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Both classical and post-quantum cryptography massively use large characteristic nite elds or rings. Consequently, basic arithmetic on these elds or rings (integer or polynomial multiplication, modular reduction) may signicantly impact cryptographic devices' eciency and power consumption. In this paper, we will present the most used and the less common methods, clarify their advantages and drawbacks and explain which ones are the more relevant depending on the implementation context and the chosen cryptographic primitive. We also explain why recent proposals such as RNS, PMNS or Montgomery-friendly primes may be a good alternative to classical methods depending on the context and suggest directions for further research to improve them.

Introduction

Most of the public key cryptosystems use large nite elds or rings as well as their polynomial extensions. The consequence of this massive usage is that basic arithmetic on these elds and rings may impact the eciency and power consumption of cryptographic devices. Nevertheless, the sizes and degrees involved are very diverse. For example Discrete logarithm on the multiplicative subgroup of a nite eld, as well as RSA, uses 1024 to 4096-bits integers. Elliptic curve cryptography uses 256 to 512-bits prime elds. Pairing-based cryptography uses 256 to 1024-bits prime elds together with small degrees extension elds. Isogeny-based post-quantum cryptography uses 400 to 1000-bits prime elds and quadratic extensions. Lattice-based post-quantum cryptography uses 13 to 60-bits prime elds and large-degree polynomial rings.

Because of this large spectrum, there is a wide collection of algorithms for performing nite eld or ring arithmetic which have each their range of interest depending on the context. Many arithmetic operations (squarings, inversions, additions, Frobenius map, square roots, ...) are involved in various protocols. In this paper, we will concentrate on multiplications and modular reduction because there are the most impacting operations in practice.

We will present the most used methods (schoolbook, interpolation based, Montgomery) as well as less common ones (RNS, PMNS) and some that are specic to particular modules (Mersenne and pseudo-Mersenne primes, Montgomery friendly primes). We will discuss their advantages and drawbacks and explain which ones are the most relevant depending on the implementation context and the chosen cryptographic primitive. We will detail how they can be combined and in which direction they should or could be improved in further works. For some of them, we give some trails for such improvements. We also explain to what extent recent techniques (PMNS, Montgomery-friendly primes) are competitive with more classical ones and spotlight their advantages depending on the context.

The paper rst recalls multi-precision arithmetic and then concentrates on modular reduction methods and polynomial operations.

Multiprecision and large integer multiplication

Hardware devices have the native capacity to perform arithmetic operations on bounded inputs, usually the processor's word size (denoted w in this paper). This word size is classically between 8 and 128 bits; most common architectures use 32 or 64-bit words nowadays. However, classical cryptography and isogeny-based cryptography use much larger integers. Multiprecision is the way a device deals with such large integers. It consists in writing large integers in base β (where β = 2 w ) and then using specic algorithms to get the result of a specic operation involving large inputs.

For example, to add 2 n-words integers a < β n and b < β n , we have to add them word by word

a + b = n-1 i=0 a i β i + n-1 i=0 b i β i = n-1 i=0 (a i + b i )β i (1)
Unfortunately, this is not so easy because of carries. Indeed, a i + b i may be greater than or equal to β. The right formula is then

a + b = n-1 i=0 a i β i + n-1 i=0 b i β i = n i=0 (a i + b i + q i-1 mod β)β i
where q i-1 = 0 or 1 is the quotient of the Euclidean division of a i-1 + b i-1 + q i-2 by β. Contrary to Equation (1), a + b is now written in base β because its coefcients are less than β.

The carry is just 0 or 1, so it is not a big deal to add it to the next coecient, and the complexity of multi-precision addition remains linear in n. Nevertheless, its potential propagation makes dicult the parallelization of this naive algorithm. Moreover, parallelization is very important today because multi-core devices are very current. It is possible to partially get around this problem using carry-save variants of this algorithm. Their concept is to delay and accumulate carries to the end of the computation [START_REF] Sava³ | Finite eld arithmetic for cryptography[END_REF].

Schoolbook multiplication

We can follow the same process for multiplying 2 large integers. Let us consider a and b, two n-word integers written in base β. Then ab can be computed by a succession of basic word multiplications and additions in the way pupils learn multiplication in base 10 at school (which gives the name to the method)

n-1 i=0 a i β i n-1 i=0 b i β i = 2n-2 i=0 c i β i with c i = k+l=i a k b l (2)
The complexity is n 2 word multiplications but again ab is not written in base β in formula [START_REF] Azarderakhsh | Supersingular Isogeny Key Encapsulation, Submission to the NIST's post-quantum cryptography standardization process[END_REF] because c i will generally overcome β. In order to take carries into account, we use Algorithm 1. As was the case for multiprecision addition, the complexity is not aected (n 2 basic word multiplications) but managing carries makes this algorithm dicult to parallelize again. Note that if a specic squaring algorithm is used, it will be more ecient than using Algorithm 1 because if a = b, a i b j and a j b i are the same and then are computed only once.

Karatsuba multiplication

There is a well-known way to reduce the number of basic multiplications required for multiplying large integers. It is due to Karatsuba [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF]. To multiply 2-word integers with the schoolbook method, we do

(a 0 + a 1 β)(b 0 + b 1 β) = a 0 b 0 + (a 0 b 1 + a 1 b 0 )β + a 1 b 1 β 2
Karatsuba's method consists in computing the middle term as

a 0 b 1 + a 1 b 0 = (a 0 + a 1 )(b 0 + b 1 ) -a 0 b 0 -a 1 b 1
This saves one multiplication (at the cost of 3 extra additions) because a 0 b 0 and a 1 b 1 are already computed as the constant term and the term in β 2 , respectively. This process can be recursively applied to deal with larger integers (the Algorithm 1: Schoolbook multiplication of large integers Input: 2 integers 0 ≤ a, b < β n written in base β = 2 w :

Input: a = n-1 i=0 aiβ i , b = n-1 i=0 biβ i , with 0 ≤ ai, bi < β Result: r = ab < β 2n written in base β: r = 2n-1 i=0 riβ i , with 0 ≤ ri < β ri ← 0 ∀i ∈ [0..2n -1] for i = 0 to n -1 do carry ← 0 for j = 0 to n -1 do t ← ri+j + ajbi + carry carry ← t quo β ri+j ← t mod β end for ri+j+1 ← carry end for return {ri} i=0..2n-1
well-known divide-and-conquer strategy). We then get the schoolbook method's complexity of n log 2 3 basic word multiplications instead of n 2 . The main drawback is that the number of addition will grow much faster than the number of multiplications will decrease.

Then, depending on the context and the relative cost of additions and multiplications, the schoolbook or the Karatsuba method should be preferred. More precisely, the Karatsuba method can be used for the rst steps of the divideand-conquer strategy for large integers, but it is not necessarily adequate for the last steps. Indeed, operands are smaller so that the relative cost of additions is higher than those of multiplications. Then, in practice, both methods are combined. The threshold for switching from Karatsuba to a schoolbook depends on the implementation context. More details on this shallow Karatsuba approach and the choice of the threshold can be found in [START_REF] Scott | Missing a trick: Karatsuba variations[END_REF][START_REF] Weimerskirch | Generalizations of the Karatsuba Algorithm for Ecient Implementations[END_REF]. For example, for the current ECC key sizes, Karatsuba approach is not competitive for software implementation [44].

Many other ways exist to improve the complexity of large integer multiplications at the cost of extra additions or other small operations. We do not present them here because there are not used in cryptography (their threshold of use is too far regarding the sizes of integers used in cryptography), but also because we will give them in Section 4 in the polynomial context, which is more straightforward (in particular, no carries are involved).

