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Abstract: In addition to the canonical Gs adenylyl cyclase pathway, the serotonin type 6 receptor
(5-HT6R) recruits additional signaling pathways that control cognitive function, brain development,
and synaptic plasticity in an agonist-dependent and independent manner. Considering that aberrant
constitutive and agonist-induced active states are involved in various pathological mechanisms, the
development of biased ligands with different functional profiles at specific 5-HT6R-elicited signal-
ing pathways may provide a novel therapeutic perspective in the field of neurodegenerative and
psychiatric diseases. Based on the structure of SB-258585, an inverse agonist at 5-HT6R-operated
Gs and Cdk5 signaling, we designed a series of 1-(arylsulfonyl-isoindol-2-yl)piperazine derivatives
and synthesized them using a sustainable mechanochemical method. We identified the safe and
metabolically stable biased ligand 3g, which behaves as a neutral antagonist at the 5-HT6R-operated
Gs signaling and displays inverse agonist activity at the Cdk5 pathway. Inversion of the sulfonamide
bond combined with its incorporation into the isoindoline scaffold switched the functional profile
of 3g at Gs signaling with no impact at the Cdk5 pathway. Compound 3g reduced the cytotoxic-
ity of 6-OHDA and produced a glioprotective effect against rotenone-induced toxicity in C8-D1A
astrocyte cell cultures. In view of these findings, compound 3g can be considered a promising
biased ligand to investigate the role of the 5-HT6R-elicited Gs and Cdk5 signaling pathways in
neurodegenerative diseases.

Keywords: mechanochemical synthesis; 5-HT6 receptor inverse agonism/neutral antagonism; Gs
and Cdk5 signaling pathways; glioprotective properties; rotenone toxicity

1. Introduction

The serotonin type 6 receptor (5-HT6R) is a Gs-coupled receptor widely expressed in
brain regions involved in cognitive functions [1] and has been considered an important
target to alleviate cognitive symptoms related to neurodegenerative and psychiatric dis-
orders [2–6]. Several lines of evidence indicate that modulation of cognition by 5-HT6R
ligands might be independent of its coupling to Gs, suggesting the engagement of alterna-
tive signaling mechanisms. Indeed, interactomic studies revealed that the 5-HT6R is linked
to different GIPs (GPCR interacting proteins) that underlie its modulation of cognitive
(mechanistic target of rapamycin (mTOR)) and neuro-developmental (cyclin-dependent
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kinase 5 (Cdk5) and G protein-regulated inducer of neurite outgrowth 1 (GPR1N1)) pro-
cesses [7,8]. Recently, a non-canonical 5-HT6R-elicited Gαq/11-RhoA pathway, which
modulates nuclear actin and increases histone acetylation and chromatin accessibility, has
been identified in hippocampal neurons [9]. An important feature of the 5-HT6R is its
high level of ligand-independent constitutive activity, which corresponds to the ability of a
receptor to be active even in the absence of an agonist [10]. The role of 5-HT6R constitutive
activity at canonical Gs signaling and non-canonical signaling has been described in various
pathophysiological conditions [11–15]. Consistent with those findings, the development
of 5-HT6R ligands acting as inverse agonists and/or neutral antagonists at the different
5-HT6R-operated signaling pathways is of utmost interest to decipher the cellular mecha-
nism(s) under the control of the various 5-HT6R signal transduction mechanisms and of
constitutive vs. agonist-dependent receptor activation.

Many ligands were evaluated to study the role of 5-HT6R, yet the design of 5-HT6R-
biased ligands remains highly challenging. Using molecular dynamic simulations, we pre-
viously reported structural hints responsible for inverse agonism and neutral antagonism at
Gs signaling in a group of imidazo[4,5-b]- and imidazo[4,5-c]pyridines (Figure 1A) [16,17].
A different approach, based on the truncation of the planar 1H-pyrrolo[3,2-c]quinoline
core present in the 5-HT6R antagonist (S)-1-[(3-chlorophenyl)sulfonyl]-4-(pyrrolidine-3-yl-
amino)-1H-pyrrolo[3,2-c]quinoline (CPPQ) [18], to the more flexible 2-phenyl-1H-pyrrole-3-
carboxamide scaffold, shifted the compound activity from neutral antagonism to inverse
agonism at receptor-operated Gs and Cdk5 signaling (Figure 1B) [19].
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Figure 1. Structural determinants responsible for different in vitro activity at 5-HT6R-operated Gs
and/or Cdk5 signaling pathways in a group of imidazopyridines (A) or pyrroloquinoline/arylpyrrole
derivatives (B) [17,19].

These observations prompted us to investigate further the role of the arylsulfonamide
fragment in the development of active 5-HT6R ligands. Starting from SB-258585, an
inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling [20,21], we designed a set of
1-(arylsulfonyl-isoindol-2-yl)piperazines. We focused on the inversion of the sulfonamide
bond combined with its incorporation into differently substituted isoindoline scaffold and
flipping of the piperazine moiety in the 2-, 3-, or 4- position at the phenyl ring (Figure 2).



Biomolecules 2023, 13, 12 3 of 16

Biomolecules 2022, 12, x FOR PEER REVIEW 3 of 17 
 

These observations prompted us to investigate further the role of the arylsulfona-
mide fragment in the development of active 5-HT6R ligands. Starting from SB-258585, an 
inverse agonist at 5-HT6R-operated Gs and Cdk5 signaling [20,21], we designed a set of 1-
(arylsulfonyl-isoindol-2-yl)piperazines. We focused on the inversion of the sulfonamide 
bond combined with its incorporation into differently substituted isoindoline scaffold and 
flipping of the piperazine moiety in the 2-, 3-, or 4- position at the phenyl ring (Figure 2). 

. 

Figure 2. Design of a 1-(arylsulfonyl-isoindol-2-yl)piperazines library. 

The impact of compounds synthesized using a mechanochemical approach on 
5-HT6R-operated Gs and Cdk5 signaling pathways was examined. The glioprotective 
properties of the selected compound with the highest potency at Gs and Cdk5 signaling 
and favorable preliminary ADMET profile were investigated in C8-D1A astrocytes ex-
posed to the gliotoxic treatments using 6-hydroxydopamine (6-OHDA) and rotenone 
(ROT). 

