is given in [6]:
p256 = 2192(264−4)−1 can be seen as a good alternative to the Bernstein prime
2255− 19 because reduction modulo p256 requires only a few additions while the
Bernstein prime requires multiplication by 19. Moreover, it is possible to �nd
an elliptic curve satisfying the security requirements given in [21] with a smaller
curve coe�cient than Curve25519 [6].

The most natural application is isogeny-based cryptography because primes
involved have the form 2e23e3 −1 and are naturally Montgomery-friendly. It was
even the initial motivation to study these primes [6]. For example, for the famous
SIKE prime p503 = 22503159 − 1 given in the SIKE proposals [2, 3] for the secu-
rity category 2, we have n = 8 if w = 64 and α = 3159258 so that nα = 5. The
overall cost of the reduction algorithm is then 40 word-multiplications (which
�ts with the reference implementation of SIKE). In order to follow the require-
ments on α and e2 given above, it is not restrictive to consider primes p with
a small cofactor f , as long as p + 1 is divisible by a su�ciently large power
of 2 and 3 to ensure the existence of the isogenies [6]. This gives for example
the prime p512 = 31 · 2256 3158 − 1 which ensures the same security than p503
but with nα = 4 so that the overall cost of the reduction algorithm is only 32
word-multiplications instead of 40. More such primes for various security levels
are given in [6].

The main interest of these new primes is that we get new prime numbers
with an e�cient reduction algorithm that can be used when pseudo-Mersenne
or Solinas primes are too rare. The situation is, in fact, even better because,

Finite �eld arithmetic for cryptography 17

contrary to pseudo-Mersenne primes, the value of c can be chosen even. Con-
sequently, for the same size of constants ci it is possible to �nd roughly twice
many candidates. This can, for example, be very interesting for generating RNS
bases handling larger values of p or involving smaller ci values [6] (and then
more e�cient reduction algorithms). Consequently, RNS-based arithmetic can
be considered for larger �elds or rings.

Montgomery-friendly prime numbers form a large family and o�er new (prime)
numbers that can be used in many cryptographic contexts, such as elliptic curves,
isogeny-based cryptography, or RNS arithmetic for large numbers.

Note that the prime used for the KYBER lattice-based primitive winner of
the NIST post-quantum standardization process [1], q = 13.28−1, is Montgomery-
friendly. However, the e�cient reduction process could not be used at �rst sight
(but on 8-bits devices which is quite rare today). For sure, some additional work
has to be done to take advantage of the form of this prime in future implemen-
tations of KYBER. One could also use Montgomery-friendly prime numbers as
RSA primes without loss of security while α is random and su�ciently large.
Using these primes is recent in cryptography and requires further research.

4 Polynomial rings and extension �elds

Polynomials are used in various contexts in public key cryptography, mainly
to build extension �elds and their interest. For extension �elds or polynomial
rings, a reduction polynomial is necessary. In any case, it can be chosen sparse
so that reducing is not really an e�ciency problem, just like Mersenne primes.
So we will concentrate in this section on multiplication or squaring algorithms
or sometimes on both multiplication and reduction as one common operation.
Polynomials in cryptography can be categorized into two main families.

� The �rst one is for small degree extension �elds. For example, isogeny-based
post-quantum cryptography is usually de�ned on �nite quadratic �elds, so it
is important to compute with degree 1 polynomials e�ciently. Pairing-based
cryptography also massively involves extension �elds of degrees 6 to 48. It
is not so small, but in practice, the degrees are smooth, and the extension
�elds are built as a succession of very small degrees extensions. So we only
need to deal with small degrees, principally 2 and 3 [42]. However, higher
extension degrees were recently used in pairing-based cryptography [34, 46,
47] to overcome the Kim-Barbulescu attack, which takes great advantage of
smooth embedding degrees [16, 54].

� The second family is made of very large degrees of polynomials. There are, for
example, used in post-quantum cryptography based on Ring-lattices where
polynomial rings of large degree (up to several thousand) are common [1, 30]

As was the case for integers multiplication, the reference algorithm for polyno-
mial multiplication is the schoolbook one, given by the same formula with n2

18 S. Duquesne

complexity to multiply 2 polynomials of degree n− 1

n−1∑
i=0

aiX
i.

n−1∑
i=0

biX
i =

2n−2∑
i=0

ciX
i with ci =

∑
k+l=i

akbl

It is even simpler than the integer situation because no carry is involved in the
polynomial case. As in the case of integers, we can also be smarter to perform
such multiplications with various methods depending on the context.

