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An important problem in risk theory is to understand the behavior of an expected cost Y ∈ R associated to d ≥ 1 risk factors which are heterogeneous in nature. We proposed in a recent work [1], a depth-based Covariate-Conditional-Tail-Expectation (CCTE) in order to quantify a loss knowing that a given risk scenario occurred: considering the level sets of a depth as risk regions allows to dene a direction-free CCTE. In the latter paper, we proposed an estimator of a depth-based CCTE and derived consistency results for xed levels of risk. In the current paper, we study the asymptotic behavior of this estimator as the risk level decreases, meaning that we study consistency of this risk measure for high losses. Then, we discuss some examples of particular existing depths. Finally, we present a simulation study in order to complete the performances of our estimation.

The last decades have witnessed the emergence of sophisticated theory of risk measures especially in the nancial literature as a means of determining capital requirements for the holders of risky portfolios. In particular, a large actuarial literature has been devoted to the construction of risk measures and their fundamental properties (see [START_REF] Denuit | Actuarial theory for dependent risks: measures, orders and models[END_REF], chapter 2). One of the most important actuarial risk measures is the conditional tail expectation CTE (see [START_REF] Denuit | Actuarial theory for dependent risks: measures, orders and models[END_REF] for instance), which characterizes the expected loss given that the loss exceeds a specied threshold. Formally, given a real random variable X with c.d.f. F X , the CTE at level α ∈ (0, 1) is dened by

CTE α (X) := E[X | X > VaR(α)] (1.1) 
where

VaR(α) := inf {t ∈ R : F X (t) ≥ 1 -α}
is the Value at Risk which corresponds to the univariate quantile of order 1 -α of X. Hence, the CTE provides a measure of the capital needed due to the exposure to the loss in the worst 100•α% risk scenario, and is frequently encountered in nancial investment or in the insurance industry [START_REF] Brazauskas | Estimating conditional tail expectation with actuarial applications in view[END_REF][START_REF] Zm Landsman | Tail conditional expectations for elliptical distributions[END_REF]. This object has been studied extensively by [START_REF] Artzner | Coherent measures of risk[END_REF][START_REF] Cai | Optimal retention for a stop-loss reinsurance under the var and cte risk measures[END_REF][START_REF] Tasche | Expected shortfall and beyond[END_REF]. However, as illustrated by the recent nancial agitation, risks are strongly interconnected so that considering a single risk factor is restrictive. For instance, in the eld of nance, risks are multiform: it is usual to distinguish between market risk, credit risk, liquidity,... As a consequence, risk quantication in multivariate settings has recently gained great interest. One possibility is to consider quantile regions of the risk factors distribution. In the multivariate setting, much research has been pursued in the last decades as a tool to model multivariate risk regions mostly based on a multivariate distribution function (for example, we refer to [START_REF] Chaudhuri | On a geometric notion of quantiles for multivariate data[END_REF][START_REF] Chebana | Multivariate quantiles in hydrological frequency analysis[END_REF][START_REF] Belzunce | Quantile curves and dependence structure for bivariate distributions[END_REF][START_REF] Dehaan | Large quantile estimation in a multivariate setting[END_REF][START_REF] Cousin | On multivariate extensions of value-at-risk[END_REF]), or on a depth function (see [START_REF] Sering | Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis[END_REF][START_REF] He | Estimation of extreme depth-based quantile regions[END_REF]). For example, [START_REF] Massé | Halfplane trimming for bivariate distributions[END_REF] dene multivariate α-quantiles for bivariate distribution as the intersection of half-planes for which the mass distribution is at least equal to α. Another approach is to use geometric quantiles (see for instance [START_REF] Chaouch | Estimation de quantiles géométriques conditionnels et non conditionnels[END_REF]). In recent years, along with the geometric quantile, the notion of depth function has been developed to characterize the quantile of multidimensional distribution functions, which enlarged the eld of applications of multivariate analysis (we refer to [START_REF] Zuo | General notions of statistical depth function[END_REF][START_REF] Sering | Quantile functions for multivariate analysis: approaches and applications[END_REF][START_REF] Chauvigny | Fast remote but not extreme quantiles with multiple factors: applications to solvency ii and enterprise risk management[END_REF] for further details about depth-based multivariate quantiles). Indeed, statistical depth aims at an analogous center-outward ordering of multivariate data (or any probability measure) in the space which does not carry a natural order (see for instance [START_REF] Dyckerho | Data depths satisfying the projection property[END_REF][START_REF] Zuo | General notions of statistical depth function[END_REF][START_REF] Liu | On a notion of data depth based on random simplices[END_REF]). Thus, the study of depth-based level sets has substantially grown in the last three decades as a key tool for the visualization and exploration of multivariate data (see [START_REF] Dl Donoho | Breakdown properties of location estimates based on halfspace depth and projected outlyingness[END_REF]). Those level sets have shown their usefulness in practice: they are commonly used for outlier detection (see e.g. [START_REF] Febrero | Outlier detection in functional data by depth measures, with application to identify abnormal nox levels[END_REF][START_REF] Dai | Directional outlyingness for multivariate functional data[END_REF]), supervised classication (see [START_REF] Ruts | Computing depth contours of bivariate point clouds[END_REF][START_REF] Hubert | Multivariate and functional classication using depth and distance[END_REF][START_REF] Jörnsten | Clustering and classication based on the l1 data depth[END_REF]) or rank and sign testing (see [START_REF] Liu | A quality index based on data depth and multivariate rank tests[END_REF][START_REF] Hettmansperger | Ane invariant multivariate multisample sign tests[END_REF]). We also refer to [START_REF] Ch Müller | Depth estimators and tests based on the likelihood principle with application to regression[END_REF] who used so-called likelihood depth which is the density function in testing problems for regression.

In the nancial econometric literature, a classical problem is to analyze the behavior of an average return measure (average return, skewness, . . .) with respect to a set of d risk factors (volatility or variance, kurtosis, . . .). The goal is to measure the performances of a portfolio and help investment decisions. On another hand, in climatology for instance, one may be interested in the impact of climate change on high temperatures, or the study of rainfalls according to a given geographical location. Formally, we consider a univariate expected loss Y ∈ R depending on a risk-factors vector X ∈ R d . To address this, [START_REF] Di Bernardino | Estimating covariate functions associated to multivariate risks: a level set approach[END_REF] proposed studying the behavior of a covariate variable Y on the level sets of the distribution of a d-dimensional vector of risk-factors X. More precisely, they dene the multivariate Covariate-Conditional-Tail-Expectation (CCTE) as a generalization of (1.1)

CCTE α (Y, X) := E[Y | X ∈ L F X (α)], α ∈ (0, 1), (1.2)
where L F X (α) := x ∈ R d : F X (x) ≥ 1 -α is the (1 -α)-upper level set of F X . However, this CCTE based on the distribution function only considers canonical directions. For instance, it could consider an average cost associated to high or low temperatures/pressures but not both at the same time. As an example, one could mention the work of [START_REF] Torres | On the estimation of extreme directional multivariate quantiles[END_REF] who included a directional parameter in order to explore the level sets of the c.d.f. in dierent orthants.

In order to overcome the problem of a direction-dependent CCTE, we proposed in a recent work (see [START_REF] Armaut | Depth level set estimation and associated risk measures[END_REF]) a depth-based CCTE using the lower-level sets of a depth function. Denote by P the set of all probability measures on R d , a depth is a mapping D : R d × P → R + whose direct role is to measure the centrality of a point w.r.t. an arbitrary probability distribution.

For a depth D, the depth-based CCTE is

CCTE D,α (Y, X) := E[Y | X ∈ L D (α)], α > 0, (1.3)
where L D (α) = x ∈ R d : D(x, P X ) ≤ α is the α-depth-based lower level set, viewed as a risk region. The use of such level sets is motivated by the monotonicity relative to deepest point property of a depth. Indeed, this key property induces closely associated multivariate quantiles independent of a direction (see Section 3.1 for a precise denition of depth functions).