Modular reduction in the general case

The specicity of the nite eld arithmetic is the reduction step modulo the characteristic p of the eld. However, note that the algorithms for reducing modulo p presented in this section do not require p to be prime and are indeed not always used in cryptography for primes (e.g. for RSA ciphering).

Schoolbook reduction

The reduction of an integer modulo p consists in nding the remainder of the Euclidean division of this integer by p. Again, the easiest way is to use the algorithm learned at school. Assume we want to reduce a m-word integer a modulo a n-word integer p (with of course m ≥ n) written in base β:

a = m-1 i=0 a i β i and p = n-1 i=0 p i β i
We assume that we have at our disposal a basic division of a 2-word integer by a 1-word integer, provided that the quotient is a 1-word integer. The principle of the schoolbook division is essentially to divide the main signicant word a m-1 of a by the one of p (or the 2 main ones if a m-1 < p n-1 ). The quotient q gives a rst approximation of the result, and a is updated as a -qp (up to some powers of β), and the process is iterated until a becomes less than p. This process is precise in Algorithm 2.

Algorithm 2: Schoolbook reduction

Input: a = m-1 i=0 aiβ i and p = n-1 i=0 piβ i Result: a reduced modulo p Compute q0, r0 s.t. am-1 = pn-1q0 + r0 with r0 < pn-1 a ← a -q0pβ m-n for i = 1 to m -n do Compute qi, ri s.t. am-iβ + am-i-1 = pn-1qi + ri with ri < pn-1 s ← a -qipβ m-n-i while s < 0 do qi ← qi -1 s ← s + pβ m-n-i end while a ← s end for return a
The loop of this algorithm is m -n + 1-long and each step is, up to additions, made of one basic division (computing q i and r i ) and n basic multiplications (multiplying the 1-word integer q i by the n-word integer p). The overall complexity is then m -n + 1 basic divisions and n(m -n + 1) basic multiplications. If a is the result of a multiplication in F p , we have m = 2n, and the complexity is then n divisions and n 2 multiplications. This is not so bad compared to multiplication. However, basic divisions are usually very expensive, so we want to avoid them. It can be, for example, done thanks to the Newton method applied to the function f (x) = 1

x -b, which computes the inverse of b without any division. However, the best way to do it is to use the so-called Montgomery or Barrett reductions.

Montgomery reduction

During the '80s, Peter Montgomery [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF] and Paul Barrett [START_REF] Barrett | Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor[END_REF] introduce new methods to perform a Euclidean division without basic divisions. Their approach are slightly dierent but the principle is the same: write a p as a β n β n p . If the second term is precomputed (it does not depend on a), the division by p is then replaced by a division by β n , which is trivial in base β. Of course, this approach works for real divisions, not directly for Euclidean ones. Then, they need to consider correcting terms to get the right result. Barrett and Montgomery's approaches have their advantages and drawbacks. The main drawback of Montgomery reduction is that it requires changing the representation of numbers, but it is mitigated if several operations are performed successively. This is classically the case in cryptographic primitives, so the Montgomery reduction is the most popular in this domain, and we will detail it in this subsection.

To simplify, we assume we want to reduce modulo p the result a of multiplication of 2 integers less than p (which is the most common use case). The basic version of the Montgomery reduction is given by Algorithm 3.

Algorithm 3: Montgomery reduction modulo p

Input: a < pβ n , β n-1 ≤ p < β n Input: the precomputed value p = -p -1 mod β n Result: r < 2p such that r = aβ -n mod p q ← ap mod β n r ← (a + qp)/β n
It is easy to prove that the output r < 2p and r = aβ -n mod p. But these two properties are not exactly the expected ones for the reduction of a mod p. For the rst one, we can of course subtract p if necessary to get r < p. As an alternative, the output of Algorithm 3 can be used directly as input for the next step by adding a condition on p, specically 4p < β n .

The fact that r = aβ -n instead of a modulo p can be overcome by using the so-called Montgomery representation of numbers dened by x = x β n mod p. This representation is, of course, stable for the addition (x + y = x + y), but it is also stable for the modular multiplication using Algorithm refalgo:Montgo. Indeed, when we multiply x and y in Montgomery representation, we get a β 2n factor. But β n is removed during the Montgomery reduction process, so we nally get the Montgomery representation of xy and we then have x y = x y mod p. Thanks to this stability, we can chain several operations in Montgomery representation. Changing representation may only be necessary at the beginning and end of the complete cryptographic computation. Moreover, this change of representation can be easily obtained thanks to Algorithm 3. Indeed, the Montgomery representation of x < p is obtained with x (β 2n mod p) as an input. Similarly, we can recover x using Algorithm 3 with x as an input. Hence, we usually ignore the conversion cost from Montgomery to classic representation (and reciprocally) in cryptographic applications.

Concerning the complexity, 2 multiplications are involved in the algorithm, but there are incomplete ones. The rst one (ap ) is reduced mod β n , so it is unnecessary to compute its most signicant part. For the second one, we know in advance that a+qp will be exactly divisible by β n (by denition of q), so its least signicant part is zero and may not need to be computed. The other operations in Algorithm 3 have negligible cost in base β, so the overall cost should be the one of only one full multiplication, say n 2 . Nevertheless, this analysis does not take carries into account. For example, the least signicant part of the second operation is zero but may produce some carries, so it must be computed anyway. For concrete applications and precise complexity analysis, we use Algorithm 4: a word-by-word version which requires n 2 + n basic word multiplications [START_REF] Bos | Topics in Computational Number Theory Inspired by Peter L. Montgomery[END_REF][START_REF] Bosselaers | Comparison of the three modular reduction functions[END_REF].

Algorithm 4: Word version of the Montgomery reduction modulo p

Input: a < pβ n , β n-1 ≤ p < β n Input: the precomputed value p = -p -1 mod β Result: r = aβ -n mod p and 0 ≤ r < p r ← a;

for i = 0 to n -1 do r0 ← r mod β q ← p r0 mod β r ← (r + qp)/β end for r ← r -p + β n if r ≥ β n then // else r < p r ← r mod β n // r ← r -p if r ≥ p return r
There also exists a version of Algorithm 4 that is interleaved with the multiplication steps ( [START_REF] Bos | Topics in Computational Number Theory Inspired by Peter L. Montgomery[END_REF][START_REF] Koç | analysing and comparing Montgomery multiplication algorithms[END_REF]) to get a complete modular multiplication algorithm. It has some advantages (smaller intermediate results) and drawbacks (only compatible with schoolbook multiplication). We do not give it here, but details can be found in chapter 5 of [START_REF] El Mrabet | Guide to pairing based cryptography[END_REF], for example.

The Montgomery reduction has been used mainly in cryptography for decades as long as the module does not have a specic form allowing fast reduction. The only constraint is that p is odd so that it can be inverted modulo β. It is, for example, regularly used in RSA implementations, Elliptic Curve Cryptography, pairing-based protocols or, more recently, isogeny key exchanges or lattice-based cryptography using primes modules. For example, the reference and optimized implementation of the NIST candidates Frodo and NTRUprime for post-quantum standardization [START_REF]NIST Post-Quantum Cryptography Standardization Process[END_REF] are using Montgomery reduction. However, we still have carries issues with this technique. To avoid them, one can use the well-known Chinese reminder theorem.

