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An exponential recursive ternary trees (ERTTs) have the property that each node has 3 possible places (external nodes) to which a child can be attached. At each step of growing of ERTTs, each external node is independently changed into a leaf with probability p, or fails to do so with probability 1 -p. In this note, we investigate the external Wiener index, i.e. the sum of all distances between pairs of external nodes; and the number of saturated nodes (nodes with 3 children) in ERTTs. For these trees, we first calculate the expectation and second moment of the number of saturated nodes and Wiener index. Then, by martingale convergence theorem, we show the almost sure convergence and quadratic mean convergence of an appropriate scaled external Wiener index that is indicative the distance of two randomly chosen external nodes. Via an application of the contraction method, we also show the convergence in distribution for a scaled number of saturated nodes.

Introduction and setting

A random recursive tree of size n is starting with a root, i.e. node 1, and node 2 connected to the root node. Afterwards, at step i (i = 3, . . . , n) node i is connected uniformly at random to one of the prior nodes 1, . . . , i -1; see Figure 1. Random recursive trees have been used as a model for various phenomena such as the stochastic growth of networks [START_REF] Chan | Stochastically evolving networks[END_REF]; genealogy of ancient and medieval texts [START_REF] Najock | On the number of terminal vertices in certain random trees with an application to stemma construction in philology[END_REF]; and the spread of epidemics [START_REF] Moon | The distance between nodes in recursive trees[END_REF]. For only a few of variations of recursive trees, see [START_REF] Javanian | Note on the outdegree of a node in random recursive trees[END_REF], [START_REF] Javanian | Depth of nodes in random recursive k-ary trees[END_REF], [START_REF] Javanian | A strong law for the size of Yule m-oriented recursive trees[END_REF], [START_REF] Javanian | Limit distribution of the degrees in scaled attachment random recursive trees[END_REF], [START_REF] Javanian | On the size of paged recursive trees[END_REF] and [START_REF] Zhang | On several properties of plain-oriented recursive trees[END_REF]; for fundamental properties of recursive trees, see [START_REF] Smythe | A survey of recursive trees[END_REF]. Since only one node is added at each step in the growth of a recursive tree, then these slowgrowing models cannot be suitable for fast-growing phenomena such as the growing the Twitter and the spreading of infectious diseases. In [START_REF] Mahmoud | Profile of random exponential recursive trees[END_REF], it has been proposed a fast-growing recursive tree model, i.e. the exponential recursive tree (ERT), where every node independently attracts a new node with probability p, or fails to do at each step in the growth of the tree. The size (the number of nodes), the leaves (the nodes with no children), the depth of a node v (the distance, i.e. the number of edges, of node v from tree's root node) and the total path length (the sum of depth of all nodes) have been studied for ERTs by [START_REF] Aguech | Some properties of exponential trees[END_REF].

In [START_REF] Ghasemi | Note on the exponential recursive k-ary trees[END_REF], an exponential recursive k-ary tree has been defined as an ERT in which every node has at most k children. The nodes that already exist in the tree are called internal. In order to identify the locations of possible insertions of a new node, an exponential recursive k-ary tree is extended by having k -d external nodes joined as children of a node with d children. Internal and external nodes are shown by circles and squares, respectively (see, e.g., the trees in Figure 2).

An exponential recursive k-ary tree of index p and age n grows as follows: Initially (at age 0), there is an external node. For n ≥ 1, at the nth step (at age n), every external node independently is changed into a leaf with probability p ∈ (0, 1), or not to be changed with probability q := 1 -p. The parameter p is called the index of the ERT. The age of an ERT is the number of steps it takes to grow the tree. Figure 2 shows all exponential recursive 3-ary trees of ages 0, 1 and 2.

The Wiener index, a distance-based topological index, is defined as the sum of distances between all nodes in a graph. For recursive trees, Neininger [START_REF] Neininger | The Wiener index of random trees[END_REF] has obtained the expectations, the variances and a bivariate limit law for the Wiener index and the total path length. It also has been obtained a strong limit theorem for the Wiener index of recursive trees in [START_REF] Grübel | Random recursive trees: a boundary theory approach[END_REF].

By saturated nodes, we mean the nodes with k children in an exponential recursive k-ary tree.