4.1 Interpolation techniques for small degree extensions

All the algorithms for e�cient polynomial multiplication are based on the same
principle. The general idea is to evaluate the 2 input polynomials of degree n−1
in 2n − 1 values. We then get 2n − 1 evaluations of the product polynomial,
which has a degree 2n − 2. Finally, the product polynomial can be recovered
using an interpolation algorithm. As long as the evaluation values are cleverly
chosen, in the sense that evaluation (and interpolation) complexity is low, the
multiplication cost becomes linear because only 2n− 1 base �eld multiplications
are required instead of n2 for the schoolbook method. Depending on the choice
of these evaluation points, we obtain di�erent algorithms that may be used in
di�erent contexts.

The most know method is undoubtedly the Karastuba multiplication (already
seen in Subsection 1.2 in the integer context). It evaluates degree 1 polynomials
in 0, 1 and ∞. If A(X) = a0 + a1X and B(X) = b0 + b1X, we have

A(0) = a0, A(1) = a0 + a1, A(∞) = a1 and

B(0) = b0, B(1) = b0 + b1, B(∞) = b1

Then AB evaluated in 0, 1 and ∞ can be computed with only 3 multiplications.

AB(0) = a0b0, AB(1) = (a0 + a1)(b0 + b1), AB(∞) = a1b1

So that AB can be easily and completely recovered with only few additions by
classical interpolation.

AB(X) = a0b0 + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)X + a1b1X
2

This method is very suitable for degree 2 �nite �elds extensions but can be
generalized to any higher degree thanks to a "divide and conquer" procedure. It
leads to a complexity of O(nlog3 2) = O(n1.58). However, some other choices of
evaluation points may be more appropriate for speci�c situations.

The Toom-Cook method allows, for example, to multiply degree 2 polynomi-
als with only 5 multiplications instead of 9 using the evaluation points 0, 1,−1, 2
and∞ [55]. It is, of course, particularly well adapted for degree 3 extensions but,

Finite �eld arithmetic for cryptography 19

using the "divide and conquer" procedure, it asymptotically leads to complexity
in O(nlog5 3) = O(n1.46). However, it involves more additions than Karatsuba
during the evaluation and interpolation steps and even some divisions by small
numbers like 2 or 3 that must be treated very carefully and may invalidate the
interest of the method depending on the context.

In the case of �nite �eld extensions of small degrees (or towers of small de-
grees), the reducing polynomials have to be chosen carefully so that the reduction
step is as cheap as possible. This step is usually included in the multiplication
algorithm for e�ciency reasons. The best choice is generally to choose an irre-
ducible polynomial in the form Xn − µ such that multiplications by µ are easy,
following the model of Mersenne primes. For example, the Karatsuba multipli-
cation of degree 1 polynomials modulo X2 − µ can be rewritten as

AB(X) = a0b0 +a1b1µ+ ((a0 +a1)(b0 + b1)−a0b0−a1b1)X (3)

4.2 Some special squarings: complex and Chung-Hasan

The same analysis should be done for the speci�c operation of squaring. Of
course, the same algorithms as for multiplication apply with a better complexity
because there is only one input. For example, squaring a degree 1 polynomial
modulo X2−µ can be done in 2 squarings and one multiplication, thanks to the
schoolbook method.

(a0 + a1X)2 = a20 + µa21 + 2a0a1X

while the Karatsuba method replaces 2a0a1 by (a0 + a1)
2 − a20 − a21 and then

one multiplication by one squaring in the base �eld (which yields to a global
complexity of 3 squarings). But, we can alternatively use the so-called complex
method that squares with only 2 multiplications in the base �eld

(a0 + a1X)2 = (a0 + µa1)(a0 + a1)− (µ+ 1)a0a1 + 2a0a1X

This method is of course particularly e�cient if µ = −1, which explains its name.

In the case of degree 2 polynomials (and then degree 3 extension �elds), the
Schoolbook squaring modulo X3 − µ requires 3 squarings and 3 multiplictions
in the base �eld

(a0 +a1X +a2X
2)2 = a20 +2a1a2µ+

[
2a0a1 +µa22

]
X +

[
a21 +2a0a2

]
X2 (4)

As usual, the Karatsuba method computes the bolded terms of (4) with only
one squaring instead of one multiplication in the base �eld (and so a global
complexity of 6 squarings). In this situation, we can also reduce the complexity
to 5 operations in the base �eld using the Chung-Hasan method [33]. There are
several variants but for example, the term in X2 in (4) can be computed as

a21 + 2a0a2 = (a0 + a1 + a2)
2 − (2a0a1 + 2a1a2 + a20 + a22).