2. Material and Methods 
2.1. Chemistry 
2.1.1. General Chemical Methods 

All commercially available reagents were of the highest purity from Fluorochem, 
Across Organic. The milling treatments were carried out in a vibratory ball-mill Retsch 
MM400 operated at 30 Hz. The milling load was defined as the sum of the mass of the 
reactants per free volume in the jar and was equal to 10 mg/mL. All reactions using the 
vibratory ball mill were performed under air. 

Mass spectra were recorded on a UPLCMS/MS system consisting of a Waters AC-
QUITY UPLC (Waters Corporation, Milford, MA, USA) coupled to a Waters TQD mass 
spectrometer (electrospray ionization mode ESI-tandem quadrupole). Chromatographic 
separations were carried out using the Acquity UPLC BEH (bridged ethyl hybrid) C18 
column; 2.1 mm × 100 mm, and 1.7 μm particle size, equipped with Acquity UPLC BEH 
C18 Van Guard precolumn; 2.1 mm × 5 mm, and 1.7 μm particle size. The column was 
maintained at 40 °C and eluted under gradient conditions from 95% to 0% of eluent A 
over 10 min, at a flow rate of 0.3 mL min−1. Eluent A: water/formic acid (0.1%, v/v), Eluent 
B: acetonitrile/formic acid (0.1%, v/v). 

1H and 13C NMR spectra were recorded on a JEOL JNM-ECZR500 RS1 (ECZR ver-
sion) at 500 and 126 MHz, respectively, and were reported in ppm using deuterated sol-
vent for calibration (CDCl3). The J values were reported in hertz (Hz), and the splitting 
patterns were designated as follows: br s. (broad singlet), s (singlet), d (doublet), t (triplet), 
q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), m (multiplet). 

2.1.2. General Procedure A for Sulfonylation of Isoindoline Derivatives to Obtain Inter-
mediates 2a–l 

Intermediates 1a–d (1 eq), different fluoro-substituted benzenesulfonyl chloride (1.1 
eq), and NaOH (3 eq) were introduced in a 35 mL SS jar (milling load 10 mg/mL) with one 
SS ball (ϕball = 1.5 cm). The reaction was carried out for 5–7 min at rt. The mixture was 

Figure 2. Design of a 1-(arylsulfonyl-isoindol-2-yl)piperazines library.

The impact of compounds synthesized using a mechanochemical approach on 5-HT6R-
operated Gs and Cdk5 signaling pathways was examined. The glioprotective properties of
the selected compound with the highest potency at Gs and Cdk5 signaling and favorable
preliminary ADMET profile were investigated in C8-D1A astrocytes exposed to the gliotoxic
treatments using 6-hydroxydopamine (6-OHDA) and rotenone (ROT).

2. Material and Methods
2.1. Chemistry
2.1.1. General Chemical Methods

All commercially available reagents were of the highest purity from Fluorochem,
Across Organic. The milling treatments were carried out in a vibratory ball-mill Retsch
MM400 operated at 30 Hz. The milling load was defined as the sum of the mass of the
reactants per free volume in the jar and was equal to 10 mg/mL. All reactions using the
vibratory ball mill were performed under air.

Mass spectra were recorded on a UPLCMS/MS system consisting of a Waters AC-
QUITY UPLC (Waters Corporation, Milford, MA, USA) coupled to a Waters TQD mass
spectrometer (electrospray ionization mode ESI-tandem quadrupole). Chromatographic
separations were carried out using the Acquity UPLC BEH (bridged ethyl hybrid) C18
column; 2.1 mm × 100 mm, and 1.7 µm particle size, equipped with Acquity UPLC BEH
C18 Van Guard precolumn; 2.1 mm × 5 mm, and 1.7 µm particle size. The column was
maintained at 40 ◦C and eluted under gradient conditions from 95% to 0% of eluent A over
10 min, at a flow rate of 0.3 mL min−1. Eluent A: water/formic acid (0.1%, v/v), Eluent B:
acetonitrile/formic acid (0.1%, v/v).

1H and 13C NMR spectra were recorded on a JEOL JNM-ECZR500 RS1 (ECZR version)
at 500 and 126 MHz, respectively, and were reported in ppm using deuterated solvent for
calibration (CDCl3). The J values were reported in hertz (Hz), and the splitting patterns
were designated as follows: br s. (broad singlet), s (singlet), d (doublet), t (triplet), q
(quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), m (multiplet).

2.1.2. General Procedure A for Sulfonylation of Isoindoline Derivatives to Obtain
Intermediates 2a–l

Intermediates 1a–d (1 eq), different fluoro-substituted benzenesulfonyl chloride (1.1 eq),
and NaOH (3 eq) were introduced in a 35 mL SS jar (milling load 10 mg/mL) with one
SS ball (φball = 1.5 cm). The reaction was carried out for 5–7 min at rt. The mixture was
transferred into a filtration funnel, washed with distilled water, and dried under reduced
pressure yielding intermediate 2a–l in high yields (85–98%).

2.1.3. General Procedure B for Aromatic Substitution to Obtain Final Compounds 3a–l

Intermediates 2a–l (1 eq) and anhydrous piperazine (3 eq) were introduced in a 10 mL
SS jar (milling load 10 mg/mL) with one stainless steel ball (φball = 1.5 cm) followed by
the addition of MeCN (34 µL, η = 0.4 µL mg−1) as a liquid assistant. The reaction was
carried out for 1.5 h at 50 ◦C. In the case of intermediates 2e, 2f, 2g, and 2h, DMSO (42 µL,
η = 0.4 µL mg−1) were used as a liquid additive, and the reactions were milled for 1.5 h at
80 ◦C. After the addition of cold water (5 mL), the resulting mixture was transferred into
a filtration funnel, washed with distilled water, and dried under reduced pressure. The
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products were purified via crystallization in ethanol, yielding final compounds 3a–l as a
white powder (yields 75–88%).

2.1.4. General Procedure C for One-Pot Two-Step Reaction for Obtaining Compounds 3e,
3f, and 3g

Isoindoline derivative (1 eq), sodium hydroxide (3 eq), and 3-fluorobenzenesulfonyl
chloride (1.1 eq) were introduced in a 35 mL SS jar (milling load 10 mg/mL) with one
stainless steel ball (φball = 1.5 cm). After 10 min of milling at rt, anhydrous piperazine (3 eq)
and DMSO (140 µL, η = 0.4 µL mg−1) were added into the jar, and the reaction was carried
out for an additional 60 min at 80 ◦C. The resulting mixture was transferred into a filtration
funnel, washed with distilled water, and dried under reduced pressure. The products were
purified via crystallization in ethanol, yielding final compounds 3e, 3f, and 3g as white
powders (yields 85–88%).