The limiting distribution of depth and the expectation and variance of external path length (the sum of depth of all external nodes) in recursive k-ary trees have been obtained in [START_REF] Javanian | Depth of nodes in random recursive k-ary trees[END_REF] an [START_REF] Javanian | A strong law for the size of Yule m-oriented recursive trees[END_REF], respectively. The size, leaves, external path length and depth of a randomly chosen external node in exponential recursive k-ary tree have been investigated; see [START_REF] Ghasemi | Note on the exponential recursive k-ary trees[END_REF]. The asymptotic behaviour of profile (number of nodes of the same depth) of exponential binary trees has been studied by [START_REF] Feng | Profile of random exponential binary trees[END_REF].

In this paper, for the sake of simplicity, we consider the exponential recursive k-ary tree for which k = 3. The resulting tree is called exponential recursive ternary tree (ERTT). Our interest here is to study external Wiener index W n and number of saturated nodes Y n in an ERTT of age n. We give the first two moments of W n and Y n . Then we show convergence in distribution and in L 2 of Wn n(2p+1) 2n that is a martingale with finite second moment. By the contraction method, we also characterize limiting distribution of Yn (2p+1) n as the unique fixed point of a distributional equation.

Figure 2: All exponential recursive ternary trees of index p and ages 0, 1 and 2. The probability of getting each tree appears above the root of that tree.

We use the recursive structure of the ERTTs under consideration in order to setup some recurrences for Wiener index and the number of saturated nodes. After one step of the evolution of an ERTT, the initial external node either succeeds to recruit a leaf (event R) or not. We denote the indicator function of the event R by I. If the event R does not occur, then after n-1 steps, the initial external node of the tree fathers an ERTT Tn-1 . Alternatively, If R occurs, the extended ERTT has an internal node with 3 external nodes. By time n, these 3 external nodes produce 3 independent ERTTs T n-1 , T n-1 and T n-1 . Now, we hook T n-1 , T n-1 and T n-1 to construct an ERTT of index p and age n. Let ( Xn-1 , Zn-1 ), (X n-1 , Z n-1 ), (X n-1 , Z n-1 ) and (X n-1 , Z n-1 ), be the pairs of the number of external nodes and the external path length in Tn-1 , T n-1 , T n-1 and T n-1 , respectively. Then for an ERTT of index p at age n with the number of saturated nodes Y n and the Wiener index W n , we have

X n d = (1 -I) Xn-1 + I X n-1 + X n-1 + X n-1 , (1) 
Z n d = (1 -I) Zn-1 + I Z n-1 + Z n-1 + Z n-1 + X n-1 + X n-1 + X n-1 , (2) 
where the symbol d = denotes the equality in distribution; the pairs ( Xn-1 , Zn-1 ), (X n-1 , Z n-1 ), (X n-1 , Z n-1 ) and (X n-1 , Z n-1 ) are independent copies of (X n-1 , Z n-1 ) and independent of I. More-over, the almost sure and L 2 convergence of the scaled X n and Z n have been shown in [START_REF] Ghasemi | Note on the exponential recursive k-ary trees[END_REF],

X n (2p + 1) n a.s. -→ X * , Z n n(2p + 1) n L 2 & a.s. -----→ X * , E[X * ] = 1, E[X 2 * ] = 3 2p + 1 , (3) 
as n → ∞, for a limiting variable X * characterized by inductively-constructed moments.

To setup the recurrences for the number of saturated nodes and Wiener index, let T n be an ERTT of index p at age n, ( Ỹn-1 , Wn-1 ), (Y n-1 , W n-1 ), (Y n-1 , W n-1 ) and (Y n-1 , W n-1 ) be the pairs of the number of saturated nodes and the Wiener index in Tn-1 , T n-1 , T n-1 and T n-1 , respectively. Let J n-1 , J n-1 , J n-1 and J n-1 be the indicators of the events that, after n-1 extra steps, the initial external node succeeds to recruit a child in T n-1 , T n-1 , T n-1 and T n-1 , respectively. Thus for the tree T n with the number of saturated nodes Y n and the Wiener index W n , by direct enumeration we obtain the recurrences

Y n d = (1 -I) Ỹn-1 + I Y n-1 + Y n-1 + Y n-1 + J n-1 J n-1 J n-1 , (4) 
W n d = (1 -I) Wn-1 + I W n-1 + W n-1 + W n-1 + 2X n-1 X n-1 + 2X n-1 X n-1 + 2X n-1 X n-1 + Z n-1 X n-1 + Z n-1 X n-1 + Z n-1 X n-1 + Z n-1 X n-1 + Z n-1 X n-1 + Z n-1 X n-1 , (5) 
where the triples

(Y n-1 , J n-1 , W n-1 ), (Y n-1 , J n-1 , W n-1 ) and (Y n-1 , J n-1 , W n-1 ) are independent copies of (Y n-1 , J n-1 , W n-1
) and independent of I.

