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When T is an irrational rotation, [T, Id] and [T, T−1] are

Bernoulli: explicit isomorphisms.

Christophe Leuridan

March 25, 2023

Abstract

Let θ be an irrational real number. The map Tθ : y 7→ (y + θ) mod 1 from the
unit interval I = [0, 1[ (endowed with the Lebesgue measure) to itself is ergodic. In
2002, Rudolph and Hoffman showed in [7] the measure-preserving map [Tθ, Id] is
isomorphic to a one-sided dyadic Bernoulli shift. Their proof is not constructive.
A few years before, Parry [12] had provided an explicit isomorphism under the
assumption that θ is extremely well approached by the rational numbers, namely

inf
q≥1

q44q
2

dist(θ, q−1Z) = 0.

Whether the explicit map considered by Parry is an isomorphism or not in the
general case was still an open question. In [10] we relaxed Parry’s condition into

inf
q≥1

q4 dist(θ, q−1Z) = 0.

In the present paper, we remove the condition by showing that the explicit map
considered by Parry is always an isomorphism. With a few adaptations, the same
method works with [T, T−1].

MSC Classification : 37A05,60J05.
Keywords : irrational rotations, skew products, Bernoulli shifts, dyadic filtrations,
head-and-tail filtrations, constructive Markov chains, coupling from the past.

1 Introduction

In this section, we present general properties of Meilijson’s skew products [T, Id] and
[T, T−1] before focusing on the case where T is an irrational rotation.

1.1 Meilijson’s skew products [T, Id] and [T, T−1]

Let X = {0, 1}Z+ , endowed with the product sigma-field X and the product measure

µ :=
⊗
n∈Z+

(δ0 + δ1)/2.

The shift operator S : X → X, defined by

S(x)(i) := x(i+ 1) for every x ∈ X and i ∈ Z+,
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preserves the measure µ.

Given any automorphism T of a probability space (Y,Y, ν) one defines the map
[T, Id] from X × Y to itself by

[T, Id](x, y) := (S(x), T x(0)(y)).

On the first component, the map [T, Id] simply applies the shift S. If we totally ignore
the first component, the map [T, Id] applies T or Id at random on the second one. The
map [T, T−1] can be defined with the same formula, just by replacing {0, 1}Z+ with
{−1, 1}Z+ .

One checks that the transformations [T, Id] and [T, T−1] preserve the measure µ⊗ ν
and are two-to-one: if (x, y) is chosen randomly according to the distribution µ⊗ν, and if
one knows [T, Id](x, y) (or [T, T−1]), the only information missing to recover (x, y) is the
value of x(0), which is uniformly distributed on {0, 1} and independent of [T, Id](x, y)
(of [T, T−1]).

Meilijson’s theorem [11] ensures that the natural extension of [T, Id] is a K-automor-
phism whenever T is ergodic and the natural extension of [T, T−1] is a K-automorphism
whenever T is totally ergodic (i.e. all positive powers of T are ergodic). Actually, the
ergodicity of T only is sufficient (and necessary) to guarantee that the endomorphism
[T, Id] is exact, so its natural extension is a K-automorphism. And the ergodicity of T 2

only is sufficient (and necessary) to guarantee that the endomorphism [T, T−1] is exact,
so its natural extension is a K-automorphism. See theorem 1 in [9].

Hence, when T (respectively T 2) is ergodic, a natural question arises: is the endo-
morphism [T, Id] (respectively [T, T−1]) isomorphic to the Bernoulli shift S? The answer
depends on the automorphism T considered.

• An adaptation of techniques and ideas introduced by Vershik [14, 15], Heicklen and
Hoffman [5] shows that when T is a two-sided Bernoulli shift, and more generally
when T has positive entropy, the endomorphism [T, T−1] cannot be Bernoulli since
the standardness - a weaker property - fails. This argument can be adapted to the
endomorphism [T, Id]. More details are given in [9].

• In 2000, Hoffman constructed in [6] a zero-entropy transformation T such that the
[T, Id] endomorphism is nonstandard. The proof is detailed in [9].

• In 2002, Rudolph and Hoffman showed in [7] that when T is an irrational rotation,
the endomorphism [T, Id] is isomorphic to the dyadic Bernoulli shift S. Their proof
is not constructive.

Actually, non-trivial examples of explicit isomorphisms between measure preserving
maps are quite rare. Yet, an independent generating partition providing an explicit
isomorphism between [T, Id] and the dyadic one-sided Bernoulli shift was given in 1996
by Parry in [12] when the rotation T is extremely well approximated by rational ones.

1.2 Parry’s partition

From now on, we fix an irrational number θ. We call I = [0, 1[ the unit interval, ν
the uniform distribution on I and Tθ : I → I the translation of θ modulo 1. This
transformation preserves the measure ν and can be viewed as an irrational rotation on
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the circle R/Z. However, we choose to work with the unit interval I = [0, 1[ to avoid
ambiguity in the definition of the sub-intervals.

Since the transformation Tθ depends only on the equivalence class of θ in R/Z, we
may - and we shall - assume that 0 < θ < 1. Hence for every y ∈ I,

Tθ(y) = y + θ − 1[1−θ,1[(y).

The map Tθ is bijective with inverse T1−θ = T−θ, given by

T−θ(y) = y − θ + 1[0,θ[(y).

Since T1−θ = T−θ is isomorphic to Tθ, we may - and we shall - assume that 0 < θ < 1/2.

In [12], Parry introduced the partition αθ = {Aθ0, Aθ1} on X × I defined by

Aθ0 := {x ∈ X : x(0) = 0} × [0, θ[ ∪ {x ∈ X : x(0) = 1} × [0, 1− θ[,

Aθ1 := {x ∈ X : x(0) = 0} × [θ, 1[ ∪ {x ∈ X : x(0) = 1} × [1− θ, 1[.

One checks that the partitions ([Tθ, Id]−nαθ)n≥0 are independent.

For every (x, y) ∈ X × I, denote by αθ(x, y) = 1Aθ1
(x, y) the index of the only block

containing (x, y) in the partition αθ. By construction, the ‘αθ-name’ map Φθ : X×I→ X
defined by

Φθ(x, y) :=
(
(αθ ◦ Snθ )(x, y)

)
n≥0

.

is also a factor map which sends the dynamical system (X × I,X ⊗B(I), µ⊗ ν, [Tθ, Id])
on the Bernoulli shift (X,X , µ, S).

Under the assumption

inf
q≥1

q44q
2

dist(θ, q−1Z) = 0,

Parry shows that for µ ⊗ ν-almost every (x, y) ∈ X × I, the knowledge of Φθ(x, y) is
sufficient to recover (x, y), so the factor map Φθ is an isomorphism.

Our purpose is to remove Parry’s assumption.

1.3 Probabilistic reformulation

Since the transformation Tθ preserves the uniform measure on [0, 1[, we can consider a
stationary Markov chain ((ξn, Yn))n∈Z on {0, 1} × [0, 1[ such that for every n ∈ Z,

• (ξn, Yn) is uniform on {0, 1} × [0, 1[;

• ξn is independent of Fξ,Yn−1 := σ((ξk, Yk)k≤n−1);

• Yn = T ξn−θ(Yn−1) = (Yn−1 − ξnθ) mod 1.

For every real number r, denote by r = r+ Z the equivalence class of r modulo Z. The
process (Yn)n∈Z is as a random walk on R/Z. The steps (Yn − Yn−1)n∈Z = (−ξnθ) are
uniformly distributed on {0,−θ}. Since each random variable ξn can be recovered from

the knowledge of Yn and Yn−1, the natural filtration (Fξ,Yn )n∈Z of the Markov chain
((ξn, Yn))n∈Z coincides with the the natural filtration (FYn )n∈Z of the process (Yn)n∈Z.
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The Markov chain ((ξn, Yn))n∈Z thus defined is closely related to the transformation
[Tθ, Id] since for every n ∈ Z,

[Tθ, Id]((ξn−k)k≥0, Yn) = ((ξn−(k+1))k≥0, T
ξn
θ (Yn)) = ((ξn−1−k)k≥0, Yn−1).

Knowing the sequence (ξn)n∈Z only is not sufficient to recover the positions (Yn)n∈Z.
Indeed, one can check that Y0 is independent of the whole sequence (ξn)n∈Z.

Reformulating Parry’s method, we introduce the sequence (ηn)n∈Z defined by

ηn :=
(
ξn + 1[θ,1[(Yn−1)

)
mod 2.

= 1[ξn=0 ; Yn−1≥θ] + 1[ξn=1 ; Yn−1<θ].

By construction, ηn is an Fξ,Yn -measurable Bernoulli random variable; and ηn is uniform
and independent of Fξ,Yn−1 since

E
[
ηn
∣∣Fξ,Yn−1

]
=

1

2
1[Yn−1≥θ] +

1

2
1[Yn−1<θ] =

1

2
.

Moreover, since Yn = T ξn−θ(Yn−1), we have also

ηn = 1[ξn=0 ; Yn≥θ] + 1[ξn=1 ; Yn≥1−θ]

= 1Aθ1

(
(ξn−k)k≥0, Yn

)
= 1Aθ1

(
[Tθ, Id]−n

(
(ξ−k)k≥0, Y0

))
if n ≤ 0.

Hence, the αθ-name of ((ξ−i)i≥0, Y0) is the sequence (η−i)i≥0.

Thus, proving that the partition αθ is generating is equivalent to prove that almost
surely, the random variable Y0 is completely determined by the knowledge of (ηk)k≤0.

By stationarity, it means that the filtration (Fξ,Yn )n∈Z = (FYn )n∈Z is generated by the
sequence (ηn)n∈Z.

Actually, we show that this property holds without any additional assumption on θ.

Theorem 1 For every n ∈ Z, the random variable Yn can be almost surely recovered
from the knowledge of (ηk)k≤n. Hence the filtration (Fξ,Yn )n∈Z = (FYn )n∈Z is generated
by the sequence (ηn)n∈Z of independent uniform Bernoulli random variables. Equiva-
lently, Parry’s partition αθ is an independent generator of [Tθ, Id].

We refer the reader to subsection 5 for the similar statement about [Tθ, T
−1
θ ].

At the moment, let us explain why the sequence (ηn)n∈Z gives more information
than the sequence (ξn)n∈Z. Define two maps f0 and f1 from the interval I = [0, 1[ to
itself by

f0(y) := y − θ1[θ,1[(y), and f1(y) := y + (1− θ)1[0,θ[(y).

