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External wiener index and saturated nodes
of exponential recursive ternary trees

Ramin Imany Nabiyyi∗ Mehri Javanian†

September 29, 2023

Abstract

An exponential recursive ternary trees (ERTTs) have the property that each node has 3
possible places (external nodes) to which a child can be attached. At each step of growing of
ERTTs, each external node is independently changed into a leaf with probability p, or fails
to do so with probability 1 − p. In this note, we investigate the external Wiener index, i.e.
the sum of all distances between pairs of external nodes; and the number of saturated nodes
(nodes with 3 children) in ERTTs. For these trees, we first calculate the expectation and
second moment of the number of saturated nodes and Wiener index. Then, by martingale
convergence theorem, we show the almost sure convergence and quadratic mean convergence
of an appropriate scaled external Wiener index that is indicative the distance of two randomly
chosen external nodes. Via an application of the contraction method, we also show the
convergence in distribution for a scaled number of saturated nodes.

AMS 2000 Subject Classification : 05C05, 05C09, 60F25.
Key words: Exponential recursive ternary trees, Wiener index, saturated nodes, L2-norm,
Wasserstein metric, contraction method, martingale convergence theorem.

1 Introduction and setting

A random recursive tree of size n is starting with a root, i.e. node 1, and node 2 connected to
the root node. Afterwards, at step i (i = 3, . . . , n) node i is connected uniformly at random to
one of the prior nodes 1, . . . , i − 1; see Figure 1. Random recursive trees have been used as a
model for various phenomena such as the stochastic growth of networks [3]; genealogy of ancient
and medieval texts [15]; and the spread of epidemics [14]. For only a few of variations of recursive
trees, see [7], [8], [9], [10], [12] and [20]; for fundamental properties of recursive trees, see [19].
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Figure 1: The first four steps of evolution of a recursive tree.

Since only one node is added at each step in the growth of a recursive tree, then these slow-
growing models cannot be suitable for fast-growing phenomena such as the growing the Twitter
and the spreading of infectious diseases. In [13], it has been proposed a fast-growing recursive tree
model, i.e. the exponential recursive tree (ERT), where every node independently attracts a new
node with probability p, or fails to do at each step in the growth of the tree. The size (the number
of nodes), the leaves (the nodes with no children), the depth of a node v (the distance, i.e. the
number of edges, of node v from tree’s root node) and the total path length (the sum of depth of
all nodes) have been studied for ERTs by [1].

In [6], an exponential recursive k-ary tree has been defined as an ERT in which every node has
at most k children. The nodes that already exist in the tree are called internal. In order to identify
the locations of possible insertions of a new node, an exponential recursive k-ary tree is extended
by having k− d external nodes joined as children of a node with d children. Internal and external
nodes are shown by circles and squares, respectively (see, e.g., the trees in Figure 2).

An exponential recursive k-ary tree of index p and age n grows as follows: Initially (at age 0),
there is an external node. For n ≥ 1, at the nth step (at age n), every external node independently
is changed into a leaf with probability p ∈ (0, 1), or not to be changed with probability q := 1− p.
The parameter p is called the index of the ERT. The age of an ERT is the number of steps it takes
to grow the tree. Figure 2 shows all exponential recursive 3-ary trees of ages 0, 1 and 2.

The Wiener index, a distance-based topological index, is defined as the sum of distances between
all nodes in a graph. For recursive trees, Neininger [17] has obtained the expectations, the variances
and a bivariate limit law for the Wiener index and the total path length. It also has been obtained
a strong limit theorem for the Wiener index of recursive trees in [5].

By saturated nodes, we mean the nodes with k children in an exponential recursive k-ary tree.
The limiting distribution of depth and the expectation and variance of external path length

(the sum of depth of all external nodes) in recursive k-ary trees have been obtained in [8] an [9],
respectively. The size, leaves, external path length and depth of a randomly chosen external node
in exponential recursive k-ary tree have been investigated; see [6]. The asymptotic behaviour of
profile (number of nodes of the same depth) of exponential binary trees has been studied by [4].

In this paper, for the sake of simplicity, we consider the exponential recursive k-ary tree for
which k = 3. The resulting tree is called exponential recursive ternary tree (ERTT). Our interest
here is to study external Wiener index Wn and number of saturated nodes Yn in an ERTT of age
n. We give the first two moments of Wn and Yn. Then we show convergence in distribution and in
L2 of Wn

n(2p+1)2n
that is a martingale with finite second moment. By the contraction method, we also

characterize limiting distribution of Yn
(2p+1)n

as the unique fixed point of a distributional equation.
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Figure 2: All exponential recursive ternary trees of index p and ages 0, 1 and 2. The probability
of getting each tree appears above the root of that tree.