In Section 2, we calculate the first two moments of Y n and W n . If S n be the size of be an ERTT of index p at age n, in Section 3 and Section 4, we use the martingale convergence theorem and contraction method to show the following two types of convergence for W n and Y n , respectively,

E[Y n ] E[S n ] ≤ 1 3 , Y n (2p + 1) n d -→ Ŷ , W n n(2p + 1) 2n L 2 & a.s. -----→ 3p 2p + 1 X 2 * ,
where the random variable Ŷ is the unique distributional fixed-point of a distributional recurrence.

The first two moments

In this section, we calculate the first two moments of Y n and W n by the equations ( 1), ( 2), ( 4) and ( 5). We need some results that the authors of [START_REF] Ghasemi | Note on the exponential recursive k-ary trees[END_REF] have found

E[X n ] = (2p + 1) n , , E[X 2 n ] = 3(2p + 1) 2n-1 -2(1 -p)(2p + 1) n-1 , E[Z n ] = 3pn(2p + 1) n-1 .
Theorem 1. Let Y n be the number of saturated nodes in an ERTT of age n and index p. We have

E[Y n ] = (p 3 -p 2 + p + 2)(2p + 1) n 2(4 -p)(p 2 -3p + 5) - 1 2 + (1 -p) n - 3(1 -p) 2n 4 -p + (1 -p) 3n p 2 -3p + 5 , n ≥ 1, E[Y 2 n ] = 3(p 3 -p 2 + p + 2) 2 (2p + 1) 2n-1 4(4 -p) 2 (p 2 -3p + 5) 2 + O (2p + 1) n , as n → ∞.
Proof. Taking the expectation of the equation ( 4), one gets

E[Y n ] = 2p + 1 E[Y n-1 ] + p 1 -(1 -p) n-1 3 , with initial condition E[Y 0 ] = 0.
Iterating this recurrence we find

E[Y n ] = n i=1 2p + 1 n-i p 1 -(1 -p) i-1 3 .
This sum yields the explicit solution as stated in the theorem. Raise both sides of the distributional equation ( 4) to the second power and take expectations:

E[Y 2 n ] = E (1 -I) Ỹ 2 n-1 + I Y n-1 2 + Y n-1 2 + Y n-1 2 + J n-1 J n-1 J n-1 + 2Y n-1 Y n-1 + 2Y n-1 Y n-1 + 2Y n-1 Y n-1 + 2 Y n-1 J n-1 J n-1 J n-1 + 2 Y n-1 J n-1 J n-1 J n-1 + 2 Y n-1 J n-1 J n-1 J n-1 .
where

(Y n-1 , J n-1 ), (Y n-1 , J n-1
) and (Y n-1 , J n-1 ) are independent copies of (Y n-1 , J n-1 ) and independent of I. Then

E[Y 2 n ] = (2p + 1)E Y 2 n-1 + 6p E[Y n-1 ] 2 + 6p 1 -(1 -p) n-1 2 E[Y n-1 J n-1 ] + p 1 -(1 -p) n-1 3 . Since Y n J n = Y n , therefore we have E[Y 2 n ] = n i=1 (2p + 1) n-i p 6 E[Y i-1 ] 2 + 6 1 -(1 -p) i-1 2 E[Y i-1 ] + 1 -(1 -p) i-1 3 = 3(p 3 -p 2 + p + 2) 2 (2p + 1) 2n-1 4(4 -p) 2 (p 2 -3p + 5) 2 + 6(2 + p)((2p + 1) n -(1 -p) 5n ) (p -4)(p 2 -3p + 5)(p 4 -5p 3 + 10p 2 -10p + 7) + 3(p 3 -p 2 + p + 2)(p 5 -4p 4 + 5p 3 + 8p 2 -21p + 14)(2p + 1) n (p -2)(2p + 1)(p -4) 2 (p 2 -3p + 5) 2 (p 2 -3p + 3) -(1 -p) n + 6(1 -p) 2n 4 -p + (3p 7 -18p 6 + 23p 5 -12p 4 + 49p 3 -284p 2 + 234p + 194)(2p + 1) n 2(2p + 1)(p -4) 2 (p 2 -3p + 5) 2 + 1 4 - 5(1 -p) 3n p 2 -3p + 5 + 18(1 -p)((2p + 1) n -(1 -p) 4n ) (p 3 -4p 2 + 6p -6)(p -4) 2 - 6((2p + 1) n -(1 -p) 6n ) (p 5 -6p 4 + 15p 3 -20p 2 + 15p -8)(p 2 -3p + 5) 2 + 3(2 + p)(p 3 -p 2 + p + 2)(1 -p) 2n (2p + 1) n-1 (2 -p)(p -4) 2 (p 2 -3p + 3)(p 2 -3p + 5) + 6(p 3 -p 2 + p + 2)(1 -p) 3n (2p + 1) n-1 (p -4)(p 2 -3p + 3)(p 2 -3p + 5) 2 ,
where the calculation has been done by MAPLE software.