The union of the graphs of f0 and f1 is also the union of the graphs of Id and T−θ (see
figure 1). Therefore, applying at random f0 or f1 has the same effect as applying at
random Id or T−θ. Actually, a direct computation distinguishing four cases, according
that ξn equals 0 or 1, and that Yn−1 < θ or Yn−1 ≥ θ yields

Yn = fηn(Yn−1).

The great difference with the initial recursion relation Yn = T ξn−θ(Yn−1) is that the maps
f0 and f1 are not injective, unlike T 0

−θ = Id and T 1
−θ = T−θ.
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Figure 1: Graphs of f0 and f1

1.4 Intermediate and related results

For every n ≥ 1, denote by Fn the random map from I = [0, 1[ to itself defined by
Fn := fηn ◦ · · · ◦ fη1 . By convention, F0 is the identity map from I to I.

The sequence (xn)n≥0 defined by xn := nθ − bnθc plays an important role in our
study. Indeed, a recursion yields the following statement.

Lemma 2 Let n ≥ 0. The points (xi)0≤i≤n split I into n+ 1 semi-open intervals and,
on each of those intervals, the random map Fn coincides with T−kθ for some integer
k ∈ [0, n].

We would like to say that when n is large, the random map Fn is close to a random
constant map, so the random variable Yn = Fn(Y0) is almost a function of (η1, . . . , ηn)
and has a weak dependence on Y0. The next result seems to be a good step in this
direction.

Proposition 3 The Lebesgue measure of the range Rn := Fn(I) goes to 0 as n goes to
infinity.

When proving Proposition 3, we will provide an explicit upper bound of |Rn| involv-
ing the continued fraction expansion of θ.

Yet, getting Proposition 3 is far from proving Theorem 1. Although the range Rn
can be written as the union of at most n+1 intervals (and actually much less than n+1),
these intervals may be spread out in the unit interval, and the evolution is difficult to
study. The only simple observation is that the Lebesgue measure can only decrease.
Indeed, to deduce Rn from Rn−1, we split Rn−1 at θ, and we apply translation T−θ to
Rn−1 ∩ [θ, 1[ or to Rn−1 ∩ [0, θ[, according that ηn = 0 or ηn = 1.

To prove Theorem 1, we use a coupling argument: given (y, y′) ∈ I2, we study the
processes

(
(Fn(y), Fn(y′)

)
n≥0

. These processes are Markov chains on I2 whose transition
probabilities are given by

K((y, y′), ·) =
1

2

(
δ(f0(y),f0(y′)) + δ(f1(y),f1(y′))

)
.
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See figure 2 in Subsection 2.2.

Set Bθ = [0, θ[×[θ, 1[∪[θ, 1[×[0, θ[. The key step in the proof of Theorem 1 is to show
that the set Bθ is visited more and more rarely.

Proposition 4 For every (y, y′) ∈ I2,

1

n

n−1∑
k=0

1Bθ
(
Fk(y), Fk(y

′)
)
→ 0 almost surely as n→ +∞.

For every real number δ, we denote by ||δ|| the shortest distance from δ to Z:

||δ|| := dist(δ,Z) = min(δ − bδc, 1− δ + bδc)

By construction, 0 ≤ ||δ|| ≤ 1/2.

The next result is similar and can be proved with the help of proposition 4.

Proposition 5 For every (y, y′) ∈ I2,

1

n

n−1∑
k=0

||Fk(y′)− Fk(y)|| → 0 in probability as n→ +∞.

Yet, Theorem 1 follows directly from proposition 4: see subsection 1.5 below.

1.5 Deriving Theorem 1 from Proposition 4

Let us explain the final arguments once Proposition 4 is established.

First, we prove that if π is an invariant probability with regard to kernel K then π
is carried by D, the diagonal of I2. Indeed, by stationarity, one has for every n ≥ 1∫

I2
1Bθ((y, y

′))dπ(y, y′) =

∫
I2
E
[ 1

n

n−1∑
k=0

1Bθ
(
(Fk(y), Fk(y

′))
)]

dπ(y, y′).

In the right-hand side, the fonction integrated with regard to π takes values in [0, 1]
and goes to 0 everywhere as n goes to infinity. Hence Lebesgue dominated convergence
applies. Passing to the limit, we get π(Bθ) = 0. Since all future orbits under the
action of T−θ are dense in I, every Markov chain with transition kernel K starting from
anywhere in Dc reaches the set Bθ with positive probability (precise bounds on the
number of steps will be given in section 2). Thus π(Dc) = 0.

Next, by enlarging if necessary the probability space on which the Markov chain
Y := (Yn)n∈Z is defined, we can construct a copy Y ′ := (Y ′n)n∈Z such that Y and Y ′ are
i.i.d. conditionally on η := (ηn)n∈Z. Since the process

(
(Yn, Y

′
n)
)
n∈Z thus obtained is a

stationary Markov chain with transition kernel K, it lives almost surely on D, so the
processes Y = Y ′ almost surely. But

L((Y, Y ′)|η) = L(Y |η)⊗ L(Y |η),

hence the conditional law L(Y |η) is almost surely a Dirac mass, so Y is almost surely a
deterministic function of the process η.
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Remind that for every n ∈ Z, the random variable ηn is independent of Fξ,Yn−1. Given

n ∈ Z, the sequence (ηn)k≥n+1 is independent of Fξ,Yn and therefore of the sub-σ-field
σ(Yn) ∨ σ((ηn)k≤n). Hence one has almost surely,

δYn = L
(
Yn|(ηk)k∈Z

)
= L

(
Yn|(ηk)k≤n

)
,

so the random variable Yn is almost surely a measurable function of the process (ηn)k≤n
only. Theorem 1 follows.

1.6 Plan of the paper

In section 2, we introduce the main tools and Lemmas involved to prove Propositions 3,
4 and 5: continued fractions expansions, three gaps Theorem and bounds for hitting
and return times under the action of T−θ.

In section 3, we prove Proposition 3.

In section 4, we prove Propositions 4 and 5.

In section 5, we explain how the proof must be adapted to get a constructive proof
that [Tθ, T

−1
θ ] is Bernoulli.

In section 6, we view still open related questions.

2 Tools

In this section, we present the techniques and preliminary results involved to prove
Propositions 3, 4 and 5. Our results heavily rely on the three gaps Theorem.

2.1 three gaps Theorem and consequences

We consider again the sequence (xn)n≥0 defined by xn := nθ − bnθc. The well-known
three gaps Theorem states that for every n ≥ 1, the intervals defined by the subdivision
(xk)0≤k≤n−1 have at most three different lengths. We shall use a very precise statement
of the three gaps Theorem, involving the continued fraction expansion θ = [0; a1, a2, . . .].
Let us recall some classical facts. A more complete exposition can be found in [8].

Set a0 = bθc = 0 and define two sequences (pk)k≥−2 and (qk)k≥−2 of integers by
p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0, and for every k ≥ 0,

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2.

Moreover, pk and qk are relatively prime since pkqk−1 − qkpk−1 = (−1)k−1.

The fractions (pk/qk)k≥0 are the convergents of θ. The following inequalities hold

p0

q0
<
p2

q2
< · · · < θ < · · · < p3

q3
<
p1

q1
.

In particular, the difference θ − pk/qk has the same sign as (−1)k and

ak+2

qkqk+2
=
∣∣∣pk+2

qk+2
− pk
qk

∣∣∣ < ∣∣∣θ − pk
qk

∣∣∣ < ∣∣∣pk+1

qk+1
− pk
qk

∣∣∣ =
1

qkqk+1
.

Hence the sequence (pk/qk)n≥0 converges to θ.
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For every k ≥ −1, set `k = (−1)k(qkθ − pk) = |qkθ − pk|. In particular, `−1 = 1,
`0 = θ and `1 = 1− b1/θcθ ≤ 1− θ. Since for every k ≥ 0,

1

qk+2
≤ ak+2

qk+2
< |qkθ − pk| <

1

qk+1
,

the sequence (`k)k≥−1 is decreasing. For every k ≥ 1, we have `k = −ak`k−1 + `k−2, so
ak = b`k−2/`k−1c.

We can now give a precise statement of the three gaps Theorem. The formulation
below is close to the formulation given by Alessandri and Berthé [3]

Theorem 6 Let n ≥ 1. Set n = bqk + qk−1 + r where k ≥ 0, b ∈ [1, ak+1] and r ∈ [0, qk]
are integers. Then the points (xi)0≤i≤n−1 split I into n intervals:

• n− qk = (b− 1)qk + qk−1 + r intervals with length `k;

• qk − r intervals with length `k−1 − (b− 1)`k;

• r intervals with length `k−1 − b`k.

Remark 7 Each positive integer n can be written as above. The decomposition is unique
if we require that r ≤ qk − 1. In this case,

• k is the largest non-negative integer such that qk + qk−1 ≤ n, so qk + qk−1 ≤ n <
qk+1 + qk = (ak+1 + 1)qk + qk−1,

• b is the integer part of (n− qk−1)/qk, so 1 ≤ b ≤ ak+1,

• r = (n− qk−1)− bqk, so 0 ≤ r ≤ qk−1 − 1.

Under the assumptions of theorem 6, we have `k−1 − (b − 1)`k = (`k−1 − b`k) + `k.
Moreover, `k−1− b`k < `k if and only if b = ak. From these observations, we deduce the
following consequences.

Corollary 8 Fix n ≥ 1, and consider the n sub-intervals of I defined by the subdivision
(xi)0≤i≤n−1.

• If bqk + qk−1 ≤ n < (b + 1)qk + qk−1 with k ≥ 0 and b ∈ [1, ak+1], the greatest
length is `k−1 − (b− 1)`k.

• If qk < n ≤ qk+1, the smallest length is min{||iθ|| : i ∈ [1, n− 1]} = `k.

We can now answer precisely these two questions: given a semi-open subinterval J
of I, what is the maximal number of iterations of T−θ to reach J from anywhere in I?
what is the minimal number of iterations of T−θ necessary to return in J from anywhere
in J?

Corollary 9 Let J be a semi-open subinterval of I, modulo 1, namely J = [α, β[ with
0 ≤ α < β ≤ 1 (with length |J | = β − α), or J = [α, 1[∪[0, β[ with 0 ≤ β < α ≤ 1 (with
length |J | = 1 + β − α).
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• Let k ≥ 0 be the least integer such that `k + `k+1 ≤ |J |, and b ∈ [1, ak+1] be the
least integer such that `k−1 − (b − 1)`k ≤ |J |. This integer is well-defined since
`k−1−(ak+1−1)`k = `k+`k+1. Then bqk+qk−1−1 iterations of T−θ are sufficient
to reach J from anywhere in I, and this bound is optimal.