20 S. Duquesne

4.3 Application to pairing based cryptography

Small degree extensions are used for isogenies and pairings. Determining which
method is the best in a small degree extension is not immediate and not uni-
versal because it depends on the relative cost of multiplications, squarings and
additions in the base �eld as well as multiplications by µ (if the reduction poly-
nomial has the form Xn − µ). But the base �eld may vary a lot depending on
the targeted cryptosystem and even for a given use case. The situation is quite
simple in isogeny-based cryptography because it is only using quadratic exten-
sions.

Nevertheless, it is less trivial in the pairing context. Indeed extension degrees
can be up to 48 and generally have the form 2i3j . This means that the exten-
sions are built as a succession of degree 2 and degree 3 intermediate extensions.
The �rst step is to choose this sequence and the reduction polynomials so that
the global complexity is the best. It is, for example, shown in [36] choosing that
even for a degree 12 extension in the pairing context, all the choices for building
Fp12 are not equivalent and may result in signi�cant di�erences in the �nal pair-
ing cost (because the extension �eld arithmetic is predominant mainly in any
pairing computation). Then, for each level in the extension tower, we have to
choose the best algorithm for multiplying and squaring. As already mentioned,
this choice depends on the relative cost of basic operations at the previous level.
However, these relative costs are not always the same. They depend on the re-
duction polynomial used but also on the level itself: it is not the same at the
ground level (for building Fp2 over Fp, for example) and at the top level (for
building Fp12 over Fp6 for example). Moreover, all these choices depend on the
base �eld because an e�cient reduction polynomial (µ = −1, for example) will
not always be irreducible. So there is no uniform answer to get the best possible
arithmetic for pairings. New choices must be made for each case, and the �nal
impact on the extension �eld arithmetic is important. It is also shown that it
may in�uence the choice of the curve parameters themselves [41].

Of course, other operations on polynomials as additions, inversions or images
of the Frobenius map may be considered for a complete study of the algorithmic
complexity of the arithmetic of extension �elds. This is, for example, done in [41]
in the pairing context, but we did not go at this level of details here because
multiplications and squarings have by far the largest impact.

4.4 Interpolation techniques for large degrees

The situation is quite di�erent for large degree polynomials/extension degrees.
The �rst main reason is that the base �eld is �nite, so the number of evaluation
points is naturally limited. We then may not be able to have su�ciently many
points (or e�cient points) to set up an evaluation/interpolation technique. One
elegant solution is to use Chudnovsky-type algorithms. These algorithms use

Finite �eld arithmetic for cryptography 21

points on an algebraic curve de�ned on the base �eld as evaluation values in-
stead of base �eld elements [13, 14, 23]. It is interesting because, as the genus
grows, we can have more points on the curve than elements in the base �eld.
Their practical use in cryptography is still limited, so we do not give details here,
but some recent publications on the subject make a good survey [15].

The second main reason is that large degrees make the famous Fast Fourier
Transform (FFT) method competitive, and its complexity becomes theoretically
quasi-linear in the degree. This method uses the 2n-th roots of unity as evalua-
tion points (of course, assuming they are lying in the base �eld). The problem,
in this case, is, of course, to be able to evaluate the polynomials in these points
e�ciently. This can be done thanks to a famous divide-and-conquer algorithm
from Cooley and Turkey [24]. This algorithm becomes computationally attractive
only if n is large so that the evaluation complexity in the polynomial multipli-
cation process is balanced by the gain on the number of base �eld multiplications.

This method was neglected until recently in cryptography because it becomes
interesting only for very large integers or polynomials which were not used in
this domain. The situation is di�erent now because very large polynomial rings
are used in lattice-based cryptography, especially in KYBER [1], which recently
won the NIST post-quantum standardization process [61]. The FFT computes
the Discrete Fourier Transform (DFT, when the base �eld is C) or the Number
Theoretic Transform (NTT, when the base �eld is �nite, so DFT and NTT are
just di�erent names for the same thing depending on the context). Its general
principle can be found in many algorithmic books because it is very old, famous,
and widely used in many engineering, signal processing, mathematical and phys-
ical domains. We give it here in the general case to �x notations and explain how
it applies to large polynomial multiplications and cryptographic applications. It
is as follows: assume a primitive n-th roots of unity ω lies in the base �eld (for

example, ω = e
2iπ
n in C) and let A =

∑n−1
i=0 aiX

i be a polynomial represented by
the sequence of its coe�cients [a0, a1, · · · , an−1]. The Discrete Fourier Transform
of A is de�ned as the evaluation of A in all the n-th root of unity:

Â = DFT (A) = [â0, â1, · · · , ân−1] with âk =

n−1∑
i=0

aiω
ik = A(ωk)

We can also de�ne the inverse transform which is nothing but the classical in-
terpolation to recover A:

iDFT (Â) = [a′0, a
′
1, · · · , a′n−1] with a′j =

1

n

n−1∑
k=0

âkω
−kj (5)

And it is easy to prove that a′j = aj so that the names are well chosen and

A = iDFT (DFT (A))

22 S. Duquesne

The application to degree n − 1 polynomials multiplication immediately uses
2n-th roots of unity (to get 2n− 1 evaluation points). The �rst step is to com-
pute the DFT of inputs which can be asymptotically done in O(n log n) thanks
to the Cooley-Turkey algorithm [24]. We then say that we are in the Fourier
domain where multiplications can be done component by component (and then
in O(n)). We �nally return to the initial domain computing the inverse DFT
(again in O(n log n)) of the result. It is important to note that we can stay in
the Fourier domain for consecutive operations, which may save many operations
in practice. The inverse transformation needs to be applied only to the �nal
result.

In the particular case of a polynomial ring de�ned by the speci�c reduction
polynomial Xn+1, it is possible to get an improved version of the multiplication
algorithm based on the NTT that mimics a transform of size n instead of 2n.
Let ψ be a primitive 2n-th root of unity in the base �eld.

� ψ2 = ω is a n-th root of unity
� ψn = −1

There is an obvious correspondence between this second relation and the combi-
nation of the 2 operations we have to perform: reduce mod Xn+1 and evaluate
in ψ. This correspondence leads to the following writting for the product of 2
degree n− 1 polynomials A and B modulo Xn + 1

C = AB =

2n−2∑
j=0

cjX
j ⇒ C =

n−1∑
j=0

(cj − cn+j)Xj mod Xn + 1

and in the NTT context, we have

cj − cn+j =
1

2n

2n−1∑
k=0

ĉk

(
ψ−kj − ψ−k(n+j)

)
=

1

2n

2n−1∑
k=0

ĉkψ
−kj (1− (−1)k

)
because ψn = −1

=
1

n

n−1∑
k=0

ĉ2k+1ψ
−jω−kj

This expression is very similar to the inverse DFT of size n given by formula (5).
There is only an extra factor ψ−j . As a consequence, we can de�ne a variant of
the DFT/NTT of A by

âk =

n−1∑
i=0

aiψ
iωik

as well as its inverse. This transform is nothing but A(ψωk). It has size n instead
of 2n and allows polynomial multiplication in quasi-linear complexity with the
modular reduction mod Xn+1 included. That is the reason why this polynomial
ring is widely used in Ring/Module lattices cryptography [1, 30].

Finite �eld arithmetic for cryptography 23

5 Lazy reduction

Lazy reduction is a technique commonly used in �nite �elds implementations [57,
68, 74] but rarely presented in the litterature [7, 40] Its principle is to delay the
reduction step when we have to compute several products that will be summed.
For example, if a, b, c and d lie in Fp, computing and reducing a pattern of the
form ab + cd is done with 2 multiplications (ab and cd), one (large) addition
and one �nal modular reduction instead of 2 multiplications, 2 reductions and
1 (normal) addition. Of course, this implies that the reduction algorithm can
take larger integers as input (less than 2p2 instead of less than p2 in the above
example), but it is not cumbersome in practice. There are 2 main contexts where
using lazy reduction is particularly interesting.

The �rst is when the reduction step is costly compared to the multiplication
step so factoring a reduction step for several other operations is particularly
worthwhile. This is for example the case if RNS (see Section 2.3) or PMNS
(see Section 2.4) arithmetic is used. It has been shown that lazy reduction was
very pro�table in this case in the elliptic curve context [7, 8] as well as in the
pairing context [31, 40]. This was for RNS arithmetic because PMNS was not
yet developed, but it is no doubt that the high cost of an internal reduction
in PMNS would greatly advantage the lazy reduction technique for any crypto-
graphic primitive. This may be an interesting trail to follow for people interested
in PMNS implementations.