The Residue Number Systems (RNS)

The principle of Residue Number Systems (RNS) is to represent an integer a by its residues (a 1 , a 2 , . . . , a n ) modulo a set of coprime numbers B = (m 1 , m 2 , . . . , m n ). This set is called a RNS basis and we have a i = a mod m i which we will also denote |a| mi for clarity. We generally assume that 0 ≤ a < M = n i=1 m i . The main interest of such a system is that it independently distributes large integer operations on the small residue values. In particular, large integer operations become linear relatively to their sizes, and there is no carry propagation. These systems were introduced and developed in [START_REF] Garner | The residue number system[END_REF][START_REF] Svoboda | Operational Circuits. Stroje na Zpracovani Informaci, Sbornik III[END_REF][START_REF] Szabo | Residue Arithmetic and its Applications to Computer Technology[END_REF]. A good introduction can be found in [START_REF] Knuth | Seminumerical Algorithms[END_REF].

However, they cannot be used directly in the cryptographic context because we need to reduce modulo a prime p that cannot be factorized in small moduli by denition. For constructing an arithmetic over F p , we assume that p < M = n i=1 m i and we use a variant of the Montgomery reduction algorithm presented in Subsection 2.2 to replace reductions modulo p by reductions modulo M instead of β n [START_REF] Bajard | A RNS Montgomery's Modular Multiplication[END_REF][START_REF] Bajard | Modular multiplication and base extension in residue number systems[END_REF][START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF][START_REF] Posch | Modulo Reduction in Residue Number Systems[END_REF]. Montgomery reduction algorithm cannot be used without adaptation. Otherwise, we would have to divide by M on the RNS basis. This is not possible because M = n i=1 m i is not invertible modulo m i . It is then necessary to introduce an auxiliary RNS basis to handle the inverse of M . The consequence is that arithmetic operations (e.g. the initial multiplication) must be performed on the two bases. This doubles the cost of arithmetic operations, but this is not an important issue since this cost is now linear, contrary to classical arithmetic. The biggest issue is that some changes of basis become necessary before and after dividing by M .

As a derivative of the Montgomery reduction algorithm, this algorithm has the same drawbacks that can be solved in the same way. The Montgomery rep-Algorithm 5: RNS reduction based on Montgomery approach Input: 2 coprime RNS basis B and B such that p < M < M Input: p given in basis B and -p -1 precomputed in basis B Input: a < M p represented in both RNS basis Result: r = aM -1 (mod p) represented in both RNS basis, with r < 2p

1 q ← a×(-p -1 ) in B 2 [q in B] -→ [q in B ] // First basis extension 3 r ← (a + q×p)×M -1 in B 4 [r in B ] ←-[r in B ]
// Second basis extension resentation of a in this case is a = aM mod p and is stable for Montgomery addition and multiplication. And again, changing representation is rare and easy to perform with a or a(M 2 mod p) as input of Algorithm 5 [START_REF] Bajard | A full RNS implementation of RSA[END_REF].

Instructions 1 and 3 of Algorithm 5 are component-by-component operations performed independently for each basis element, so they are very ecient (linear complexity). On the other hand, the basis extensions of instructions 2 and 4 have quadratic complexity. To convert a RNS representation to another RNS basis, we usually use a Lagrange interpolation:

if (a 1 , a 2 , . . . , a n ) is the RNS representation of a in the basis B = {m 1 , . . . , m n }, then, a = n i=1 a i M -1 i mi M i -αM where M i = M m i
Furthermore, the main challenge is to compute α eciently. There are several approaches in the literature. In [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF], it is shown that the rst conversion can be only an approximation because q is then multiplied by p. However, the second conversion needs to be exact and can be done if w < 2p < (1 -1 ρ )M for some ρ ≥ 2 and ci

2 w < 1 n (1 -1 ρ ) assuming m i = 2 w -c i .
The same idea is used in [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF], but the conditions are relaxed. In [START_REF] Van Der Hoven | Fast Chinese Remaindering in Practice[END_REF], a binary tree construction is used with a logarithmic depth with a modulo reduction at each level. Finally, it is shown in [START_REF] Bajard | Combining leak-resistant arithmetic for elliptic curves de ned over Fp and RNS representation[END_REF] that the overall complexity of Algorithm 5 can be optimized up to 7 5 n 2 + 8 5 n

multiplications at the moduli level.

For eciency reasons, the size of the elements of the RNS basis is related to the word size (usually 1 or 2 words), and they must be chosen carefully so that reductions modulo the m i are cheap. Moduli of special form as in Section 3 are usually chosen so that the reduction modulo m i is, in this case, obtained with few shifts and additions. For example, Kawamura et al [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF] are using moduli m i = 2 w -c i with c i < 2 w/2 . In [START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF], a double Montgomery reduction is suggested to avoid internal modular reduction constraints and pseudo-Mersenne use. J. van der Hoven suggests in [START_REF] Van Der Hoven | Fast Chinese Remaindering in Practice[END_REF] to use s-gentle moduli, for example for

s = 2, m i = 2 2w -2 i with 0 ≤ i < 2 (w-1)/2 .
RNS arithmetic has many advantages compared to standard arithmetic. In particular, multiplication becomes a linear operation instead of a quadratic one. However, also, no more carriers are involved, and conjointly with the independence of the components, it makes RNS arithmetic very easy to implement and parallelize, especially in hardware, as shown in [START_REF] Guillermin | A high speed coprocessor for elliptic curve scalar multiplications over Fp[END_REF]. We can also introduce redundancy in the representation by adding new moduli. This allows for the introduction of randomization in the representation of elements that can be used as protection against dierential side-channel attacks. Moreover, an RNS-based architecture is very exible: with a given structure of n modular digit operators, it is possible to handle any value of p < M . Hence, the same architecture can be used for dierent cryptographic primitives, dierent levels of security and several base elds for each of these levels. The main drawback is the cost of the basis extensions, which makes the RNS reduction signicantly more expensive than the classical Montgomery reduction. However, remember that RNS multiplication is much cheaper than classical multiprecision multiplication. So, there is a gap between the reduction and the multiplication cost, which does not occur in classical systems. We can take advantage of this gap by accumulating multiplications before reducing it. This method is called lazy reduction and is detailed in Section ??.

RNS systems have been successfully used in various cryptographic primitives, especially in hardware implementation (because it is necessary to have an ecient reduction modulo the m i , which is challenging to achieve in software). The rst target was RSA (see [START_REF] Bajard | A full RNS implementation of RSA[END_REF] for example). The results are fascinating and competitive. However, the integers are very large in RSA, so a large basis are required for high-security levels, and it cannot always be realized with classical pseudo-Mersenne primes as in [START_REF] Kawamura | Cox-Rower Architecture for Fast Parallel Montgomery Multiplication[END_REF], especially if the word size is small. At this point, it would be very interesting to nd other families of moduli allowing fast reduction, to develop variants of the RNS method, which is less demanding in terms of basis size (for example, by considering 2-words moduli). Some works already went in such direction recently [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF][START_REF] Bajard | Double Level Montgomery Cox-Rower Architecture, New Bounds[END_REF][START_REF] Van Der Hoven | Fast Chinese Remaindering in Practice[END_REF] but for sure many improvements remain to be nd and would be interesting not only for RSA. RNS has also been successfully used in elliptic curve cryptography [START_REF] Bajard | Combining leak-resistant arithmetic for elliptic curves de ned over Fp and RNS representation[END_REF][START_REF] Bajard | Residue systems eciency for modular products summation: Application to Elliptic Curves Cryptography[END_REF][START_REF] Guillermin | A high speed coprocessor for elliptic curve scalar multiplications over Fp[END_REF] and even allows to break of speed records in pairing-based cryptography [START_REF] Cheung | FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction[END_REF]. Again, work remains to be done to adapt and optimize the elliptic curve and pairing formulas to exploit the complexity gap between the RNS multiplication and reduction steps more eciently. RNS will also probably give interesting results in isogeny-based cryptography because, as in pairing-based cryptography, small degree extension elds are used in this context so that, as explained in Section 5, the lazy reduction can be systematically used, and this is advantaging RNS arithmetic. More recently, an RNS-based implementation has been proposed for some protocols of Fully Homomorphic Encryption [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. However, it generally has few interests in lattice-based cryptography because no large integers are used in this case, so we do not get the gain of fast multiplication.