We use the recursive structure of the ERTTs under consideration in order to setup some
recurrences for Wiener index and the number of saturated nodes. After one step of the evolution
of an ERTT, the initial external node either succeeds to recruit a leaf (event R) or not. We denote
the indicator function of the event R by I. If the event R does not occur, then after n−1 steps, the
initial external node of the tree fathers an ERTT T̃n−1. Alternatively, If R occurs, the extended
ERTT has an internal node with 3 external nodes. By time n, these 3 external nodes produce
3 independent ERTTs T ′n−1, T

′′
n−1 and T ′′′n−1. Now, we hook T ′n−1, T

′′
n−1 and T ′′′n−1 to construct an

ERTT of index p and age n. Let (X̃n−1, Z̃n−1), (X ′n−1, Z
′
n−1), (X ′′n−1, Z

′′
n−1) and (X ′′′n−1, Z

′′′
n−1), be

the pairs of the number of external nodes and the external path length in T̃n−1, T
′
n−1, T

′′
n−1 and

T ′′′n−1, respectively. Then for an ERTT of index p at age n with the number of saturated nodes Yn
and the Wiener index Wn, we have

Xn
d
= (1− I)X̃n−1 + I

(
X ′n−1 +X ′′n−1 +X ′′′n−1

)
, (1)

Zn
d
= (1− I)Z̃n−1 + I

(
Z ′n−1 + Z ′′n−1 + Z ′′′n−1 +X ′n−1 +X ′′n−1 +X ′′′n−1

)
, (2)

where the symbol
d
= denotes the equality in distribution; the pairs (X̃n−1, Z̃n−1), (X ′n−1, Z

′
n−1),

(X ′′n−1, Z
′′
n−1) and (X ′′′n−1, Z

′′′
n−1) are independent copies of (Xn−1, Zn−1) and independent of I. More-

3



over, the almost sure and L2 convergence of the scaled Xn and Zn have been shown in [6],

Xn

(2p+ 1)n
a.s.−→ X∗,

Zn
n(2p+ 1)n

L2 & a.s.−−−−−→ X∗,

(
E[X∗] = 1, E[X2

∗ ] =
3

2p+ 1

)
, (3)

as n→∞, for a limiting variable X∗ characterized by inductively-constructed moments.
To setup the recurrences for the number of saturated nodes and Wiener index, let Tn be an

ERTT of index p at age n, (Ỹn−1, W̃n−1), (Y ′n−1,W
′
n−1), (Y ′′n−1,W

′′
n−1) and (Y ′′′n−1,W

′′′
n−1) be the pairs

of the number of saturated nodes and the Wiener index in T̃n−1, T
′
n−1, T

′′
n−1 and T ′′′n−1, respectively.

Let Jn−1, J′n−1, J′′n−1 and J′′′n−1 be the indicators of the events that, after n−1 extra steps, the initial
external node succeeds to recruit a child in Tn−1, T

′
n−1, T

′′
n−1 and T ′′′n−1, respectively. Thus for the

tree Tn with the number of saturated nodes Yn and the Wiener index Wn, by direct enumeration
we obtain the recurrences

Yn
d
= (1− I)Ỹn−1 + I

(
Y ′n−1 + Y ′′n−1 + Y ′′′n−1 + J′n−1J′′n−1J′′′n−1

)
, (4)

Wn
d
= (1− I)W̃n−1 + I

(
W ′
n−1 +W ′′

n−1 +W ′′′
n−1 + 2X ′n−1X

′′
n−1 + 2X ′n−1X

′′′
n−1 + 2X ′′n−1X

′′′
n−1

+ Z ′n−1X
′′
n−1 + Z ′′n−1X

′
n−1 + Z ′n−1X

′′′
n−1 + Z ′′′n−1X

′
n−1 + Z ′′n−1X

′′′
n−1 + Z ′′′n−1X

′′
n−1

)
, (5)

where the triples (Y ′n−1, J′n−1,W ′
n−1), (Y ′′n−1, J′′n−1,W ′′

n−1) and (Y ′′′n−1, J′′′n−1,W ′′′
n−1) are independent

copies of (Yn−1, Jn−1,Wn−1) and independent of I.
In Section 2, we calculate the first two moments of Yn and Wn. If Sn be the size of be an ERTT

of index p at age n, in Section 3 and Section 4, we use the martingale convergence theorem and
contraction method to show the following two types of convergence for Wn and Yn, respectively,

E[Yn]

E[Sn]
≤ 1

3
,

Yn
(2p+ 1)n

d−→ Ŷ ,
Wn

n(2p+ 1)2n
L2 & a.s.−−−−−→ 3p

2p+ 1
X2
∗ ,

where the random variable Ŷ is the unique distributional fixed-point of a distributional recurrence.

2 The first two moments

In this section, we calculate the first two moments of Yn and Wn by the equations (1), (2), (4) and
(5). We need some results that the authors of [6] have found

E[Xn] = (2p+ 1)n, ,E[X2
n] = 3(2p+ 1)2n−1 − 2(1− p)(2p+ 1)n−1, E[Zn] = 3pn(2p+ 1)n−1.