2.1.5. Characterization Data for Final Compounds
2-{[4-(Piperazin-1-yl)phenyl]sulfonyl}isoindoline 3a

White solid, 34 mg (isolated yield 88%) following procedure B; UPLC/MS purity
100%, tR = 4.43; C18H21N3O2S, MW 343.45, Monoisotopic Mass 343.14, [M+H]+ 344.2. 1H
NMR (500 MHz, CDCl3) δ ppm 1.70 (br s, 1H), 2.95–3.00 (m, 4H), 3.22–3.30 (m, 4H), 4.57 (s,
4H), 6.85–6.90 (m, 2H), 7.12–7.16 (m, 2H), 7.18–7.23 (m, 2H), 7.67–7.76 (m, 2H). 13C NMR
(126 MHz, DMSO-d6) δ ppm 45.8, 48.0, 53.9, 113.9, 123.2, 123.3, 128.1, 129.7, 136.5, 154.5.

4-Chloro-2-{[4-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3b

White solid, 33 mg (isolated yield 81%) following procedure B; UPLC/MS purity 100%,
tR = 4.97; C18H20ClN3O2S, MW 377.89, Monoisotopic Mass 377.10, [M+H]+ 378.2. 1H NMR
(500 MHz, DMSO-d6) δ ppm 2.73 (br s, 4H), 3.15 (br s, 4H), 4.45 (s, 2H), 4.55 (s, 2H), 6.96 (d,
J = 8.9 Hz, 2H), 7.16–7.29 (m, 3H), 7.61 (d, J = 8.9 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ
ppm 45.8, 48.0, 53.4, 54.7, 113.9, 122.3, 122.9, 128.0, 128.2, 129.7, 130.4, 134.8, 139.1, 154.6.

4-Bromo-2-{[4-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3c

White solid 35 mg (isolated yield 80%) following procedure B; UPLC/MS purity 99%,
tR = 5.35; C18H20BrN3O2S, MW 422.34, Monoisotopic Mass 421.05, [M+H]+ 422.0/424.0.
1H NMR (500 MHz, DMSO-d6) δ ppm 2.68–2.80 (m, 4H), 3.10–3.21 (m, 4H), 4.40 (s, 2H),
4.58 (s, 2H), 6.97 (d, J = 9.2 Hz, 2H), 7.16 (t, J = 8.6 Hz, 1H), 7.22 (d, J = 9.2 Hz, 1H), 7.39 (d,
J = 7.7 Hz, 1H), 7.61 (d, J = 8.9 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ ppm 45.8, 48.0,
54.9, 55.1, 113.9, 116.9, 122.8, 122.9, 129.7, 130.6, 130.9, 136.9, 138.8, 154.6.

5-Bromo-2-{[4-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3d

White solid, 36 mg (isolated yield 82%) following procedure B; UPLC/MS purity 100%,
tR = 5.18; C18H20BrN3O2S, MW 422.34, Monoisotopic Mass 421.05, [M+H]+ 422.1/424.1. 1H
NMR (500 MHz, DMSO-d6) δ ppm 2.73 (br s, 4H), 3.15 (br s, 4H), 4.41 (s, 2H), 4.45 (s, 2H),
6.96 (d, J = 9.2 Hz, 2H), 7.16 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.43 (s, 1H), 7.57 (d,
J = 8.0 Hz, 2H). 13C NMR (126 MHz, DMSO-d6) δ ppm 45.8, 48.0, 53.6, 113.9, 120.9, 123.0,
125.5, 126.4, 129.7, 130.9, 136.1, 139.4, 154.5.

2-{[3-(Piperazin-1-yl)phenyl]sulfonyl}isoindoline 3e

White solid, 137 mg (isolated yield 85%) following procedure C; UPLC/MS purity
100%, tR = 4.52; C18H21N3O2S, MW 343.45, Monoisotopic Mass 343.14, [M+H]+ 344.2. 1H
NMR (500 MHz, CDCl3) δ ppm 2.10 (br. s, 1H), 3.00–3.05 (m, 4H), 3.15–3.22 (m, 4H), 4.62
(s, 4H), 7.05 (ddd, J = 8.1, 2.5, 0.9 Hz, 1H), 7.14–7.18 (m, 2H), 7.20–7.23 (m, 2H), 7.28–7.31
(m, 1H), 7.33–7.37 (m, 2H). 13C NMR (126 MHz, CDCl3) δ ppm 45.9, 49.6, 53.8, 114.0, 117.9,
119.7, 122.7, 127.8, 130.0, 136.2, 137.3, 152.2.
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4-Chloro-2-{[3-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3f

White solid, 145 mg (isolated yield 86%) following procedure C; UPLC/MS purity
99%, tR = 5.08; C18H20ClN3O2S, MW 377.89, Monoisotopic Mass 377.10, [M+H]+ 378.2. 1H
NMR (500 MHz, CDCl3) δ ppm 2.12 (br s, 1H), 2.99–3.08 (m, 4H), 3.15–3.25 (m, 4H), 4.63 (s,
2H), 4.67 (s, 2H), 7.01–7.09 (m, 2H), 7.14–7.21 (m, 2H), 7.27–7.31 (m, 1H), 7.32–7.40 (m, 2H).
13C NMR (126 MHz, CDCl3) δ ppm 45.9, 49.5, 53.5, 54.5, 113.9, 117.8, 119.8, 120.9, 127.8,
129.1, 129.5, 130.1, 135.1, 137.3, 138.1, 152.2.

4-Bromo-2-{[3-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3g

White solid, 133 mg (isolated yield 88%) following procedure C; UPLC/MS pu-
rity 100%, tR = 5.17; C18H20BrN3O2S, MW 422.34, Monoisotopic Mass 421.05, [M+H]+

422.0/424.0. 1H NMR (500 MHz, DMSO-d6) δ ppm 2.77 (br s, 4H), 3.04 (br s, 4H), 4.48 (s,
2H), 4.66 (s, 2H), 7.16 (t, J = 5.7 Hz, 4H), 7.22 (d, J = 8.0 Hz, 2H), 7.33–7.45 (m, 2H). 13C NMR
(126 MHz, DMSO-d6) δ ppm 45.9, 49.2, 55.0, 55.2, 112.7, 116.9, 117.2, 120.0, 122.8, 130.6,
130.7, 130.9, 136.8, 136.9, 138.8, 152.5.