Finally, RNS arithmetic may be helpful for constrained devices and hardware and when we plan to use the base eld level parallelization.

PMNS

Another way to avoid carriers is to work with polynomials. The so-called PMNS (Polynomial Modular Number System) represents integers modulo p by a polynomial that gives the integers once evaluated in a given value γ < p: a polynomial P represents P (γ) mod p [START_REF] Bajard | Modular number systems : Beyond the mersenne family[END_REF]. For eciency reasons, P must satisfy some constraints:

The degree of P is (strictly) bounded degree by a given integer n. The coecients of P are bounded by a given parameter ρ:

||P || ∞ < ρ n √ p.
Note that ρ cannot be less than ( n √ p + 1)/2 otherwise all the elements of F p cannot be represented [START_REF] Plantard | Arithmétique modulaire pour la cryptographie[END_REF] For example, if we choose γ = 7, then -X -1 represents 11 modulo 19. Note that X 2 also represents 11 so this representation is a redundant system [START_REF] Dosso | Computer arithmetic contribution to side channel attacks resistant implementations[END_REF][START_REF] Plantard | Arithmétique modulaire pour la cryptographie[END_REF].

Thanks to this representation, large integer arithmetic is replaced by polynomial arithmetic, which has many advantages (no carries, parallelization, independence of the components). The main problem is the growing of degrees and coecients when operations are performed on the representative polynomials. Then degrees and coecients may outreach the given constraints for a representative to be valid. So reduction techniques are necessary.

The easiest operation is to reduce the degree. This is called the external reduction, and this is done by reducing modulo a given polynomial E. This polynomial must be chosen as a monomial of degree n so that the degree of the reduced polynomial is less than n -1. It must also cancel γ modulo p so that the reduced polynomial represents the same element in F p . For example, if this polynomial is well chosen and sparse, this reduction step is very ecient. It should also be chosen with small coecients for eciency reasons but, above all, to minimize the growth of the coecients induced by this step [START_REF] Didier | Randomization of arithmetic over polynomial modular number system[END_REF]. This is, for example, the case if we consider a polynomial of the form X n -λ, ideally with λ very small [START_REF] Bajard | Modular number systems : Beyond the mersenne family[END_REF] or a power of 2. In this case, these systems are called AMNS (Adapted Modular Number System) [START_REF] Bajard | Modular number systems : Beyond the mersenne family[END_REF]. In any case, the external reduction cost is usually only some extra additions [START_REF] Plantard | Arithmétique modulaire pour la cryptographie[END_REF].

Reducing the coecients is more complicated and costly. This step is called internal reduction. The idea is the same. Namely, we use a polynomial M that cancels in γ. We then hope that dividing by M will give a polynomial with smaller coecients representing the same integer modulo p. Various methods have been proposed to do it eciently [START_REF] Bajard | Modular number systems : Beyond the mersenne family[END_REF][START_REF] Bajard | Arithmetic operations in the polynomial modular number system[END_REF][START_REF] Barrett | Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor[END_REF][START_REF] Negre | Ecient modular arithmetic in adapted modular number system using Lagrange representation[END_REF]. The most conclusive one is based on the Montgomery reduction [START_REF] Negre | Ecient modular arithmetic in adapted modular number system using Lagrange representation[END_REF]: Algorithm 6 requires an auxiliary integer φ, which is usually a power of 2 and uses Montgomery's usual trick to replace expensive divisions by M with cheap divisions by φ.:

Algorithm 6: Internal reduction using Montgomery reduction

Input: R ∈ Zn-1[X] with ||R||∞ ≥ ρ Input: the precomputed polynomial M = -M -1 mod (E, φ) Result: S ∈ Zn-1[X] s.t. S(γ) = R(γ)φ -1 mod p Q ← R × M mod(E, φ) S ← (R + Q × M )/φ mod E
Assuming that a Montgomery representation of elements is used (R = Rφ), this algorithm outputs a polynomial S representing the same element as the input and whose coecients are reduced if M and φ are satisfying the following conditions (for AMNS):

ρ > 2n|λ| ||M || ∞ and φ > 2n|λ|ρ
Contrary to the external reduction (which has linear complexity), the internal reduction is quadratic, as an instance of the Montgomery technique. As for the RNS reduction, we will not get any complexity gain compared to the classical Montgomery reduction of Section 2.2, but we get simpler arithmetic that can easily be parallelized. Moreover, this representation is naturally redundant so that we can protect the arithmetic against dierential side-channel attacks. For example, we can add a random polynomial that cancels in γ modulo p [START_REF] Didier | Randomization of arithmetic over polynomial modular number system[END_REF]. It is also shown in [START_REF] Didier | Ecient modular operations using the Adapted Modular Number System[END_REF] that this representation allows base eld arithmetic without conditional branching, which can be very interesting in the grey box context.

Until recently, the main drawback of this method was the parameter generation. We apply LLL to the lattice of polynomials cancelled by γ to get M. But it is not so trivial to ensure that the polynomial M exists as an integer polynomial and that the parameter φ is a power of 2 to minimize the costs. A generator has been very recently given in [START_REF] Didier | Ecient modular operations using the Adapted Modular Number System[END_REF]. In terms of cryptographic applications, there are still few implementations in the literature because of this parameter generation issue. However, it is very promising for ECC, pairing or isogeny context [START_REF] Bouvier | An Alternative Approach for SIDH Arithmetic[END_REF], especially for constrained devices and when parallelization is considered at the base eld level. It may also be a good alternative if side-channel resistance is needed at the base eld level, thanks to the redundancy of the representation.

Modular reduction for special primes

The underlying base eld can be chosen without restrictions in some cryptographic contexts. In this case, the module p can be taken in a specic form that allows much better complexity for reduction thanks to a dedicated algorithm. Usually, only several shifts and additions are needed for the modular reduction instead of O(n2 ) multiplications as in Section 2. The most known form is one of the generalized Mersenne primes we will describe now, but we will see that there are not the only ones. The main drawback of this strategy is that it requires an implementation/architecture dedicated to the specicity of p, which cannot be used for other base elds. Consequently, it is not always practical in either software or hardware implementation, and many users may prefer exible products.

Mersenne and pseudo-Mersenne primes

The more ecient modules for reduction are the so-called Mersenne primes. They have the form p = 2 e -1 and are historically used to break large prime numbers records. In this case, the reduction Algorithm 7 splits the input after e bits and uses that 2 e = 1 mod p. Then adding the low and the high parts gives a reduced form of the input. It is not completely reduced since it is less than 2p instead of p, so an extra subtraction may be necessary to get the right result. Note that this subtraction is not directly done with p but with 2 e -1, which is mathematically equivalent but practically easier. Algorithm 7: Reduction modulo a Mersenne prime p = 2 e -1

Input: 0 ≤ a < 2 e p Result: r = a mod p and 0 ≤ r < p Write a = a12 e + a0 r ← a0