• Let k ≥ 0 be the least integer such that `k ≤ |J |. For every y ∈ J , the first integer

m(y) ≥ 1 such that T
m(y)
−θ (y) ∈ J is at least equal to qk.

Proof. We are searching for the least non-negative integer m such that

m⋃
k=0

T kθ (J) = I (1)

By rotation, one may assume that J = [0, |J |[. In this case, for every k ≥ 0,

T kθ (J) =

{
[xk, xk + |J |[ if xk + |J | ≤ 1,

[xk, 1[∪[0, xk + |J | − 1[ if xk + |J | > 1.

Therefore equality 1 holds if and only if the greatest length of the sub-intervals of I
defined by the subdivision (xk)0≤k≤m is at most |J |. Thus, first item follows from
corollary 8.

Next, given y ∈ J , we are searching for the least integer m(y) ≥ 1 such that

T
m(y)
−θ (y) ∈ J , which implies

min
0≤i<j≤m(y)

||xj − xi|| ≤ ||m(y)θ|| = ||y − Tm(y)(y)|| < |J |.

Denoting by k ≥ 0 the least integer such that `k ≤ |J |, we derive m(y) ≥ qk by
corollary 8. �

2.2 A Markov chain on I2

In this section, we study the Markov chains on I2 with kernel K. Our purpose is to give
upper bounds on the entrance time in the set Bθ = [0, θ[×[θ, 1[∪[θ, 1[×[0, θ[.

The transition probabilities can be also written

K((y, y′), ·) =
1

2

(
δ(T−θ(y),y′) + δ(y,T−θ(y′))

)
if (y, y′) ∈ Bθ,

K((y, y′), ·) =
1

2

(
δ(y,y′) + δ(T−θ(y),T−θ(y′))

)
if (y, y′) ∈ Bc

θ.

Note that the transition probabilities from any (y, y′) ∈ Bc
θ preserve the difference y′−y

modulo 1. See figure 2.

Since D is absorbing and has no intersection with Bθ, the set Bθ cannot be reached
from D. But the set Bθ can be reached from any (y, y′) ∈ Dc. We set

ty,y′ := inf{n ≥ 0 : (Tn−θ(y), Tn−θ(y
′)) ∈ Bθ}

Ty,y′ = inf{n ≥ 0 :
(
Fn(y), Fn(y′)

)
∈ Bθ}.
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0 1θ
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1

Figure 2: Probability transitions from different points (y, y′). The probability associated
to each arrow is 1/2. The set Bθ is the union of the shaded rectangles. When (y, y′) ∈ Bθ,
only one coordinate moves, so the transitions are parallel to the axis. When (y, y′) ∈ Bc

θ,
the same translation Id or T−θ is applied to both coordinates, so the transitions are
parallel to the diagonal.
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Figure 3: Entrance time in Bθ from any point under the action of the map (y, y′) 7→
(T−θ(y), T−θ(y

′)). Points far from the diagonal have low entrance time.
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Note that we have always Ty,y′ ≥ ty,y′ , and that ty,y′ and Ty,y′ are null whenever (y, y′)
is in Bθ. Moreover,

Ty,y′ + 1 = inf{n ≥ 0 : Fn(y′)− Fn(y) 6≡ y′ − y mod 1}.

Informally, we want to show that the times ty,y′ and Ty,y′ are small when ||y′ − y||
is far from 0, and are ‘often’ big when ||y′ − y|| is close from 0. The restriction ‘often’
cannot be removed since tθ−ε1,θ+ε2 = 0 for every ε1 ∈]0, θ] and ε2 ∈ [0, 1 − θ[. See
figure 3.

Before, we prove a useful Lemma.

Lemma 10 Let y ∈ R. There exists a unique sequence (ζyn)n≥1 of independent uniform
Bernoulli random variables such that for every integer n ≥ 0,

∀n ≥ 0, Fn+1(y) = T ζ
y
n

−θ(Fn(y)).

Proof. The uniqueness holds since T−θ(y
′) 6= y′ for every y′ ∈ I. To prove the existence,

we construct a sequence (ζyn)n≥1 of random variables by setting for every n ≥ 1,

ζyn :=
(
ηn + 1[θ,1[(Fn−1(y))

)
mod 2 = 1[ηn=0 ; Fn−1(y)≥θ] + 1[ηn=1 ; Fn−1(y)<θ].

For every n ≥ 0, set Fn := σ(η1, . . . , ηn), with the convention F0 = {∅,Ω}.
By construction, ζyn is an Fn-measurable Bernoulli random variable, which is uniform

and independent of Fn−1 since

E
[
ζyn
∣∣Fn−1

]
=

1

2
1[Fn−1(y)≥θ] +

1

2
1[Fn−1(y)<θ] =

1

2
.

Moreover, a computation distinguishing two cases whether Fn−1(y) < θ or Fn−1(y) ≥ θ
yields

Fn(y) = fηn(Fn−1(y)) = T ζ
y
n

−θFn−1(y).

The proof is complete. �

Lemma 11 Assume that 0 < θ < 1/2. Let y and y′ be two different points in I.

The time ty,y′ is finite. More precisely, let k ≥ 0 be the least integer such that
`k+`k+1 ≤ ||y′−y||, and b ∈ [1, ak+1] the least integer such that `k−1−(b−1)`k ≤ ||y′−y||.
Then ty,y′ ≤ bqk + qk−1 − 2 if ||y′ − y|| ≤ θ and ty,y′ ≤ q1 − 1 otherwise.

The random variable Ty,y′ is binomial negative, with parameters ty,y′ and 1/2. In
particular, E[Ty,y′ ] = 2ty,y′.

Proof. Let δ = ||y′ − y||. Since y and y′ play the same role, we may - and we do -
assume that y′ = Tδ(y).

We use the sequence (ζyn)n≥1 introduced in Lemma 10 and abbreviate the notation
into (ζn)n≥1.

For every integer n ≥ 0,

∀n ≥ 0, Fn+1(y) = T ζn−θ(Fn(y)).

11



For every integer n ∈ [0, Ty,y′ − 1], the two points Fn(y′) and Fn(y′) belong to the same

interval [0, θ[ or [θ, 1[, so Fn+1(y′) = T ζn−θ(Fn(y′)) ≡ Fn(y′)− ζnθ mod 1. By recursion,
we get:

∀n ≥ 0, Fn(y) = T ζ1+···+ζn
−θ (y)

and
∀n ∈ [0, Ty,y′ ], Fn(y′) = T ζ1+···+ζn

−θ (y′) = Tδ(Fn(y)).

Hence

Ty,y′ = inf{n ≥ 0 :
(
Fn(y), Tδ((Fn(y))

)
∈ Bθ}

= inf{n ≥ 0 :
(
T ζ1+···+ζn
−θ (y), Tδ(T

ζ1+···+ζn
−θ (y))

)
∈ Bθ}

= inf{n ≥ 0 : ζ1 + · · ·+ ζn = ty,y′}

Since (ζn)n≥1 is a sequence of independent uniform Bernoulli random variables, the
random variable Ty,y′ is negative binomial, with parameters ty,y′ and 1/2.

If δ ≤ θ, then for every x ∈ I,

(x, Tδ(x)) ∈ Bθ ⇐⇒ x ∈ [θ − δ, θ[∪[1− δ, 1[.

Thus ty,y′ = inf{n ≥ 0 : Tn−θ(y) ∈ [θ − δ, θ[∪[1 − δ, 1[}. By corollary 9, at most
bqk + qk−1 − 1 iterations of the map T−θ are sufficient to reach each one of the intervals
[θ − δ, θ[ or [1− δ, 1[ from y. But these two intervals are disjoint since 0 < θ − δ < θ <
1/2 < 1− δ < 1. Hence ty,y′ ≤ bqk + qk−1 − 2.

If δ > θ, then for every x ∈ I,

(x, Tδ(x)) ∈ Bθ ⇐⇒ x ∈ [0, θ[∪[1− δ, 1− δ + θ[.

Thus T = inf{n ≥ 0 : Fn(y) ∈ [0, θ[∪[1 − δ, 1 − δ + θ[}. By corollary 9 applied with
k = 1 and b = 1, at most q1 iterations of the map T−θ are sufficient to reach each one of
the intervals [0, θ[ or [1− δ, 1− δ + θ[ from y. But these two intervals are disjoint since
0 < θ < 1/2 < 1− δ < 1− δ + θ < 1. Hence ty,y′ ≤ q1 − 1.

The proof is complete. �

Corollary 12 Let y and y′ be in I and k ≥ 1 be an integer such that `k−1 ≤ ||y′ − y||.
Then ty,y′ ≤ qk + qk−1 − 2.

Proof. By Lemma 11, if θ ≤ ||y′ − y||, then ty,y′ ≤ q1 − 1 ≤ qk + qk−1 − 2.

From now on, we focus on the case where ||y′ − y|| ≤ θ. Observe that

`k + `k+1 ≤ ak+1`k + `k+1 = `k−1 ≤ ||y′ − y||.

If ||y′ − y|| < `k−1 + `k, then Lemma 11 applied to the integers k and b = 1 yields
ty,y′ ≤ qk + qk−1 − 2.

Otherwise, k ≥ 2 since `k−1 < `k−1 + `k ≤ ||y′− y|| ≤ θ = `0. Furthermore, the least
integer k′ ≥ 1 such that `k′ + `k′+1 ≤ ||y′ − y|| is at most k − 1 and Lemma 11 applies
to the integers k′ ≥ 1 and some b ∈ [1, ak′+1], so

ty,y′ ≤ bqk′ + qk′−1 − 2 ≤ ak′+1qk′ + qk′−1 − 2 = qk′+1 − 2 ≤ qk − 2.

Hence, in all cases, we get ty,y′ ≤ qk + qk−1 − 2. �

12



2.3 A time-changed symmetric random walk

For every real number x, denote by x = x + Z its equivalence class in R/Z. Then
Lemma 11 and the strong Markov property show that the process

(
Fn(y′)− Fn(y)

)
n≥0

is a time-changed symmetric random walk on R/Z with steps ±θ.