Theorem 1. Let Yn be the number of saturated nodes in an ERTT of age n and index p. We have

E[Yn] =
(p3 − p2 + p+ 2)(2p+ 1)n

2(4− p)(p2 − 3p+ 5)
− 1

2
+ (1− p)n − 3(1− p)2n

4− p
+

(1− p)3n

p2 − 3p+ 5
, n ≥ 1,

E[Y 2
n ] =

3(p3 − p2 + p+ 2)2(2p+ 1)2n−1

4(4− p)2(p2 − 3p+ 5)2
+O

(
(2p+ 1)n

)
, as n→∞.
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Proof. Taking the expectation of the equation (4), one gets

E[Yn] =
(
2p+ 1

)
E[Yn−1] + p

(
1− (1− p)n−1

)3
,

with initial condition E[Y0] = 0. Iterating this recurrence we find

E[Yn] =
n∑
i=1

(
2p+ 1

)n−i
p
(
1− (1− p)i−1

)3
.

This sum yields the explicit solution as stated in the theorem.
Raise both sides of the distributional equation (4) to the second power and take expectations:

E[Y 2
n ] = E

[
(1− I)Ỹ 2

n−1 + I
((
Y ′n−1

)2
+
(
Y ′′n−1

)2
+
(
Y ′′′n−1

)2
+ J′n−1J′′n−1J′′′n−1

+ 2Y ′n−1Y
′′
n−1 + 2Y ′n−1Y

′′′
n−1 + 2Y ′′n−1Y

′′′
n−1 + 2

(
Y ′n−1J′n−1

)
J′′n−1J′′′n−1

+ 2
(
Y ′′n−1J′′n−1

)
J′n−1J′′′n−1 + 2

(
Y ′′′n−1J′′′n−1

)
J′n−1J′′n−1

)]
.

where (Y ′n−1, J′n−1), (Y ′′n−1, J′′n−1) and (Y ′′′n−1, J′′′n−1) are independent copies of (Yn−1, Jn−1) and inde-
pendent of I. Then

E[Y 2
n ] = (2p+ 1)E

[
Y 2
n−1
]

+ 6p
(
E[Yn−1]

)2
+ 6p

(
1− (1− p)n−1

)2E[Yn−1Jn−1] + p
(
1− (1− p)n−1

)3
.

Since YnJn = Yn, therefore we have

E[Y 2
n ] =

n∑
i=1

(2p+ 1)n−ip
(

6
(
E[Yi−1]

)2
+ 6
(
1− (1− p)i−1

)2E[Yi−1] +
(
1− (1− p)i−1

)3)
=

3(p3 − p2 + p+ 2)2(2p+ 1)2n−1

4(4− p)2(p2 − 3p+ 5)2
+

6(2 + p)((2p+ 1)n − (1− p)5n)

(p− 4)(p2 − 3p+ 5)(p4 − 5p3 + 10p2 − 10p+ 7)

+
3(p3 − p2 + p+ 2)(p5 − 4p4 + 5p3 + 8p2 − 21p+ 14)(2p+ 1)n

(p− 2)(2p+ 1)(p− 4)2(p2 − 3p+ 5)2(p2 − 3p+ 3)
− (1− p)n +

6(1− p)2n

4− p

+
(3p7 − 18p6 + 23p5 − 12p4 + 49p3 − 284p2 + 234p+ 194)(2p+ 1)n

2(2p+ 1)(p− 4)2(p2 − 3p+ 5)2
+

1

4
− 5(1− p)3n

p2 − 3p+ 5

+
18(1− p)((2p+ 1)n − (1− p)4n)

(p3 − 4p2 + 6p− 6)(p− 4)2
− 6((2p+ 1)n − (1− p)6n)

(p5 − 6p4 + 15p3 − 20p2 + 15p− 8)(p2 − 3p+ 5)2

+
3(2 + p)(p3 − p2 + p+ 2)(1− p)2n(2p+ 1)n−1

(2− p)(p− 4)2(p2 − 3p+ 3)(p2 − 3p+ 5)
+

6(p3 − p2 + p+ 2)(1− p)3n(2p+ 1)n−1

(p− 4)(p2 − 3p+ 3)(p2 − 3p+ 5)2
,

where the calculation has been done by MAPLE software.

Let Sn be the size of be an ERTT of index p at age n, then by the result E[Sn] ∼ (2p+1)n

2
in [6]

and Theorem 1, we have

E[Yn]

E[Sn]
≤ 1

3
,

(
∵

p3 − p2 + p+ 2

(4− p)(p2 − 3p+ 5)
≤ 1

3

)
.
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Theorem 2. Let Wn be the wiener index in an ERTT of age n and index p. We have

E[Wn] =
27p2n2(2p+ 1)2n−2

3np+ 2p+ 1
+

9pn(2p+ 1)2n−1

2(3np+ 2p+ 1)
− 3(2p+ 1)2n

2(3np+ 2p+ 1)
+

3

2
(2p+ 1)n−1, n ≥ 1,

E[W 2
n ] =

324p2(12p2 + 31p+ 35)

4(p+ 1)(4p2 + 6p+ 3)
n2(2p+ 1)4n−5 +O

(
n(2p+ 1)4n

)
, as n→∞.