Let S n be the size of be an ERTT of index p at age n, then by the result

E[S n ] ∼ (2p+1) n 2 in [6]
and Theorem 1, we have

E[Y n ] E[S n ] ≤ 1 3 , ∵ p 3 -p 2 + p + 2 (4 -p)(p 2 -3p + 5) ≤ 1 3 .
Theorem 2. Let W n be the wiener index in an ERTT of age n and index p. We have

E[W n ] = 27p 2 n 2 (2p + 1) 2n-2 3np + 2p + 1 + 9pn(2p + 1) 2n-1 2(3np + 2p + 1) - 3(2p + 1) 2n 2(3np + 2p + 1) + 3 2 (2p + 1) n-1 , n ≥ 1, E[W 2 n ] = 324p 2 (12p 2 + 31p + 35) 4(p + 1)(4p 2 + 6p + 3) n 2 (2p + 1) 4n-5 + O n(2p + 1) 4n , as n → ∞.
Proof. Take expectations both sides of the equation [START_REF] Grübel | Random recursive trees: a boundary theory approach[END_REF]. By the identical distribution of W n , W n , W n and W n ; and the independence of I, we get

E[W n ] = (2p + 1)E[W n-1 ] + 6pE[Z n-1 ]E[X n-1 ] + 6p E[X n-1 ] 2 = (2p + 1)E[W n-1 ] + 18p 2 n(p + 1) 2n-3 + 6p(1 -p)(p + 1) 2n-3 ,
with E[W 0 ] = 0. By iterating, we have

E[W n ] = n i=1 (p + 1) n-i 18p 2 i(2p + 1) 2i-3 + 6p(1 -p)(2p + 1) 2i-3 ,
that is obtained as claimed in the theorem.

For obtaining E[W 2 n ], raise both sides of (5) to the second power and take expectations. The second moment recurrence takes the form,

E[W 2 n ] = (2p + 1)E[W 2 n-1 ] + 6pE[Z 2 n-1 ]E[X 2 n-1 ] + 12p E[X 2 n-1 ] 2 + 24pE[Z n-1 X n-1 ] E[X n-1 ] 2 + 12pE[X n-1 ]E[Z n-1 ]E[W n-1 ] + 12pE[W n-1 X n-1 ]E[Z n-1 ] + 24pE[W n-1 X n-1 ]E[X n-1 ] + 12pE[W n-1 Z n-1 ]E[X n-1 ] + 24pE[Z n-1 X n-1 ]E[X 2 n-1 ] + 24pE[X n-1 ]E[X 2 n-1 ]E[Z n-1 ] + 6p E[Z n-1 X n-1 ] 2 + 12pE[W n-1 ] E[X n-1 ] 2 + 6p E[W n-1 ] 2 + 24pE[X 2 n-1 ] E[X n-1 ] 2 + 12pE[X n-1 ]E[Z n-1 ]E[Z n-1 X n-1 ] + 6pE[Z 2 n-1 ] E[X n-1 ] 2 + 6pE[X 2 n-1 ] E[Z n-1 ] 2 . (6) 
In the recurrence (6), we need the expectations 1), ( 2) and ( 5), we have the following recurrences, for n ≥ 1,

