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This paper proposes two novel methods for upscaling the macroscopic magnetic field strength from the local solutions of Bconforming magnetoquasistatic multiscale problems. Unlike the volume average method classically used, these methods yield accurate values of the macroscale magnetic field for problems with strong locally-confined eddy currents which enables B-conforming multiscale formulations of eddy currents problems at higher frequencies.
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I. INTRODUCTION

M derived in Section III, and the validation on a 2D eddy currents problem is presented in Section IV.

II. MULTISCALE MODELING

Let σ and ν be the electrical conductivity and magnetic reluctivity. We are interested in solving the following Maxwell's equations [START_REF] Feddi | Homogenization technique for Maxwell equations in periodic structures[END_REF] on an open domain Ω ⊂ R d in the magnetoquasistatic regime: curl h = j, div b = 0, curl e = -∂ t b, j = σe, h = νb, [START_REF] Feddi | Homogenization technique for Maxwell equations in periodic structures[END_REF] where h, b, j and e are the magnetic field strength, magnetic flux density, electric current density and electric field, respectively. The conducting domain is denoted by Ω c , and the nonconducting one by Ω N = Ω \ Ω c . The dimension d is 2 or 3.

A. Fine-scale model on periodic geometry

Let us consider a periodic medium denoted by Ω ϵ included in Ω, that is a tiling obtained by translation of a periodic unit cell Y = Y c ∪ Y N , where Y c and Y N are its conducting and nonconducting regions. Without loss of generality, the cell Y is chosen as a rectangular hexahedron. In this paper, we make the assumption that the conducting region of the cell Y c is simply connected and does not intersect the boundaries of the periodic cell, i.e. ∂Y ∩ Y c = ∅, which is tantamount to an insulated periodic cell.

We use a usual B-conforming formulation [START_REF] Kameari | Calculation of Transient 3D Eddy Current Using Edge-Elements[END_REF]:

         curl ν curl a + σ∂ t a = 0 in Ω ϵ , (2a) a × n = a × n on ∂Ω ϵ , ( 2b 
) curl ν 0 curl a = j s in Ω \ Ω ϵ , (2c) a × n = 0 on ∂Ω, (2d 
) where the modified magnetic vector potentials a verifies b = curl a and e = -∂ t a, and has to be gauged in non conducting parts of Ω. Here a known current source j s and magnetic reluctivity of the vacuum ν 0 are assumed in the non homogenized domain Ω \ Ω ϵ . ULTISCALE methods have been extensively studied in the electromagnetic community thanks to their easy parallelization and ability to speed up numerical simulations of problems involving heterogeneous materials such as laminated cores, stranded inductors and soft magnetic composites. These methods make possible the simulation of 3D nonlinear eddy currents problems with composite materials, unlike classical methods such as the finite element method (FEM) which are computationally too expensive for these problems.

Multiscale methods generally necessitate computation of macroscopic quantities from finer scale quantities, also called upscaling. Previous works [START_REF] Feddi | Homogenization technique for Maxwell equations in periodic structures[END_REF] - [START_REF] Sabariego | Nonlinear Computational Homogenization Method for the Evaluation of Eddy Currents in Soft Magnetic Composites[END_REF] use B-conforming formulation that necessitate the upscaling of magnetic field strength, which is usually done using the volume average of the finer scale magnetic field h. In the early work from El Feddi et. al. [START_REF] Feddi | Homogenization technique for Maxwell equations in periodic structures[END_REF], upscaling of magnetic field using volume average is done at very high frequency. In Bottauscio et. al. [START_REF] Bottauscio | Nonlinear Homogenization Technique for Saturable Soft Magnetic Composites[END_REF] and Niyonzima et. al. [START_REF] Sabariego | Nonlinear Computational Homogenization Method for the Evaluation of Eddy Currents in Soft Magnetic Composites[END_REF], the multiscale solution is validated at low and medium frequencies. But Meunier et. al. [START_REF] Meunier | Homogenization for Periodical Electromagnetic Structure: Which Formulation?[END_REF] warned that the upscaling of the magnetic and the electric fields h and e c an unfortunately be non trivial for eddy currents problems. Indeed, a simple volume average of the finescale magnetic field is not compatible with the Maxwell-Ampère law at macroscopic scale in presence of strong locally confined eddy currents. In their paper, the authors proposed that Bconforming formulation should be avoided to prevent upscaling h.