Proof. Take expectations both sides of the equation (5). By the identical distribution of W ′
n, W ′′

n ,
W ′′′
n and Wn; and the independence of I, we get

E[Wn] = (2p+ 1)E[Wn−1] + 6pE[Zn−1]E[Xn−1] + 6p
(
E[Xn−1]

)2
= (2p+ 1)E[Wn−1] + 18p2n(p+ 1)2n−3 + 6p(1− p)(p+ 1)2n−3,

with E[W0] = 0. By iterating, we have

E[Wn] =
n∑
i=1

(p+ 1)n−i
(

18p2i(2p+ 1)2i−3 + 6p(1− p)(2p+ 1)2i−3
)
,

that is obtained as claimed in the theorem.
For obtaining E[W 2

n ], raise both sides of (5) to the second power and take expectations. The
second moment recurrence takes the form,

E[W 2
n ] = (2p+ 1)E[W 2

n−1] + 6pE[Z2
n−1]E[X2

n−1] + 12p
(
E[X2

n−1]
)2

+ 24pE[Zn−1Xn−1]
(
E[Xn−1]

)2
+ 12pE[Xn−1]E[Zn−1]E[Wn−1] + 12pE[Wn−1Xn−1]E[Zn−1] + 24pE[Wn−1Xn−1]E[Xn−1]

+ 12pE[Wn−1Zn−1]E[Xn−1] + 24pE[Zn−1Xn−1]E[X2
n−1] + 24pE[Xn−1]E[X2

n−1]E[Zn−1]

+ 6p
(
E[Zn−1Xn−1]

)2
+ 12pE[Wn−1]

(
E[Xn−1]

)2
+ 6p

(
E[Wn−1]

)2
+ 24pE[X2

n−1]
(
E[Xn−1]

)2
+ 12pE[Xn−1]E[Zn−1]E[Zn−1Xn−1] + 6pE[Z2

n−1]
(
E[Xn−1]

)2
+ 6pE[X2

n−1]
(
E[Zn−1]

)2
. (6)

In the recurrence (6), we need the expectations E[Z2
n], E[WnZn], E[WnXn] and E[ZnXn].

From (1), (2) and (5), we have the following recurrences, for n ≥ 1,

E[ZnXn] = (2p+ 1)E[Zn−1Xn−1] + 6pE[Xn−1]E[Zn−1] + 3pE[X2
n−1] + 6p

(
E[Xn−1]

)2
E[Z2

n] = (2p+ 1)E[Z2
n−1] + 3pE[X2

n−1] + 6p
(
E[Zn−1]

)2
+ 6p

(
E[Xn−1]

)2
+ 6pE[Zn−1Xn−1] + 12pE[Zn−1]E[Xn−1]

E[WnXn] = (2p+ 1)E[Wn−1Xn−1] + 6pE[Xn−1]E[Zn−1Xn−1] + 6pE[Zn−1]
(
E[Xn−1]

)2
+ 6pE[Wn−1]E[Xn−1] + 6pE[Zn−1]E[X2

n−1] + 12pE[Xn−1]E[X2
n−1] + 6p

(
E[Xn−1]

)3
E[WnZn] = (2p+ 1)E[Wn−1Zn−1] + 18pE[Xn−1]E[Zn−1Xn−1] + 3pE[Wn−1Xn−1] + 6p

(
E[Xn−1]

)3
+ 6pE[Z2

n−1]E[Xn−1] + 6pE[Zn−1]E[Wn−1] + 6pE[Zn−1]E[Zn−1Xn−1] + 6pE[Xn−1]
(
E[Zn−1]

)2
+ 6pE[Wn−1]E[Xn−1] + 6pE[Zn−1]E[X2

n−1] + 12pE[Xn−1]E[X2
n−1] + 12pE[Zn−1]

(
E[Xn−1]

)2
,
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with initial conditions E[Z2
0 ] = 0, E[W0Z0] = 0, E[W0X0] = 0 and E[Z0X0] = 0.