+ a1 r ← r + 1 // r ← r -p + 2 e if r ≥ 2 e then // if r ≥ p r ← r mod 2 e // r ← r -p return r
The complexity of this algorithm is only one (large) addition. This is of course much cheaper than all other reduction algorithms, especially if e is a multiple of the word-size. However, Mersenne primes are very rare in the cryptographic range. Only 3 of them can be encounter in the cryptographic literature: In order to get more candidates, Mersenne primes can be generalized to any prime having the form 2 e -c for small values of c. Replacing 2 e by c in the writing of a large integer a in base 2 e will indeed reduce the size of a. a = a 0 + a 1 2 e ⇒ a = a 0 + a 1 c mod p However, a 1 c is not reduced enough, so this reduction step needs to be applied again to this term. It is easy to prove that if |c| is less than 2 e 2 , then a third reduction step is not necessary, and we can then use Algorithm 8 involving only 2 reduction steps. In this case, the result is less than 3p (as the sum of 3 integers less than p), so 2 steps of subtraction of p may be necessary. 

b = b0 + b12 e r = b0 + b1c r ← r + c; // r ← r -p + 2 e if r ≥ 2 e then // if r ≥ p r ← r -2 e // r ← r -p r ← r + c // repeat the previous steps if r is still ≥ p if r ≥ 2 e then r ← r -2 e end if return r
The nal cost of Algorithm 8 is then 2 multiplications by c (and some additions). Consequently, c must be chosen carefully so that multiplications by c are fast to compute. Of course, it can be chosen very small, as suggested by Crandall [35]. This is, for example, the case of the prime 2 255 -19 introduced by Bernstein to dene the famous elliptic curve Curve25519 [START_REF] Bernstein | Curve25519: New Die-Hellman Speed Records[END_REF]. However, it can also be chosen very sparse in the base of the machine word. This is, for example, the case of Solinas primes [START_REF] Chung | More generalized Mersenne numbers[END_REF][START_REF] Solinas | Generalized Mersenne Numbers[END_REF], which are built as evaluation in the power of 2 (ideally in β) of sparse polynomials with very small coecients. The polynomial should be irreducible [START_REF] Murty | Prime Numbers and Irreducible Polynomials[END_REF]. For example, if we choose the polynomial X 3 -X -1 and apply it to 2 64 , we get a pseudo-Mersenne prime with c = 2 64 + 1 so that multiplying by c just adds up to 64-bit architecture. This prime and other Solinas ones are suggested by the NIST [62] and included in many standards for elliptic curve cryptography.

Pseudo-Mersenne class is also the main provider of moduli (non necessarily primes) for RNS basis because of their ecient reduction algorithm and the fact that they can be freely chosen (as long as there are coprime). However, pseudo-Mersenne primes cannot be used in cryptographic contexts where modules have inherent constraints (e.g. RSA, pairings, Ring-lattices, isogenies).

Montgomery-friendly prime numbers

In this subsection, we are interested in the so-called Montgomery-friendly primes [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF][START_REF] Bos | Fas:t Cryptography in Genus 2[END_REF][START_REF] Bos | Selecting elliptic curves for cryptography: an eciency and security analysis[END_REF][START_REF] Hamburg | Fast and compact elliptic-curve cryptography[END_REF]. They are build in the form p = 2 e2 α±1 with e 2 larger than the word size w so that the Montgomery reduction Algorithm 4 is particularly ecient. Indeed, this algorithm involves multiplication by the inverse of p modulo β. In the case of Montgomery-friendly primes, p is ±1 modulo β so that this multiplication is free. Then, the only operation to perform in the for loop is the computation of (r + qp)/β where q = r mod β. As p = β2 e2-w α -1 and assuming that r = r i β i at the beginning of each step of the for loop, this operation can be computed as:

(r + qp)/β = r i β i + r 0 β2 e2-w α -r 0 /β = i =0 r i β i-1 + r 0 2 e2-w α
Algorithm 4 can then be rewritten as Algorithm 9 and the cost of each step of Algorithm 9: Word version of the Montgomery reduction if p = 2 e2 α-1

Input: 0 ≤ a < pβ n , β n-1 ≤ p < β n with β = 2 w

and w ≤ e2

Result: r = aβ -n mod p and 0 ≤ r < p r ← a for i = 0 to n -

1 do r0 ← r mod β r ← (r -r0)/β + r0 × α2 e 2 -w end for r ← r + (β n -p) ; if r ≥ β n then r ← r -β n return r
the for loop is reduced to one multiplication of α2 e2 mod w by the single word value r 0 . Assuming α2 e2 mod w ts on n α words, Algorithm 9 then requires nn α word multiplications. Of course the case p = 2 e2 α + 1 is very similar.

As detailed in [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF], the choice of α and e 2 is crucial to get an ecient reduction algorithm.

If α is a power of 2, the multiplication by α is very ecient, but we nally get a Mersenne prime. If α = 2 e 2 -c with c small, we get an equivalent of pseudo-Mersenne primes. If α = 2 e 2 -c with c sparse involving only coecients of the word size, we get an equivalent of the Solinas primes.

If e 2 (and e 2 ) is a multiple of the word size, this will reduce the word size n α to the one of α.

If both α and e 2 are wisely chosen as above, the Montgomery reduction Algorithm 9 is very ecient by construction (each step of the for loop costs only one multiplication of a single word by c). Note that it will not give better eciency than classical pseudo-Mersenne primes. It only provides more choices of good primes. This can be useful in many cryptographic contexts.

Such primes have been used in elliptic curve cryptography for years, such as 64 (2 128 -1) -1, which was already a Solinas prime used in most standards [62], p 448 = 2 224 (2 224 -1) -1, used for the curve Ed448 [START_REF] Hamburg | Ed448-Goldilocks, a new elliptic curve[END_REF], p 480 = 2 448 (2 32 -1) -1 or p 512 = 2 32 (2 480 -1) -1 for higher security levels.

p 192 = 2
Other Montgomery-friendly primes, which do not appear as pseudo-Mersenne primes, together with elliptic curves dened over the corresponding prime eld, can be found in the recent cryptographic literature [START_REF] Bos | Selecting elliptic curves for cryptography: an eciency and security analysis[END_REF][START_REF] Bos | Topics in Computational Number Theory Inspired by Peter L. Montgomery[END_REF][START_REF] Hamburg | Fast and compact elliptic-curve cryptography[END_REF]. For example the primes 2 240 (2 16 -88) -1 and 2 240 (2 14 -127) -1 are recommended for the 128bits security level. However, the parameters e 2 and e 2 were not multiples of the word size in these proposals. The most accomplished example is given in [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF]: p 256 = 2 192 (2 64 -4) -1 can be seen as a good alternative to the Bernstein prime 2 255 -19 because reduction modulo p 256 requires only a few additions while the Bernstein prime requires multiplication by 19. Moreover, it is possible to nd an elliptic curve satisfying the security requirements given in [START_REF] Bernstein | SafeCurves: choosing safe curves for elliptic-curve cryptography[END_REF] with a smaller curve coecient than Curve25519 [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF].

The most natural application is isogeny-based cryptography because primes involved have the form 2 e2 3 e3 -1 and are naturally Montgomery-friendly. It was even the initial motivation to study these primes [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF]. For example, for the famous SIKE prime p 503 = 2 250 3 159 -1 given in the SIKE proposals [START_REF] Azarderakhsh | Supersingular Isogeny Key Encapsulation, Submission to the NIST's post-quantum cryptography standardization process[END_REF][START_REF] Azarderakhsh | Supersingular Isogeny Key Encapsulation, Submission to the NIST's post-quantum cryptography standardization process[END_REF] for the security category 2, we have n = 8 if w = 64 and α = 3 159 2 58 so that n α = 5. The overall cost of the reduction algorithm is then 40 word-multiplications (which ts with the reference implementation of SIKE). In order to follow the requirements on α and e 2 given above, it is not restrictive to consider primes p with a small cofactor f , as long as p + 1 is divisible by a suciently large power of 2 and 3 to ensure the existence of the isogenies [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF]. This gives for example the prime p 512 = 31 • 2 256 3 158 -1 which ensures the same security than p 503 but with n α = 4 so that the overall cost of the reduction algorithm is only 32 word-multiplications instead of 40. More such primes for various security levels are given in [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF].