The layout of the paper is to address the problem of estimating the Covariate-Conditional-Tail-Expectation CCTE D,α for critical levels α meaning α := α n → 0 as the sample size n goes to innity. Unsurprisingly, this leads to study the behavior of the depth level sets as α → 0. [START_REF] He | Estimation of extreme depth-based quantile regions[END_REF] have recently studied extreme quantile regions induced by the halfspace depth and valorized their application in a real world nancial application using daily international market price indices. In this paper, we can reformulate the problem as: to what extent the event X ∈ L D (α) can be "rare" to estimate the CCTE? In other words, what is the lowest reachable value of α allowing to estimate CCTE D,α ? Going beyond this "minimal" value of α (if it exists) means considering yet unobserved rare events and meets the context of extreme value theory which is not in the scope of this paper. Even though links between extremevalue theory and risk measures have already been investigated [START_REF] Embrechts | Extremes and integrated risk management[END_REF][START_REF] Mcneil | Quantitative risk management: concepts, techniques and tools-revised edition[END_REF], the estimation of risk measures is usually achieved in the statistical literature for xed values of α (see for instance [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF][START_REF] Eh Deme | Reduced-bias estimator of the conditional tail expectation of heavy-tailed distributions[END_REF]). Nevertheless, one could not omit to mention that extreme quantiles estimation had become a very active area of research. We can cite the following works: [START_REF] Gardes | Estimating extreme quantiles of weibull tail distributions[END_REF] focused on Weibull tail distributions, [START_REF] El Methni | Estimation of extreme quantiles from heavy and light tailed distributions[END_REF] proposed a study for heavy and light tailed distributions and [START_REF] Gong | Estimation of extreme quantiles for functions of dependent random variables[END_REF] was interested in functions of dependent variables. For a further review on extreme value theory, we refer to [START_REF] De | Approximation of high quantiles from intermediate quantiles[END_REF][START_REF] Tang | On the haezendonckgoovaerts risk measure for extreme risks[END_REF][START_REF] Usseglio-Carleve | Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors[END_REF] and references therein. Furthermore, we can mention the work of [START_REF] Je Methni | Non-parametric estimation of extreme risk measures from conditional heavy-tailed distributions[END_REF] who introduced the Conditional -Tail-Moment as a tool that enables to estimate all classical risk measures based on conditional moments such as Conditional Tail Expectation, Conditional Value-at-Risk or Conditional Tail Variance (see [START_REF] Denuit | Actuarial theory for dependent risks: measures, orders and models[END_REF]) and studied their behavior for low losses.

The paper is organized as follows, Section 3 is devoted to our main results. In section 3.1, we provide depth-based CCTE D,α consistency when α → 0 in a general setting. In Section 3.3, we focus on this convergence in the case of h-mode depth under the multivariate Gaussian model, while in Section 3.2 we provide CCTE convergence for halfspace and simplicial depths in the univariate case. Section 4 is devoted to some illustrations and simulations. Finally, a conclusion part can be found in Section 5, while the proofs of the main results are postponed to Section 6.

Notations

In the sequel, we denote by N the set of positive integers. The maximum and minimum of two reals a and b is denoted respectively by a ∨ b = max(a, b) and a ∧ b = min(a, b) and for any sets A, B, their symmetric dierence is written as A∆B = (A\B) ∪ (B\A). We consider R d endowed with the Euclidean norm ∥ • ∥ and its unit sphere S d-1 := u ∈ R d : ∥u∥ = 1 . For any d-dimensional real vector x, we denote by t x its transpose.

When dealing with random variables, we assume that they are dened on a common underlying probability space (Ω, A , P), and that R d , d ≥ 1, is equipped with the Borel σ-algebra B(R d ). Let P := P(R d ) be the set of all probability measures on R d . Furthermore, for any real number q > 0, let L q (Ω) := L q (Ω, A , P) be the vector space of real-valued random variables U for which E[|U | q ] < +∞. The notation F Z designates the cumulative distribution function (or c.d.f.) of Z in R d , d ≥ 1, (univariate or multivariate, depending on the context).

When there is no ambiguity, we denote by P the law P X of the random vector X which expresses as P (A) := P X (A) = P(X ∈ A). Analogously, P (Y,X) designates the joint law of the

vector (Y, X) ∈ R × R d .
Recall that, given two real-valued sequences (f (n)) n≥1 and (g(n)) n≥1 , asymptotic equivalence between f (n) and g(n) when n → ∞ symbolically writes as f (n) ∼ g(n) and that a sequence (X n ) n∈N of real random variables converges in probability to a r.v. X, X n

P ---→ n→∞ X, if for any ε > 0, lim n→∞ P (|X n -X | ≥ ε) = 0.
Finally, let (Z α ) α∈(0,1] , be a set of random variables and (u α ) α∈(0,1] be a deterministic set of positive real numbers, the classical stochastic boundedness is dened by

Z α = O P (u α ) = O P,α (u α ) def ⇐⇒ ∀ ε > 0, ∃ M ε , A ε > 0, ∀ α < A ε , P (|Z α | ≥ M ε • u α ) ≤ ε.
Given an i.i.d sample Sn := ( Xi ) 1≤i≤n of size n ∈ N with R d -valued observations from P ∈ P, we denote by Pn := 1 n n i=1 δ Xi the empirical measure based on this nite sample. For notational convenience, we introduce E P the mathematical expectation under P , and 

E Sn [Z] := E[Z| X1 , • • • , Xn ] the conditional expectation of Z knowing X1 , • • • , Xn .

Consistency of depth-based CCTE for low levels

In this section, we study the asymptotic behavior of general depth based CCTE D,α for low levels α (α ↘ 0), by means of a plug-in estimator of the level set. We investigate sucient conditions, mainly in terms of regularity of the depth function, for which the CCTE speed rate is driven. Then, we derive explicit rates for several examples of depths: the univariate case of Tukey and Simplicial depths for absolutely continuous distributions and the d-dimensional h-mode depth (see [START_REF] Cuevas | On the use of the bootstrap for estimating functions with functional data[END_REF]) under the Gaussian model. [START_REF] Liu | On a notion of data depth based on random simplices[END_REF], Mahalanobis depth (Mahalanobis, 1936), the zonoid depth (Koshevoy and Mosler, 1997) and others. These depths may dier in several aspects, mainly in the shape of the level sets or the point of maximum depth. Nevertheless, most of them share desirable properties that can be seen as sensible requirements every depth should meet and can be taken as a denition of the notion of depth.

In order to remain consistent with our previous work [START_REF] Armaut | Depth level set estimation and associated risk measures[END_REF], we follow the axiomatization of multivariate depth function as stated in [START_REF] Dyckerho | Data depths satisfying the projection property[END_REF] (Denition 1 in [START_REF] Dyckerho | Data depths satisfying the projection property[END_REF]), which is an alternative to the original denition of depth introduced by Zuo and Sering (2000) (Denition 2.1 in [START_REF] Zuo | General notions of statistical depth function[END_REF]).

(D1) Ane invariance: for any P X ∈ P, b ∈ R d , and any regular size d matrix A, D(Ax + b, P A X+b ) = D(x, P X ). (D2) Upper semicontinuity: for any P X ∈ P and any xed level α > 0, the upper level set x ∈ R d : D(x, P X ) ≥ α is closed. (D3) Monotone on rays: for each P X ∈ P, each x 0 of maximal depth i.e. D(x 0 , P X ) = sup x∈R d D(x, P X ) and each r ∈ S d-1 , the function λ ∈ R + → D(x 0 + λr, P X ) is monotone decreasing.

(D4) Vanishing at innity: D(x, P X ) → 0 as ∥x∥ → ∞, for each P X ∈ P.

Property D1 states that a depth function does not depend on the underlying coordinate system or, in particular, on the scales of the underlying measurements. D2 is a regularity condition, while D3 entails that whenever a point x ∈ R d moves away from the point of maximum depth along any xed ray through the center, the depth at x decreases monotonically. In all the following, we consider (Y, X) ∈ R × R d s.t. Y is an integrable r.v. depending on a variable X which is distributed as P ∈ P.

We dene the α-lower level set of D for the probability P by

L D (α) = L D (α, P ) := x ∈ R d : D(x, P ) ≤ α .
The depth-based Covariate-Conditional-Tail-Expectation at level α is then dened by (see Denition 3.1 in [START_REF] Armaut | Depth level set estimation and associated risk measures[END_REF]):

CCTE D,α (Y, X) := E[Y | X ∈ L D (α)].
We also introduce the empirical version of these notions. Let n 1 , n 2 ≥ 1 and Sn 1 := ( Xi ) i=1,..,n 1 be an i.i.d n 1 -sample from P = P X , and S n 2 := ((Y i , X i )) i=1,..,n 2 be an i.i.d n 2 -sample from P (Y,X) , s.t. Sn 1 and S n 2 are independent. We dene the plug-in estimator of the α-lower level set based on the i.i.d sample Sn 1 by

L n 1 (α) = L D (α, Pn 1 ) := x ∈ R d : D n 1 (x) := D(x, Pn 1 ) ≤ α ,
where Pn 1 is the empirical measure based on the sample Sn 1 .