The above recurrence equations are of the form yn = (p+ 1)yn−1 + hn, with solution

yn =
n∑
i=1

(p+ 1)n−ihi. (7)

Therefore, after some calculations, their solutions are obtained as follows

E[ZnXn] = 9pn(2p+ 1)2n−2 + 3(1− p)(2p+ 1)2n−2 − 6p(1− p)n(2p+ 1)n−2 − 3(1− p)(2p+ 1)n−2,

E[Z2
n] = 27p2n2(2p+ 1)2n−3 + 8p(1− p)n(2p+ 1)2n−3 +

3

2
(1− p)(5− 2p)(2p+ 1)2n−3

− 18(1− p)p2n2(2p+ 1)n−3 − 6p(1− p)(4− p)n(2p+ 1)n−3 − 3

2
(1− p)(5− 2p)(2p+ 1)n−3,

E[WnXn] =
9p(p+ 5)

p+ 1
n(2p+ 1)3n−3 − 3(2p3 + 22p2 + 13p− 1)

2(p+ 1)2
(2p+ 1)3n−3 − 36p(1− p)n(2p+ 1)2n−3

− 3

2
(8p2 − 16p− 1)(2p+ 1)2n−3 − 3(1− p)(4p2 + 3p+ 2)

2(p+ 1)2
(2p+ 1)n−2,

E[WnZn] =
27p2(p+ 5)

p+ 1
n2(2p+ 1)3n−4 − 9p(4p3 + 38p2 + 11p− 17)

2(p+ 2)2
n(2p+ 1)3n−4

− 3(1− p)(4p3 + 62p2 + 17p− 20)

4(p+ 2)2
(2p+ 1)3n−4 − 108p2(1− p)n2(2p+ 1)2n−4

− 9

2
p(20p2 − 52p+ 23)n(2p+ 1)2n−4 − 3(1− p)(10p2 − 20p+ 1)(2p+ 1)2n−4

− 9p(1− p)(4p2 + 3p+ 2)

2(p+ 2)2
n(2p+ 1)n−3 +

3(1− p)(20p3 − 8p2 − 23p− 16)

4(p+ 2)2
(2p+ 1)n−3.

Again, according to (7), the solution to the recurrence (6) is

E[W 2
n ] =

324p2(12p2 + 31p+ 35)

4(p+ 1)(4p2 + 6p+ 3)
n2(2p+ 1)4n−5

− 27p(176p6 + 880p5 + 2056p4 + 2222p3 + 927p2 − 66p− 111)n(2p+ 1)4n−5

(p+ 1)2(4p2 + 6p+ 3)2
+O

(
(2p+ 1)4n

)
,

as n→∞. Hence we obtain the assertion.

3 Almost sure convergence for the external Wiener index

In Tn, an ERTT of age n and index p, assume we numbered the external nodes of the tree
arbitrarily with the numbers 1, 2, . . . , Xn. Let Di,j be the distance between external nodes i and
j, for i, j ∈ {1, 2, . . . , Xn}. The external Wiener index of Tn is

Wn =
Xn∑
i=1

Xn∑
j=1

i<j

Di,j.
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Theorem 3. Let Wn be the external Wiener index in an ERTT of age n and index p. As n→∞,
we have almost sure convergence and in L2,

Wn

n(2p+ 1)2n
L2 & a.s.−−−−−→ 3p

2p+ 1
X2
∗ .

Proof. Let Ik be a sequence of independent Bernoulli(p) random variables, defined on the same
probability space as the trees. Consider

{
Ik
}∞
k=1

to be independent of the structure of the tree at
any age, too. If each of two external nodes i and j or both succeed in attracting a new node, then
by direct enumeration, the contribution of the external nodes i and j of Tn−1 into Wn, is

9IiIj(Di,j + 2)Di,jIi<j + 3Ii
(
1− Ij

)
(Di,j + 1)Ii 6=j + 6Ii − IiIjDi,jIi<j − Ii

(
1− Ij

)
Di,j

for i, j ∈ {1, 2, . . . , Xn−1}, and we write

Wn = Wn−1 −
Xn−1∑
i=1

Xn−1∑
j=1

i 6=j

Ii
(
1− Ij

)
Di,j −

Xn−1∑
i=1

Xn−1∑
j=1

i<j

IiIjDi,j + 6

Xn−1∑
i=1

Ii

+ 3

Xn−1∑
i=1

Xn−1∑
j=1

i 6=j

Ii
(
1− Ij

)
(Di,j + 1) + 9

Xn−1∑
i=1

Xn−1∑
j=1

i<j

IiIj(Di,j + 2).

Let Fn be the sigma field generated by the first n steps of the evolution of Tn. Then

E[Wn|Fn−1] = Wn−1 + 4p(1− p)Wn−1 + 8p2Wn−1 + 6pXn−1 + 3p(2p+ 1)Xn−1(Xn−1 − 1)

= (2p+ 1)2Wn−1 + 3p(2p+ 1)X2
n−1 − 3p(2p− 1)Xn−1. (8)