The main interest of these new primes is that we get new prime numbers with an ecient reduction algorithm that can be used when pseudo-Mersenne or Solinas primes are too rare. The situation is, in fact, even better because, contrary to pseudo-Mersenne primes, the value of c can be chosen even. Consequently, for the same size of constants c i it is possible to nd roughly twice many candidates. This can, for example, be very interesting for generating RNS bases handling larger values of p or involving smaller c i values [START_REF] Bajard | Montgomery-friendly primes and applications to cryptography[END_REF] (and then more ecient reduction algorithms). Consequently, RNS-based arithmetic can be considered for larger elds or rings.

Montgomery-friendly prime numbers form a large family and oer new (prime) numbers that can be used in many cryptographic contexts, such as elliptic curves, isogeny-based cryptography, or RNS arithmetic for large numbers.

Note that the prime used for the KYBER lattice-based primitive winner of the NIST post-quantum standardization process [START_REF] Avanzi | CRYSTALS-Kyber (version 3.02)[END_REF], q = 13.2 8 -1, is Montgomeryfriendly. However, the ecient reduction process could not be used at rst sight (but on 8-bits devices which is quite rare today). For sure, some additional work has to be done to take advantage of the form of this prime in future implementations of KYBER. One could also use Montgomery-friendly prime numbers as RSA primes without loss of security while α is random and suciently large. Using these primes is recent in cryptography and requires further research.

Polynomial rings and extension elds

Polynomials are used in various contexts in public key cryptography, mainly to build extension elds and their interest. For extension elds or polynomial rings, a reduction polynomial is necessary. In any case, it can be chosen sparse so that reducing is not really an eciency problem, just like Mersenne primes. So we will concentrate in this section on multiplication or squaring algorithms or sometimes on both multiplication and reduction as one common operation. Polynomials in cryptography can be categorized into two main families.

The rst one is for small degree extension elds. For example, isogeny-based post-quantum cryptography is usually dened on nite quadratic elds, so it is important to compute with degree 1 polynomials eciently. Pairing-based cryptography also massively involves extension elds of degrees 6 to 48. It is not so small, but in practice, the degrees are smooth, and the extension elds are built as a succession of very small degrees extensions. So we only need to deal with small degrees, principally 2 and 3 [START_REF] El Mrabet | Guide to pairing based cryptography[END_REF]. However, higher extension degrees were recently used in pairing-based cryptography [START_REF] Clarisse | Curves with Fast Computations in the First Pairing Group[END_REF][START_REF] Guillevic | Comparing the Pairing Eciency over Composite-Order and Prime-Order Elliptic Curves[END_REF][START_REF] Guillevic | A Short-List of Pairing-Friendly Curves Resistant to Special TNFS at the 128-Bit Security Level[END_REF] to overcome the Kim-Barbulescu attack, which takes great advantage of smooth embedding degrees [START_REF] Barbulescu | Updating Key Size Estimations for Pairings[END_REF][START_REF] Kim | Extended Tower Number Field Sieve : A New Complexity for the Medium Prime Case[END_REF]. The second family is made of very large degrees of polynomials. There are, for example, used in post-quantum cryptography based on Ring-lattices where polynomial rings of large degree (up to several thousand) are common [START_REF] Avanzi | CRYSTALS-Kyber (version 3.02)[END_REF][START_REF] Chen | NTRU Submission to round 3 of the NIST post-quantum project[END_REF] As was the case for integers multiplication, the reference algorithm for polynomial multiplication is the schoolbook one, given by the same formula with n 2 complexity to multiply 2 polynomials of degree n -

1 n-1 i=0 a i X i . n-1 i=0 b i X i = 2n-2 i=0 c i X i with c i = k+l=i a k b l
It is even simpler than the integer situation because no carry is involved in the polynomial case. As in the case of integers, we can also be smarter to perform such multiplications with various methods depending on the context.

Interpolation techniques for small degree extensions

All the algorithms for ecient polynomial multiplication are based on the same principle. The general idea is to evaluate the 2 input polynomials of degree n -1 in 2n -1 values. We then get 2n -1 evaluations of the product polynomial, which has a degree 2n -2. Finally, the product polynomial can be recovered using an interpolation algorithm. As long as the evaluation values are cleverly chosen, in the sense that evaluation (and interpolation) complexity is low, the multiplication cost becomes linear because only 2n -1 base eld multiplications are required instead of n 2 for the schoolbook method. Depending on the choice of these evaluation points, we obtain dierent algorithms that may be used in dierent contexts.

The most know method is undoubtedly the Karastuba multiplication (already seen in Subsection 1.2 in the integer context). It evaluates degree 1 polynomials in 0, 1 and ∞. If A(X) = a 0 + a 1 X and B(X) = b 0 + b 1 X, we have

A(0) = a 0 , A(1) = a 0 + a 1 , A(∞) = a 1 and B(0) = b 0 , B(1) = b 0 + b 1 , B(∞) = b 1
Then AB evaluated in 0, 1 and ∞ can be computed with only 3 multiplications.

AB(0) = a 0 b 0 , AB(1) = (a 0 + a 1 )(b 0 + b 1 ), AB(∞) = a 1 b 1
So that AB can be easily and completely recovered with only few additions by classical interpolation.

AB(X) = a 0 b 0 + ((a 0 + a 1 )(b 0 + b 1 ) -a 0 b 0 -a 1 b 1 ) X + a 1 b 1 X 2
This method is very suitable for degree 2 nite elds extensions but can be generalized to any higher degree thanks to a "divide and conquer" procedure. It leads to a complexity of O(n log 3 2 ) = O(n 1.58 ). However, some other choices of evaluation points may be more appropriate for specic situations.

The Toom-Cook method allows, for example, to multiply degree 2 polynomials with only 5 multiplications instead of 9 using the evaluation points 0, 1, -1, 2 and ∞ [START_REF] Knuth | Seminumerical Algorithms[END_REF]. It is, of course, particularly well adapted for degree 3 extensions but, using the "divide and conquer" procedure, it asymptotically leads to complexity in O(n log 5 3 ) = O(n 1.46 ). However, it involves more additions than Karatsuba during the evaluation and interpolation steps and even some divisions by small numbers like 2 or 3 that must be treated very carefully and may invalidate the interest of the method depending on the context.

In the case of nite eld extensions of small degrees (or towers of small degrees), the reducing polynomials have to be chosen carefully so that the reduction step is as cheap as possible. This step is usually included in the multiplication algorithm for eciency reasons. The best choice is generally to choose an irreducible polynomial in the form X n -µ such that multiplications by µ are easy, following the model of Mersenne primes. For example, the Karatsuba multiplication of degree 1 polynomials modulo X 2 -µ can be rewritten as

AB(X) = a 0 b 0 + a 1 b 1 µ + ((a 0 + a 1 )(b 0 + b 1 ) -a 0 b 0 -a 1 b 1 ) X (3)
4.2 Some special squarings: complex and Chung-Hasan

The same analysis should be done for the specic operation of squaring. Of course, the same algorithms as for multiplication apply with a better complexity because there is only one input. For example, squaring a degree 1 polynomial modulo X 2 -µ can be done in 2 squarings and one multiplication, thanks to the schoolbook method.