5-Bromo-2-{[3-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3h

White solid, 33 mg (isolated yield 76%) following procedure B; UPLC/MS purity 100%,
tR = 5.23; C18H20BrN3O2S, MW 422.34, Monoisotopic Mass 421.05, [M+H]+ 422.1/424.1.
1H NMR (500 MHz, DMSO-d6) δ ppm 2.77 (br s, 4H), 3.04 (br s, 4H), 4.47 (s, 2H), 4.52 (s,
2H), 7.10–7.25 (m, 4H), 7.33–7.41 (m, 2H), 7.43 (s, 1H). 13C NMR (126 MHz, DMSO-d6) δ
ppm 45.9, 49.1, 53.6, 53.7, 112.8, 117.2, 120.0, 121.0, 125.5, 126.4, 130.6, 130.9, 136.0, 136.9,
139.3, 152.5.

2-{[2-(Piperazin-1-yl)phenyl]sulfonyl}isoindoline 3i

White solid, 33 mg (isolated yield 84%) following procedure B; UPLC/MS purity 100%,
tR = 4.59; C18H21N3O2S, MW 343.45, Monoisotopic Mass 343.14, [M+H]+ 344.3. 1H NMR
(500 MHz, CDCl3) δ ppm 1.91 (br.s, 1H), 2.90 (t, J = 4.3 Hz, 4H), 3.03 (t, J = 4.6 Hz, 4H), 4.82
(s, 4H), 7.13–7.16 (m, 2H), 7.19–7.23 (m, 3H), 7.28–7.31 (m, 1H), 7.44–7.53 (m, 1H), 8.02 (dd,
J = 8.0, 1.7 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ ppm 46.1, 54.1, 55.3, 122.6, 123.8, 124.8,
127.6, 132.2, 134.0, 134.4, 136.6, 153.2.

4-Chloro-2-{[2-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3j

White solid, 37 mg (isolated yield 83%) following procedure B; UPLC/MS purity 99%,
tR = 5.09; C18H20ClN3O2S, MW 377.89, Monoisotopic Mass 377.10, [M+H]+ 378.2. 1H NMR
(500 MHz, CDCl3) δ ppm 2.55–2.62 (m, 1H), 2.93–3.00 (m, 4H), 3.09 (t, J = 4.3 Hz, 4H),
4.80–4.85 (m, 2H), 4.85–4.88 (m, 2H), 6.97–7.10 (m, 1H), 7.14–7.20 (m, 2H), 7.21–7.25 (m, 1H),
7.32 (dd, J = 8.0, 1.1 Hz, 1H), 7.48–7.54 (m, 1H), 8.02 (dd, J = 8.0, 1.7 Hz, 1H). 13C NMR (126
MHz, CDCl3) δ ppm 45.9, 53.7, 54.7, 55.0, 120.8, 123.9, 125.0, 127.7, 129.0, 129.4, 132.2, 134.1,
134.2, 135.4, 138.4, 152.9.

4-Bromo-2-{[2-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3k

White solid, 38 mg (isolated yield 88%) following procedure B; UPLC/MS purity 100%,
tR = 5.25; C18H20BrN3O2S, MW 422.34, Monoisotopic Mass 421.05, [M+H]+ 422.1/424.1. 1H
NMR (500 MHz, DMSO-d6) δ ppm 2.77 (t, J = 4.6 Hz, 4H), 3.19 (t, J = 4.9 Hz, 4H), 4.40 (s,
2H), 4.58 (s, 2H), 6.98 (d, J = 9.2 Hz, 2H), 7.17 (t, J = 7.7 Hz, 1H), 7.22 (d, J = 7.2 Hz, 1H), 7.40
(d, J = 8.6 Hz, 1H), 7.59–7.64 (m, 2H). 13C NMR (126 MHz, DMSO-d6) δ ppm 45.5, 47.6, 54.9,
55.1, 114.0, 116.9, 122.8, 123.1, 129.7, 130.6, 130.9, 136.9, 138.8, 154.4.

5-Bromo-2-{[2-(piperazin-1-yl)phenyl]sulfonyl}isoindoline 3l

White solid, 37 mg (isolated yield 86%) following procedure B; UPLC/MS purity 100%,
tR = 5.28; C18H20BrN3O2S, MW 422.34, Monoisotopic Mass 421.05, [M+H]+ 422.1/424.1. 1H
NMR (500 MHz, DMSO-d6) δ ppm 2.68 (t, J = 4.3 Hz, 4H), 2.79 (t, J = 4.3 Hz, 4H), 4.68 (s,
4H),7.18 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.34–7.40 (m, 2H), 7.41–7.48 (m, 1H),
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7.52–7.61 (m, 1H), 7.87 (dd, J = 8.0, 1.4 Hz, 1H). 13C NMR (126 MHz, DMSO-d6) δ ppm 45.9,
53.7, 53.8, 55.5, 120.9, 124.7, 125.3, 125.4, 126.2, 130.8, 132.4, 133.8, 135.0, 136.4, 139.6, 153.6.

2.2. In Vitro Biological Evaluation
2.2.1. Radioligand Binding Assays

All experiments were performed in HEK-293 cells, which stably express the human
5-HT1A, 5-HT6, 5-HT7b, and D2L receptors, or using CHO-K1 cells expressing human
serotonin 5-HT2A receptor, following the previously reported procedures [22–24]. For
displacement studies, the following radioligands (PerkinElmer, USA) at given concen-
trations were used at: 2.5 nM [3H]-8-OH-DPAT (135.2 Ci/ mmol); 1 nM [3H]-ketanserin
(53.4 Ci/mmol); 2 nM [3H]-LSD (83.6 Ci/mmol); 0.8 nM [3H]-5-CT (39.2 Ci/mmol) or
2.5 nM [3H]-raclopride (76.0 Ci/mmol) for 5-HT1A, 5-HT2A, 5-HT6, 5-HT7b and D2L recep-
tors, respectively. All tested compounds were evaluated in triplicate at 7 concentrations
(10−10–10−4 M). The inhibition constants (Ki) were calculated from the Cheng–Prusoff
equation [25]. A detailed description is reported in the Supporting Information.