This paper proposes two novel methods for the upscaling of the magnetic field strength that are always valid. These methods only depend on the solutions of the mesoscale problem and the topology of its conducting region. The paper is outlined as follow, Section II recalls the multiscale model for the Bconforming formulation. The proposed upscaling methods are

B. The two scale model

In our multiscale approach, the reference problem (1) is replaced by the macroscale problem and many mesoscale problems both governed by equations similar to [START_REF] Bottauscio | Nonlinear Homogenization Technique for Saturable Soft Magnetic Composites[END_REF] and solved in an iterative scheme. Mesoscale fields are defined on the periodic cell Y and admit the following decomposition [START_REF] Meunier | Homogenization for Periodical Electromagnetic Structure: Which Formulation?[END_REF]:

h(y) = H + J × y d -1 + h c (y), b(y) = B + b c (y), e(y) = E -∂ t B × y d -1 + e c (y), j(y) = J + j c (y), (3) 
where capital letters denote the macroscale fields assumed constant on Y , the subscript • c is used to denote correction fields assumed periodic on the cell Y and y represents the local coordinate vector in the cell. Periodicity relates to tangential components of e c and h c and to normal components of b c and j c on ∂Y . Here J is null as Y is insulated.

The mesoscale B-conforming formulation is derived using ( 1) and (3) as follow:

curl ν (B + curl a c ) + σ ∂ t a c + B × y d -1 = 0, (4) 
where the unknown potential a c has a periodic tangential component across ∂Y , verifies b c = curl a c and has to be gauged in Y N . The magnetic flux density, magnetic field strength and electric field are

b = B + curl a c , h = νb and e = -∂ t a c -∂ t B × y d-1 .
To define the macroscopic problem, let Ω H be the homogenized domain replacing Ω ϵ . The macroscopic vector potential A is the solution of (2b)-(2d) in Ω \ Ω H , but the equation in Ω H must be defined for macroscopic fields. Since the current density is zero at macroscale, Ω H is not conducting. Hence macroscopic Maxwell-Ampère's law reads

curl H = 0 in Ω H , ( 5 
)
where H is the upscaled magnetic field which will be computed from the mesoscale solution obtained by imposing the source B to the cell problem. In general, H is a nonlinear function of B, and ( 5) can be solved iteratively, e.g. with :

curl

H(B k ) + ∂H ∂B k (B k+1 -B k ) = 0 in Ω H , (6) 
where

B k+1 = curl (A k+1
). The Jacobian ∂H ∂B k can be computed using finite differences, its columns are given by:

∂H ∂B i k = 1 δB H(B k + δBe i ) -H(B k ) for i = 1, . . . d ,
where e i are the standard basis vectors, δB is a scalar perturbation and k is the nonlinear iteration index. This Jacobian computation requires solving d + 1 problems on each cell. The definitions of macroscopic fields are needed to define the decomposition [START_REF] Sabariego | Nonlinear Computational Homogenization Method for the Evaluation of Eddy Currents in Soft Magnetic Composites[END_REF]. The usual definition of macroscopic fields uses the volume average <> Y of the mesoscopic ones:

U =< u > Y = 1 |Y | Y u for a field u on Y,
where |Y | is the volume of Y . This definition always works for B and J , i.e.

B = < b > Y , J = < j > Y , (7) 
because the surface average of the flux of b and j through the faces of ∂Y respectively sum up to volume average of b and j in Y (because div b = 0 and div j = 0), meaning that definition ( 7) is compatible with the continuity of B • n and J • n on ∂Ω H . Combining (3) and ( 7)

yields < b c > Y = 0, which is verified in (4) because Y b c = Y curl a c = ∂Y a c × n = 0,
where the integral on ∂Y vanishes due to anti-periodicity of a c × n.