Let Mn := αnWn + βnX
2
n + γnXn, for specified factors αn, βn and γn that transformed Mn a

martingale. So, by (8) and a martingalization procedure, we have

E[Mn|Fn−1] = αn(2p+ 1)2Wn−1 + 3αnp(2p+ 1)X2
n−1 − 3αnp(2p− 1)Xn−1

+ βnE
[
X2
n

∣∣Fn−1]+ γnE
[
Xn

∣∣Fn−1]
= αn(2p+ 1)2Wn−1 + 3αnp(2p+ 1)X2

n−1 − 3αnp(2p− 1)Xn−1

+ βn(2p+ 1)2X2
n−1 + 4βnp(1− p)Xn−1 + γn(2p+ 1)Xn−1

= αn(2p+ 1)2Wn−1 +
(
3αnp(2p+ 1) + βn(2p+ 1)2

)
X2
n−1

+
(
γn(2p+ 1) + 4βnp(1− p)− 3αnp(2p− 1)

)
Xn−1

= Mn−1 = αn−1Wn−1 + βn−1X
2
n−1 + γn−1Xn−1.

This is possible, if we choose

αn−1 = αn(2p+ 1)2,

βn−1 = 3αnp(2p+ 1) + βn(2p+ 1)2

γn−1 = γn(2p+ 1) + 4βnp(1− p)− 3αnp(2p− 1).

8



From these solvable recurrences, we obtain

αn =
α0

(2p+ 1)2n
, βn =

β0
(2p+ 1)2n

− 3α0pn

(2p+ 1)2n+1

γn =
3α0 − 4(1− p)β0 + 2(2p+ 1)γ0

2(2p+ 1)n+1
− 6p(1− p)α0n

(2p+ 1)2n+2
− 3α0 − 4(1− p)β0

2(2p+ 1)2n+1
.

For simplicity, we take α0 = 1 and β0 = 0 = γ0. Thus,

Mn =
1

(2p+ 1)2n
Wn −

3pn

(2p+ 1)2n+1
X2
n +

(
3

2(2p+ 1)n+1
− 12p(1− p)n+ 3(2p+ 1)

2(2p+ 1)2n+2

)
Xn,

is a martingale with bounded moments

E[Mn] =
E[Wn]

(2p+ 1)2n
− 3pnE[X2

n]

(2p+ 1)2n+1
+

(
3

2(2p+ 1)n+1
− 12p(1− p)n+ 3(2p+ 1)

2(2p+ 1)2n+2

)
E[Xn]

=
27p2n2(2p+ 1)−2

3np+ 2p+ 1
+

9pn(2p+ 1)−1

2(3np+ 2p+ 1)
− 3

2(3np+ 2p+ 1)
+

3

2(2p+ 1)n+1

− 3pn

(
3

(2p+ 1)2
− 2(1− p)

(2p+ 1)n+2

)
+

3

2(2p+ 1)
− 12p(1− p)n+ 3(2p+ 1)

2(2p+ 1)n+2
= 0,

E[M2
n] =

E[W 2
n ]

(2p+ 1)4n
+

9p2n2E[X4
n]

(2p+ 1)4n+2
+

(
3

2(2p+ 1)n+1
− 12p(1− p)n+ 3(2p+ 1)

2(2p+ 1)2n+2

)2

E[X2
n]

+

(
3

(2p+ 1)3n+1
− 12p(1− p)n+ 3(2p+ 1)

(2p+ 1)4n+2

)(
E[WnXn]− 3pnE[X3

n]

2p+ 1

)
− 6pnE[WnX

2
n]

(2p+ 1)4n+1

=
1

(2p+ 1)4n
E[W 2

n ] +
9p2n2

(2p+ 1)4n+2
E[X4

n]− 6pn

(2p+ 1)4n+1
E[WnX

2
n] +O(1)

=
1

(2p+ 1)4n

(
324p2(12p2 + 31p+ 35)

4(p+ 1)(4p2 + 6p+ 3)
n2(2p+ 1)4n−5

− 27p(176p6 + 880p5 + 2056p4 + 2222p3 + 927p2 − 66p− 111)n(2p+ 1)4n−5

(p+ 1)2(4p2 + 6p+ 3)2

)
+

9p2n2

(2p+ 1)4n+2

(
9(12p2 + 31p+ 35)(2p+ 1)4n−3

(p+ 1)(4p2 + 6p+ 3)

)
− 6pn

(2p+ 1)4n+1

(
27p(12p2 + 31p+ 35)n(2p+ 1)4n−4

(4p2 + 6p+ 3)(p+ 1)

− 9(176p6 + 880p5 + 2056p4 + 2222p3 + 927p2 − 66p− 111)

2(p+ 1)2(4p2 + 6p+ 3)2
(2p+ 1)4n−4

)
+O(1)