2.2.2. Impact of Evaluated Compounds on cAMP Production in 1321N1 Cells

The ability of compounds 3e, 3f, and 3g to inhibit 5-CT-induced production of cAMP
was assessed using 1321N1 cells expressing the human 5-HT6R (PerkinElmer) using previ-
ously described procedures [15,17]. The level of cAMP was measured using the LANCE
cAMP detection kit (PerkinElmer) according to the manufacturer’s protocol. TR-FRET
(Time Resolved Fluorescence Resonance Energy Transfer) was detected by an Infinite M1000
Pro (Tecan) using instrument settings from the LANCE cAMP detection kit manual. Tested
compounds were evaluated at 8 concentrations (10−11–10−4 M) in triplicate. Kb values
were calculated from the Cheng–Prusoff equation [25]. A detailed description is reported
in the Supporting Information.

2.2.3. Impact of Evaluated Compounds on cAMP Production Elicited by Constitutively
Active 5-HT6R in NG108-15 Cells

The functional properties at Gs signaling of 3e, 3f, 3g, and the prototypic inverse ago-
nist SB-258585 were evaluated using NG108-15 cells transiently expressing 5-HT6R and the
cAMP sensor CAMYEL (cAMP sensor using YFP-Epac-RLuc) [26]. We previously demon-
strated that the 5-HT6R displays a high level of constitutive activity in this model. Changes
in cyclic AMP levels upon exposure to increasing concentrations of the tested compounds
were assessed by BRET (Bioluminescence Resonance Energy Transfer) measurement using
a Mithras LB 940 plate reader (Berthold Technologies), as previously described [17]. A
detailed description is reported in the Supporting Information.

2.2.4. Impact of Tested Compounds on Cdk5-Dependent Neurite Growth

The inverse agonist properties at Cdk5 signaling of 3e, 3f, 3g, and the prototypic
inverse agonist SB-258585 were evaluated in NG108-15 cells transiently expressing 5-HT6R
by measuring neurite outgrowth, as previously reported. NG108-15 cells were transfected
with plasmids encoding either cytosolic GFP or a GFP-tagged 5-HT6R and grown on
glass coverslips for 6 h. Then, cells were treated with either vehicle or the evaluated
compounds. Neurite growth was measured on cells imaged using an AxioImagerZ1
microscope equipped with epifluorescence (Zeiss) using the Neuron J plugin of the ImageJ
software (NIH). A detailed description is reported in the Supporting Information.

2.2.5. In Vitro Assessment of Metabolic Stability

Metabolic stability studies were performed according to reported protocols [27,28].
Evaluated compounds 3e, 3f, and 3g at the final concentration of 20 µM were preincubated
in phosphate buffer (pH = 7.4), containing rat liver microsomes (microsome from rat male
liver, pooled; 0.5 mg/mL; Merck/Millipore Sigma, Darmstadt, Germany, St. for 10 min
at 37 ◦C. The reaction was initiated by adding the NADPH-regenerating system. After
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0, 30, and 60 min, reactions were quenched with ice-cold methanol containing internal
standard (pentoxifylline @ 100 nM). Next, samples were centrifuged, and the supernatants
were analyzed by UPLC/MS. T1/2 was determined from the slope of the line on Ln (%re-
maining of parent compounds) vs. time plots. Clint was calculated from the equation:
Clint = [volume of incubation (µL)/amount of protein (mg) × 0.693]/t1/2. All samples were
analyzed in duplicate. The assay performance was confirmed by using extensive or low
metabolized drugs as references (Imipramine and Donepezil, respectively).

2.2.6. In Vitro Cytotoxicity Evaluation

Hepatotoxicity, neurotoxicity, and glial cytotoxicity were investigated using the fol-
lowing cellular models: human hepatocellular carcinoma (HepG2), human neuroblastoma
(SHSY-5Y), and mouse astrocytes (C8-D1A), all from ATCC (American Type Culture Collec-
tion, Manassas, VA, USA). Cells were cultured in appropriate culture media recommended
by ATCC supplemented with 10% fetal bovine serum (FBS; Gibco, Life Technologies, Carls-
bad, CA, USA) and 1% antibiotic mixture (Gibco, Life Technologies, Carlsbad, CA, USA).
Cells were cultured at standard conditions (5% CO2, 95% humidity, 37 ◦C). For cytotoxicity
experiments, cells were seeded into 96 well plates at an initial density of 2000 cells/well.
After overnight incubation, cells were treated with 3e, 3f, and 3g in a concentration range
of 0.78–50 µM for 48 h; then, an MTT assay was performed as described previously [17,29].
Briefly, following cell exposure, 10 µL of MTT reagent was added to each well. After the
next 4 h, the medium was aspirated, and formazan produced in cells appeared as dark
crystals in the bottom of the wells. Next, 100 µL DMSO was added to each well. Then, the
optical density of the solution (OD) at 570 nm was determined on a plate reader (Spectra
Max iD3, Molecular Devices, San Jose, CA, USA). The experiments were run three times
in triplicates.

2.2.7. In Vitro Assessment of Glioprotective Properties

Mouse astrocytes (C8-D1A cell line, ATCC) were cultured in DMEM (Dulbecco’s Modi-
fied Eagle’s Medium) supplemented with 10% FBS (FBS; Gibco, Life Technologies, Carlsbad,
CA, USA) and 1% antibiotic mixture (Gibco, Life Technologies, Carlsbad, CA, USA) at stan-
dard condition until the cells reached 80–90% confluence. Cells were harvested and seeded
in 96-well plates at a density of 5000 cells/well. All experiments were conducted with a
reduced amount of serum equal to 2.5%. The optimal amount of serum was determined
experimentally on the basis of preliminary studies. After 24 h, cells were pre-incubated
in the presence of compound 3g or references CPPQ, SB-258585, and WAY-181187 (all at
0.25 µM). Then 6-OHDA (20 µM) or rotenone (0.5 µM) were added and co-incubated for
the next 24 h. The ability of tested compounds to prevent 6-OHDA-induced or rotenone-
induced cytotoxicity was assessed by MTT assay following the protocol described above.
The experiments were run three times in triplicates.