The magnetic field h can also be upscaled using < h > Y when eddy currents in Y are weak or non existent. Indeed, some previous work could obtain correct results using < h > Y for dynamical problems with eddy currents (see e.g. [START_REF] Feddi | Homogenization technique for Maxwell equations in periodic structures[END_REF], [START_REF] Bottauscio | Nonlinear Homogenization Technique for Saturable Soft Magnetic Composites[END_REF] and [START_REF] Sabariego | Nonlinear Computational Homogenization Method for the Evaluation of Eddy Currents in Soft Magnetic Composites[END_REF]), although the upscaling of h cannot generally be done in this way, as will be shown later. The problem comes from the fact that eddy currents impact the average of h without impacting the average of j, leading the macroscopic Maxwell-Ampère's law to be wrong.

III. MAGNETIC FIELD UPSCALING

Although all the geometries and numerical tests presented in this paper are done with an insulated cell, the material of this section is derived in the general setting of a conducting cell, but still with the assumption that Y c is simply connected. In this section, we demonstrate how to properly upscale H by removing the part of h that generates the local eddy currents in j. More precisely, we define a potential t 0 such that curl t 0 = j e such that j e are the local eddy currents, and such that t 0 = 0 when there are no eddy currents (j e = 0). Then H can be defined as

H =< h -t 0 > Y . ( 8 
)
The rest of the current j M = jj e is the flow of the macroscopic current in the cell.

A. A setting to study currents in the cell

The splitting j = j e +j M will be defined with a Helmholtz-Hodge decomposition (HHD) [START_REF] Bhatia | The Helmholtz-Hodge Decomposition-A Survey[END_REF]- [START_REF] Rundong | 3D Hodge Decompositions of Edge-and Face-Based Vector Fields[END_REF]. Let Γ c = ∂Y c be the boundary of the cell conducting domain, Γ out c = Γ c ∩ ∂Y the boundary of Y through which the current can flow and Γ in c = Γ c \ Γ out c the interface between the conducting and non conducting domain in Y . The current density verifies div j = 0, (j • n)n is periodic through Γ out c , and the current cannot flow to the nonconducting domain, i.e. j • n| Γ in c = 0. We denote the space for j by H #,out 0,in (div; Y c ), where 0,in is the usual notation for null trace on Γ in c and where #,out denotes the trace periodicity on Γ out c . It is hard to study j in H #,out 0,in (div; Y c ) because it has mixed boundary conditions, and neither Γ in c nor Γ out c are closed and simply connected when the cell is not insulated. We thus introduce a simpler equivalent setting.

Let Y c be the periodized Y c , that is Y c but with the opposite components of Γ out c identified. The boundary ∂Y c is Γ in c periodized, so that ∂Y c is a closed surface while Γ in c is not. There is a natural one to one correspondence between fields on Y c and the fields on Y c with periodic trace on Γ out c . In particular H #,out 0,in (div; Y c ) is isomorphic to H 0 (div; Y c ). We use symbols j, t for the fields defined on Y c corresponding to the Γ out c -periodic fields j, t defined on Y c .

B. Helmholtz-Hodge decomposition

In general, any vector field j on Y c can be orthogonally decomposed as follows with a HHD (see eq. ( 7) from [7] 1 ):

j = grad φ + curl t0 + jt in Y c ( 9 
)
where φ ∈ H(grad; Y c ), t0 ∈ H 0 (curl; Y c ) and jt ∈ H 1 (Y c ) is a tangential harmonic field, i.e. it is curl-and divergencefree and jt •n| ∂Yc = 0. H 1 (Y c ) is the first co-homology space, its dimension β 1 is the finite number of loops that Y c forms, and its elements (e.g. jt ) are harmonic fields looping in its loops [START_REF] Rundong | 3D Hodge Decompositions of Edge-and Face-Based Vector Fields[END_REF]. In addition, the flux of t0 through each connected component of ∂Y c must be 0 to nullify its normal harmonic components.