The second favourable context for lazy reduction is when patterns of the form
ab+ cd naturally occur in a cryptographic protocol or can be revealed. This is,
for example the case in elliptic curve cryptography where addition and doubling
formulas can be adapted to involve more such patterns [7, 8].
This is also the case in pairing-based cryptography and, more generally, in exten-
sion �elds. Indeed, when a multiplication in an extension �eld Fpk is performed,
it is necessary to make only one reduction modulo p for each component of the
result instead of one for each Fp multiplication involved [40]. This means that
only k reduction steps are required instead of k2 for a classical multiplication in
Fpk . For example, if Fp2 is de�ned by Fp[X]/(X2 + 1) and A = a0 + a1X and
B = b0 + b1X ∈ Fp2 , we have AB = a0b0 − a1b1 + (a0b1 + a1b0)X.
We can see that ab + cd patterns naturally occur which makes lazy reduction
particularly relevant. Note that, as elements in Fp2 have 2 independent compo-
nents, it is not possible to have less than 2 reductions in Fp in this case. The
case of 6 and 12 extension degrees is done in detail in [40], showing a signi�cant
implementation improvement. These degrees were chosen because of their par-
ticular interest in the pairing context at that time, and especially because of the
dominance of BN curves [17]. However, other degrees may now be considered
(in the pairing context or in other contexts), and the detailed impact of a lazy
reduction in these cases should be studied in the future.
Such patterns also naturally appear in lattice-based cryptography because most
of the computations in this domain are inner products that are, by de�nition, well

24 S. Duquesne

adapted to the lazy reduction trick. By the way, the reference implementations
of Kyber [1] use lazy reduction. This situation is, in fact, even more, favourable
in lattice-based cryptography because the reduction module involved is usually
much less than a machine word (for example, Kyber prime is only 12-bits long).
Consequently, many multiplications and additions may be performed and accu-
mulated before reducing without over�owing a single machine-word [48]. One
could even go further in this case by storing 2 integers on the same machine
word. It would for sure be interesting to study in detail how this could be done
in practice and what would be the expected gain.

6 Conclusion

Finite �eld arithmetic signi�cantly impacts cryptographic performances but is
very diverse and dependent on the cryptosystem. The e�cient algorithms are
not always the same and must be adapted to the context. They indeed depend
on the size of the base �eld or ring, on the targeted device and its properties
(possibilities of parallelism, size of machine words, software/hardware) but also
on what is expected for the implementation in terms of performance and security
(side-channel resistance ability for example).

Of course, this paper is far from exhaustive about algorithms for �nite �elds
or ring arithmetic, and there are many missing improvements and variants or
hidden things in what is presented. However, it gives a good overview of what
can be done for e�cient �nite �eld arithmetic for cryptographic applications, and
it gives some ideas to improve existing methods, extend their range of interest
or even discover new ones.

References

1. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber (version
3.02) � Submission to round 3 of the NIST post-quantum project.https://pq-
crystals.org/kyber/data/kyber-speci�cation-round3-20210804.pdf

2. Azarderakhsh, R., Campagna M., Costello, C., De Feo L., Hess B.,
Jalali A., Jao D., Koziel B., LaMacchia B., Longa P., Naehrig M.,
Renes J., Soukharev V., Urbanik D.: Supersingular Isogeny Key En-
capsulation, Submission to the NIST's post-quantum cryptography stan-
dardization process, https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/SIKE.zip (2017)

3. Azarderakhsh, R., Campagna M., Costello, C., De Feo L., Hess B.,
Jalali A., Jao D., Koziel B., LaMacchia B., Longa P., Naehrig M.,
Renes J., Soukharev V., Urbanik D.: Supersingular Isogeny Key En-
capsulation, Submission to the NIST's post-quantum cryptography stan-
dardization process, https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/submissions/SIKE.zip (2019)

Finite �eld arithmetic for cryptography 25

4. Bajard, J.C., Didier, L.S., Kornerup, P.: A RNS Montgomery's Modular Multipli-
cation. IEEE Transactions on Computers, 47:7 (1998)

5. Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extension
in residue number systems. 15th IEEE Symposium on Computer Arithmetic, IEEE
Computer Society Press pp. 59�65 (2001)

6. Bajard, J. C., Duquesne, S.: Montgomery-friendly primes and applica-
tions to cryptography. Journal of Cryptographic Engineering 11 (2021).
https://doi.org/10.1007/s13389-021-00260-z

7. Bajard, J. C., Duquesne, S., Ercegovac, M.: Combining leak-resistant arithmetic for
elliptic curves de
ned over Fp and RNS representation. Publications Mathématiques de Besancon 1

pp. 67�87 (2013)
8. Bajard, J.C., Duquesne, S., Ercegovac, M., Meloni, N.: Residue systems e�ciency for

modular products summation: Application to Elliptic Curves Cryptography. SPIE
6313, 631304 (2006)