Based on the sample Sn 1 and S n 2 , the estimator of the depth-based Covariate-Conditional-Tail-Expectation at level α is given by:

CCTE n 1 ,n 2 D,α (Y, X) := n 2 i=1 Y i 1 X i ∈Ln 1 (α) n 2 i=1 1 X i ∈Ln 1 (α) , (3.1) 
with the convention 0/0 = 0.

Our main goal is to study the quality of the estimation of CCTE D,α by CCTE

n 1 ,n 2 D,α (Y, X)
as α goes to zero, in other words, we are interested in high risk depth regions as the level is no more xed. Thus, subsequently we want to confront asymptotically small α with large n 1 , n 2 . therefore we will consider the size of the samples as functions depending on α and diverging to innity when α tends to 0:

n 1 := n 1 (α), n 2 := n 2 (α), s.t. lim α→0 n 1 (α) = lim α→0 n 1 (α) = 0.
Our main result, Theorem 3.2, links convergence of the CCTE D,α estimator to the quality of our depth estimator D n 1 which is driven by assumption (H0). Assumption (H0). Let D : R d × P → R be a depth and X be a d-dimensional random vector with law P . Denoting D(x) := D(x, P ), we assume:

(i) There are some constants 0 < c, c 0 < ∞ s.t. for any ε > 0, for n 1 large enough,

sup x∈R d P (|D n 1 (x) -D(x)| > ε) ≤ ce -c 0 n 1 ε 2 . (ii) F D(X) (0) = 0 and F D(X)
is of class C 1 and does not cancel (except in 0) on a neighborhood of zero.

Remark 3.1. In the above assumption, one should mention that the constants c and c 0 can depend on the dimension d according to the choice of the depth D as it will be seen later in the examples section.

In the spirit of [START_REF] Armaut | Depth level set estimation and associated risk measures[END_REF], Theorem 3.2 ensures CCTE D,α to be consistent under (H0). But here, the parameter α goes to 0 as n 1 and n 2 go to innity. The mappings u, v and w introduced in the theorem below as speed rates of the estimator highlight the links between the convergence speed of the dierent parameters.

Theorem 3.2. Let P ∈ P. Suppose that Assumption (H0) is met and there

exists γ ∈ [1/2, 1] s.t. Y ∈ L 1 1-γ . Let also u α,n 2 := n 1/2 2 F D(X) (α) 2-γ , v α,n 1 := F D(X) (α)e c 0 γn 1 α 2 , w α,n 1 := n γ/2 1 F D(X) (α) max 0≤t≤2α F ′ D(X) (t) -γ . If u α,n 2 , v α,n 1 , w α,n 1 → ∞ , it holds CCTE n 1 ,n 2 D,α (Y, X) -CCTE D,α (Y, X) = O P,α (u -1 α,n 2 ∨ v -1 α,n 1 ∨ w -1 α,n 1 )
. Note that the above result does not need any property of a depth to be satised, except for giving an interpretation of CCTE D,α as a tail-conditioned expectation. So, replacing the depth by any given measurable function satisfying assumptions of Theorem 3.2 does not alter its conclusion. From assumptions of the above theorem, one needs to study the regularity of F D(X) and its density function f D(X) in a neighborhood of zero in order to derive the explicit convergence rates v α,n 1 and w α,n 1 . The limitations of our model will be thereafter discussed for h-mode depth and the one dimensional case of Tukey and simplicial depths (see Sections 3.2 and 3.3).

Recall that the limits we are studying involve α going to zero together with sample sizes n 1 and n 2 going to innity. Since F D(X) is C 1 and F D(X) (0) = 0, F D(X) (α) ≤ Cα for some constant C > 0 in a neighborhood of zero. As an outcome of γ ∈ [1/2, 1], as long as regularity conditions of Theorem 3.2 are fullled, the consistency for our CCTE D,α estimator is provided with at most a rate α -1 (n

-1/2 1 ∨ n -1/2 2
) regardless of the underlying distribution. Notice further whenever F ′ D(X) (0) is positive, using a rst order Taylor expansion, it holds

F D(X) (α) ∼ F ′ D(X) (0)α. In this case, v α,n 1 - → ∞ and w α,n 1 - → ∞ together is equivalent to n 1 ≫ α -2 log(α -1 ) ∨ α -2/γ , while u α,n 2 - → ∞ is equivalent to √ n 2 α 2-γ - → ∞. Moreover, when n 1 ≫ α -2 log(α -1 ) ∨ α -2/γ , e -c 0 γn 1 α 2 ≪ n -γ/2 1
and the case F ′ D(X) (0) > 0 nally leads to the following convergence rate for the estimator of CCTE D,α :

Corollary 3.3. Let P ∈ P and Y ∈ L 1 1-γ for some γ ∈ [1/2, 1]. Suppose that Assumption (H0) is met and that F ′ D(X) (0) > 0. If lim α→0 n 1/2 2 α (2-γ) = lim α→0 n γ/2 1 α = ∞ then, it holds CCTE n 1 ,n 2 D,α (Y, X) -CCTE D,α (Y, X) = O P 1 n 1/2 2 α (2-γ) ∨ 1 n γ/2 1 α .
Remark that, in this case, the rate does not depend on the constant c 0 appearing in Assumption (H0)(i).

3.2. Tukey, simplicial and Mahalanobis depths. In the current section we focus on the so-called halfspace depth or Tukey depth (1975) (see [START_REF] Zuo | General notions of statistical depth function[END_REF]), as well as the simplicial depth introduced by [START_REF] Liu | On a notion of data depth based on random simplices[END_REF], in the one dimensional case for absolutely continuous distributions. Our aim is to check assumptions of Theorem 3.2, namely (H0) (i)-(ii), for both depths and derive their respective CCTE rate of convergence.

Example 3.4 (Tukey depth).

The halfspace depth is dened by

∀ ∈ R d , HD(x, P ) := inf u∈S d-1 P P (⟨u, x⟩ ≥ ⟨u, X⟩)
or equivalently HD(x, P ) := inf

H∈H , x∈H P (H),
where H is the set of all closed half-spaces in R d . A natural estimator of the halfspace depth is then given by HD n 1 (x) := HD(x, Pn 1 ) = inf

H∈H , x∈H

Pn 1 (H),

where we recall that Pn 1 is the empirical measure based on a sample of size n 1 with law P.

Remark rst that for any ε > 0, sup

x∈R d P (|D n 1 (x) -D(x)| > ε) ≤ P (∥D n 1 -D∥ ∞ > ε)
and in the Tukey depth case one has

P (∥HD n 1 -HD∥ ∞ > ε) = P ∥ Pn 1 -P ∥ H > ε ,
where

∥ Pn 1 -P ∥ H := sup H∈H | Pn 1 (H) -P (H)|.
From the work of [START_REF] Zuo | On the limiting distributions of multivariate depth-based rank sum statistics and related tests[END_REF], it is known that H is a permissible class of sets with polynomial discrimination (see Section 4 in [START_REF] Zuo | On the limiting distributions of multivariate depth-based rank sum statistics and related tests[END_REF] with denitions therein). Then, for any ε > 0 and M > 0,

∀n 1 ∈ N * , P ∥ Pn 1 -P ∥ H > ε ≤ K exp -n 1 (2 -M )ε 2
for some suciently large constant K depending only on M and H . Taking M = 1, one get the desired assumption (H0)(i) for any given distribution. Following the notations of assumption (H0), notice here that the corresponding constant c 0 := 2 -M does not depend on the dimension d.

From now on, we suppose d = 1, and the law P is absolutely continuous. Thus, HD(x, P ) =

HD(x) = F (x) ∧ (1 -F (x))
, where F is the c.d.f associated to r.v. X distributed as P . Since

F (X) ∼ U ([0, 1]), we have HD(X) ∼ U ([0, 1/2]) (where U ([a, b]) is the uniform distribution on the interval [a, b]). So that F HD(X) is of class C 1 on [0, 1/2) and F ′ HD(X) (0) = 1 ̸ = 0.
In addition, F HD(X) (0) = 0 and Assumption (H0)(ii) is fullled.

Finally, from Corollary 3.3, the convergence of the estimator of CCTE HD,α is in

O P n -1/2 2 α -(2-γ) ∨ n -γ/2 1 α -1 .
Example 3.5 (Simplicial depth).