E[Z 2 n ], E[W n Z n ], E[W n X n ] and E[Z n X n ]. From (
E[Z n X n ] = (2p + 1)E[Z n-1 X n-1 ] + 6pE[X n-1 ]E[Z n-1 ] + 3pE[X 2 n-1 ] + 6p E[X n-1 ] 2 E[Z 2 n ] = (2p + 1)E[Z 2 n-1 ] + 3pE[X 2 n-1 ] + 6p E[Z n-1 ] 2 + 6p E[X n-1 ] 2 + 6pE[Z n-1 X n-1 ] + 12pE[Z n-1 ]E[X n-1 ] E[W n X n ] = (2p + 1)E[W n-1 X n-1 ] + 6pE[X n-1 ]E[Z n-1 X n-1 ] + 6pE[Z n-1 ] E[X n-1 ] 2 + 6pE[W n-1 ]E[X n-1 ] + 6pE[Z n-1 ]E[X 2 n-1 ] + 12pE[X n-1 ]E[X 2 n-1 ] + 6p E[X n-1 ] 3 E[W n Z n ] = (2p + 1)E[W n-1 Z n-1 ] + 18pE[X n-1 ]E[Z n-1 X n-1 ] + 3pE[W n-1 X n-1 ] + 6p E[X n-1 ] 3 + 6pE[Z 2 n-1 ]E[X n-1 ] + 6pE[Z n-1 ]E[W n-1 ] + 6pE[Z n-1 ]E[Z n-1 X n-1 ] + 6pE[X n-1 ] E[Z n-1 ] 2 + 6pE[W n-1 ]E[X n-1 ] + 6pE[Z n-1 ]E[X 2 n-1 ] + 12pE[X n-1 ]E[X 2 n-1 ] + 12pE[Z n-1 ] E[X n-1 ] 2 , with initial conditions E[Z 2 0 ] = 0, E[W 0 Z 0 ] = 0, E[W 0 X 0 ] = 0 and E[Z 0 X 0 ] = 0.
The above recurrence equations are of the form y n = (p + 1)y n-1 + h n , with solution

y n = n i=1 (p + 1) n-i h i . (7) 
Therefore, after some calculations, their solutions are obtained as follows

E[Z n X n ] = 9pn(2p + 1) 2n-2 + 3(1 -p)(2p + 1) 2n-2 -6p(1 -p)n(2p + 1) n-2 -3(1 -p)(2p + 1) n-2 , E[Z 2 n ] = 27p 2 n 2 (2p + 1) 2n-3 + 8p(1 -p)n(2p + 1) 2n-3 + 3 2 (1 -p)(5 -2p)(2p + 1) 2n-3 -18(1 -p)p 2 n 2 (2p + 1) n-3 -6p(1 -p)(4 -p)n(2p + 1) n-3 - 3 2 (1 -p)(5 -2p)(2p + 1) n-3 , E[W n X n ] = 9p(p + 5) p + 1 n(2p + 1) 3n-3 - 3(2p 3 + 22p 2 + 13p -1) 2(p + 1) 2 (2p + 1) 3n-3 -36p(1 -p)n(2p + 1) 2n-3 - 3 2 (8p 2 -16p -1)(2p + 1) 2n-3 - 3(1 -p)(4p 2 + 3p + 2) 2(p + 1) 2 (2p + 1) n-2 , E[W n Z n ] = 27p 2 (p + 5) p + 1 n 2 (2p + 1) 3n-4 - 9p(4p 3 + 38p 2 + 11p -17) 2(p + 2) 2 n(2p + 1) 3n-4 - 3(1 -p)(4p 3 + 62p 2 + 17p -20) 4(p + 2) 2 (2p + 1) 3n-4 -108p 2 (1 -p)n 2 (2p + 1) 2n-4 - 9 2 p(20p 2 -52p + 23)n(2p + 1) 2n-4 -3(1 -p)(10p 2 -20p + 1)(2p + 1) 2n-4 - 9p(1 -p)(4p 2 + 3p + 2) 2(p + 2) 2 n(2p + 1) n-3 + 3(1 -p)(20p 3 -8p 2 -23p -16) 4(p + 2) 2 (2p + 1) n-3 .
Again, according to [START_REF] Javanian | Note on the outdegree of a node in random recursive trees[END_REF], the solution to the recurrence ( 6) is

E[W 2 n ] = 324p 2 (12p 2 + 31p + 35) 4(p + 1)(4p 2 + 6p + 3) n 2 (2p + 1) 4n-5 - 27p(176p 6 + 880p 5 + 2056p 4 + 2222p 3 + 927p 2 -66p -111) n(2p + 1) 4n-5 (p + 1) 2 (4p 2 + 6p + 3) 2 + O (2p + 1) 4n ,
as n → ∞. Hence we obtain the assertion.