9. Bajard, J.C., Imbert, L.: A full RNS implementation of RSA. IEEE Transactions
on Computers 53:6 pp. 769�774 (2004)

10. Bajard, J.C., Imbert, L., Plantard, T.: Modular number systems : Beyond the
mersenne family. In Selected Areas in Cryptography. SAC 2004. Lecture Notes in
Computer Science book series 3357, pp 159�169. Springer, Heidelberg (2004)

11. Bajard, J.C., Imbert, L., Plantard, T.: Arithmetic operations in the polyno-
mial modular number system. In 17th IEEE Symposium on Computer Arithmetic
(ARITH-17), pp. 206�213 (2005)

12. Bajard, J. C., Merkiche, N.: Double Level Montgomery Cox-Rower Architecture,
New Bounds. In: Smart Card Research and Advanced Applications. CARDIS 2014.
Lecture Notes in Computer Science 8968. Springer, Heidelberg (2014)

13. Ballet, S.: Curves with Many Points and Multiplication Complexity in Any Exten-
sion of Fq. Finite Fields and Their Applications 5, pp.364�377 (1999)

14. Ballet, S., Rolland, R.: Multiplication algorithm in a �nite �eld and tensor rank of
the multiplication. Journal of Algebra 272(1), pp.173�185 (2004)

15. Ballet, S., Chaumine, J., Pieltant, J., Rambaud, M., Randriambololona, H., Rol-
land, R.: On the tensor rank of multiplication in �nite extensions of �nite �elds and
related issues in algebraic geometry. Uspekhi Mathematichskikh Nauk 76:1(457),
pp. 31�94 (2021)

16. Barbulescu, R., Duquesne, S.: Updating Key Size Estimations for Pairings. Journal
of Cryptology 32(4), pp. 1298�1336 (2019). https://doi.org/10.1007/s00145-018-
9280-5

17. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Selected
areas in cryptography�SAC 2005. Lecture Notes in Computer Science 3897, pp.319�
331. Springer, Heidelberg (2006)

18. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In: Odlyzko, A.M. (eds) Advances
in Cryptology - CRYPTO' 86. Lecture Notes in Computer Science 263, pp. 311�323.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_24

19. Bernstein, D. J.: Curve25519: New Di�e-Hellman Speed Records. In: Public Key
Cryptography - PKC 2006, Lecture notes in computer science, pp. 207�228 (2006)

20. Bernstein, D. J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer Strikes
Back: New DH Speed Records. In: Advances in Cryptology � ASIACRYPT 2014,
Lecture notes in computer science 8873, pp. 317�337 (2014)

21. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography. http://safecurves.cr.yp.to

26 S. Duquesne

22. Bouvier, C., Imbert, L.: An Alternative Approach for SIDH Arithmetic. In: Garay,
J.A. (eds) Public-Key Cryptography � PKC 2021. Lecture Notes in Computer Sci-
ence 12710. Springer, Heidelberg (2021).https://doi.org/10.1007/978-3-030-75245-
3_2

23. Chudnovsky, D., Chudnovsky, G.: Algebraic complexities and algebraic curves over
�nite �elds. Journal of Complexity 4, pp. 285�316 (1988)

24. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation
of complex Fourier series. Math. Comput. 19(90), pp. 290�301 (1965).
https://doi.org/10.2307/2003354

25. Bos, J.W., Costello, C., Hisil, H., Lauter, K: Fas:t Cryptography in Genus 2. In:
Johansson, T. and Nguyen, P. Q. (eds) Advances in Cryptology � EUROCRYPT
2013, Lecture notes in computer science , pp. 194�210. Springer Heidelberg (2013)

26. Bos, J., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryptogra-
phy: an e�ciency and security analysis. Journal of Cryptographic Engineering 6(4),
pp. 259�286 (2016)

27. Bos, J., Lenstra, A.: Topics in Computational Number Theory In-
spired by Peter L. Montgomery, Cambridge University Press (2017).
https://doi.org/10.1017/9781316271575

28. Bos, J. Montgomery, P.L.W.: Topics in Computational Number Theory Inspired
by Peter L. Montgomery. In: Bos, J. and Lenstra, A. (eds), Cambridge University
Press (2017)

29. Bosselaers, A., Govaerts, R., Vandewalle. J.: Comparison of the three modular
reduction functions. Lecture Notes in Computer Science 773 pp. 175�186. Springer,
Heidelberg (1994)

30. Chen, C., Danba, O., Ho�stein, J., Hulsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z., Saito, T., Yamakawa, T., Xagawa, K.: NTRU
� Submission to round 3 of the NIST post-quantum project.https://ntru.org/*