The simplicial depth ( [START_REF] Liu | On a notion of data depth based on random simplices[END_REF]) is dened by

∀x ∈ R d , SD(x, P ) = P(x ∈ S[X 1 , . . . , X d+1 ]) (3.2)
where X 1 , . . . , X d+1 is a (d + 1)-sample with distribution P and

S[x 1 , . . . , x d+1 ] := d+1 k=1 w k x k d+1 k=1 w k = 1 and w k ≥ 0, k = 1, . . . , d + 1
is the d-dimensional simplex whose vertices are x 1 , . . . , x d+1 ∈ R d , in other words, the convex hull of those d + 1 points. An unbiased estimator of SD(x) is a U -statistic with kernel h x (x 1 , . . . , x d+1 ) = 1 x∈S[x 1 ,...,x d+1 ] and of degree d + 1 given by:

SD n 1 (x) := SD(x, Pn 1 ) = n 1 d + 1 -1 1≤i 1 <...<i d+1 ≤n 1 1 x∈S[X i 1 ,...,X i d+1 ] , (3.3) 
Let us rst note that assumption (H0)(i) is satised in case of simplicial depth in view of Hoeding's inequality for U -statistics (c.f. [START_REF] Hoeding | Probability inequalities for sums of bounded random variables[END_REF]). More precisely, for any P ∈ P and ε > 0,

∀x ∈ R d , P (| SD(x, P ) -SD n 1 (x)| ≥ ε) ≤ 2e - n 1 ε 2 2(d+1) 2 ,
with the upper bound being independent of x ∈ R d . With the notations of assumption (H0), observe that c = 2 while c 0 = 1/(2(d + 1) 2 ) depends on the dimension. When d = 1 and P is absolutely continuous w.r.t the Lebesgue measure on R, assumption (H0)(ii) is met. Indeed, some computations settle SD(x) := SD(x,

P ) = 2F (x)(1 -F (x)),
with F being the c.d.f of X ∈ R under P . For t ∈ (0, 1/2), as F (X) ∼ U(0, 1),

P[SD(X) ≤ t] = P F (X) - 1 2 ≥ 1 4 - t 2 1 2 = 1 -(1 -2t) 1 2 .
Hence,

F SD(X) is of class C 1 on [0, 1/2) and for t ∈ [0, 1/2), F ′ SD(X) (t) = (1 -2t) -1 2 so F ′ SD(X) (0) = 1 ̸ = 0. Again, Assumption (H0)(ii) is fullled and from Corollary 3.3 O P n -1/2 2 α 2-γ ∨ n -γ 2 1 α -1 .
Example 3.6 (The Mahalanobis depth). The Mahalanobis depth (see [START_REF] Zuo | General notions of statistical depth function[END_REF]) is dened, for any distribution with nite variance, by:

MHD(x) := MHD(x, P X ) = 1 1 + d(x, µ) 2 ,
where µ and Σ are resp. the mean vector and covariance matrix of X ∈ R d and

d 2 (x, µ) := t (x -µ)Σ -1 (x -µ) is the squared Mahalanobis distance. When X ∼ N (µ, Σ) is a d-dimensional Gaussian random vector, it is known that d(X, µ) 2 is a chi-squared distribution χ 2 d . So, for any α ∈ (0, 1), F MHD(X) (α) = P(1/α -1 ≤ χ 2 d ).
Using the density function of a χ 2 d r.v. it yields

F MHD(X) (α) = γ d 2 , α 2 Γ d 2 ,
where γ and Γ are respectively the lower incomplete gamma and gamma functions. So that,

F MHD(X) (α) = 1 Γ d 2 α 2 0 t d 2 -1 e -t dt.
The integral on the right-hand side of the above equality is of class C ∞ on (0, 1) as a function of α, so that F MHD(X) is of class C ∞ on (0, 1) and (H0)(ii) is satised in this particular case. As long as assumption (H0)(i) is concerned, we want to derive a kind of large deviation inequality for the M HD estimator in this special framework. Let ε > 0.

Denoting d2 n (x) := t (x - X n ) Σ-1 n (x -X n ) and M HD n (x) := M HD(x, P n ) = 1/(1 + d2 n (x)), it holds P(|M HD n (x) -M HD(x)| ≥ ε) = P |d 2 (x, µ) -d2 n (x)| (1 + d 2 (x, µ))(1 + d2 n (x)) ≥ ε .
For the sake of simplicity, we consider the univariate framework d = 1, so that

P(|M HD n (x) -M HD(x)| ≥ ε) = P     x-µ ŝn 2 + 2(x-µ)(µ-Xn) ŝ2 n + Xn-µ ŝn 2 -x-µ σ 2 (1 + d 2 (x, µ))(1 + d2 n (x)) ≥ ε     .
Using the triangle inequality and the fact that the above denominator is bounded from below by one, we can bound the above probability by the sum of the following three terms

I+II + III := P X n -µ ŝn 2 ≥ ε 2 + P σ 2 (x -µ) 2 σ 2 (1 + d 2 (x, µ)) 1 ŝ2 n - 1 σ 2 ≥ ε 4 + P σ 2|x -µ||µ -X n | σ(1 + d 2 (x, µ))ŝ 2 n ≥ ε 4 . Since (x -µ) 2 σ 2 (1 + d 2 (x, µ)) ≤ 1 and 2|x -µ| σ(1 + d 2 (x, µ)) ≤ 1 it yields I + II + III ≤ P X n -µ ŝn 2 ≥ ε 2 + P σ 2 ŝ2 n -1 ≥ ε 4 + P σ ŝn • |µ -X n | ŝn ≥ ε 4 .
(3.4)

Introducing the event σ 2 /ŝ 2 n -1 ≤ ε/4 , it is not dicult to show that III ≤ II + P |µ -X n | ŝn ≥ ε 4 1 + ε/4 . (3.5)
Hence, from (3.4) and (3.5), the problem reduces to controlling both I and II up to some ε in the considered probabilities. Under the Gaussian model, it is known that

X n -µ ŝ2 n n-1 ∼ T (n -1), (3.6 
)

nŝ 2 n σ 2 ∼ χ 2 n-1 , (3.7) 
where T (n -1) is the t-distribution with n -1 degrees of freedom.

Hence, by symmetry of the t-distribution, (3.6) and the above computations,

I ≤ 2P T (n -1) ≥ (n -1)ε/2 = 2Γ n 2 π(n -1)Γ n-1 2 ∞ √ (n-1)ε/2 1 + t 2 n -1 -n 2 dt. Since 1 + t 2 n-1 -n 2 ∼ n→∞ e -t 2
2 , observe that the right-hand side term of the above inequality is equivalent to

2 √ nπ ∞ √ (n-1)ε/2 e -t 2 2 dt
as n → ∞, of which an integration by part yields

I ≤ 2 √ π e -n ε 2 , (3.8) 
for n large enough. Similarly, manipulating the right-hand side term of (3.5) induces for large n

P |µ -X n | ŝn ≥ ε 4 1 + ε/4 ≤ 2 π e -n ε 4 √ 2 . (3.9)
With a bit of calculations together with (3.7), for any 0 < ε < 2 it holds

II ≤ P χ 2 n-1 ≤ n 1 + ε 4 + P χ 2 n-1 ≥ n 1 -ε 4 . (3.10) 
Using Markov inequality and the denition of a χ 2 n-1 -distribution, one can show that, for any λ ∈ (0, 1/2) and ε ∈ (0, 1),

P χ 2 n-1 ≥ n(1 + ε) ≤ e -[λn(1+ε)+ n 2 log(1-2λ)] .
The above upper bound is minimal at λ := ε/(2(1 + ε)). Hence, with a third order Taylor expansion of the logarithm function, we obtain 12 .

P χ 2 n-1 ≥ n(1 + ε) ≤ e -n ε2
Applying the latter inequality to the rst term of the right-hand side of (3.10) with ε := (ε/4)/(1 -ε/4) ∈ (0, 1) results in

P χ 2 n-1 ≥ n 1 -ε 4 ≤ e -nc 0 ε 2 , c 0 := 1/192.
Akin to the previous reasonings, we derive an analogous large deviation kind of inequality for

P χ 2 n-1 ≤ n 1+ ε 4 
in (3.10). Thus, assumption (H0)(ii) holds true for M HD in the univariate setting. The multivariate framework can be derived analogously along with the associated CCTE convergence speed-rate such like both of the previous examples.

3.3. Multivariate h-mode depth. In this section, we study the kernel depth, or h-mode depth, for a special class of kernels. Subsequently, under the Gaussian model, this example is fruitful because it allows to explicitly extract the law of D(X) under P in a multivariate framework. We will see that Assumption (H0) of Theorem 3.2 is checked in this setting.