(a 0 + a 1 X) 2 = a 2 0 + µa 2 1 + 2a 0 a 1 X while the Karatsuba method replaces 2a 0 a 1 by (a 0 + a 1 ) 2 -a 2 0 -a 2 1 and then one multiplication by one squaring in the base eld (which yields to a global complexity of 3 squarings). But, we can alternatively use the so-called complex method that squares with only 2 multiplications in the base eld

(a 0 + a 1 X) 2 = (a 0 + µa 1 )(a 0 + a 1 ) -(µ + 1)a 0 a 1 + 2a 0 a 1 X
This method is of course particularly ecient if µ = -1, which explains its name.

In the case of degree 2 polynomials (and then degree 3 extension elds), the Schoolbook squaring modulo X 3 -µ requires 3 squarings and 3 multiplictions in the base eld

(a 0 + a 1 X + a 2 X 2 ) 2 = a 2 0 + 2a 1 a 2 µ + 2a 0 a 1 + µa 2 2 X + a 2 1 + 2a 0 a 2 X 2 ( 
4) As usual, the Karatsuba method computes the bolded terms of (4) with only one squaring instead of one multiplication in the base eld (and so a global complexity of 6 squarings). In this situation, we can also reduce the complexity to 5 operations in the base eld using the Chung-Hasan method [START_REF] Chung | Asymmetric squaring formulae[END_REF]. There are several variants but for example, the term in X 2 in (4) can be computed as

a 2 1 + 2a 0 a 2 = (a 0 + a 1 + a 2 ) 2 -(2a 0 a 1 + 2a 1 a 2 + a 2 0 + a 2 2 ).

Application to pairing based cryptography

Small degree extensions are used for isogenies and pairings. Determining which method is the best in a small degree extension is not immediate and not universal because it depends on the relative cost of multiplications, squarings and additions in the base eld as well as multiplications by µ (if the reduction polynomial has the form X n -µ). But the base eld may vary a lot depending on the targeted cryptosystem and even for a given use case. The situation is quite simple in isogeny-based cryptography because it is only using quadratic extensions.

Nevertheless, it is less trivial in the pairing context. Indeed extension degrees can be up to 48 and generally have the form 2 i 3 j . This means that the extensions are built as a succession of degree 2 and degree 3 intermediate extensions. The rst step is to choose this sequence and the reduction polynomials so that the global complexity is the best. It is, for example, shown in [START_REF] Devegili | Multiplication and Squaring on Pairing-Friendly Fields[END_REF] choosing that even for a degree 12 extension in the pairing context, all the choices for building F p 12 are not equivalent and may result in signicant dierences in the nal pairing cost (because the extension eld arithmetic is predominant mainly in any pairing computation). Then, for each level in the extension tower, we have to choose the best algorithm for multiplying and squaring. As already mentioned, this choice depends on the relative cost of basic operations at the previous level. However, these relative costs are not always the same. They depend on the reduction polynomial used but also on the level itself: it is not the same at the ground level (for building F p 2 over F p , for example) and at the top level (for building F p 12 over F p 6 for example). Moreover, all these choices depend on the base eld because an ecient reduction polynomial (µ = -1, for example) will not always be irreducible. So there is no uniform answer to get the best possible arithmetic for pairings. New choices must be made for each case, and the nal impact on the extension eld arithmetic is important. It is also shown that it may inuence the choice of the curve parameters themselves [START_REF] Duquesne | Choosing and generating parameters for pairing implementation on BN curves[END_REF].

Of course, other operations on polynomials as additions, inversions or images of the Frobenius map may be considered for a complete study of the algorithmic complexity of the arithmetic of extension elds. This is, for example, done in [START_REF] Duquesne | Choosing and generating parameters for pairing implementation on BN curves[END_REF] in the pairing context, but we did not go at this level of details here because multiplications and squarings have by far the largest impact.

Interpolation techniques for large degrees

The situation is quite dierent for large degree polynomials/extension degrees. The rst main reason is that the base eld is nite, so the number of evaluation points is naturally limited. We then may not be able to have suciently many points (or ecient points) to set up an evaluation/interpolation technique. One elegant solution is to use Chudnovsky-type algorithms. These algorithms use points on an algebraic curve dened on the base eld as evaluation values instead of base eld elements [START_REF] Ballet | Curves with Many Points and Multiplication Complexity in Any Extension of Fq[END_REF][START_REF] Ballet | Multiplication algorithm in a nite eld and tensor rank of the multiplication[END_REF][START_REF] Chudnovsky | Algebraic complexities and algebraic curves over nite elds[END_REF]. It is interesting because, as the genus grows, we can have more points on the curve than elements in the base eld. Their practical use in cryptography is still limited, so we do not give details here, but some recent publications on the subject make a good survey [START_REF] Ballet | On the tensor rank of multiplication in nite extensions of nite elds and related issues in algebraic geometry[END_REF].

The second main reason is that large degrees make the famous Fast Fourier Transform (FFT) method competitive, and its complexity becomes theoretically quasi-linear in the degree. This method uses the 2n-th roots of unity as evaluation points (of course, assuming they are lying in the base eld). The problem, in this case, is, of course, to be able to evaluate the polynomials in these points eciently. This can be done thanks to a famous divide-and-conquer algorithm from Cooley and Turkey [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF]. This algorithm becomes computationally attractive only if n is large so that the evaluation complexity in the polynomial multiplication process is balanced by the gain on the number of base eld multiplications. This method was neglected until recently in cryptography because it becomes interesting only for very large integers or polynomials which were not used in this domain. The situation is dierent now because very large polynomial rings are used in lattice-based cryptography, especially in KYBER [START_REF] Avanzi | CRYSTALS-Kyber (version 3.02)[END_REF], which recently won the NIST post-quantum standardization process [START_REF]NIST Post-Quantum Cryptography Standardization Process[END_REF]. The FFT computes the Discrete Fourier Transform (DFT, when the base eld is C) or the Number Theoretic Transform (NTT, when the base eld is nite, so DFT and NTT are just dierent names for the same thing depending on the context). Its general principle can be found in many algorithmic books because it is very old, famous, and widely used in many engineering, signal processing, mathematical and physical domains. We give it here in the general case to x notations and explain how it applies to large polynomial multiplications and cryptographic applications. It is as follows: assume a primitive n-th roots of unity ω lies in the base eld (for example, ω = e 2iπ n in C) and let A = n-1 i=0 a i X i be a polynomial represented by the sequence of its coecients [a 0 , a 1 , • • • , a n-1 ]. The Discrete Fourier Transform of A is dened as the evaluation of A in all the n-th root of unity:

 = DF T (A) = [â 0 , â1 , • • • , ân-1 ] with âk = n-1 i=0 a i ω ik = A(ω k )
We can also dene the inverse transform which is nothing but the classical interpolation to recover A:

iDF T ( Â) = [a 0 , a 1 , • • • , a n-1 ] with a j = 1 n n-1 k=0 âk ω -kj (5)
And it is easy to prove that a j = a j so that the names are well chosen and

A = iDF T (DF T (A))
The application to degree n -1 polynomials multiplication immediately uses 2n-th roots of unity (to get 2n -1 evaluation points). The rst step is to compute the DFT of inputs which can be asymptotically done in O(n log n) thanks to the Cooley-Turkey algorithm [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF]. We then say that we are in the Fourier domain where multiplications can be done component by component (and then in O(n)). We nally return to the initial domain computing the inverse DFT (again in O(n log n)) of the result. It is important to note that we can stay in the Fourier domain for consecutive operations, which may save many operations in practice. The inverse transformation needs to be applied only to the nal result.

In the particular case of a polynomial ring dened by the specic reduction polynomial X n + 1, it is possible to get an improved version of the multiplication algorithm based on the NTT that mimics a transform of size n instead of 2n. Let ψ be a primitive 2n-th root of unity in the base eld.