Lemma 13 For every n ≥ 0, set Fn = σ(η1, . . . , ηn), with the convention F0 = {∅,Ω}.
Consider the non-descreasing process (An)n≥0 defined by

An :=

n−1∑
k=0

1Bθ(Fk(y), Fk(y
′)), with the convention A0 = 0,

and set A∞ := limnAn. Consider its inverse (Na)a≥0 defined by ,

Na := inf{n ≥ 0 : An ≥ a}, with the convention inf ∅ = +∞.

On the event [Na < +∞] = [a ≤ A∞], set

∆Na := Na+1 −Na and Wa :=

a∑
b=1

(2ζyNb − 1),

with the notation of Lemma 10.

1. For every n ≥ 0,

Fn(y′)− Fn(y) ≡ y′ − y + θWAn mod 1.

2. The random times (Na − 1)a≥1 are stopping times in the filtration (Fn)n≥0.

3. The process (Wa)a≥0 is a simple symmetric random walk on Z, with possibly finite
life-time A∞. More precisely, for every positive integer a ≥ 0, conditionally on
the event [A∞ ≥ a], the increments W1−W0, . . . ,Wa−Wa−1 are independent and
uniform on {−1, 1}.

4. One has A∞ = ATD
y,y′

where TDy,y′ := inf{n ≥ 0 : Fn(y) = Fn(y′)}. If y′ − y ∈
Z + θZ, then A∞ is almost surely finite. Otherwise, A∞ is infinite.

5. Assume that y′−y /∈ Z+θZ. Conditionally on the process
(
((FNa(y), FNa(y′))

)
a≥0

,

the random variables (∆Na

)
a≥0

are independent and each ∆Na − 1 is negative

binomial with parameters tFNa (y),FNa (y′) and 1/2.

Proof. We use the sequence (ζn)n≥1 := (ζyn)n≥1 introduced in Lemma 10, and define

(ζ ′n)n≥1 := (ζy
′
n )n≥1 in the same way. By construction,

Fn(y) = fηn(Fn−1(y)) ≡ Fn−1(y)− ζnθ mod 1.

Then
Fn(y′)− Fn(y) ≡ Fn−1(y′)− Fn−1(y) + (ζn − ζ ′n)θ mod 1.

A recursion yields, for every n ≥ 0,

Fn(y′)− Fn(y) ≡ y′ − y +Mnθ mod 1, where Mn :=
n∑
k=1

(ζk − ζ ′k),

13



with the convention M0 = 0. For every k ≥ 1, ζ ′k = 1 − ζk if (Fk−1(y), Fk−1(y′)) ∈ Bθ
whereas ζ ′k = ζk if (Fk−1(y), Fk−1(y′)) ∈ Bc

θ, so

ζk − ζ ′k = 1Bθ(Fk−1(y), Fk−1(y′))× (2ζk − 1)

= (Ak −Ak−1)× (2ζk − 1).

By definition, for every a ≥ 0, on the event [Na < +∞], the process (An)n≥0 remains
constant and equal to a during the time interval [Na, Na+1 − 1]. Hence

Mn =

n∑
k=1

(Mk −Mk−1) =

An∑
b=1

(MNb −MNb−1) =

An∑
b=1

(2ζNb − 1) = WAn .

Item 1 follows.

The process (An)n≥0 defined by

An =

n−1∑
k=0

1Bθ(Fk(y), Fk(y
′))

is (Fn)n≥0-predictable: the random variable A0 = 0 is constant and for every n ≥ 1, the
random variable An is Fn−1-measurable.

For every a ≥ 0, the random variable Na is a stopping time in the filtration (Fn)n≥0.
If a ≥ 1, the random variable Na − 1 is still a stopping time since for every n ≥ 0,

[Na − 1 ≤ n] = [Na ≤ n+ 1] = [An+1 ≥ a] ∈ Fn.

Item 2 follows.

Let a ≥ 0. The event [Na < +∞] = [Na − 1 < +∞] belongs to FNa−1. On this
event, the sequence (η̃n)n≥0 := (ηNa+n)n≥0 is an i.i.d. sequence of uniform Bernoulli
random variables and is independent of FNa−1. Therefore,

• the Bernoulli random variable ζNa =
(
ηNa + 1[0,θ[(FNa−1(y))

)
mod 2 is uniform,

independent of FNa−1 and FNa-measurable. Thus the random variable Wa −
Wa−1 = 2ζNa−1 is uniform on {−1, 1}, independent of FNa−1 and FNa-measurable.
Item 3 follows.

• the random variable (Y, Y ′) :=
(
FNa(y), FNa(y′)

)
is FNa-measurable.

• the process (F̃n)n≥0 defined by F̃n := fη̃n ◦ · · · ◦ fη̃1 is independent of FNa and has
the same law as (Fn)n≥0.

Observe that with obvious notations,

∆Na − 1 = (Na+1 − 1)−Na = T̃Y,Y ′ := inf
{
n ≥ 0 :

(
F̃n(Y ), F̃n(Y ′)

)
∈ Bθ

}
.

Hence, conditionally on FNa and on the event [Na < +∞] ∩ [Y 6= Y ′], the random
variable ∆Na − 1 is almost surely finite and negative binomial with parameters tY,Y ′

and 1/2. Item 5 follows. Moreover, for every a ≥ 0, we have almost surely

Na+1 < +∞ ⇐⇒
(
Na < +∞ and FNa(y) 6= FNa(y′)

)
.

Hence, almost surely,

A∞ = inf{a ≥ 0 : Na+1 = +∞} = inf{a ≥ 0 : Na < +∞ ; FNa(y) = FNa(y′)}.

14



During each time interval [Na, Na+1− 1], the process (Fn(y′)−Fn(y)) remains constant
modulo 1 and the process (An)n≥0 remains constant and equal to a. Thus

A∞ = ATD
y,y′

where TDy,y′ := inf{n ≥ 0 : Fn(y) = Fn(y′)}.

Since for every n ≥ 0, Fn(y′)−Fn(y) ≡ y′−y+θWAn mod 1, the difference Fn(y′)−Fn(y)
remains in the coset y′ − y + θZ + Z. Therefore, the time TDy,y′ cannot be finite unless

y′ − y ∈ θZ + Z. Conversely, if y′ − y ∈ θZ + Z, then TDy,y′ is almost surely finite by
recurrence of the symmetric simple random walk on Z. Item 4 follows. �

By density of the subgroup θZ + Z in R and by recurrence of the symmetric simple
random walk on Z, we derive the following consequence.

Corollary 14 Let y and y′ be two points in I such that y′ − y /∈ Z + θZ. Then, almost
surely,

lim inf
n→+∞

||Fn(y′)− Fn(y)|| = 0 and lim sup
n→+∞

||Fn(y′)− Fn(y)|| = 1/2.

Proof. We use the notations and the results of Lemma 13. The recurrence of the
symmetric simple random walk on Z and the density of the subgroup θZ+Z in R yields

inf
n≥0
||Fn(y′)− Fn(y)|| = inf

a≥0
||y′ − y + θWa|| = inf

w∈Z
||y′ − y + θw|| = 0 a.s..

Since the quantities ||Fn(y′) − Fn(y)|| are all positive, the greatest lower bound of the
sequence (||Fn(y′)−Fn(y)||)n≥0 is not achieved and is therefore a lower limit. We argue
in the same way with the least upper bound. �

To prove that the Cesàro averages of the sequence (||Fn(y′)− Fn(y)||)n≥0 tend to 0,
we observe that the time-change in the process (WAn)n≥0 slows down the random walk
much more when the difference is ||y′ − y|| is small. Indeed, Corollary 12 shows that if
||y′ − y|| is not close to 0, then the process

(
(Fn(y), Fn(y′)

)
n≥0

reaches Bθ quickly, and

the difference Fn(y′)− Fn(y) changes immediatly after.

Conversely, if ||y′ − y|| is small, we hope that it will take a long time for the pro-
cess

(
(Fn(y), Fn(y′))

)
n≥n0

to reach Bθ. During this time, the difference Fn(y′)− Fn(y)
remains unchanged. Yet, we may be unlucky, so the times ty,y′ and Ty,y′ may be small.
Fortunately, the distance ||Fn(y′)− Fn(y)|| is close to θ at time N1 = Ty,y′ + 1 so it will
change soon. With probability 1/2, we will get W2 = 0, so ||FN2(y′)−FN2(y)|| = ||y′−y||
will be small, and this time the distance ||Fn(y′)−Fn(y)|| will remain unchanged during
a long time. The role of the next Lemma is to provide a lower bound of this time.

Lemma 15 Let y and y′ be two distinct points in I such that (y, y′) ∈ [0, 1− θ[2∪[θ, 1[2

and ||y′ − y|| < `2. Let k ≥ 3 be the integer such that `k ≤ ||y′ − y|| < `k−1. Keep the
notations of Lemma 13. Then

On the event [W2 = 0], ∆N2 − 1 ≥ tFN2
(y),FN2

(y′) ≥ qk + 1− q2 − q1.

Before proving Lemma 15, it is important to note that all probability transitions
K((y, y′), ·) give full measure to the set [0, 1 − θ[2∪[θ, 1[2 (see figure 4). Hence, the
additional hypothesis (y, y′) ∈ [0, 1− θ[2∪[θ, 1[2 will not be a true restriction. Actually,
this assumption could be removed by changing the lower bound into qk − q2 − q1.
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Figure 4: The squares [0, θ[×[1 − θ, 1[ and [1 − θ, 1[×[0, θ[ cannot be reached from
anywhere via the kernel K. If 0 < δ < θ, then Bθ ∩ {(y, Tδ(y)); y ∈ I} is the union of
two ‘semi-open segments’, defined by θ − δ ≤ y < θ and 1 − δ ≤ y < 1. The second
semi-open segment cannot be reached from anywhere via the kernel K and is the image
of the first one by the map (y, y′) 7→ (T−θ(y), T−θ(y

′)).

Proof. The inequality ∆N2 − 1 ≥ tFN2
(y),FN2

(y′) ≥ 0 follows from item 5 of Lemma 13.

The assumption (y, y′) ∈ [0, 1 − θ[2∪[θ, 1[2 ensures that (Fn(y), Fn(y′)) belongs to
[0, 1− θ[2∪[θ, 1[2 not only for every n ≥ 1, but also when n = 0.

Set δ = ||y′ − y||. By symmetry, we may assume that y′ − y ≡ δ mod 1, i.e.
y′ = Tδ(y). Hence, for every a ≥ 0, FNa+1−1(y′)− FNa+1−1(y) ≡ δ + θWa mod 1.