Originally, in the literature, h-mode depth has been considered in innite dimension over the space of continuous real-valued functions on a compact interval [0, 1]. This depth was rst introduced by [START_REF] Cuevas | On the use of the bootstrap for estimating functions with functional data[END_REF]. It dened as follows

D h (x) := D h (x, P ) = E P [K h (∥x -X ∥)] , (3.11) 
where

K h (•) = 1 h K . h , h > 0, K(t) = 1 √ 2π e -t 2 2
is the standard Gaussian kernel and ∥ • ∥ is the euclidean norm on R d . A natural estimator of (3.11) is given by

D h,n 1 (x) := D h (x, Pn 1 ) = 1 n 1 n 1 i=1 K h (∥x -Xi ∥). (3.12)
Observe rst that Assumption (H0)(i) holds true for D h for any xed law P . Indeed, the K h (∥x -Xi ∥) i are i.i.d. and take values in the interval (0, 1/(h √ 2π)] so Hoeding's inequality yields the result with c 0 = 2πh 2 . This constant has a hidden dependency on d since h is a smoothing bandwidth parameter depending asymptotically on d in practice. The latter has been widely studied in the kernel estimation literature of the density function (see for instance [START_REF] Chen | A tutorial on kernel density estimation and recent advances[END_REF][START_REF] Giné | Rates of strong uniform consistency for multivariate kernel density estimators[END_REF][START_REF] Giné | Uniform central limit theorems for kernel density estimators[END_REF] and references therein).

In all of the following, we x a d ≥ 2 and we denote by 

P m,Σ := P ∈ P|P law = P N (m,Σ) s.t. m ∈ R
g : z ∈ R → log Cd,h z d-2 2 •   [0,π] d-2 ×[0,2π] z Cd,h c(θ) u(θ)dθ   • 1 (0, Cd,h ) (z),
where Cd,h = max x∈R d D h (x, P ), θ := (θ 1 , . . . , θ d-1 ) and

c(θ) := h 2 d k=1 (cos 2 (θ k )/λ k ) k-1 j=1 sin 2 (θ j ) and u(θ) := d-2 k=1 sin d-2-k (θ k ).
Here 0 j=1 = 1 by convention and θ d = 0 (so that cos(θ d ) = 1). We have F ′ D h (X) (t) = g(t) and it is easy to show that g is continuous on R Hence, F D h (X) has C 1 -regularity.

Recall, from Theorem 3.2, that deriving the CCTE D,α convergence means studying the sequences u α,n 2 , v α,n 1 , and w α,n 1 as α → 0. Note that for h-mode depth, f D h (X) (0) = 0 when X ∼ P m,Σ is a Gaussian vector, so that the reasoning used for Tukey and simplicial depths does not apply and one needs to compute directly the behavior of those rates.

A key ingredient in the sequel is the boundedness of θ → c(θ) uniformly on θ over [0, π] d-2 × [0, 2π]. In point of fact, denoting

β := h 2 max 1≤i≤d λ i and β := h 2 min 1≤i≤d λ i for any θ, it holds 0 < β ≤ c(θ) ≤ β. (3.13)
From the analytical expression of g, one can see that there exists a positive constant k 1 > 0 (depending on h, d, P and which can change from a line to another), s.t. for α small enough

F D h (X) (α) = k 1 θ α z=0 z Cd,h c(θ) log Cd,h z d-2 2 u(θ)dzdθ ≥ k 1 log Cd,h α d-2 2 θ α z=0 z Cd,h c(θ) u(θ)dzdθ (d ≥ 2)
where the above lower bound is driven by monotonicity of z → log( Cd,h /z) over (0, α].

Integrating w.r.t. z this previous lower bound, together with equation (3.13), it yields

F D h (X) (α) = k 1 log Cd,h α d-2 2 θ 1 c(θ) + 1 α Cd,h c(θ)+1 u(θ)dθ ≥ k 1 log Cd,h α d-2 2 θ α Cd,h c(θ)+1 u(θ)dθ (3.14)
Using inequality (3.14), the fact that α/ Cd,h ∈ (0, 1) and c(θ

) ≤ β, v α,n 1 = F D h (X) (α)e c 0 γn 1 α 2 ≥ Cα β+1 log Cd,h α d-2 2 e 2πh 2 γn 1 α 2
where C > 0 is some constant (depending on h, d and P ).So, our rst requirement is

α 1+β e c 0 γn 1 α 2 ≫ 1 ⇐⇒ n 1 ≫ α -2 log(α -1 ). (3.15) 
In order to check the assumption made upon w α in Theorem 3.2, it remains to provide an upper bound on the density g over [0, 2α] which permits to determine the regime on α. Consequently, we study the function

H : t ∈ (0, Cd,h ) → log Cd,h t d-2 2 t Cd,h c(θ)
and see that it is non-decreasing on (0, z * θ ] and non-increasing on [z * θ , Cd,h ), where z *

θ := Cd,h exp [-(d -2)/(2c(θ))] ≥ Cd,h exp[-(d -2)/(2 β)], d ≥ 2.
Thus, for α small enough, the bound 2α ≤ Cd,h exp[-(d -2)/(2 β)] holds for any θ and the function H and, therefore, the function g are non-decreasing on [0, 2α] and g attains its maximum at 2α. So, for some constant k 2 > 0 (which can change in the sequel) and for small α

max 0≤t≤2α F ′ D h (X) (t) = g(2α) = k 2 log Cd,h α d-2 2 θ α Cd,h c(θ) u(θ)dθ. (3.16)
Recalling the notations of Theorem 3.2, with both equations (3.14) and (3.16), we may write

w α,n 1 ≥ k 2 • n γ 2 1 α log 1 α (d-2)(1-γ) 2   θ α Cd,h c(θ) u(θ)dθ   1-γ ≥ k 2 • n γ 2 1 α 1+β(1-γ) log 1 α (d-2)(1-γ) 2
.

So, our second requirement is the regime

α ≫ n - γ 2(1+β(1-γ)) 1 .
(3.17)

Recall with equation (3.14)

u α,n 2 ≥ k 1 • √ n 2 log Cd,h α (d-2)(2-γ) 2   θ α Cd,h c(θ)+1 u(θ)dθ   2-γ ≥ k 1 • √ n 2 α (1+β)(2-γ) log Cd,h α (d-2)(2-γ) 2
.

Finally, we also require that

α ≫ n - 1 2(1+β)(2-γ) 2 .
(3.18)

Combining all three conditions (3.15), (3.17) and (3.18) and noting that in this case too, for any value of γ, v α,n 1 ≫ w α,n 1 , we obtain explicit convergence rate for h-mode based CCTE.

Corollary 3.7 (d ≥ 2). Let d ≥ 2, P ∈ P m,Σ and suppose that Y ∈ L 1 1-γ for some γ ∈ [1/2, 1].
Assume that α decreases to zero and

n 1 (α) ≫ α -2 log(α -1 ) ∨ α -2 γ (1+β(1-γ)) and n 2 (α) ≫ α -2(1+β)(2-γ) . Then, for any h > 0, CCTE n 1 ,n 2 D h ,α (Y, X) -CCTE D h ,α (Y, X) = O P u -1 α,n 2 ∨ w -1 α,n 1 ,
where

u α,n 2 = n 1 2 2 α (1+β)(2-γ) log α -1 (d-2)(2-γ) 2 and w α,n 1 = n γ 2 1 α 1+β(1-γ) log α -1 (d-2)(1-γ) 2
.

Simulations

In this section we illustrate the consistency of our estimator of the depth based CCTE for low levels as described in Theorem 3.2 (Section 3.1), namely in the case of h-mode depth under the multivariate Gaussian model (see Corollary 3.7 in Section 3.3). Hence, we aim at exhibiting the corresponding CCTE estimator's speed rate. In addition to the study of the convergence of our CCTE estimator based on h-mode depth, we have chosen to add a study with Mahalanobis depth (MHD), for which we have no theoretical result. Even if in the onedimensional case we obtained theoretical results with halfspace and simplicial depths, MHD is better adapted (from a computational point of view) to the multi-dimensional case.

Note that Theorem 3.2 depicts probability bounds, whereas here in practice we perform L 1estimation as a matter of simplicity. Hence, we are actually illustrating a stronger result than Theorem 3.2 (and Corollary 3.7 as well).

Recall further that consistency of our CCTE estimator CCTE n D,α is studied when α → 0 (high risk levels) along with n → ∞ (sample size going to innity, where we consider thereafter n = n 1 = n 2 ). Hereafter, we present the detailed setting.