3. Result and Discussion
3.1. Mechanochemical Synthesis of Compounds 3a–3l

A medicinal mechanochemical approach [28,30–32] was employed for the synthesis of
a novel group of 1-(arylsulfonyl-isoindol-2-yl)piperazines 3a–3l (Scheme 1). The optimiza-
tion of the synthetic process started with the sulfonylation of unsubstituted isoindoline
with the 4-fluorobenzenesulfonyl chloride (1.1 eq) (Table S1—SI). The reaction was initially
performed in a 10 mL stainless-steel (SS) jar with a 1.5 cm diameter ball of the same material
by using a vibratory ball mill (vbm) operated at 30 Hz. Potassium carbonate and sodium
hydroxide guaranteed high conversions of reagents with a milling time of only 5 min.
Although the use of potassium carbonate provided a better conversion rate, sodium hy-
droxide was chosen for further optimization due to its lower molecular weight. Increasing
the amount of base from 2 to 3 equivalents resulted in full conversion to intermediate
2a (isolated yield 98%). The reaction was then scaled up using a 35 mL SS jar without
affecting the conversion or the yield (Table S1—SI). The optimized reaction conditions
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for sulfonylation on a larger scale were then applied for the generation of intermediates
2b–2l. Regardless of the substituent at the isoindoline scaffold and the kind of arylsulfonyl
chloride, all intermediates 2a–2l were obtained after a short milling time, ranging from 5 to
7 min. Of note, products 2a–2l were isolated after filtration of the inorganic base, followed
by washing the filtrate with water to provide desired compounds in high yields (85–98%).
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Reagents and conditions: (i) φball = 1.5 cm, 35 mL SS jar, the total mass of reagents = 350 mg,
milling load = 10 mg/mL; differently substituted isoindolines (1 eq), arylsulfonyl chloride (1.1 eq),
NaOH (3 eq), 5–7 min, isolated yields (85–98%); (ii) φball = 1.5 cm, 10 mL SS jar, the total mass
of reagents = 85 mg, milling load = 10 mg/mL; sulfonylated intermediates 2a–l (1 eq), anhydrous
piperazine (3 eq), MeCN or DMSO (η = 0.4 µL/mg), 50 or 80 ◦C, 1.5 h, isolated yields (75–88%).

Next, a mechanochemical procedure was applied to perform a nucleophilic aro-
matic substitution (SNAr) between fluorinated derivatives 2a–2l and anhydrous piper-
azine to obtain final compounds 3a–3l. The advantages of using temperature-controlled
mechanochemical procedures have been recently demonstrated for different organic reac-
tions [33–36]. In line with those findings, heating of a 10 mL SS jar containing intermediate
2a (1 eq) and anhydrous piperazine (1 eq) at 50 ◦C for 1.5 h by using a temperature-
controlled heat gun pre-set at 90 ◦C enabled the formation of the product 3a (55% of
conversion). No product was observed after milling of reagents at room temperature
(Table S2—SI). Because the conversion rate was still not satisfactory, MeCN, a widely used
aprotic polar solvent for SNAr reactions in solution, was evaluated as a non-toxic liquid
additive to enhance the overall mixing and reaction kinetics. Employing liquid-assisted
grinding (LAG), in tandem with the increase in the amount of amine (3 eq of anhydrous
piperazine), drastically improved the conversion rates up to 90% to furnish the desired
product 3a in 85% yield (Table S2—SI). Regardless of the kind of substituent at the isoin-
doline core, similar results were obtained with different 4-fluoro and 2-fluoro-containing
substrates (isolated yields 80–88%). Despite the low reactivity of the fluorine atom in the
3-position with respect to sulfonamide moiety, optimization of reaction conditions was
required. The replacement of MeCN with DMSO as a liquid additive enabled to increase
the milling temperature of the jar to 80 ◦C (heat gun pre-set at 120 ◦C), providing final
compounds 3e, 3f, 3g, and 3h in acceptable yields (75–78%). All the final compounds were
isolated after simple precipitation from water followed by filtration to remove the excess of
piperazine and crystallization in ethanol (Table S2—SI).

3.2. Radioligand Binding Assays in HEK-293 Cells and SAR Studies

All synthesized compounds were evaluated in 3[H]-LSD competition binding experi-
ments for their affinity for 5-HT6R expressed in HEK-293 cells (Table 1). Embedding the
sulfonamide moiety into an unsubstituted isoindoline scaffold was sufficient to provide
potent compounds 3a and 3e. Compounds bearing the chlorine or bromine atom at the 4-
or 5-position of isoindoline scaffold were equipotent (3b and 3c vs. 3a) or showed lower
affinity than their unsubstituted analogs (3d vs. 3a and 3l vs. 3j). Regardless of the kind of
halogen at the isoindoline core, 3-piperazinyl derivatives 3e, 3f, 3g, and 3h were the most
potent compounds (Ki < 5 nM). A shift of the piperazine moiety from 3- to 4-position at the
phenyl ring slightly decreased the affinity for the 5-HT6R but still provided high-affinity
ligands 3a, 3b, and 3c. In contrast, the introduction of piperazine moiety at the 2-position
at the phenyl ring was not beneficial for the interaction with the 5-HT6R, as compounds 3i,
3j and 3l were not active (Ki > 900 nM). An exception, compound 3k bearing the 4-bromo
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substituent at the isoindoline scaffold, displayed average affinity at the 5-HT6R. This effect
might result from the favorable localization of the bromine atom at the isoindoline fragment,
which enabled compound 3k to adopt an optimal position in the receptor binding pocket
via the formation of hydrophobic/steric interactions.

Table 1. The affinity of synthesized compounds 3a–l and reference SB-258585 at the 5-HT6R.
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The most potent 5-HT6R ligands 3e, 3f, and 3g bearing the piperazine moiety localized
at position-3 at the sulfonamide fragment were then tested for their activity at serotonin
5-HT1A, 5-HT2A, 5-HT7, and dopaminergic D2 receptors (Table 2). These compounds were
highly selective over the off-target 5-HT7R and D2R (Ki > 2 µM). They also displayed good
selectivity toward the 5-HT1AR subtype (up to 680-folds). The selectivity index over the
5-HT2AR (Ki < 200 nM) was still satisfactory.