31. Cheung, R., Duquesne, S., Fan, J. , Guillermin, N., Verbauwhede, I., Yao, G.:
FPGA Implementation of Pairings Using Residue Number System and Lazy Re-
duction. In: CHES-2011, Lecture Notes in Computer Science 6917 pp. 421�441.
Springer, Heidelberg (2011)

32. Chung, J., Hasan, A.: More generalized Mersenne numbers. In: SAC 2003, Lecture
Notes in Computer Science 3006 pp. 335�347. Springer, Heidelberg (2003)

33. Chung, J., Hasan, A.: Asymmetric squaring formulae. In: 18th symposium on Com-
puter Arithmetic. IEEE conference publications pp.113-122 (2017)

34. Clarisse, R. , Duquesne, S., Sanders, O.: Curves with Fast Computations in the
First Pairing Group. In: Krenn S., Shulman H. and Vaudenay, S. (eds) CANS
20 : 19th International Conference on Cryptology and Network Security. Lec-
ture Notes in Computer Science 12579 pp. 280�298. Springer, Heidelberg (2020).
https://doi.org/10.1007/978-3-030-65411-5_14

35. Crandall, R.: Method and apparatus for public key exchange in a cryptographic
system, U.S. Patent #5159632 (1992)

36. Devegili, A.J., O'Eigeartaigh, C., Scott, M., Dahab, R.: Multiplication and Squar-
ing on Pairing-Friendly Fields, IACR Cryptology ePrint Archive 471 (2006),
http://eprint.iacr.org/2006/471

37. Didier, L-S., Dosso, F-Y., El Mrabet, N., Marrez, J., Véron, P.: Randomization of
arithmetic over polynomial modular number system. In 2019 IEEE 26th Symposium
on Computer Arithmetic (ARITH), pp.199�206 (2019)

38. Didier, L-S., Dosso, F-Y., Véron, P.: E�cient modular operations using the
Adapted Modular Number System. Journal of Cryptographic Engineering 10(2),
pp. 111�133 (2020)

Finite �eld arithmetic for cryptography 27

39. Dosso, F-Y.: Computer arithmetic contribution to side channel attacks resistant
implementations. PhD, University of the South, Toulon-Var, France (2020)

40. Duquesne, S.: RNS arithmetic in Fpk and application to fast pair-
ing computation. Journal of Mathematical Cryptology 5(1), pp. 51-88
(2011).https://doi.org/10.1515/jmc.2011.006

41. Duquesne, S., El Mrabet, N., Haloui, S., Rondepierre, F.: Choosing and gen-
erating parameters for pairing implementation on BN curves. Applicable Alge-
bra in Engineering, Communication and Computing 29, pp. 113�147 (2018).
https://doi.org/10.1007/s00200-017-0334-y

42. El Mrabet, N., Joye, M.: Guide to pairing based cryptography,
Chapman & Hall/CRC Cryptography and Network Security (2016).
https://doi.org/10.1201/9781315370170

43. Garner, H.L.: The residue number system. IRE Transactions on Electronic Com-
puters, EL 8:6 pp. 140�147(1959)

44. GNU MP, http://gmplib.org
45. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications

over Fp.In: CHES 2010, Lecture Notes in Computer Science 6225, pp. 48�64
Springer, Heidelberg (2010)

46. Guillevic, A.: Comparing the Pairing E�ciency over Composite-Order and Prime-
Order Elliptic Curves. In: Jacobson M.J., Locasto, M.E., Mohassel, P., Safavi-Naini
R. (eds): ACNS 13 � 11th International Conference on Applied Cryptography and
Network Security. Lecture Notes in Computer Science 7954, pp. 357-372. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_22

47. Guillevic, A.: A Short-List of Pairing-Friendly Curves Resistant to Special TNFS
at the 128-Bit Security Level. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds) PKC 2020 : 23rd International Conference on Theory and Practice of
Public Key Cryptography. Lecture Notes in Computer Science 12111, pp. 535�564.
Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_19

48. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software Speed Records
for Lattice-Based Signatures. In: Gaborit, P. (eds) Post-Quantum Cryptography�
PQCrypto 2013. Lecture Notes in Computer Science 7932. Springer, Heidelberg
(2013).https://doi.org/10.1007/978-3-642-38616-9_5

49. Halevi, S., Polyakov, Y., Shoup, V.: An Improved RNS Variant of the BFV Ho-
momorphic Encryption Scheme. In: Matsui, M. (eds) Topics in Cryptology - CT-
RSA 2019. Lecture Notes in Computer Science 11405. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-12612-4_5