ψ 2 = ω is a n-th root of unity ψ n = -1 There is an obvious correspondence between this second relation and the combination of the 2 operations we have to perform: reduce mod X n + 1 and evaluate in ψ. This correspondence leads to the following writting for the product of 2 degree n -1 polynomials A and B modulo X n + 1

C = AB = 2n-2 j=0 c j X j ⇒ C = n-1 j=0 (c j -c n+j )X j mod X n + 1
and in the NTT context, we have

c j -c n+j = 1 2n 2n-1 k=0 ĉk ψ -kj -ψ -k(n+j) = 1 2n 2n-1 k=0 ĉk ψ -kj 1 -(-1) k because ψ n = -1 = 1 n n-1 k=0 ĉ2k+1 ψ -j ω -kj
This expression is very similar to the inverse DFT of size n given by formula [START_REF] Bajard | Modular multiplication and base extension in residue number systems[END_REF].

There is only an extra factor ψ -j . As a consequence, we can dene a variant of the DFT/NTT of A by

âk = n-1 i=0 a i ψ i ω ik
as well as its inverse. This transform is nothing but A(ψω k ). It has size n instead of 2n and allows polynomial multiplication in quasi-linear complexity with the modular reduction mod X n +1 included. That is the reason why this polynomial ring is widely used in Ring/Module lattices cryptography [START_REF] Avanzi | CRYSTALS-Kyber (version 3.02)[END_REF][START_REF] Chen | NTRU Submission to round 3 of the NIST post-quantum project[END_REF].

Lazy reduction

Lazy reduction is a technique commonly used in nite elds implementations [START_REF] Lim | Fast Implementation of Elliptic Curve Arithmetic in GF(p n )[END_REF][START_REF] Scott | Implementing cryptographic pairings[END_REF][START_REF] Weber | The solution of McCurley's discrete log challenge[END_REF] but rarely presented in the litterature [START_REF] Bajard | Combining leak-resistant arithmetic for elliptic curves de ned over Fp and RNS representation[END_REF][START_REF] Duquesne | RNS arithmetic in F p k and application to fast pairing computation[END_REF] Its principle is to delay the reduction step when we have to compute several products that will be summed. For example, if a, b, c and d lie in F p , computing and reducing a pattern of the form ab + cd is done with 2 multiplications (ab and cd), one (large) addition and one nal modular reduction instead of 2 multiplications, 2 reductions and 1 (normal) addition. Of course, this implies that the reduction algorithm can take larger integers as input (less than 2p 2 instead of less than p 2 in the above example), but it is not cumbersome in practice. There are 2 main contexts where using lazy reduction is particularly interesting.

The rst is when the reduction step is costly compared to the multiplication step so factoring a reduction step for several other operations is particularly worthwhile. This is for example the case if RNS (see Section 2.3) or PMNS (see Section 2.4) arithmetic is used. It has been shown that lazy reduction was very protable in this case in the elliptic curve context [START_REF] Bajard | Combining leak-resistant arithmetic for elliptic curves de ned over Fp and RNS representation[END_REF][START_REF] Bajard | Residue systems eciency for modular products summation: Application to Elliptic Curves Cryptography[END_REF] as well as in the pairing context [START_REF] Cheung | FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction[END_REF][START_REF] Duquesne | RNS arithmetic in F p k and application to fast pairing computation[END_REF]. This was for RNS arithmetic because PMNS was not yet developed, but it is no doubt that the high cost of an internal reduction in PMNS would greatly advantage the lazy reduction technique for any cryptographic primitive. This may be an interesting trail to follow for people interested in PMNS implementations.

The second favourable context for lazy reduction is when patterns of the form ab + cd naturally occur in a cryptographic protocol or can be revealed. This is, for example the case in elliptic curve cryptography where addition and doubling formulas can be adapted to involve more such patterns [START_REF] Bajard | Combining leak-resistant arithmetic for elliptic curves de ned over Fp and RNS representation[END_REF][START_REF] Bajard | Residue systems eciency for modular products summation: Application to Elliptic Curves Cryptography[END_REF]. This is also the case in pairing-based cryptography and, more generally, in extension elds. Indeed, when a multiplication in an extension eld F p k is performed, it is necessary to make only one reduction modulo p for each component of the result instead of one for each F p multiplication involved [START_REF] Duquesne | RNS arithmetic in F p k and application to fast pairing computation[END_REF]. This means that only k reduction steps are required instead of k 2 for a classical multiplication in F p k . For example, if F p 2 is dened by F p [X]/(X 2 + 1) and A = a 0 + a 1 X and B = b 0 + b 1 X ∈ F p 2 , we have AB = a 0 b 0 -a 1 b 1 + (a 0 b 1 + a 1 b 0 )X. We can see that ab + cd patterns naturally occur which makes lazy reduction particularly relevant. Note that, as elements in F p 2 have 2 independent components, it is not possible to have less than 2 reductions in F p in this case. The case of 6 and 12 extension degrees is done in detail in [START_REF] Duquesne | RNS arithmetic in F p k and application to fast pairing computation[END_REF], showing a signicant implementation improvement. These degrees were chosen because of their particular interest in the pairing context at that time, and especially because of the dominance of BN curves [START_REF] Barreto | Pairing-friendly elliptic curves of prime order[END_REF]. However, other degrees may now be considered (in the pairing context or in other contexts), and the detailed impact of a lazy reduction in these cases should be studied in the future. Such patterns also naturally appear in lattice-based cryptography because most of the computations in this domain are inner products that are, by denition, well adapted to the lazy reduction trick. By the way, the reference implementations of Kyber [START_REF] Avanzi | CRYSTALS-Kyber (version 3.02)[END_REF] use lazy reduction. This situation is, in fact, even more, favourable in lattice-based cryptography because the reduction module involved is usually much less than a machine word (for example, Kyber prime is only 12-bits long). Consequently, many multiplications and additions may be performed and accumulated before reducing without overowing a single machine-word [START_REF] Güneysu | Software Speed Records for Lattice-Based Signatures[END_REF]. One could even go further in this case by storing 2 integers on the same machine word. It would for sure be interesting to study in detail how this could be done in practice and what would be the expected gain.

Conclusion

Finite eld arithmetic signicantly impacts cryptographic performances but is very diverse and dependent on the cryptosystem. The ecient algorithms are not always the same and must be adapted to the context. They indeed depend on the size of the base eld or ring, on the targeted device and its properties (possibilities of parallelism, size of machine words, software/hardware) but also on what is expected for the implementation in terms of performance and security (side-channel resistance ability for example).

Of course, this paper is far from exhaustive about algorithms for nite elds or ring arithmetic, and there are many missing improvements and variants or hidden things in what is presented. However, it gives a good overview of what can be done for ecient nite eld arithmetic for cryptographic applications, and it gives some ideas to improve existing methods, extend their range of interest or even discover new ones.
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 31 1 used as part of a RNS basis on 32-bit architecture.
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 82 Reduction modulo p = 2 ec, pseudo-Mersenne s.t. |c| < 2 e Input: 0 ≤ a < 2 e p Result: r = a mod p and 0 ≤ r < p Write a = a0 + a12 e b ← a0 + a1c Write

521 -1 introduced in[START_REF] Robinson | Mersenne and Fermat Numbers[END_REF] and used as a standard for elliptic curve cryptography at the 256-bits security level. 2 127 -1 used for hyperelliptic curves at the 128-bit security level[START_REF] Bernstein | Kummer Strikes Back: New DH Speed Records[END_REF][START_REF] Renes | µKummer: ecient hyperelliptic signatures and key exchange on microcontrollers[END_REF].
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