Table 2. The antagonist properties of selected compounds 3e, 3f, and 3g, their impact on 5-HT6R
constitutive activity, and their Ki values for 5-HT6, 5-HT1A, 5-HT2A, 5-HT7, and D2Rs.
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SB-258585 d 8.9 NT Inverse agonist 645 1023 3388 3802
a Mean Ki values ± SEMs from three independent binding experiments; b Mean Kb values ± SEMs from three
independent experiments in 1321N1 cells; c Data were obtained from four independent. transfection experiments
in NG108-15 cells and measured in triplicate; d Data taken from reference [20]; NT = not tested.
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3.3. One-Pot Two-Step Mechanochemical Synthesis of Compounds 3e, 3f, and 3g

To optimize the developed mechanochemical procedure, a one-pot, two-step protocol
was employed for the synthesis of the most potent derivatives 3e, 3f, and 3g (Scheme 2).
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Scheme 2. One-pot two-step strategy for the mechanochemical synthesis of compounds 3e, 3f, and
3g using vbm operating at 30 Hz. Reagents and conditions: φball = 1.5 cm, 35 mL SS jar, the total
mass of reagents = 350 mg, milling load = 10 mg/mL; differently substituted isoindolines (1 eq),
3-fluorobenzensulfonyl chloride (1.1 eq), NaOH (3 eq), 10 min then anhydrous piperazine (3 eq),
DMSO (η = 0.4 µL/mg), 80 ◦C, 60 min (isolated yields 85–88%).

According to the newly elaborated protocol, intermediates generated upon milling
the isoindolines 1a–c (1 eq.) with 3-fluorobenzenesulfonyl chloride (1.1 eq) and NaOH
(3 eq) were directly submitted to SNAr by the addition of anhydrous piperazine (3 eq) and
DMSO (η = 0.4 µL/mg) in the 35 mL SS jar (Scheme 2). The simplified one-pot two-step
synthetic procedure enabled to obtain final compounds in higher overall yields (85–88%)
when compared to the sequential two-step protocol (75–78%) by improving the conversion
rates of the SNAr reaction. A possible explanation could be found in the role of NaOH in
neutralizing the generated in situ HF, maintaining a favorable basic environment for the
substitution reaction.

3.4. Antagonist Properties of Selected Compounds at 5-HT6R-Operated Gs Signaling

The antagonist properties of compounds 3e, 3f, and 3g at 5-HT6R-operated Gs sig-
naling were assessed in comparison with the reference ligand intepirdine and using 5-CT
as an agonist in 1321N1 cells over-expressing the 5-HT6R (Figure 3A). Likewise, intepir-
dine (Kb = 1 ± 0.4 nM, Figure 3A), all compounds inhibited the 5-CT-stimulated cAMP
accumulation and, thus, were classified as receptor antagonists (Kb = 0.7−6.9 nM, Table 2).

Subsequently, the ability of compounds 3e, 3f, and 3g to inhibit 5-HT6R constitu-
tive activity were further investigated in neuroblastoma NG108-15 cells, in line with our
previous observation indicating that transiently expressed receptors exhibit a high level
of constitutive activity at Gs signaling in this cell population. Neither of the evaluated
compounds significantly affected basal cAMP production in NG108-15 cells, indicating
that they behave as neutral antagonists (Table 2, Figure 3B). In contrast and consistent with
previous findings, the reference compound SB-258585 reduced the basal level of cAMP,
showing inverse agonist properties [14].

In light of these findings and considering structure-functional activity relationships,
it seems that the more flexible primary sulfonamide of SB-258585 provides a particular
orientation of the aromatic fragment that allows inhibition of the spontaneously active
conformation of 5-HT6R [20], while inversion of the sulfonamide and its concomitant
incorporation into isoindoline scaffold confers neutral antagonist properties.
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Figure 3. (A): Functional dose-response curve of inhibition of cAMP production at 5-HT6R for
selected compounds 3e, 3f, and 3g in 1321N1 cells. Data were obtained from three independent
experiments run in triplicate. (B): Impact of compounds 3e, 3f, and 3g and SB-258585 on basal cAMP
production in NG108-15 cells transiently expressing 5-HT6R. For each compound, six independent
transfection experiments were performed, and data were measured in triplicate. Data are given as
means ± SEM of the values.

Beyond the ability to adopt different conformational states able to recruit the canonical
Gs-adenylyl cyclase pathway in the presence and absence of an agonist, 5-HT6R also acti-
vates Cdk5 signaling in an agonist-independent manner [21]. We previously showed that
neurite growth in NG108-15 cells transiently expressing the 5-HT6R provides an in vitro
model to assess agonist-independent activation of Cdk5 signaling, enabling pharmacologi-
cal distinction between inverse agonists and neutral antagonists at Cdk5 signaling [21,37].

As previously observed, transient expression of the 5-HT6R in NG108-15 cells markedly
increased neurite growth compared with cells expressing GFP alone. Treatment of NG108-
15 cells expressing the receptor with compounds 3e, 3f, and 3g for 24 h significantly reduced
neurite length (11.81 ± 2.61 µm, n = 112 neurites, 10.92 ± 0.89 µm n = 182 neurites and
8.08 ± 0.84 µm, n = 105 neurites, respectively vs. 16.95 ± 1.5 µm, n = 228 neurites in
vehicle-treated cells, Figure 4). Of note, compound 3g was the most effective compound
providing a 50% reduction in neurite growth slightly higher than that measured in cells
treated with the reference SB-258585 (10.3± 0.77 µm, n = 182 neurites). In this case, reducing
the flexibility of the sulfonamide fragment of SB-258585 by its inversion and incorporation
into isoindoline moiety did not impact the functional profile of tested compounds at the
5-HT6R-elicited Cdk5 pathway. To our knowledge, compound 3g represents a unique ex-
ample of a 5-HT6R ligand that behaves as a neutral antagonist at Gs signaling and displays
potent inverse agonist properties at a non-canonical pathway engaged by the receptor.
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Figure 4. Impact of compounds 3e, 3f, 3g, and SB-258585 on Cdk5 signaling pathway. NG108-15
cells were transfected with a plasmid encoding a GFP-tagged 5-HT6R or GFP alone. Cells expressing
the receptor were exposed to vehicle (DMSO), compounds 3e, 3f, 3g, and reference SB-2758585 for
48 h. The left panel shows representative images of cells in each condition (scale bar 20 µm). The
histogram shows the mean ± SEM of values obtained from at least three independent experiments.
*** p < 0.001, ** p < 0.02 vs. cells expressing GFP. All groups were compared using one-way ANOVA
followed by Tukey’s multiple comparison test.