In the denition of CCTE

D,α (Y, X) = E[Y | X ∈ L D (α)],
we choose a cost variable Y dependent on a bivariate vector of risk factors X

:= (X 1 , X 2 ) ∈ R 2 of the form : Y = ∥ X ∥ 2 + ε, where ∥ X ∥ = (|X 1 | 2 +|X 2 | 2 ) 1/2
and ε ∼ N (0, σ 2 ), σ 2 = 0.002, is a Gaussian noise independent from X. In our simulations, we choose two types of bivariate samples:

• Setting S1: We sample dependent risk factors X from centered Gaussian vectors with covariance matrix Σ X,1 = 5 1/2 1/2 4 .

• Setting S2: The risk factors are sampled from Frank copulas with Gumbel marginals. More precisely, we consider dependent risk factors X 1 and X 2 via a bivariate Frank copula of parameter θ := -5 with Gumbel marginals of parameter (µ 1 , β 1 ) = (0, 0.25) and (µ 2 , β 2 ) = (-0.5, 0.25) respectively (Figure ). The bivariate Frank copula of parameter θ ̸ = 0 is dened by:

C θ (u, v) := - 1 θ log 1 + 1 -e -θu 1 -e -θv e -θ -1 , (u, v) ∈ R 2
so that the previous sample has a c.d.f given by:

F (x 1 , x 2 ) := C θ=-5 (F µ 1 ,β 1 (x 1 ), F µ 2 ,β 2 (x 2 )),
where

F µ,β (x) := exp -e µ-x β
is the univariate c.d.f. of a Gumbel distribution of parameter (µ, β).

In these two settings, the cost variable Y admits moments of any order so that the integrability parameter γ of Y is such like γ ≈ 1 (c.f. notations of Theorem 3.2).

As a matter of visualization, Figure 1 and 2 below display the level set contours based on MHD and 1-mode depth respectively for each selected data sample. In both frameworks, the level sets are ellipsoids around the mean vector whether MHD or 1-mode depth is concerned. Frank copula with Gumbel marginals 

E[Y | X ∈ L D (α)] = L D (α) ∥x∥ 2 f X (x)dx L D (α) f X (x)dx .
In setting S1, the above quantity is computed when D = D h=1 and D = MHD. However, due to the complexity of the computation of the density in the setting S2, we perform a Monte Carlo procedure to x the "true" value of the CCTE MHD,α (without noise), that is:

10 8 i=1 ∥X i ∥ 2 1 X i ∈L MHD (α) 10 8 i=1 1 X i ∈L MHD (α)
. Note that we can compute the theoretical MHD-level sets since this depth depends only on the mean and the covariance matrix of X whose values are given in this second setting. Nevertheless, when D = D h=1 , an estimation of the level sets is needed with a view to approximate the theoretical CCTE.

Subsequently, we provide L 1 -estimation for the CCTE D,α as follows:

CCTE n D,α := n i=1 Y i 1 X i ∈Ln(α) n i=1 1 X i ∈Ln(α)
.

The latter CCTE estimations are repeated 400 times of which we provide the mean value representing one estimated CCTE value. In Figure 3 below, we provide the empirical densities (based on 200000-samples) of the depth values under each chosen framework (S1 or S2). This allows to draw an idea of the levels range and thus to choose the CCTE levels α according to each setting. Notice we selected levels range with α as close to zero as possible but where the density is not zero. Observe on the top-right graph of Figure 3, the density is non-zero at values of α close to zero (of order 10 -6 ) under model S1 for D h=1 . This means one can still observe data at very low risk levels α and thus provide CCTE estimations. , where α0 is a suciently small level based on the data and αmax is the maximum level observed.

Theoretical CCTE D,α

Setting S1 Setting S2 From Corollary 3.3, under some regularity conditions of the law of D(X) one requires generally n ≫ α -2 log(α -1 ) so that CCTE is consistent with d n,α := αe nα 2 ∧ α √ n convergence rate. For the sake of comparison, we perform estimations with those rates even though we haven't derived theoretical results for MHD.

α D = MHD α D = D h=1 α D = MHD α D = D h=1 0.
As long as h = 1-mode depth is concerned, according to Corollary 3.7, we require n ≫ ((

1 + β)/(2π))α -2 log(α -1 ) ∧ α -2(1+β) = α -2(1+β) , with associated c n,α := α (1+β) e 2πnα 2 ∧ √ nα (1+β)
convergence rate. We recall that β = h 2 / min i=1,2 λ i where (λ i ) i are the eigenvalues of Σ X,1 , so under model S1, one has β ≈ 0.2637.

Sequentially, the absolute error

CCTE n D,α -CCTE D,α
decays to zero at most with d n,α -speed rate (see Corollary 3.3 or/and Section 3.2) or c n,α (see Corollary 3.7) according to the data setting. For readability, we outline the previously described regimes in Table 2 below.

Regime on α CCTE speed rate

D h (•, "S1") n ≫ α -2(1+β) , β ≈ 0.2637 c n,α = α (1+β) e 2πnα 2 ∧ √ nα (1+β) MHD(•, "S"), S = S1,S2 n ≫ α -2 log(α -1 ) d n,α = αe nα 2 ∧ α √ n Table 2.
Critical regimes summary about the CCTE n D,α convergence. First row of the table reects Corollary 3.7, while the second is just an observation of the data based on Corollary 3.3.

From another perspective, one can study the behavior of the previous CCTE relative mean absolute error as a function of the parameter of risk α. For each chosen level α, we choose one arbitrarly large sample size n in convenience with the regimes outlined in Tables 3 and4. Introducing several regimes, the layout of our methodology is set in Tables 3 and4 in agreement with each sample and depth. As one can expect, in both frameworks displayed in Figures 4, 5, 6 and 7, the CCTE RMAE is more or less non-increasing or constant as the sample size increases for each xed level. Now, another interesting study is the behavior of the previous CCTE RMAE as a function of α with xed chosen sample sizes n. Note that we chose several decreasing levels α w.r.t. each achievable value of estimated depth as seen with the empirical densities of the depths in gure 3. This is described in Figures 8 and9 2 and3). 2).

α n ≫ f lim (α) := α -2 log(α -1 ) n ≫ f 1 (α) := α -3 n ≫ f 2 (α) := α -4 0.8 n ≫ 1 n ≫ 2 n ≫ 3 0.2 n ≫ 40 n ≫ 125 n ≫ 625 0.15 n ≫ 84 n ≫ 300 n ≫ 2000 0.1 n ≫ 230 n ≫
α n ≫ g lim (α) := α -2(1+β) , β = 0.2637 n ≫ g 1 (α) := α -3.5 n ≫ g 2 (α) := α -4 0.07 n ≫ 830 n ≫ 11000 n ≫ 42000 0.05 n ≫ 1940 n ≫ 35800 n ≫ 160000 0.025 n ≫ 11000 n ≫ 400000 n ≫ 2560000 0.01 n ≫ 115000 n ≫ 10 7 n ≫ 10 8
With the notations of Tables 3 and4, notice that we used the critical regimes f lim (under framework S2) and g lim (under framework S1) when working with 1-mode depth. Indeed, this is because we only derived theoretical results for 1-mode depth under the multivariate Gaussian model S1. However, one would expect to see the critical convergence regime of the CCTE estimator with f lim and g lim for MHD and 1-mode depth resp. But surprisingly, it seems that at some point those critical regimes perfom better than the others sometimes (g lim performs better than g 1 for instance, Figure 8, while f lim performs better than f 1 in framework S2 for MHD, Figure 9). Besides, observing Figure 3, 1-mode depth values brutally decrease around α = 0.3 under setting S2. This can be one explanation to the critical behavior of the CCTE RMAE in the left graph of Figure 9. Regardless of these considerations, it is dicult to completely conclude our study since population level sets/CCTE are not systematically at hand and theoretical results haven't always been precisely derived.

Conclusion

In this paper, we provided convergence results for our depth-based risk measure CCTE D,α estimator for critical levels of risk α under an unknown distribution. This meant studying this risk measure for levels α := α n decaying to zero as the sample size n → ∞. We gave some examples which were, unfortunately, quite limited in terms of dimension and/or depth function and/or statistical model, since the main diculty came from the study of the distribution of the depth under the unknown law. So that, this remains an open problem. Furthermore, the comparison of the CCTE D,α with other existing risk measures in the literature (in terms of classical properties) is still an interesting and open question. 