The general decomposition ( 9) is simpler for j with

grad φ = 0 in Y c . (10) 
Indeed, by definition, all three j, jt and curl t0 are divergence free and tangential to ∂Y c . Applying the divergence operator on (9) yields div (grad φ) = 0. Similarly, taking the trace of (9) yields grad φ • n| ∂Yc = 0. Then

∥grad φ∥ 2 = Yc grad φ • grad φ = - Yc div(grad φ) φ + ∂Yc (grad φ • n) φ = 0.
At this point, we can define the decomposition of j on Y c . Let t 0 ∈ H #,out 0,in (curl; Y c ) be the field corresponding to t0 , j M the one corresponding to jt and define j e = curl t 0 . We have the unique orthogonal decomposition

j = j e + j M in Y c . ( 11 
)
Moreover, the decomposition verifies < j e > Yc = 0, and

< j M > Y = J (12) (j e = 0 =⇒ < t 0 > Y = 0). ( 13 
)
Proof of (12):

Yc j e = Yc curl t 0 = ∂Yc t 0 × n = Γ in c t 0 × n + Γ out c
t 0 × n = 0 because both integrals vanish due to t 0 × n nullity on Γ in c and anti-periodicity on Γ out c . Then 1 The correspondence between [START_REF] Rundong | 3D Hodge Decompositions of Edge-and Face-Based Vector Fields[END_REF] notations and ours is :

Yc = M, ∂Yc = ∂M, j = ω 2 , t0 = α 1 n , jt = h 2 n , curl = d 1
and -grad = δ 3 . As h 2 t and η 2 can both be written as codifferential δ 3 , we merged them with δ 3 β 3 t in our grad φ term. The decomposition ( 9) is still orthogonal in 2D because hn and ht +η are always orthogonal (see comments about Friedrichs decomposition).

< j M > Y = < j > Y -< j e > Y = < j > Y = J .
Proof of (13): when curl t0 = 0 in Y c , there exist ψ0 ∈ H 0 (grad; Y c ) such that t0 = grad ψ0 (because t0 contains no harmonic part). Now coming back in Y c , one gets t 0 = grad ψ 0 where ψ 0 ∈ H #,out 0,in (grad; Y c ). Finally,

Yc t 0 = Yc grad ψ 0 = Γ in c ψ 0 n + Γ out c ψ 0 n = 0,
where both integrals vanish due to the nullity of ψ 0 n on Γ in c and its anti-periodicity on Γ out c . To sum up, the decomposition (11) is orthogonal and unique and its properties have a desirable physical meaning. The "macroscopic current flow" j M flows through ∂Y , averages to J and has zero curl. On the other hand, the eddy currents j e have zero average and contain all "curling" currents (curl j = curl j e ). The potential t 0 is defined to represent the part of h that creates j e . Indeed curl (h -t 0 ) = jj e = j M and the average of t 0 vanishes when eddy currents vanish (13).

C. Macroscopic magnetic field computation

As stated before [START_REF] Geuzaine | Gmsh[END_REF], we propose to define the macroscopic field as H =< ht 0 > Y . This way, the local currents j e no longer impact H, which is consistent with the macroscopic Maxwell-Ampère's law which relates to J but not j e .

The potential t 0 can be extracted from j by solving the projection curl (jcurl t 0 ) = 0 in Y c . When j is the solution of ( 4) and the cell is insulated, the FEM weak form reads:

Yc σ ∂ t a c + B × y d -1 curl t ′ 0 + Yc curl t 0 curl t ′ 0 = 0 (14) for all t ′ 0 , with t 0 , t ′ 0 ∈ H 0 (curl; Y c ).
Here the periodicity of t 0 is not applied because Γ out c = ∅. And nothing is needed to ensure that t 0 cannot contain a normal harmonic part, because Γ in c is connected. A decomposition example is shown Fig. 1. Alternatively, when Y c is insulated, it is possible to compute H in another way. Introducing < u > ∂Y ∥ the tangential average of a vector field u over ∂Y , it is defined by:

< u > ∂Y ∥ = i=x,y,z 1 |∂Y i | ∂Y i u t , (15) 
where ∂Y i are faces of ∂Y with normal n = e i and

u t = (n × u) × n. One can prove that < u > ∂Y ∥ = < u > Y whenever u t is Y -periodic and curl u = 0 on Y . In an insulated cell, curl (h -t 0 ) = j M = 0, thus H =< h -t 0 > Y =< h -t 0 > ∂Y ∥ =< h > ∂Y ∥ , (16) 
where the last equality is due to t 0 | ∂Y = 0. So the simple boundary integration < h > ∂Y ∥ can be used to upscale H without doing the FEM computation of t 0 . But this alternative is only available for insulated cell, and might lead to more numerical error than using the volume average [START_REF] Geuzaine | Gmsh[END_REF].