3.5. In Vitro Metabolic Stability and Preliminary Safety Assessment for 3e, 3f, and 3g

Preliminary ADME/Tox properties of compounds 3e, 3f, and 3g were screened us-
ing in vitro methods. First, biotransformation studies using rat liver microsomes (RLM)
revealed that all tested compounds were metabolically stable (Table 3). Unsubstituted
derivative 3e displayed a lower clearance value (Clint = 3.78 µL/min/mg) than its halo-
genated analogs 3f (4-Cl) and 3g (4-Br), similar to that of the reference drug donepezil
(Clint = 3.65 µL/min/mg). Imipramine, an extensively metabolized drug used as a positive
control, displayed much higher clearance (Clint = 115.65 µL/min/mg).

Table 3. Preliminary metabolic stability and safety profile for compounds 3e, 3f, and 3g.

ID
Metabolic Stability a Cytotoxicity b

t1/2 [min] Clint
[µL/min/mg]

Major
Metabolite HepG2 SH-SY5Y C8-D1A

3e 367 3.78 not detected IC50 > 50 µM IC50 = 42 µM IC50 > 50 µM
3f 76.95 18.01 hydroxylated IC50 > 50 µM IC50 = 38 µM IC50 > 50 µM
3g 94.41 14.68 hydroxylated IC50 > 50 µM IC50 = 48 µM IC50 > 50 µM

Donepezil 379 3.65 not detected NT NT NT
Imipramine 11.98 115.65 Des-methylated NT NT NT
Doxorubicin NT NT NT IC50 = 10.8 µM IC50 = 4.4 µM IC50 = 12.3 µM

a Determined in the RLM test, at a protein concentration of 0.5 mg/mL; b Results were obtained upon treatment
of HepG2, SH-SY5Y, and C8-D1A cells for 48 h using MTT test; data from three independent experiments;
NT = not tested.

Then, to exclude potential cytotoxic effects, compounds 3e, 3f, and 3g were tested in
human hepatocellular carcinoma (HepG2), human neuroblastoma (SH-SY5Y), and mouse
astrocytes (C8-D1A). None of the evaluated compounds affected the metabolic activity
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of cells, as assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium
bromide) test. None of them induced any hepatotoxic, neurotoxic, or gliotoxic activity at
a concentration of 25 µM (Table 3), in contrast to doxorubicin used as a positive control,
which displayed high cytotoxic effects (IC50 = 4.4, 10.8 and 12.3 µM against SH-SY5Y,
HepG2 and C8-D1A cells, respectively).

3.6. Glioprotective Properties of Compound 3g

Considering the pivotal physiological role of astrocytes in contrasting oxidative stress
and promoting tissue repair [38,39], supporting their neuroprotective function might be
regarded as a tangible strategy to improve the current therapeutic needs in the treatment of
neurodegenerative disorders. We next investigated the ability of compound 3g to protect
astrocytes against 6-OHDA- and ROT-induced cytotoxicity in C8-D1A cells, in line with
our previous findings indicating that blocking of 5-HT6R results in glioprotective effect
against toxic insults [17,40]. In comparison, we assessed the effect of WAY-181187, a 5-
HT6R agonist, SB-258585, an inverse agonist, and CPPQ, a neutral antagonist [18]. For
this purpose, cells were co-incubated with the evaluated compounds (at the non-toxic
concentration of 0.25 µM) and 6-OHDA or ROT (20 and 0.5 µM, respectively). After 24 h of
incubation, the viability of astrocytes was determined using the MTT assay.

Both compound 3g and CPPQ, which behave as neutral antagonists at the 5-HT6R-
operated Gs signaling pathway, decreased the cytotoxicity of 6-OHDA and ROT in C8-
D1A astrocytes (Figure 5A,B), whereas the inverse agonist SB-258585 did not evoke any
protective effect. Likewise, treatment of C8-D1A cells with WAY-181187, a 5-HT6R agonist,
slightly but not significantly enhanced the gliotoxic effects of 6-OHDA and ROT. These
findings suggest that 5-HT6R activation by 5-HT contained in the serum from the cell-
growing medium contributes to the toxicity of 6-OHDA and rotenone in C8-D1A astrocytes.
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Figure 5. Effect of 3g and CPPQ (neutral antagonists), SB-258585 (inverse agonist), and WAY-181187
(agonist) upon 6-OHDA- (A) or ROT- (B) induced toxicity in C8-D1A astrocyte cell line. Twenty-four
hours after the onset of 6-OHDA or ROT treatment, cells were co-incubated with either vehicle or
tested compounds (all at 0.25 µM) and 6-OHDA (20 µM) or ROT (0.5 µM) for an additional 24 h
period. Graphs present the means ± SD. * p < 0.05 vs. cells treated with cytotoxic agents (6-OHDA or
ROT) using the Mann–Whitney test.

4. Conclusions

Structural modifications around the sulfonamide moiety of SB-258585 led to the design
of 1-(arylsulfonyl-isoindol-2-yl)piperazines as a new framework for developing biased
5-HT6R ligands. An application of a one-pot two-step mechanochemical procedure enabled
the synthesis of selected derivatives in a fast and efficient manner (isolated yields 85–88%).
Tested compounds displayed high metabolic stability in RLM assays and no toxic effect
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toward human hepatocellular carcinoma and neuroblastoma or a mouse astrocyte cell
line. In vitro functional evaluation identified compounds that behave as potent neutral
antagonists at 5-HT6R-elicited Gs signaling and simultaneously display inverse agonist
properties at the Cdk5 pathway. These findings underline the important role of the sulfon-
amide moiety, in particular its inversion and rigidification, for the design of biased ligands
at 5-HT6R-operated Gs and Cdk5 signaling pathways. Moreover, the neutral antagonists
3g and CPPQ exerted glioprotective properties against 6-OHDA-and ROT-induced toxicity
in the C8-D1A astrocyte cell line. In contrast, no protective effect and even a slight increase
in cytotoxicity were observed upon treatment with the inverse agonist SB-258585 or the
agonist WAY-181187, respectively. The identified biased ligand 3g might be considered as a
molecular probe to explore the role of 5-HT6R in neurodegenerative diseases further.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13010012/s1. Characterization of all intermediates; UPLC-
MS, 1H-NMR, and 13C-NMR of all intermediates and final compounds; Table S1–SI: Optimization of
milling conditions for sulfonylation of isoindolines 1a–d; Table S2–SI: Optimization of milling condi-
tions for SNAr of intermediates 2a–l; Figure S1–SI: The effect of compound 3g on cellular viability.
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