Almost sure convergence for the external Wiener index

In T n , an ERTT of age n and index p, assume we numbered the external nodes of the tree arbitrarily with the numbers 1, 2, . . . , X n . Let D i,j be the distance between external nodes i and j, for i, j ∈ {1, 2, . . . , X n }. The external Wiener index of T n is

W n = Xn i=1 Xn j=1 i<j D i,j .
Theorem 3. Let W n be the external Wiener index in an ERTT of age n and index p. As n → ∞, we have almost sure convergence and in L 2 ,

W n n(2p + 1) 2n L 2 & a.s. -----→ 3p 2p + 1 X 2 * .
Proof. Let I k be a sequence of independent Bernoulli(p) random variables, defined on the same probability space as the trees. Consider I k ∞ k=1 to be independent of the structure of the tree at any age, too. If each of two external nodes i and j or both succeed in attracting a new node, then by direct enumeration, the contribution of the external nodes i and j of T n-1 into W n , is

9I i I j (D i,j + 2)D i,j I i<j + 3I i 1 -I j (D i,j + 1)I i =j + 6I i -I i I j D i,j I i<j -I i 1 -I j D i,j
for i, j ∈ {1, 2, . . . , X n-1 }, and we write

W n = W n-1 - X n-1 i=1 X n-1 j=1 i =j I i 1 -I j D i,j - X n-1 i=1 X n-1 j=1 i<j I i I j D i,j + 6 X n-1 i=1 I i + 3 X n-1 i=1 X n-1 j=1 i =j I i 1 -I j (D i,j + 1) + 9 X n-1 i=1 X n-1 j=1 i<j I i I j (D i,j + 2).
Let F n be the sigma field generated by the first n steps of the evolution of T n . Then

E[W n |F n-1 ] = W n-1 + 4p(1 -p)W n-1 + 8p 2 W n-1 + 6pX n-1 + 3p(2p + 1)X n-1 (X n-1 -1) = (2p + 1) 2 W n-1 + 3p(2p + 1)X 2 n-1 -3p(2p -1)X n-1 . ( 8 
)
Let M n := α n W n + β n X 2 n + γ n X n , for specified factors α n , β n and γ n that transformed M n a martingale. So, by [START_REF] Javanian | Depth of nodes in random recursive k-ary trees[END_REF] and a martingalization procedure, we have

E[M n |F n-1 ] = α n (2p + 1) 2 W n-1 + 3α n p(2p + 1)X 2 n-1 -3α n p(2p -1)X n-1 + β n E X 2 n F n-1 + γ n E X n F n-1 = α n (2p + 1) 2 W n-1 + 3α n p(2p + 1)X 2 n-1 -3α n p(2p -1)X n-1 + β n (2p + 1) 2 X 2 n-1 + 4β n p(1 -p)X n-1 + γ n (2p + 1)X n-1 = α n (2p + 1) 2 W n-1 + 3α n p(2p + 1) + β n (2p + 1) 2 X 2 n-1 + γ n (2p + 1) + 4β n p(1 -p) -3α n p(2p -1) X n-1 = M n-1 = α n-1 W n-1 + β n-1 X 2 n-1 + γ n-1 X n-1 .
This is possible, if we choose

α n-1 = α n (2p + 1) 2 , β n-1 = 3α n p(2p + 1) + β n (2p + 1) 2 γ n-1 = γ n (2p + 1) + 4β n p(1 -p) -3α n p(2p -1).
From these solvable recurrences, we obtain

α n = α 0 (2p + 1) 2n , β n = β 0 (2p + 1) 2n - 3α 0 pn (2p + 1) 2n+1 γ n = 3α 0 -4(1 -p)β 0 + 2(2p + 1)γ 0 2(2p + 1) n+1 - 6p(1 -p)α 0 n (2p + 1) 2n+2 - 3α 0 -4(1 -p)β 0 2(2p + 1) 2n+1 .
For simplicity, we take α 0 = 1 and β 0 = 0 = γ 0 . Thus,

M n = 1 (2p + 1) 2n W n - 3pn (2p + 1) 2n+1 X 2 n + 3 2(2p + 1) n+1 - 12p(1 -p)n + 3(2p + 1) 2(2p + 1) 2n+2 X n ,
is a martingale with bounded moments