CCTE n 1 ,n 2 D,α (Y, X)-CCTE D,α (Y, X)| = E Sn 2 [Y | X ∈ L n 1 (α)] -E[Y | X ∈ L D (α)] ,
by the following sum of two terms

E Sn 2 [Y | X ∈ L n 1 (α)] -E[Y | X ∈ L n 1 (α)] + |E[Y | X ∈ L n 1 (α)] -E[Y | X ∈ L D (α)]| .
As a consequence, the proof of Theorem 3.2 follows the steps of Theorem 3.2 of [START_REF] Armaut | Depth level set estimation and associated risk measures[END_REF] but with varying level α.This is precisely the object of Lemma 6.1 and 6.2 from which we obtain a convergence rate of order O

P (u -1 α,n 2 ∨ v -1 α,n 1 ∨ w -1 α,n 1 ), where u α,n 2 := n 1/2 2 F D(X) (α) 2-γ , v α,n 1 := F D(X) (α)e c 0 γn 1 α 2 , w α,n 1 := n γ/2 1 F D(X) (α) max 0≤t≤2α F ′ D(X) (t) -γ
. □ Lemma 6.1. Under assumptions and notations of Theorem 3.2, it holds

|E[Y | X ∈ L n 1 (α)] -E[Y |X ∈ L D (α)]| = O P (v -1 α,n 1 ∨ w -1 α,n 1 ).
Proof of Lemma 6.1. Note rst that the case γ = 1 (i.e. Y ∈ L ∞ ) is close to the case γ < 1

and is thus omitted. We begin by writing

ξ n 1 (α) := |E[Y | X ∈ L n 1 (α)] -E[Y | X ∈ L D (α)]| = E[Y 1 X∈Ln 1 (α) ] P (L n 1 (α)) - E[Y 1 X∈L D (α) ] P (L D (α))
.

By triangular inequality,

ξ n 1 (α) ≤ 1 P (L n 1 (α))P (L D (α)) P (L D (α)) E[Y 1 X∈Ln 1 (α) ] -E[Y 1 X∈L D (α) ] + |P (L D (α)) -P (L n 1 (α))| E[Y 1 X∈L D (α) ] .
Invoking Hölder's inequality, we can then isolate the part depending on Y:

ξ n 1 (α) ≤ ∥ Y ∥ L 1 1-γ P (L D (α)∆L n 1 (α)) γ P (L n 1 (α)) + P (L D (α)∆L n 1 (α)) P (L n 1 (α))P (L D (α)) 1-γ . Hence, ξ n 1 (α) ≤ ∥ Y ∥ L 1 1-γ P (L D (α)) P (L n 1 (α)) P (L D (α)∆L n 1 (α)) γ P (L D (α)) + P (L D (α)∆L n 1 (α)) P (L D (α)) 2-γ .
We write the latter upper bound in the following manner

ξ n 1 (α) ≤ ∥ Y ∥ L 1 1-γ P (L D (α)) P (L n 1 (α)) {ξ (1) n 1 (α) + ξ (2) n 1 (α)}, with ξ (1) n 1 (α) = P (L D (α)∆L n 1 (α)) γ P (L D (α)) , and 
ξ (2) n 1 (α) = [ξ (1) n 1 ] 2-γ P (L D (α)∆L n 1 (α)) (1-γ) 2 .
In view of the expression of ξ

n 1 (α), this quantity is negligible compared to ξ

(1) Now, we write

n 1 (α) if one can prove that ξ (1) n 1 (α) P ---→ α→0 0. ( 6 
E [P (L D (α)∆L n 1 (α))] = E[P(D(X) ≤ α < D n 1 (X))] + E[P(D n 1 (X) ≤ α < D(X))]. (6.2)
We study term-wise the quantity on the right-hand side of the above inequality. By Fubini's theorem and Assumption (H0)(i), we have

E[P(D(X) ≤ α < D n 1 (X))] = 1 D(x)≤α P(D n 1 (x) -D(x) > α -D(x))dP (x) ≤ cE 1 D(X)≤α e -n 1 c 0 (α-D(X)) 2 .
As for the second term on the right-hand side of inequality (6.2), a similar computation lead to

E[P(D n 1 (X) ≤ α < D(X))] ≤ cE 1 D(X)>α e -n 1 c 0 (α-D(X)) 2 ,
so that

E [P (L D (α)∆L n 1 (α))] ≤ cE e -n 1 c 0 (α-D(X)) 2 .
Using again Fubini's theorem, it is straightforward that

E e -n 1 c 0 (α-D(X)) 2 = ∞ y=0 F D(X) α + y c 0 n 1 -F D(X) α - y c 0 n 1 e -y dy.
Splitting the integral on (0, c 0 n 1 α 2 ) and (c 0 n 1 α 2 , +∞),

E e -n 1 c 0 (α-D(X)) 2 ≤ c 0 n 1 α 2 y=0 F D(X) α + y c 0 n 1 -F D(X) α - y c 0 n 1 e -y dy + e -c 0 n 1 α 2 .
Altogether with assumption (H0)(ii) this time, it yields

E e -n 1 c 0 (α-D(X)) 2 ≤ C • n -1 2 1 max 0≤t≤2α F ′ D(X) (t) + e -c 0 n 1 α 2 , (6.3) 
for some constant C > 0 which value can change from a line to another. Now, the expectation of ξ

n 1 (α) can be bounded as follows. First, we treat the power thanks to Jensen's inequality applied on the concave mapping t → t γ with γ ∈ [1/2, 1], then by (6.3) we obtain , E ξ (1) n 1 (α) ≤

E [P (L D (α)∆L n 1 (α))] γ F D(X) (α) ≤ C 1 F D(X) (α) -1 n -1 2 1 max |t|≤2α F ′ D(X) (t) + e -c 0 n 1 α 2 γ . Since γ ∈ [1/2, 1], E ξ (1) n 1 (α) ≤ C 1 F D(X) (α) -1 n -γ 2 1 max |t|≤2α F ′ D(X) (t)
γ + e -c 0 γn 1 α 2 := C 1 (w -1 α,n 1 + v -1 α,n 1 ).

Hence, ξ

n 1 (α) = O P (w -1 α,n 1 ∨v -1 α,n 1 ). In particular, since w α,n 1 and v α,n 1 both go to +∞ as α ↘ 0, one gets (6.1) as well. So, from the previous remark reasoning, ξ n 1 (α) is O P (w -1 α,n 1 ∨ v -1 α,n 1 ) as well. □ Lemma 6.2. With assumptions and notations of Theorem 3.2, it holds

1 n 2 n 2 i=1 Y i 1 X i ∈Ln 1 (α) 1 n 2 n 2 i=1 1 X i ∈Ln 1 (α) -E[Y | X ∈ L n 1 (α)] = O P (u -1 α,n 2 ).
Indeed, by triangular inequality

1 n 2 n 2 i=1 1 X i ∈L D (α) P (L D (α)) -1 ≤ 1 √ n 2 P (L D (α)) • √ n 2 1 n 2 n 2 i=1
1 X i ∈Ln 1 (α) -P (L n 1 (α)) + P (L D (α)∆L n 1 (α)) P (L D (α)) . (6.10)

The convergence of 1/u α,n 2 to 0 implies the convergence of 1/[ √ n 2 P (L D (α))] to zero as α ↘ 0. Thereupon, with (6.8), the rst part of the upper bound above converges in probability to 0. It is also known that P (L n 1 (α))/P (L D (α)) P ---→ As a consequence, (6.9) is proved and the result of the lemma follows from (6.7), (6.8) and the computations above. (2π det(Σ + h 2 I d ))

1 2 exp - 1 2h 2 ∥z∥ 2 -∥S -1 Σ 1 2 z∥ 2 .
Observe further,

S -1 Σ 1 2 = t Q diag((λ 1 + h 2 ) -1/2 , ..., (λ d + h 2 ) -1/2 ) Q t Q diag(λ 1/2 1 , ..., λ 1/2 d ) Q = t Q diag λ 1 λ 1 + h 2 , ..., λ d λ d + h 2 Q := t Q D Q .
The above denition of D and the orthogonality property of Q along with (A.2) permit writing

∥z∥ 2 -∥S -1 Σ 1 2 z∥ 2 = t Q(I d -D2 ) Q z, z = h 2 t Q(D + h 2 I d ) -1 Q z, z = h 2 (S 2 ) -1 z, z = h 2 ∥(Σ + h 2 I d ) -1 2 z∥ 2
Finally, combining the computations above, one derives

D h (z, N (0, Σ)) = h d-1
(2π det(Σ + h 2 I d ))