= 0 +O(1) <∞, as n→∞,

where

E[X3
n] =

3(p+ 5)(2p+ 1)3n−2

p+ 1
− 18(1− p)(2p+ 1)2n−2 +

2(1− p)(2− p)(2p+ 1)n−1

p+ 1
,
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E[X4
n] =

9(12p2 + 31p+ 35)(2p+ 1)4n−3

(p+ 1)(4p2 + 6p+ 3)
− 36(p+ 5)(1− p)(2p+ 1)3n−3

p+ 1

− 12(1− p)(7p2 − 6p− 7)(2p+ 1)2n−3

p+ 1
− 8(1− p)(2p4 − 12p3 + 7p2 + 6p+ 3)(2p+ 1)n−2

(p+ 1)(4p2 + 6p+ 3)
,

E[WnX
2
n] =

27p(12p2 + 31p+ 35)n(2p+ 1)4n−4

(4p2 + 6p+ 3)(p+ 1)

− 9(176p6 + 880p5 + 2056p4 + 2222p3 + 927p2 − 66p− 111)

2(p+ 1)2(4p2 + 6p+ 3)2
(2p+ 1)4n−4

+
3(60p4 + 300p3 − 60p2 − 300p)n(2p+ 1)3n−4

2(p+ 1)2
+O

(
(2p+ 1)3n

)
, as n→∞.

So, by the martingale convergence theorem (Theorem 6.6.9 in [2]), Mn converges to some M∗
almost surely and in L2. Consequently,

Mn

n
=

Wn

n(2p+ 1)2n
− 3p

2p+ 1
·
(

Xn

(2p+ 1)n

)2

+

(
3

2(2p+ 1)
− 12p(1− p)n+ 3(2p+ 1)

2(2p+ 1)n+2

)
· Xn

n(2p+ 1)n
L2 & a.s.−−−−−→ 0.

Hence, by (3), the result follows.

Corollary 4. Let D∗n be the distance between two randomly chosen nodes in a random ERTT of
age n and index p. Then we have

E[D∗n]

n
−→ 6p

2p+ 1
.

Proof. In Tn, a random ERTT of age n and index p, we have

E[D∗n|Tn] =

2
Xn∑
i=1

Xn∑
j=1

i<j

Di,j

Xn(Xn − 1)
=

2Wn

Xn(Xn − 1)
.

Therefore, by (3) and Theorem 3, we have

E[D∗n|Tn]

n
=

2Wn/ (n(2p+ 1)2n)

Xn(Xn − 1)/ ((2p+ 1)2n)

a.s.−→ 6p

2p+ 1
.

Since Wn ≤ Xn(Xn−1)n, then E[D∗n|Tn]/n ≤ 2. Consequently, by dominated convergence theorem,

lim
n→∞

E[D∗n]

n
= lim

n→∞
E
[
E[D∗n|Tn]

n

]
= E

[
lim
n→∞

E[D∗n|Tn]

n

]
.

This yields the result.
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4 L2 convergence for the number of saturated nodes

In this section we apply the contraction method in [18] or the multivariate contraction method in
[16] to state the limiting distribution of Ŷn := Yn

(2p+1)n
.

We first need to set up some notation as follows: For a random variable X, we write X ∼ λ
if the distribution of X is λ, i.e. the law L(X) of X is λ. The symbol ‖X‖2 := (E[|X|2])1/2
denotes the usual L2-norm of X. The Wasserstein-metric `2 is defined on the space of probability
distributions with finite second moments by

`2(X, Y ) := `2(L(X), L(Y )) := `2(λ, ν) := inf{‖X − Y ‖2 : X ∼ λ, Y ∼ ν}.

ByM2 the space of all probability distributions λ with mean p3−p2+p+2
2(4−p)(p2−3p+5)

(as in Theorem 1) and

finite second moment is denoted. The metric space (M2, `2) is complete and convergence in `2 is
equivalent to convergence in distribution plus convergence of the second moments.

By equation (4) we have

Yn
(2p+ 1)n

d
=

I
2p+ 1

(
Y ′n−1

(2p+ 1)n−1
+

Y ′′n−1
(2p+ 1)n−1

+
Y ′′′n−1

(2p+ 1)n−1

)
+

1− I
2p+ 1

· Ỹn−1
(2p+ 1)n−1

+ I ·
J′n−1J′′n−1J′′′n−1

(2p+ 1)n
. (9)

Theorem 5. Let Yn be the saturated nodes of an ERTT of age n and index p. The normalized
saturated nodes Ŷn := Yn

(2p+1)n
satisfies the distributional recursion

Ŷn
d
=

I
2p+ 1

·
(
Ŷ
′

n−1 + Ŷ
′′

n−1 + Ŷ
′′′

n−1
)

+
1− I

2p+ 1
· Ȳn−1 + I ·

J′n−1J′′n−1J′′′n−1
(2p+ 1)n

, (10)

where J′n−1
d
= J′′n−1

d
= J′′′n−1

d
= Bernoulli(1− (1− p)n−1), Ȳn, (Ŷ

′
n, J′n−1), (Ŷ

′′
n , J′′n−1), (Ŷ

′′′
n , J′′′n−1) and

I are independent, Ȳn
d
= Ŷ

′
n

d
= Ŷ

′′
n

d
= Ŷ

′′′
n

d
= Ŷn, and I is a Bernoulli random variable with success

probability p, then Ŷn
d−→ Ŷ , as n→∞, where the random variable Ŷ is the unique distributional

fixed-point of

Ŷ
d
=

I
2p+ 1

(
Ŷ
′
+ Ŷ

′′
+ Ŷ

′′′)
+

1− I
2p+ 1

Ŷ , (11)

with Ŷ
′
, Ŷ

′′
and Ŷ

′′′
are independent copies of Ŷ and independent of I.