E[M n ] = E[W n ] (2p + 1) 2n - 3pnE[X 2 n ] (2p + 1) 2n+1 + 3 2(2p + 1) n+1 - 12p(1 -p)n + 3(2p + 1) 2(2p + 1) 2n+2 E[X n ] = 27p 2 n 2 (2p + 1) -2 3np + 2p + 1 + 9pn(2p + 1) -1 2(3np + 2p + 1) - 3 2(3np + 2p + 1) + 3 2(2p + 1) n+1 -3pn 3 (2p + 1) 2 - 2(1 -p) (2p + 1) n+2 + 3 2(2p + 1) - 12p(1 -p)n + 3(2p + 1) 2(2p + 1) n+2 = 0, E[M 2 n ] = E[W 2 n ] (2p + 1) 4n + 9p 2 n 2 E[X 4 n ] (2p + 1) 4n+2 + 3 2(2p + 1) n+1 - 12p(1 -p)n + 3(2p + 1) 2(2p + 1) 2n+2 2 E[X 2 n ] + 3 (2p + 1) 3n+1 - 12p(1 -p)n + 3(2p + 1) (2p + 1) 4n+2 E[W n X n ] - 3pnE[X 3 n ] 2p + 1 - 6pnE[W n X 2 n ] (2p + 1) 4n+1 = 1 (2p + 1) 4n E[W 2 n ] + 9p 2 n 2 (2p + 1) 4n+2 E[X 4 n ] - 6pn (2p + 1) 4n+1 E[W n X 2 n ] + O(1) = 1 (2p + 1) 4n 324p 2 (12p 2 + 31p + 35) 4(p + 1)(4p 2 + 6p + 3) n 2 (2p + 1) 4n-5 - 27p(176p 6 + 880p 5 + 2056p 4 + 2222p 3 + 927p 2 -66p -111) n(2p + 1) 4n-5 (p + 1) 2 (4p 2 + 6p + 3) 2 + 9p 2 n 2 (2p + 1) 4n+2 9(12p 2 + 31p + 35)(2p + 1) 4n-3 (p + 1)(4p 2 + 6p + 3) - 6pn (2p + 1) 4n+1 27p(12p 2 + 31p + 35)n(2p + 1) 4n-4 (4p 2 + 6p + 3)(p + 1) - 9(176p 6 + 880p 5 + 2056p 4 + 2222p 3 + 927p 2 -66p -111) 2(p + 1) 2 (4p 2 + 6p + 3) 2 (2p + 1) 4n-4 + O(1) = 0 + O(1) < ∞, as n → ∞,
where So, by the martingale convergence theorem (Theorem 6.6.9 in [START_REF] Ash | Probability and Measure Theory[END_REF]), M n converges to some M * almost surely and in L 2 . Consequently,

E[X 3 n ] = 3(p + 5)(2p + 1) 3n-2 p + 1 -18(1 -p)(2p + 1) 2n-2 + 2(1 -p)(2 -p)(2p + 1) n-1 p + 1 , E[X 4 n ] = 9(12p
M n n = W n n(2p + 1) 2n - 3p 2p + 1 • X n (2p + 1) n 2 + 3 2(2p + 1) - 12p(1 -p)n + 3(2p + 1) 2(2p + 1) n+2 • X n n(2p + 1) n L 2 & a.s.
-----→ 0.

Hence, by (3), the result follows. Proof. In T n , a random ERTT of age n and index p, we have

E[D * n |T n ] = 2 Xn i=1 Xn j=1 i<j D i,j X n (X n -1) = 2W n X n (X n -1)
.

Therefore, by (3) and Theorem 3, we have

E[D * n |T n ] n = 2W n / (n(2p + 1) 2n ) X n (X n -1)/ ((2p + 1) 2n ) a.s. -→ 6p 2p + 1 . Since W n ≤ X n (X n -1)n, then E[D * n |T n ]/n ≤ 2. Consequently, by dominated convergence theorem, lim n→∞ E[D * n ] n = lim n→∞ E E[D * n |T n ] n = E lim n→∞ E[D * n |T n ] n .
This yields the result.