On the event [W2 = 0], we have

FN3−1(y′)− FN3−1(y) ≡ FN1−1(y′)− FN1−1(y) ≡ δ mod 1.

Since the points (FN1−1(y), FN1−1(y′)) and (FN3−1(y), FN3−1(y′)) belong at the same
time to Bθ and to [0, 1 − θ[2∪[θ, 1[2, we deduce that FN1−1(y) and FN3−1(y) belong to
[θ − δ, θ[. But FN3−1(y) is obtained from FN1−1(y) by applying the transformation T−θ
exactly ζyN1

+ tFN1
(y),FN1

(y′) + ζyN2
+ tFN2

(y),FN2
(y′) times.

On the event [W2 = 0], we have ζyN1
+ ζyN2

= 1, so corollary 9 yields

tFN1
(y),FN1

(y′) + tFN2
(y),FN2

(y′) + 1 ≥ qk.

But FN1(y′)− FN1(y) ≡ δ ± θ mod 1, so

||FN1(y′)− FN1(y)|| ≥ θ − δ > `0 − `k ≥ `1.

Corollary 12 yields tFN1
(y),FN1

(y′) ≤ q2 + q1 − 2.Thus

tFN2
(y),FN2

(y′) + q2 + q1 − 1 ≥ qk.

The desired inequality follows. �

2.4 Martingales and symmetric simple random walk on Z

In this subsection, we establish three more results that which help us in the proof of
Proposition 4. The first of them is a kind of law of large numbers.
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Lemma 16 Let (Gn)n≥0 be a filtration of (Ω,A,P) and (Zn)n≥1 be a sequence of real
random variables, bounded in L2(P), and adapted to the filtration (Gn)n≥1. Then

1

n

n∑
k=1

(
Zk −E[Zk|Gn−1]

)
→ 0 almost surely as n→ +∞.

Proof. For every n ≥ 0, let

Mn =

n∑
k=1

1

k

(
Zk −E[Zk|Gn−1]

)
.

By construction, the sequence (Mn)n≥0 is a square-integrable martingale in (G)n≥0. The
increments Mk −Mk−1 are pairwise orthogonal in L2(P) and∑

k≥1

||Mk −Mk−1||22 =
∑
k≥1

1

k2

∣∣∣∣Zk −E[Zk|Gn−1]
∣∣∣∣2

2
≤
∑
k≥1

1

k2

∣∣∣∣Zk∣∣∣∣22 < +∞.

Hence the martingale (Mn)n≥0 is bounded in L2(P) and it converges almost surely and
in L2(P) to some real random variable M∞.

1

n

n∑
k=1

(
Zk −E[Zk|Gn−1]

)
=

1

n

n∑
k=1

k(Mk −Mk−1)

=
1

n

(
nMn +

n−1∑
k=1

kMk −M0 −
n−1∑
k=1

(k + 1)Mk

)
= Mn −

1

n

n−1∑
k=1

Mk.

The conclusion follows from Cesàró Lemma. �

The second result is a refinement of gambler’s ruin Theorem [13].

Lemma 17 Let (Wn)n≥0 be a symmetric simple random walk on Z, i.e. W0 = 0 and
(Wn −Wn−1)n≥1 is an i.i.d. sequence of Rademacher random variables. Fix two non-
negative integers a and b and set

τ−a,b = inf{n ≥ 0 : Wn = {−a, b}}.

Then τ−a,b < +∞ almost surely. Moreover,

• P[Wτ−a,b = −a] = b/(a+ b) and P[Wτ−a,b = b] = a/(a+ b).

• E[τ−a,b] = ab.

• For every λ ≥ 0, E[(coshλ)−τ−a,b ] = cosh
(−a+b

2 λ
)/

cosh
(
a+b

2 λ
)
.

Proof. One checks that the processes (Wn)n≥0, (W 2
n−n)n≥0 and (e±λWn(coshλ)−n)n≥0

are martingales, and that the martingales

(Wn)n≥0,
((
Wn −

b− a
2

)2
− n

)
n≥0

,
(

cosh
(
λ
(
Wn −

b− a
2

))
(coshλ)−n

)
n≥0

are uniformly bounded on the time interval [0, τ−a,b]. Hence optional stopping time The-
orem applies. Writing that the expectations at time τ−a,b are equal to the expectations
at time 0 yields items 1, 2, 3. �

The third result states an equidistribution modulo 1.
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Lemma 18 Let (Wn)n≥0 be a symmetric simple random walk on Z and θ be any irra-
tional number. Then for every contiuous 1-periodic function f : R→ C,

1

n

n−1∑
k=0

f(θWk)→
∫ 1

0
f(x)dx almost surely as n→ +∞.

Proof. Since the trigonometric polynomials form a dense subspace of the vector space
of all continuous 1-periodic functions, we need only to prove the result when f is the
function em : x 7→ ei2πmx for some m ∈ Z. The case where m = 0 is trivial, so we fix
m 6= 0.

For every n ≥ 1, let

Sn :=

n−1∑
k=0

ei2πmθWk .

Then

|Sn|2 = SnSn =
n−1∑
k=0

n−1∑
`=0

ei2πmθ(Wk−W`)

Let z = E[ei2πmθ(W1−W0)] = cos(2πmθ). Then z ∈]−1, 1[ since m 6= 0 and θ is irrational.
By independence equidistribution of the increments of the random walk W , we derive

E
[
|Sn|2

]
=

n−1∑
k=0

n−1∑
`=0

z|k−`| = n+ 2
n−1∑
d=1

(n− d)zd

≤ n
(

1 + 2

n−1∑
d=1

|z|d
)
≤ n1 + |z|

1− |z|
.

Thus
+∞∑
n=1

∣∣∣∣∣∣ 1

n3
Sn3

∣∣∣∣∣∣
2
≤

+∞∑
n=1

(1 + |z|
1− |z|

)−1/2
n−3/2 < +∞.

The series
∑

n Sn3/n3 is absolutely convergent in L2(P), so it converges almost surely
and in L2(P). Therefore, Sn3/n3 → 0 almost surely as n → +∞. To deduce that
Sn/n→ 0 almost surely as n→ +∞, it suffices to set rn = bn1/3c and to note that

|Sn − Sr3n | ≤ n− r
3
n ≤ 3n2/3(n1/3 − r) ≤ 3n2/3.

3 Proof of Proposition 3

We begin with the key Lemma. This lemma (and Fubini’s Theorem) ensures that when
n is large, the random map Fn is close to be θ-periodic, namely that Fn and Fn ◦ Tθ
coincide on a set of Lebesgue measure close to 1. View figure 5.

Lemma 19 Let y ∈ I and set y′ = Tθ(y) = (y + θ)mod 1. Given k ≥ 1, we have

∀n ≥ 2(qk + qk−1)q2
k, P[Fn(y′) 6= Fn(y)] ≤ 2

qk
.
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Figure 5: A simulation of Fn, for n = 1000 and θ = (
√

5− 1)/2

Proof. We use the notations and the results of Lemma 13. For every n ≥ 0,

Fn(y′)− Fn(y) ≡ θ(1 +WAn) mod 1,

where (An)n≥0 is a time-change given by

An =
n−1∑
k=0

1Bθ(Fk(y), Fk(y
′)).

and (Wn)0≤n≤A∞ is a simple symmetric random walk on Z, with lifetime A∞.

Call (Na)a≥0 the inverse of (An)n≥0: for every integer a ≥ 0,

Na := inf{n ≥ 0 : An ≥ a}.

For every d ∈ Z, set
σd := inf{t ≥ 0 : Wt = d},

τd := inf{n ≥ 0 : WAn = d} = inf{n ≥ 0 : Fn(y′)− Fn(y) = (1 + d)θ}.

Then τd = Nσd , with the conventions inf ∅ = +∞ and N∞ =∞.

In particular, since y′ = Tθ(y), lemma 13 yields A∞ = ATD
y,y′

where

TDy,y′ = inf{n ≥ 0 : Fn(y) = Fn(y′)} = inf{n ≥ 0 : WAn = −1} = Nσ−1 = τ−1.

By adapting item 5 to the present situation, we see that, conditionally on the process
Z :=

(
((FNa(y), FNa(y′))

)
0≤a≤σ−1−1

, the random variables (∆Na

)
0≤a≤σ−1

are indepen-

dent and each random variable ∆Na is negative binomial with parameters tFNa (y),FNa (y′)

and 1/2. Since

min(τ−1, τqk−1) = min(Nσ−1 , Nσqk−1) =

min(σ−1,σqk−1)−1∑
a=0

∆Na,

and since min(τ−1, τqk−1) is a measurable function of Z, we derive

E
[

min(τ−1, τqk−1)
∣∣Z] =

min(σ−1,σqk−1)−1∑
a=0

(
2tFNa (y),FNa (y′) + 1

)
.
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Next, while 0 ≤ n < min(τ0, τqk), we have 1 +WAn ∈ [1, qk − 1], so Corollary 8 yields

||Fn(y′)− Fn(y)|| ≥ min{||iθ|| : i ∈ [1, qk − 1]} = `k−1,

and Corollary 12 yields tFn(y),Fn(y′) ≤ qk + qk−1 − 2. Putting things together, we get

E
[

min(τ−1, τqk−1)
∣∣Z] ≤ 2(qk + qk−1) min(σ−1, σqk−1)

Taking expectations and applying the gambler’s ruin theorem (see Lemma 17 or [13],
chapter 10, section 14, subsection 4) yields

E
[

min(τ−1, τqk−1)
]
≤ 2(qk + qk−1)qk.

Now, let n ≥ 1. Since the processes
(
(Fn(y)

)
n≥0

and (Fn(y′)
)
n≥0

coincide from the
instant τ−1, we have the inclusions

[Fn(y′) 6= Fn(y)] ⊂ [n < τ−1] ⊂ [n < min(τ−1, τqk−1)] ∪ [τqk−1 < τ−1],

so Markov inequality and the gambler’s ruin theorem (see Lemma 17 or [13], chapter
10, section 14, subsection 4) yield

P[Fn(y′) 6= Fn(y)] ≤ P[n < min(τ−1, τqk−1)] + P[σqk−1 < σ−1]

≤ 2(qk + qk−1)qk
n

+
1

qk
.

The statement of Lemma 19 follows. �

We now derive an upper bound for the Lebesgue measure of the range Fn(I).

Corollary 20 Given k ≥ 1, we have

∀n ≥ 2(qk + qk−1)q2
k, E

[
|Fn(I)|

]
≤ 2

qk
.