Proof. The equation (10) is an immediate consequence of the equation (9), where Ȳn := Ỹn
(2p+1)n

,

Ŷ
′
n := Y

′
n

(2p+1)n
, Ŷ

′′
n := Y

′′
n

(2p+1)n
and Ŷ

′′′
n := Y

′′′
n

(2p+1)n
. Using Chebyshev’s inequality and E[J′′n−1] =

E[J′′′n−1] = 1− (1− p)n−1, we have the convergence in probability
J′n−1J′′n−1J′′′n−1

(2p+1)n
p−→ 0. That is,

Ŷn
d
=

I
2p+ 1

·
(
Ŷ
′

n−1 + Ŷ
′′

n−1 + Ŷ
′′′

n−1
)

+
1− I

2p+ 1
· Ŷn−1 + op(1), (12)
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where the notation op(1) will denote an asymptotically negligible random variable that converges
to 0 in probability. For purposes of convergence we can, and hence will, ignore the op(1) term.

Consider the well-defined transformation T :M2 → M2,

T (λ) := L
( I

2p+ 1

(
Ŷ
′

λ + Ŷ
′′

λ + Ŷ
′′′

λ

)
+

1− I
2p+ 1

Ŷλ

)
, (13)

where Ŷλ
d
= Ŷ , Ŷ

′

λ
d
= Ŷ

′
, Ŷ

′′

λ
d
= Ŷ

′′
and Ŷ

′′′

λ
d
= Ŷ

′′′
have λ as distribution and are independent of I.

At a first step, we have to prove that the transformation T has a unique fixed point with respect
to the `2-metric. Let λ, ν ∈M2 be given. By (13), we have

T (λ) = L
( I

2p+ 1

(
Ŷ
′

λ + Ŷ
′′

λ + Ŷ
′′′

λ

)
+

1− I
2p+ 1

Ŷλ

)
,

T (ν) = L
( I

2p+ 1

(
Ŷ
′

ν + Ŷ
′′

ν + Ŷ
′′′

ν

)
+

1− I
2p+ 1

Ŷν

)
,

and

`22(T (λ), T (ν)) ≤ 3
E[I2]

(2p+ 1)2
E
[∣∣Ŷλ − Ŷν∣∣]2 +

E [(1− I)2]
(2p+ 1)2

E
[∣∣Ŷλ − Ŷν∣∣]2

=
1

2p+ 1
E
[∣∣Ŷλ − Ŷν∣∣]2.

Therefore, we have

`22(T (λ), T (ν)) ≤ 1

2p+ 1
`22(λ, ν).

Since 1
2p+1

< 1, we deduce that T is a contraction with respect to the `2-metric. Thus, Banach’s
fixed point theorem provides existence and uniqueness of solutions of the fixed point equation
T (λ) = λ. By (12), if Ŷn converges in distribution to some random variable Ŷ , then Ŷ satisfies (11).
Consequently, the distribution of Ŷ will be λ0, the unique fixed point of T , i.e. L(Ŷ ) = T (λ0) = λ0.

Therefore, we have to prove limn→∞ `2(Ŷn, Ŷ ) = 0 to conclude Ŷn
d−→ Ŷ .

Since Ŷ
′
n

d
= Ŷ

′′
n

d
= Ŷ

′′′
n

d
= Ŷn and Ŷ

′ d
= Ŷ

′′ d
= Ŷ

′′′ d
= Ŷ , we deduce

lim
n→∞

`22(Ŷn, Ŷ ) ≤ p

(2p+ 1)2
lim
n→∞

(∥∥∥Ŷ ′n−1 − Ŷ ′∥∥∥2
2

+
∥∥∥Ŷ ′′n−1 − Ŷ ′′∥∥∥2

2
+
∥∥∥Ŷ ′′′n−1 − Ŷ ′′′∥∥∥2

2

)
+

1− p
(2p+ 1)2

lim
n→∞

∥∥∥Ŷn−1 − Ŷ ∥∥∥2
2

≤ 1

2p+ 1
lim
n→∞

∥∥Ŷn − Ŷ ∥∥2.
Therefore, we have

lim
n→∞

`22(Ŷn, Ŷ ) ≤ 1

2p+ 1
lim
n→∞

`22(Ŷn, Ŷ ).

This is true only if limn→∞ `2(Ŷn, Ŷ ) = 0.
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