L 2 convergence for the number of saturated nodes

In this section we apply the contraction method in [START_REF] Roesler | The contraction method for recursive algorithms[END_REF] or the multivariate contraction method in [START_REF] Neininger | On a multivariate contraction method for random recursive structures with applications to quicksort[END_REF] to state the limiting distribution of Ŷn := Yn (2p+1) n . We first need to set up some notation as follows: For a random variable X, we write X ∼ λ if the distribution of X is λ, i.e. the law L(X) of X is λ. The symbol X 2 := (E[|X| 2 ]) 1/2 denotes the usual L 2 -norm of X. The Wasserstein-metric 2 is defined on the space of probability distributions with finite second moments by

2 (X, Y ) := 2 (L(X), L(Y )) := 2 (λ, ν) := inf{ X -Y 2 : X ∼ λ, Y ∼ ν}.
By M 2 the space of all probability distributions λ with mean p 3 -p 2 +p+2 2(4-p)(p 2 -3p+5) (as in Theorem 1) and finite second moment is denoted. The metric space (M 2 , 2 ) is complete and convergence in 2 is equivalent to convergence in distribution plus convergence of the second moments.

By equation ( 4) we have

Y n (2p + 1) n d = I 2p + 1 Y n-1 (2p + 1) n-1 + Y n-1 (2p + 1) n-1 + Y n-1 (2p + 1) n-1 + 1 -I 2p + 1 • Ỹn-1 (2p + 1) n-1 + I • J n-1 J n-1 J n-1 (2p + 1) n . (9) 
Theorem 5. Let Y n be the saturated nodes of an ERTT of age n and index p. The normalized saturated nodes Ŷn := Yn (2p+1) n satisfies the distributional recursion

Ŷn d = I 2p + 1 • Ŷ n-1 + Ŷ n-1 + Ŷ n-1 + 1 -I 2p + 1 • Ȳn-1 + I • J n-1 J n-1 J n-1 (2p + 1) n , (10) 
where

J n-1 d = J n-1 d = J n-1 d = Bernoulli(1 -(1 -p) n-1
), Ȳn , ( Ŷ n , J n-1 ), ( Ŷ n , J n-1 ), ( Ŷ n , J n-1 ) and I are independent, Ȳn 

Ŷ d = I 2p + 1 Ŷ + Ŷ + Ŷ + 1 -I 2p + 1 Ŷ , (11) 
with Ŷ , Ŷ and Ŷ are independent copies of Ŷ and independent of I.

Proof. The equation ( 10) is an immediate consequence of the equation ( 9), where Ȳn :

= Ỹn (2p+1) n , Ŷ n := Y n (2p+1) n , Ŷ n := Y n (2p+1) n and Ŷ n := Y n (2p+1) n . Using Chebyshev's inequality and E[J n-1 ] = E[J n-1 ] = 1 -(1 -p) n-1 , we have the convergence in probability J n-1 J n-1 J n-1 (2p+1) n p -→ 0. That is, Ŷn d = I 2p + 1 • Ŷ n-1 + Ŷ n-1 + Ŷ n-1 + 1 -I 2p + 1 • Ŷn-1 + o p (1), (12) 
where the notation o p (1) will denote an asymptotically negligible random variable that converges to 0 in probability. For purposes of convergence we can, and hence will, ignore the o p (1) term. Consider the well-defined transformation T :

M 2 → M 2 , T (λ) := L I 2p + 1 Ŷ λ + Ŷ λ + Ŷ λ + 1 -I 2p + 1 Ŷλ , (13) 
where Ŷλ 

E[I 2 ] (2p + 1) 2 E Ŷλ -Ŷν 2 + E [(1 -I) 2 ] (2p + 1) 2 E Ŷλ -Ŷν 2 = 1 2p + 1 E Ŷλ -Ŷν 2 .
Therefore, we have 2p+1 < 1, we deduce that T is a contraction with respect to the 2 -metric. Thus, Banach's fixed point theorem provides existence and uniqueness of solutions of the fixed point equation T (λ) = λ. By [START_REF] Javanian | On the size of paged recursive trees[END_REF], if Ŷn converges in distribution to some random variable Ŷ , then Ŷ satisfies [START_REF] Javanian | On the external path length of random recursive k-ary trees[END_REF]. Consequently, the distribution of Ŷ will be λ 0 , the unique fixed point of T , i.e. L( Ŷ ) = T (λ 0 ) = λ 0 . Therefore, we have to prove lim n→∞ 2 ( Ŷn , Ŷ ) = 0 to conclude Ŷn This is true only if lim n→∞ 2 ( Ŷn , Ŷ ) = 0.
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 1 Figure 1: The first four steps of evolution of a recursive tree.
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