Proof. Let E = {y ∈ I : Fn(Tθ(y)) 6= Fn(y)}. Since Fn ◦ Tθ − Fn is piecewise constant
on I and right-continuous, the set E is a finite union of semi-open intervals. Moreover,
by Lemma 19 and Fubini’s theorem, E

[
|E|
]
≤ 2/qk.

Let us show that Fn(I) ⊂ Fn(E) (the reverse inclusion is trivial). Fix y ∈ E. We
claim that there exists k ≥ 0 such that Fn(T k+1

θ (y)) 6= Fn(T kθ (y)). Otherwise, the
function Fn would be constant along the future Tθ-orbit of y, hence constant on I by
right-continuity and by density. But Fn cannnot be constant since it is a piecewise
translation. Hence, m(y) := min{k ≥ 0 : Fn(T k+1

θ (y)) 6= Fn(T kθ (y)} is well-defined. By

construction, F (y) = F (T
m(y)
θ (y)) and T

m(y)
θ (y) ∈ E. The inclusion Fn(I) ⊂ Fn(E)

follows.

Putting things together, we get

|Fn(I)| = |Fn(E)| ≤ |E| ≤ 2

qk

since Fn is a piecewise translation. �
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4 Proof of Propositions 4 and 5

4.1 Proof of Proposition 4

Let y, y′ be in I and δ = y′ − y. We use again the notations and the results contained
in Lemma 13.

If δ ∈ Z + θZ, then almost surely, Fn(y′) − Fn(y) is null for all large enough n, so
the conclusion holds.

We now focus on the difficult case, when δ /∈ Z + θZ. First, we prove the following
Lemma.

Lemma 21 Assume that δ /∈ Z + θZ, keep the notations of Lemma 13.

1. Consider the function g from [0, 1/2] to [0,+∞] defined by g(0) = +∞ and

g(r) := 1 + (qk + 1− q2 − q1)+ whenever `k ≤ r < `k−1.

This function g is non-increasing on [0, 1/2] and bounded below by 1. Moreover,
the integral of g on [0, 1/2] is infinite.

2. Moreover,
∀a ≥ 3, ∆Na ≥ g

(
||θWa||

)
1[Wa=Wa−2].

Proof. The sequence (`k)k≥0 is decreasing and the sequence (qk)k≥0 is non-decreasing.
The monotonicity of g and h and the lower bounds follow. On each interval [`k, `k−1[,
g(r) ≥ qk − q3. thus ∫ `2

0
g(r)dr ≥

+∞∑
k=3

qk(`k−1 − `k)− q3`2.

But qk`k−1 ≥ 1/2 for every k ≥ 0 and `k−1 ≥ 1+
√

5
2 `k for at least one k among two

consecutive k (since `k−1 ≥ `k + `k+1 for every k ≥ 0). Item 1 follows.

Now, assume that a ≥ 3. Then Na−2 ≥ a − 2 ≥ 1, so the point (Y, Y ′) :=
(FNa−2(y), FNa−2(y′)) belongs to [0, 1 − θ[2∪[θ, 1[2. The sequence (ηNa−2+n)n≥0 is in-
dependent of (Y, Y ′) and has the same law as (ηn)n≥0. Hence, we may apply Lemma 15
to (Y, Y ′) and the sequence (ηNa−2+n)n≥0 instead of (y, y′) and (ηn)n≥0. We get

∆Na ≥
(
1 + (qk + 1− q1 − q2)+

)
1[Wa=Wa−2] = g

(
||δ + θWa||

)
1[Wa=Wa−2].

Item 2 follows. �

We now prove Proposition 4.

On each time interval [Na, Na+1 − 1], we have An = a, so

a

Na+1
<
An
n
≤ a

Na
.

Hence we only need to show that Na/a → +∞ almost surely as a → +∞. To do this,
we observe that for every a ≥ 3,

Na

a
=

1

a

a−1∑
b=0

∆Nb ≥
1

a

a−1∑
b=3

1[Wb=Wb−2]g(||δ + θWb−2||)

=
1

a

a−2∑
k=2

1[Wk+1=Wk−1]g(||δ + θWk−1||).
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Therefore, it is sufficient to prove that

1

a

a∑
k=1

1[Wk+1=Wk−1]g(||δ + θWk−1||)→ +∞ almost surely as a→ +∞.

The positive function x 7→ g(||δ + x||) can be written as the limit of a non-decreasing
sequence of continuous 1-periodic functions. Given such functions, the sequence of their
integrals on [0, 1] tends to infinity by Beppo-Levi’s Lemma.

Thus, it suffices to prove that for every continuous 1-periodic function f : R→ R,

1

a

a∑
k=1

1[Wk+1=Wk−1]f(θWk−1)→ 1

2

∫ 1

0
f(x)dx almost surely as a→ +∞.

Since for every k ≥ 1, P[Wk+1 = Wk−1|FNk ] = 1/2, Lemma 16 applied to the random
variables Zk := 1[Wk+1=Wk−1]f(θWk+1) = 1[Wk+1=Wk−1]f(θWk−1) and to the filtration
(Gk)k≥0 := (FNk)k≥0 yields

1

a

a∑
k=1

(
1[Wk+1=Wk−1]f(θWk−1)− 1

2
f(θWk−1)

)
→ 0 almost surely as n→ +∞.

But Lemma 18 yields

1

a

a∑
k=1

f(θWk−1)→
∫ 1

0
f(x)dx almost surely as a→ +∞.

Hence the conclusion follows. �

4.2 Proof of Proposition 5

We now deduce Proposition 5 from Proposition 4, Lemma 11 and corollary 12.

Let (y, y′) ∈ I2. Then, by Fubini’s theorem

E
[ 1

n

n−1∑
k=0

||Fk(y′)− Fk(y)||
]

=

∫ 1/2

0

1

n

n−1∑
k=0

P
[
||Fk(y′)− Fk(y)|| ≥ r

]
dr.

By the Lebesgue dominated convergence theorem, it is sufficient to check that for every
r ∈]0, 1/2],

1

n

n−1∑
k=0

P
[
||Fk(y′)− Fk(y)|| ≥ r

]
→ 0 almost surely as n→ +∞.

Since the sequence (`j)j≥0 tends to 0, one only needs to consider the case where r = `j ,
with k ≥ 0.

Observe that when (ζn)n≥1 is any sequence of independent Bernoulli random vari-
ables with parameter 1/2, and t is a positive integer, the random variable

ρt = inf{n ≥ 0 : ζ1 + · · ·+ ζn = t}

is negative binomial with parameters t and 1/2, and we have then

P[ρt ≤ 2t− 1] = P[ζ1 + · · ·+ ζ2t−1 ≥ t] =
1

2
,
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since the binomial random variable ζ1 + · · ·+ ζ2t−1 is symmetric with regard to t− 1/2.

For every k ≥ 0, set

T̃k := inf{n ≥ 0 : (Fk+n(y), Fk+n(y′)) ∈ Bθ}

By Lemma 11 and Markov property, conditionally on Fk, the random variable T̃k is
negative binomial with parameters t(Fk(y),Fk(y′)) and 1/2. Hence

P
[
T̃k ≤ 2t(Fk(y),Fk(y′)) − 1

∣∣Fk] =
1

2
.

Set nj := qj+1−qj−2. On the event
[
||Fk(y′)−Fk(y)|| ≥ `j

]
, we have tFk(y),Fk(y′) ≤ nj

by corollary 12, so P
[
T̃k ≤ 2nj − 1

∣∣Fk] ≥ 1/2. Hence

k+2nj−1∑
i=k

P
[
(Fi(y), Fi(y

′)) ∈ Bθ
]
≥ P

[
T̃k ≤ 2nj − 1

]
≥ P

[
T̃k ≤ 2nj − 1 ; ||Fk(y′)− Fk(y)|| ≥ `j

]
≥ 1

2
P
[
||Fk(y′)− Fk(y)|| ≥ `j

]
Since any non-negative integer belong to at most 2nj intervals of the form [k, k+2nj−1],
summation over all integers k ∈ [0, n− 1] yields

n−1∑
k=0

P
[
||Fk(y′)− Fk(y)|| ≥ `j

]
≤ 4nj

n+2nj−2∑
i=0

P
[
(Fi(y), Fi(y

′)) ∈ Bθ
]

Dividing by n+ 2nj − 1 and letting n go to infinity yields the result by Proposition 4.

5 Constructive proof that [Tθ, T
−1
θ ] is Bernoulli

The strategy used for [Tθ, Id] also works for [Tθ, T
−1
θ ] with some adaptations, which are

often slight but at some places more substantial. Let us explain them.

We define [Tθ, T
−1
θ ] on the space {−1, 1}Z+ × I with the same formula used to define

[Tθ, Id] on the space {0, 1}Z+ × I. In the probabilistic reformulation, we work with an
i.i.d. sequence (ξn)n∈Z of Rademacher random variables. The process (Yn)n∈Z is a
Markov chain on I whose evolution is governed by by (ξn)n∈Z through the recursion
relation

∀n ∈ Z, Yn = (Yn−1 − ξnθ) mod 1,

where ξn is uniform on {−1, 1} and independent of Fξ,Yn−1.

For every n ∈ Z, the random variable

ηn :=
(
1[0,θ[(Yn−1)− 1[θ,1[(Yn−1)

)
ξn.

is also uniform on {−1, 1} and independent of Fξ,Yn−1, and the recursion relation can be
written alternatively

∀n ∈ Z, Yn = fηn(Yn−1),

where the maps f−1 and f1 from I to I are defined by

fh(y) :=
(
y − hθ

(
1[0,θ[(y)− 1[θ,1[(y)

))
mod 1.
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0 1θ

0

θ
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1− θ

f1

f−1

f−1

f1

f1

1− θ

Figure 6: Graphs of f−1 and f1

We want to show that for every n ∈ Z, the random variable Yn can be almost
surely recovered from the knowledge of (ηk)k≤n. To do this, we introduce the random
maps Fn := fηn ◦ · · · ◦ fη1 and the σ-fields Fn = σ(η1, . . . , ηn) for n ≥ 0. Let Bθ :=
[0, θ[×[θ, 1[∪[θ, 1[×[0, θ[ and D be the diagonal of I2. The global strategy, based on a
coupling argument is unchanged:

1. For every (y, y′) ∈ I2, the process
(
(Fn(y), Fn(y′)

)
n≥0

is a Markov chain on I2 in

the filtration (Fn)n≥0, whose transition probabilities (see figure 7) are given by

K((y, y′), ·) =
1

2

(
δ(f−1(y),f−1(y′)) + δ(f1(y),f1(y′))

)
.