50. Hamburg, M.: Fast and compact elliptic-curve cryptography. IACR Cryptology
ePrint Archive 309, http://eprint.iacr.org/2012/309 (2012)

51. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. IACR Cryptology ePrint
Archive 625, https://eprint.iacr.org/2015/625 (2015)

52. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata, Sov
Phys Dokl 7 (1963)

53. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-Rower Architecture for
Fast Parallel Montgomery Multiplication. In: EUROCRYPT 2000. Lecture Notes
in Computer Science 1807, pp. 523�538. Springer, Heidelberg (2000)

54. Kim, T., Barbulescu, R.: Extended Tower Number Field Sieve : A New Complexity
for the Medium Prime Case. In: Robshaw, M. Katz, J. (eds) Advances in Cryptology
- CRYPTO 2016. Lecture Notes in Computer Science 9814, pp. 543�571. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_20

55. Knuth, D.: Seminumerical Algorithms. The Art of Computer Programming 2.
Addison-Wesley (1981).

28 S. Duquesne

56. Koç, Ç. K., Tolga, A., Burton, S.: analysing and comparing Montgomery multipli-
cation algorithms. IEEE Micro 16(3), pp. 26�33 (1996)

57. Lim, C.H., Hwang, H.S.: Fast Implementation of Elliptic Curve Arithmetic in
GF(pn). In: Public Key Cryptography�PKC 2000. Lecture Notes in Computer Sci-
ence 1751, pp.405�421. Springer, Heidelberg (2000)

58. Montgomery, P.: Modular Multiplication without Trial Division. Mathematics of
Computation 44(170), pp. 519�521 (1985)

59. Murty, R.: Prime Numbers and Irreducible Polynomials. The American Mathe-
matical Monthly 109(5) (2002)

60. Negre, C., Plantard, T.: E�cient modular arithmetic in adapted modular number
system using Lagrange representation. In Information Security and Privacy, ACISP
2008, pp. 463�477 (2008)

61. NIST Post-Quantum Cryptography Standardization Process
https://csrc.nist.gov/Projects/post-quantum-cryptography

62. NIST ECC standards, https://csrc.nist.gov/publications/detail/�ps/186/4/�nal
63. Plantard, T.: Arithmétique modulaire pour la cryptographie. PhD thesis, Mont-

pellier 2 University, France (2005)
64. Posch, K.C. , Posch, R.: Modulo Reduction in Residue Number Systems. IEEE

Trans. Parallel Distrib. Syst. 6(5), pp. 449�454 (1995)
65. Renes, J., Schwabe, P., Smith, B., Batina, L.: µKummer: e�cient hyperelliptic

signatures and key exchange on microcontrollers. In: Cryptographic Hardware and
Embedded Systems � CHES 2016, Lecture notes in computer science 9813 (2016)

66. Robinson, R. M.: Mersenne and Fermat Numbers. Proc. Amer. Math. Soc. 5 pp.
842�846 (1954)

67. Sava³, E., Koç, Ç. K.: Finite �eld arithmetic for cryptography,
IEEE Circuits and Systems Magazine 10(2), pp. 40�56 (2010).
https://doi.org/10.1109/MCAS.2010.936785

68. Scott, M.: Implementing cryptographic pairings. In: Pairing 2007. Lecture Notes
in Computer Science 4575, pp. 177�196. Springer, Heidelberg (2007)

69. Scott, M.: Missing a trick: Karatsuba variations, Cryptography and Communica-
tions 10, pp. 5�15 (2018). https://doi.org/10.1007/s12095-017-0217-x

70. Solinas, J. A.: Generalized Mersenne Numbers. Technical report Center for Applied
Cryptographic Research, University of Waterloo (1999)

71. Svoboda, A., Valach, M.: Operational Circuits. Stroje na Zpracovani Informaci,
Sbornik III, Nakl. CSAV, Prague, pp. 247�295 (1955)

72. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer
Technology. McGraw-Hill (1967)

73. Van der Hoven, J.: Fast Chinese Remaindering in Practice. In: Mathematical As-
pects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Com-
puter Science 10693, Springer Heidelberg (2017)

74. Weber, D., Denny, T.: The solution of McCurley's discrete log challenge. In: Ad-
vances in Cryptology�CRYPTO 98. Lecture Notes in Computer Science 1462, pp.
458�471. Springer, Heidelberg (1998)

75. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba Algorithm
for E�cient Implementations,IACR Cryptol. ePrint Arch. 224 (2006),
http://eprint.iacr.org/2006/224