IV. VALIDATION The validation is done on a 2D insulated cell of width 100 µm with a conducting disks of radius 40 µm (see Fig. 4). If not mentioned otherwise, we consider f = 100 MHz, ν = ν 0 everywhere, σ = 1.01×10 7 S/m in the disk and σ = 0 outside.

A. Tests on a single cell problem

A first validation is done using the H-conforming formulation of the cell problem with the imposed source H(t) known at every time step t. Figure 2 shows the validation that the proposed methods work, unlike the volume average. Time (ns) To explain why previous use of < h > Y as the upscaling formula were successful, the plots on Fig. 3 show that the error committed is correlated with the percentage of the Joule losses in the total electromagnetic power of the cell. This percentage depends on the physical parameters, geometry, and especially on the frequency. Using H = < h > Y below f = 500 kHz would work fine to stay below 1% of error. In general, simulation of magnetic cores with small Joule losses are unlikely to require our approach.

H (A/m) H < h > Y < h -t0 > Y < h > Y ∥

B. Multiscale model validation

A full 2D multiscale problem is solved with FEM Bconforming formulation at macro and meso scales. The studied periodic geometry Ω ϵ is a square of 10 by 10 cells. A source field is generated by an external inductor coil surrounding Ω ϵ and fed by a sinusoidal current. The coil has a radius of 40 µm and is 670 µm away from Ω ϵ (Fig. 4 

top).

Heterogeneous Multiscale Method (HMM) [START_REF] Sabariego | Nonlinear Computational Homogenization Method for the Evaluation of Eddy Currents in Soft Magnetic Composites[END_REF] is used for the multiscale problem, i.e. a cell problem is associated to each element of the macro mesh, which do not have to correspond to the real geometry tiling. The macro and meso problems are solved alternatively. The reference mesh takes into account the real geometry of Ω ϵ . Problems are meshed with Gmsh [START_REF] Geuzaine | Gmsh[END_REF] and solved using GetDP [START_REF] Dular | GetDP[END_REF].

Using < h > ∂Y ∥ , HMM yields the correct value of the total Joule losses over one period with 1.34% of error compared to the reference, versus 90.2% with < h > Y (Fig. 5). V. CONCLUSION This paper presented the ins and outs of magnetic field homogenization on geometries with insulated periodic cells. Firstly by demonstrating the limitation of the volume average and its dependency on the eddy currents power ratio in the total electromagnetic power. Secondly by proposing a general definition of the homogenized magnetic field which is mathematically well defined and comprehensive with physical insights. And finally by validating the proposed definitions on multiscale solutions.

As future perspectives, the method should be validated on a 3D geometry, and with nonzero macroscopic current. It can also be extended to geometries with multi-connected cell conducting domains. Finally, the same approach could be used for the electric field upscaling.

Fig. 1 .

 1 Fig.1. Example of HHD in a 2D insulated conducting sphere at high frequency, from left to right : j = j e (two viewpoints), t 0 , h and ht 0 .

Fig. 2 .

 2 Fig. 2. Comparison of the magnetic field upscaling strategies, over one period of H, which is sinusoidal. The proposed methods < ht 0 > Y (8) and < h > Y ∥ (16) match H, but the volume average < h > Y doesn't.

Fig. 3 .

 3 Fig. 3. Log-log error contour maps in the meso cell exited by a sinusoidal B source, at different frequencies and at different sphere relative permeabilities. Left : percentage of difference between T 0 ∥H(t)-< h(t) > Y ∥dt and T 0 ∥< h(t) > Y ∥dt. Right : percentage of the Joule losses power percentage in the total electromagnetic power.

Fig. 4 .

 4 Fig. 4. Geometry for multiscale test with the two inductor cuts on the sides (top), meshes of corners of Ω ϵ and Ω H (left & middle), one cell mesh (right).

Fig. 5 .

 5 Fig. 5. Joule losses power comparison in the multiscale simulation.