2. The process (An)n≥0 defined by

An :=

n−1∑
k=0

1Bθ(Fk(y), Fk(y
′))

is predictable in the filtration (Fn)n≥0.

3. Given (y, y′) ∈ I2, the process
(
(Fn(y′)− Fn(y)

)
n≥0

with values in R/Z is still

a time-changed symmetric random walk, making steps ±2θ, with probability 1/2
each. More precisely, for every n ≥ 0,

Fn(y′)− Fn(y) ≡ y′ − y + 2θWAn mod 1,

where (Wa)a≥0 is a simple symmetric random walk on Z, independent of (An)n≥0.

4. The process
(
(Fn(y), Fn(y′)

)
n≥0

visits Bθ more and more rarely: An/n→ 0 almost
surely as n→ +∞.

5. The final argument given in subsection 1.5 (which uses that invariant probability
measures for K are carried by Bc

θ, and therefore by D) is unchanged.
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0 1θ

0

θ

1

Figure 7: Probability transitions from different points (y, y′). The probability associated
to each arrow is 1/2. The set Bθ is the union of the shaded rectangles. When (y, y′) ∈ Bc

θ,
the same rotation T±θ is applied to both coordinates. When (y, y′) ∈ Bθ, rotation Tθ is
applied to one coordinate whereas rotation T−θ is applied to the other one.

Yet, the laws of the reaching times of the set Bθ from any point (y, y′) ∈ Dc are
very different in our new situation, and this changes notably the proof of step 3. The
main changes occur in Lemmas 15 and 21 which must be replaced by Lemmas 22 and 23
below. The purpose is the same, namely exhibiting situations that occur sufficiently
often where the process

(
(Fn(y), Fn(y′)

)
n≥0

spends a lot of time outside of Bθ (and

therefore close to the diagonal D), but the assumptions and the lower bounds for the
reaching time of Bθ are different.

For every a ≥ 0, we set Na = inf{n ≥ 0 : An ≥ a} and ∆Na = Na+1 − Na. By
construction, the random times (Na − 1)a≥1 are exactly the visit times of Bθ by the
process

(
(Fn(y), Fn(y′)

)
n≥0

, so they are stopping-time in the filtration (Fn)n≥0.

We now relate the distribution of N2 −N1 given W1 = −1 with the distribution of
stopping times of the form τ−1,b := inf{n ≥ 0 : Wn ∈ {−1, b}} with b ≥ 0.

Remind that `−1 = 1, `0 = θ, `1 = 1−b1/θcθ < min(θ, 1−2θ) and q1 = a1 ≥ 2 since
we assumed that 0 < θ < 1/2. Hence the condition δ ∈]0,min(θ, 1 − 2θ)[ below holds
whenever 0 < δ < `1.

Lemma 22 Let (y, y′) ∈ I2. Assume that (y, y′) ∈ Bθ (so N1 = 1) and y′ = T2θ+δ(y).
for some δ ∈]0,min(θ, 1− 2θ)[. Then

1. (Tθ(y), T−θ(y
′)) /∈ Bθ. Hence on the event [W1 = −1], (F1(y), F1(y′)) /∈ Bθ.

2. If `k ≤ δ < `k−1 with k ≥ 2, then for every λ > 0,

E
[1− (coshλ)−∆N1

1− (coshλ)−1

∣∣∣W1 = −1
]
≥ E

[1− (coshλ)−1−τ−1,qk−2

1− (coshλ)−1

]
=

tanh
( qk−1

2 λ
)

tanh(λ/2)
.

Proof. By assumption, we have (y, y′) ∈ [0, θ[×[θ, 1[ or (y, y′) ∈ [θ, 1[×[0, θ[. Since
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y′ = (y + 2θ + δ) mod 1, we get (see figure 8){
0 ≤ y < min(θ, 1− 2θ − δ)
2θ + δ ≤ y′ < min(3θ + δ, 1)

or

{
max(θ, 1− 2θ − δ) ≤ y < 1− θ − δ
max(3θ + δ − 1, 0) ≤ y′ < θ

Thus{
θ ≤ Tθ(y) < min(2θ, 1− θ − δ)
θ + δ ≤ T−θ(y′) < min(2θ + δ, 1− θ) or

{
max(2θ, 1− θ − δ) ≤ Tθ(y) < 1− δ
max(2θ + δ, 1− θ) ≤ T−θ(y′) < 1

In both cases, (Tθ(y), T−θ(y
′)) /∈ Bθ. This shows item 1.

0 1θ

0

θ

1

δ

1− δ

2θ + δ

θ + δ

2θ
1− θ − δ1− 2θ − δ

0 1

0

1

δ

1− δ

θ

θ + δ

2θ + δ

3θ + δ

θ 2θ
1− 2θ − δ 1− θ − δ

Figure 8: Possible locations of (y, y′) and (Tθ(y), T−θ(y
′)) when (y, y′) ∈ Bθ and y′ =

T2θ+δ(y) with 0 < δ < min(θ, 1 − 2θ), according that 3θ + δ ≥ 1 (left) or 3θ + δ ≤ 1
(right). Under these assumptions, the couple (Tθ(y), T−θ(y

′)) is not in Bθ.

Let us prove item 2. Let a (respectively b) be the number of iterations of the
Cartesian product map T−θ × T−θ (respectively Tθ × Tθ) necessary to reach Bθ from
(Tθ(y), T−θ(y

′)). By item 1, we have a ≥ 1 and b ≥ 1. But, we have also

a = min{k ≥ 0 : T−kθ (Tθ(y)) ∈ [θ − δ, θ[∪[1− δ, 1[},

b = min{k ≥ 0 : T kθ (Tθ(y)) ∈ [θ − δ, θ[∪[1− δ, 1[}.

Since Tθ([1− δ, 1[) = [θ − δ, θ[, corollary 9 yields a+ b ≥ qk − 1.

On the event [W1 = −1], the random variable ∆N1 − 1 = (N2 − 1) − N1 is the
hitting time of {−a, b} by (W1+n −W1)n≥1. This process is independent of W1 and is
a symmetric simple random walk, like W . Hence the distribution of ∆N1 − 1 under
P[·|W1 = −1] is the distribution on τ−a,b := inf{n ≥: Wn ∈ {−a, b}} under P. Thus
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gambler’s ruin Theorem (Proposition 17) yields for every λ > 0,

E
[
(coshλ)−(∆N1−1)

∣∣W1 = −1
]

= E
[
(coshλ)−τ−a,b

]
=

cosh
(−a+b

2 λ
)

cosh
(
a+b

2 λ
)

≤
cosh

((
a+b

2 − 1
)
λ
)

cosh
(
a+b

2 λ
)

= E
[
(coshλ)−τ−1,a+b−1

]
≤ E

[
(coshλ)−τ−1,qk−2

]
since τ−1,a+b−1 ≥ τ−1,qk−2

=
cosh

( qk−3
2 λ

)
cosh

( qk−1
2 λ

) .
Hence

E
[1− (coshλ)−∆N1

1− (coshλ)−1

∣∣∣W1 = −1
]
≥ E

[1− (coshλ)−1−τ−1,qk−2

1− (coshλ)−1

]
= E

[coshλ− (coshλ)−τ−1,qk−2

coshλ− 1

]
=

coshλ cosh
( qk−1

2 λ
)
− cosh

( qk−3
2 λ

)
(coshλ− 1) cosh

( qk−1
2 λ

)
=

sinhλ sinh
( qk−1

2 λ
)

2 sinh2(λ/2)) cosh
( qk−1

2 λ
)

=
tanh

( qk−1
2 λ

)
tanh(λ/2)

.

Item 2 follows. �

Now, let us explain how we use Lemma 22.

By symmetry, the roles of y and y′ in can be switched provided the event [W1 = −1]
is replaced with the event [W1 = 1].

For every a ≥ 1, we introduce a sign εa which indicates the shortest path in the
circle R/Z to go from YNa to Y ′Na . More precisely, we set

εa = 1 if Y ′Na − YNa ∈ ]0, 1/2[+Z,

εa = −1 if Y ′Na − YNa ∈ ]1/2, 1[+Z

εa = 0 if Y ′Na − YNa ∈ (1/2)Z.

Given λ > 0, call hλ the function from [0, 1/2] to [0,+∞] defined by hλ(0) = +∞,
hλ(r) = 1 if r ≥ `1 and

hλ(r) :=
tanh

( qk−1
2 λ

)
tanh

(
1
2λ
) whenever `k ≤ r < `k−1 with k ≥ 2.

As λ → 0+, hλ(r) increases to h(r), where h(0) = +∞, h(r) = 1 if r ≥ `1 and
h(r) := qk − 1 whenever `k ≤ r < `k−1 with k ≥ 2. We see that the integral of h over
[0, 1/2] is infinite in the same way as we did for the function g in Lemma 21.

Hence, strong Markov property at time Na and Lemma 22 yield the next Lemma,
which replaces Lemma 21.
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Lemma 23 For every a ≥ 1 and λ > 0,

E
[1− (coshλ)∆Na

1− coshλ

∣∣∣FNa] ≥ hλ(||Y ′Na − YNa ||)1[Wa−Wa−1=−εa]

≥ hλ(||Y ′Na−1 − YNa−1 − 2θ||)1[Wa−Wa−1=−εa].

Therefore,

E
[1− (coshλ)∆Na

1− coshλ

∣∣∣FNa−1

]
≥ 1

2
hλ(||Y ′Na−1 − YNa−1 − 2θ||).

We now use Lemma 23. The inequalities above may be false for a = 0, but this as
no influence on the Cesàró limits below. Observing that for every λ > 0,

∆Na ≥
1− (coshλ)∆Na

1− coshλ

and applying Lemma 16, we get almost surely

lim inf
a→+∞

Na

a
= lim inf

a→+∞

1

a

a−1∑
b=0

∆Nb

≥ lim inf
a→+∞

1

a

a−1∑
b=0

1− (coshλ)∆Nb

1− coshλ

= lim inf
a→+∞

1

a

a−1∑
b=0

E
[1− (coshλ)∆Nb

1− coshλ

∣∣∣FNa−1

]
≥ lim inf

a→+∞

1

a

a−1∑
b=0

hλ(||y′ − y + 2θWa−1 − 2θ||).