1 2 exp - 1 2 ∥(Σ + h 2 I d ) -1 2 z∥ 2 ,
and the invariance under translations of h-mode depth yields the desired result Kd,h / Cd,h = det(Σ) 1/2 det(I d + h 2 Σ -1 )/(2h d-1 π (d-1)/2 ). Thus, D h (X) is absolutely continuous w.r.t. the Lebesgue measure on R with density function g. Remark further that the function g is continuous on (0, Cd,h ] from the continuity theorem under the integral sign and admits a continuous extension at zero and hence over the whole space R. This completes the proof. □ Email address: armaut@unice.fr, diel@unice.fr, laloe@unice.fr

  Moreover, we denote by P Sn (A) the random variable E Sn [1 A ], where A := A( X1 , • • • , Xn ) is a random subset of R d depending on the sample Sn .
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 1 General setting. A depth D : R d ×P → R + entails a natural center-outward ordering of points w.r.t. a probability measure on R d . Many depths have been proposed in the literature, e.g., the halfspace depth (Tukey, 1975), the simplicial depth
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 21 Figure 1. Mahalanobis-depth contours based on settings S1 (left) and S2 (right) respectively.
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 21 Figure 2. 1-mode-depth level sets based on settings S1 (left) and S2 (right) respectively.
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 31 Figure 3. 1-mode and Mahalanobis estimated depth densities for the corresponding frameworks (S1, S2), w.r.t. the decreasing order of α. The dotted green line represents the minimum observed depth value, while the red line characterizes the range of levels α we selected in each framework. Those levels belong to the interval [α 0 , αmax ], where α0 is a suciently small level based on the data and αmax is the maximum level observed.
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 41561 Figure 4. 1-mode depth-based CCTE RMAE estimation under model S1.
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 7 Figure 7. Mahalanobis based CCTE RMAE estimation under model S2.
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 81 Figure 8. 1-mode and Mahalanobis depth-based CCTE RMAE estimation (left and right respectively), under model S1 w.r.t. the decreasing order of α (see Tables2 and 3).
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 91 Figure 9. 1-mode and Mahalanobis depth-based CCTE RMAE estimation (left and right respectively), under model S2 w.r.t. the decreasing order of α (see Table2).
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 212 Remark rst that Assumptions (H0) prove that P (L D (α)) > 0 and limα→0 P P (L n 1 (α)) > 0 = 1.So that CCTE D,α (Y, X) and CCTE n ,α (Y, X) are, at least asymptotically for the second one, well-dened. Using the triangular inequality, one may bound the quantity

. 1 )

 1 Indeed, once (6.1) is established, direct consequences are thatP (L D (α)∆L n 1 (α)) P ---→α→0 0 and P (L n 1 (α)) P (L D (α))

α→0 1

 1 and P (L D (α)∆L n 1 (α))/P (L D (α))

1 2 z∥ 2 -∥S - 1 Σ 1 2 z∥ 2 . 1 2 2 ( 2 .

 12112122 The above computations then yieldD h (z, N (0, Σ)) z∥ 2 dy.With the change of variable u := Sy and computing a Gaussian integral, it holds det(Σ + h 2 I d ))1 Hence D h (z, N (0, Σ)) = h d-1

D 1 (2π) d 2 Rφφ 1

 121 h (x, N (m, Σ)) = D h (x -m, N (0, Σ)) = Cd,h exp -1 2 ∥(Σ + h 2 I d ) -1 2 (x -m)∥ 2 .□Proof of Proposition A.2. Let φ : R → R be a positive and measurable function. While recalling the notations of the proof of Proposition A.1, a straight application of the latter allows to computeE[φ (D h (X))] = d Cd,h exp -1 2 ∥(Σ + h 2 I d ) -1/2 Σ 1/2 y∥ 2 exp -Cd,h exp -∥ D Q y∥ 2 )dθ 1•••(d-1) dz.Therefore,E[φ (D h (X))] = R φ(z)g(z)dz,where g : z → C d,h log (0, Cd,h ) (z), and with a bit of computations one can derive the value of the normalization constant C d,h = 2 d-2 2

  Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université Côte d'Azur, Parc Valrose, 06108 Nice, Cedex 2, France.

Table 1 .

 1 Theoretical values of CCTE D,α in both frameworks described above.In model S1, columns 2 and 4 refer to exactly computed CCTE ′ s, while under model S2, columns 6 and 8 represent CCTE values computed with a Monte-

	03	258.349	0.005	38.818	0.01	8.731	0.07	4.52
	0.05	94.585	0.01	31.08	0.05	2.3357	0.1	3.3578
	0.1	49.5	0.025	20.887	0.1	1.424	0.15	2.6838
	0.5	13.5	0.05	13.205	0.5	0.4805	0.2	1.94
	0.8	10.125	0.07	9.485	0.8	0.3832	0.25	1.4269
	Carlo procedure.						

Table 3 .

 3 General critical regimes about the CCTE based on Corollary 3.3 (also refer to Table 2). Used to test any depth/sample (model S1, S2) we work with except for h-mode depth under model S1 (see Table 4 below).

	1000	n ≫ 10000

n D,α convergence w.r.t. α,

Table 4 .

 4 Critical regimes about the CCTE , 1 ≤ j ≤ N mc , N mc = 400. Obviously, the RMAE is nothing but a rescale of the absolute error (AE) with commonly a comparable AE behavior. In each previous framework (S1, S2), the associated CCTE RMAE and AE both behave alike. As hoped for, the whole study we described earlier is summarized in the nextFigures 4,[START_REF] Cai | Optimal retention for a stop-loss reinsurance under the var and cte risk measures[END_REF] 6 and 7. 

	n D h=1 ,α convergence w.r.t. α, based
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Proof of Lemma 6.2. Let us recall that u α,n 2 = √ n 2 P (L D (α)) 2-γ = √ n 2 F D(X) (α) 2-γ .

By triangular inequality, we may bound the quantity of interest

P (L n 1 (α)) (6.4) by the following sum of two terms,

.

With regard to (6.4) one is in need of controlling both ζ

(1)

n 1 ,n 2 (α) rephrases as

On the other hand, applying Hölder's inequality, we bound ζ

(2)

and the above right-hand side term rewrites as

We deal with "non-constant" terms of expressions (6.5) and (6.6) respectively. Chebyshev's inequality guarantees that, for any M > 0, P-a.s. (here the value of ω ∈ Ω corresponding to one realisation of the sample Sn 1 is independent of M )

and

In this way,

and

Concluding the proof relies now on expressing convergence of "constant" terms in (6.5) and (6.6), more precisely, we show next

(6.9)

Appendix A. Some properties of h-mode depth As far as h-mode depth is concerned, this appendix contains missing details for the proofs in the main paper.

Proposition A.1. Let P ∈ P m,Σ be the law of a gaussian vector. Then,

where Cd,h :

The proof of Proposition A.1 lays on elementary computations and can be found thereafter.

As of now, we aim at deriving the law of D h (X) when X is a d-dimensional Gaussian r.v. with law P ∈ P m,Σ . In the multivariate Gaussian model, the depth D h is a radial function (see Proposition A.1) which means it only depends on the euclidean norm so that D h projects the space R d on the real line. Thus, its radial aspect enables to nd the law of D h (X) := D h (X, P ) under P ∈ P m,Σ using mainly test functions and change of variables. This is summed up in Proposition A.2 of which the proof can be found thereafter.

Proposition A.2. Under the gaussian model P m,Σ , the real-valued r.v. D h (X) := D h (X, P ), X ∼ P ∈ P m,Σ is absolutely continuous w.r.t the Lebesgue measure on R with density

Kd,h / Cd,h , Kd,h = det

+ are the eigenvalues of Σ. The function g is continuous on R\ {0} and has a continuous extension over the whole space R. Proof of Proposition A.1. The current proof consists of elementary computations based on the euclidean inner product and change of variables. First, we may write

We study the exponential term in the above integral,

where ⟨•|•⟩ is the inner product over R d . Since Σ is symmetric positive denite, there exists λ d ≥ ... ≥ λ 1 > 0 and an orthogonal matrix

being also symmetric positive denite. Thus, with (A.1)

The previous equalities hold since

Besides, thanks to the proof of Proposition A.1, we recall that D = diag( λ 1 /(λ 1 + h 2 ), . . . , λ d /(λ d + h 2 )).

Next, with the change of variable y := Du, we have dy = det(I d + h 2 Σ -1 ) -1 1/2 du and derive

where

The spherical coordinates change of variable

where we denote thereafter

. Also, by convention, we set 0 k=1 := 1. By Fubini-Tonelli along with (A.3), we have