The function x 7→ hλ(||x + y′ − y − 2θ||) can be written as the limit of an increasing
sequence of non-negative continuous 1-periodic functions. Applying Lemma 18 and
Beppo-Levi’s Lemma yields almost surely

lim inf
a→+∞

1

a

a−1∑
b=0

hλ(||y′ − y + 2θWa−1 − 2θ||) ≥
∫ 1

0
hλ(||x+ y′ − y − 2θ||)dx

= 2

∫ 1/2

0
hλ(r)dr.

Hence

lim inf
a→+∞

Na

a
≥ 2

∫ 1/2

0
hλ(r)dr a.s..

Letting λ go to 0 and applying Beppo-Levi’s Lemma again yields

lim inf
a→+∞

Na

a
≥ +∞ a.s..

We derive that An/n→ 0 almost surely in the same way as we did for [Tθ, Id].
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6 Related results and open questions

In this section, we view still open related questions and a few variants of what we have
done for [Tθ, Id] and [Tθ, T

−1
θ ].

6.1 Almost sure continuity of the isomorphism and its inverse

We come back to the transformation [Tθ, Id] defined on X × I, where X = {0, 1}Z+ and
I = [0, 1[. We endow X with the product topology, I with the topology deriving from
the metric defined by d(y, y′) := ||y′ − y||, and X × I with the product topology. Since
the map Tθ is continuous on I, the map [Tθ, Id] is continuous on X × I.

The map αθ : X × I → {0, 1} associated to Parry’s partition αθ := {Aθ0, Aθ1} is
continuous µ⊗ ν-almost everywhere since it is given by

αθ(x, y) = 1Aθ1
(x, y) =

(
1[(1−x0)θ+x0(1−θ),1[(y)

)
mod 2

=
(
x0 + 1[θ,1[(T

x(0)
θ (y))

)
mod 2.

The ‘αθ-name’ map Φθ : X × I→ I is given by

Φθ(x, y) :=
(
(αθ ◦ [Tθ, Id]n)(x, y)

)
n≥0

.

Since [Tθ, Id] is continuous and preserves µ⊗ ν, we deduce that Φθ is continuous µ⊗ ν-
almost everywhere.

We have proven that the partition αθ is an independent generator, so Φθ is an iso-
morphism transforming the dynamical system (X× [0, 1[,B(X)⊗P([0, 1[), µ⊗ν, [Tθ, Id])
into (X,B(X), µ, S). Thouvenot asked me whether Φ−1

θ is continuous µ-almost every-
where or not. Answering this question is difficult since we do not have simple formulas
to recover (x, y) ∈ X × I from Φθ(x, y).

Once again, we reformulate our problem in probabilistic terms. Remind that

Φθ((ξ−i)i≥0, Y0) = (η−i)i≥0.

We know that Y0 is almost surely a function of (η−i)i≥0. To prove that Φ−1
θ is continuous

µ-almost everywhere, we just have to prove that this function is almost surely continuous,
thanks to the recursion relations

ξ−i =
(
η−i + 1[θ,1[(Y−i−1)

)
mod 2

=
(
η−i + 1[θ,1[(T

ξ−i+···+ξ0
θ (Y0))

)
mod 2.

For every n ≥ 0, we know that

Y0 = fη0 ◦ · · · ◦ fη−n+1(Yn+1),

that (η0, . . . , η−n+1) is independent of Fξ,Y−n therefore of Y−n and Y−n is uniform on I.

Given n ≥ 0, the random map Pn = fη0 ◦ · · · ◦ fη−n+1 has the same law as Fn =
fηn ◦ · · · ◦fη1 . Yet, there is a great different between the processes (Pn)n≥0 and (Fn)n≥0.
When we couple in the past, the range Pn(I) can only decrease or stay equal as n
increases. But when we couple in the future, no such inclusion holds; we only know
that the Lebesgue measures |Fn(I)| can only decrease or stay unchanged and we proved
(Proposition 3) that |Fn(I)| goes to 0 almost surely as n goes to infinity.
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Figure 9: Diameter (for the metric induced by the usual metric on R) and Lebesgue
measure of Pn(I), for different values of n and for θ = (

√
5 − 1)/2. When Pn(I) is an

interval, these two quantities coincide. Otherwise, the diameter is larger.

Since for each n ≥ 0, the random variables |Pn(I)| and |Fn(I)| have the same distri-
bution, and since the sequence (Pn(I))n≥0 is non-decreasing, we deduce that |Pn(I)| also
goes to 0 almost surely as n goes to infinity. These facts and simulations (view figure 9)
lead us to formulate the following conjecture.

Conjecture 24 The diameter of Pn(I) (for the distance d) goes almost surely to 0 as
n goes to infinity.

Observe that the conclusion will be false if we replace Pn(I) by Fn(I).

Assume that this conjecture is true. Then, given δ ∈]0, 1/2[, we can find almost surely
an integer N ≥ 1 such that the diameter of Pn(I) is at most δ; then, the knowledge of
η0, . . . , η−N+1 only is sufficient to provide a random variable Ỹ0 such that ||Y0− Ỹ0|| ≤ δ.
Hence, Y0 can be recovered with probability 1 as an almost everywhere continuous
function of (η−i)i≥0, giving a positive answer to Thouvenot’s question.

Yet, proving this conjecture requires new ideas and looks difficult.

6.2 Changing the partition

To define the random sequence (ηn)n∈Z, we split the interval I = [0, 1[ at θ. An advantage
of the (non-trivial) partition ι = {[0, θ[, [θ, 1[} is that for every n ≥ 0, the partition

n∨
k=0

T kθ ι

comprises only n+ 1 intervals given by the subdivision ((kθ) mod 1)0≤k≤n, which is the
least number possible. This facilitates the study of the random maps Fn = fηn ◦· · ·◦fη1 .

Yet, if the definition of the sequence (ηn)n∈Z is modified only by a modification of
the splitting point - α instead of θ, say - a large part of our preceeding analysis remains
true, namely Lemma 13 and its variant for [Tθ, T

−1
θ ]. Yet, the set Bθ must be replaced

by Bα, and estimating the reaching time of Bα from any point in I2 is less simple.
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A remarkable pheomenon occurs when we study [Tθ, T
−1
θ ] and split I at 1/2, namely

when we set
ηn :=

(
1[0,1/2[(Yn−1)− 1[1/2,1[(Yn−1)

)
ξn.

Indeed, replacing the Markov chain ((ξn, Yn))n∈Z by ((−ξn, (1−Yn) mod 1)n∈Z preserves
its law and modifies the sequence (ηn)n∈Z only on an null set, namely on the negligible
event [∃n ∈ N : Yn ∈ {0, 1/2}]. Hence, the knowledge of (ηn)n∈Z is not sufficient to
recover almost surely the Markov chain ((ξn, Yn))n∈Z. By symmetry, at least one bit of
information is lost.

We complete this observation with a coupling argument to prove that only one bit of
information is lost. Given y and y′ in I, look at the Markov chain

(
(Fn(y), Fn(y′)

)
n≥0

,
where Fn = fηn ◦ · · · ◦ fη1 .

• On the event [(Fn(y), Fn(y′)) ∈ Bc
1/2], we have

||Fn+1(y′)− Fn+1(y)|| = ||Fn(y′)− Fn(y)|| ≤ ||Fn(y′) + Fn(y)||.

• On the event [(Fn(y), Fn(y′)) ∈ B1/2], we have

||Fn+1(y′) + Fn+1(y)|| = ||Fn(y′) + Fn(y)|| ≤ ||Fn(y′)− Fn(y)||.

As a result, the quantity min(||Fn(y′) + Fn(y)||, ||Fn(y′)− Fn(y)||) can only decrease or
stay unchanged, so it tends to 0 since lim infn→+∞ ||Fn(y′)− Fn(y)|| = 0.

Therefore, if Y ′ := (Y ′n)n∈Z is a copy of Y := (Yn)n∈Z such that Y and Y ′ are i.i.d.
conditionally on η := (ηn)n∈Z, the process

(
(Yn, Y

′
n)
)
n∈Z thus obtained is a stationary

Markov chain with transition kernel K, so it lives almost surely on D ∪D′, where D′ is
the anti-diagonal

D′ = {(y, y′) ∈ I2 : y + y′ ∈ Z} = {(0, 0)} ∪ {(y, 1− y) : y ∈]0, 1[}.

Moreover, D′ is an absorbing set, like D. Since

L((Y, Y ′)|η) = L(Y |η)⊗ L(Y |η),

we derive that the conditional law L(Y |η) is almost surely carried by two points, which
gives the desired conclusion.

This symmetry is an exceptional case. Intuitively, we may expect that no information
is lost in the other cases, namely when the splitting point is different of 1/2, or when
we work with [Tθ, Id].

6.3 Working with more general skew products

So far, we worked only with [Tθ, Id] and [Tθ, T
−1
θ ]. A natural generalization of these two

transformations is [Tα, Tβ] where α and β are real numbers such that β−α is irrational.
The map [Tα, Tβ] can be defined on the product {α, β}Z+ × I by

[Tα, Tβ]((xn)n≥0, y) := ((xn+1)n≥0, Tx0(y)).

Let (Yn)n∈Z be a Markov chain (Yn)n∈Z governed by the recursion relation

Yn = T−ξn(Yn−1) where ξn is independent of Fξ,Yn−1 and uniform on {α, β}.
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Let θ = β − α. Define f0 and f1 from I to I by

f0(y) := 1[0,θ[(y)T−α(y) − 1[θ,1[(y)T−β(y),

f1(y) := 1[0,θ[(y)T−β(y) − 1[θ,1[(y)T−α(y).

We may write alternatively the recursion Yn = fηn(Yn−1) by adapting the definition of
(ηn)n∈Z accordingly.

0 1θ

0

1

f1

f0

1− α

1− β

f1

f0

βα

Figure 10: The modified maps f0 and f1.

Once again, we study the Markov chain
(
(Fn(y), Fn(y′))

)
n≥0

, where (Fn)n≥0 is the

sequence of random maps defined by Fn = fηn ◦ · · · ◦ fη1 . Given y and y′ in I, the
difference Fn(y′) − Fn(y) is still (modulo 1) θ times a time-changed symmetric simple
random walk on Z, where the time change is given by the past sojourn time in Bθ of
the process

(
(Fn(y), Fn(y′))

)
n≥0

.

But this time, when the Markov chain
(
(Fn(y), Fn(y′))

)
n≥0

is in Bc
θ, the steps it

makes are uniform on {(−α,−α), (−β,−β)}. In this general context, estimating the
reaching time of Bθ from any point in I2 is much harder.
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