
HAL Id: hal-03933309
https://hal.science/hal-03933309v1

Submitted on 10 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of Homomorphic Encryption in Machine
Learning

Yulliwas Ameur, Samia Bouzefrane, Vincent Audigier

To cite this version:
Yulliwas Ameur, Samia Bouzefrane, Vincent Audigier. Application of Homomorphic Encryption in
Machine Learning. Kevin Daimi, Abeer Alsadoon, Cathryn Peoples, Nour El Madhoun Editors.
Emerging Trends in Cybersecurity Applications, Springer International Publishing, pp.391-410, 2023,
978-3-031-09639-6. �10.1007/978-3-031-09640-2_18�. �hal-03933309�

https://hal.science/hal-03933309v1
https://hal.archives-ouvertes.fr


Book chapter: Application of Homomorphic

Encryption in Machine Learning

Yulliwas Ameur1, Samia Bouzefrane1, and Vincent Audigier1

1CEDRIC Lab, Cnam, 292 rue Saint Martin, Paris, 75141, France

January 10, 2023

Abstract
Big data technologies, such as machine learning, have increased data utility

exponentially. At the same time, the cloud has made the deployment of these
technologies more accessible. However, computations of unencrypted sensitive
data in a cloud environment may expose threats and Cybersecurity attacks. We
consider a class of innovative cryptographic techniques called Privacy-Preserving
Technologies (PPTs) to address this problem. That might help increase utility
by taking more significant advantage of the cloud and machine learning tech-
nologies while preserving privacy.

The first section provides a brief introduction to the so-called Homomorphic
Encryption ”HE” by giving an overview of the most promising schemes and then
giving the current state of the art of HE tools such as Libraries and Compilers.
This section aims to help non-cryptographer developers propose HE solutions
by explaining what makes developing HE applications challenging.

Then, we address the Privacy-Preserving in Machine Learning (PPML), an
approach that allows to train and deploy ML models without exposing their
private data. After exploring state-of-the-art for the most used ML models in
PPML, we will overview applications of Homomorphic Encryption in Machine
Learning.

1



1 Introduction to Homomorphic Encryption

This new encryption paradigm allows any entity (for example, the cloud provider)
to operate on private data in encrypted form without ever decrypting it. The
goal of HE is to perform operations on the plain text while manipulating only
ciphertexts. Usually, we must decrypt them and then apply the desired pro-
cessing to manipulate encrypted data. For example, one widespread use case
is outsourcing healthcare data to cloud computing services for medical studies
(Figure 1).

Figure 1: ”diagram showing how to manipulate encrypted data on a cloud. On
the left, the user encrypts the data before sending it to the cloud, on the right,

the cloud service has to decrypt the data in order to process it.”

For some cryptosystems with algebraic structures, some operations are pos-
sible. For example, two RSA ciphertexts can be multiplied to obtain the multi-
plication of the two corresponding plain texts. We call this property the multi-
plicative homomorphic property of the ”textbook RSA” cryptosystem. Another
operation can also be performed on ciphertexts. For example, in the Paillier
cryptosystem [1] , we can add two ciphertexts to obtain the addition of the two
corresponding plain texts. We call this property the additive property of the
”Paillier” cryptosystem. For example, this can be useful when we are interested
in e-voting applications to add encrypted votes without knowing the initial vote.

Rivest, Adelman and Dertouzos first introduced the notion of homomorphic
encryption in [2]. Building a cryptosystem with both multiplicative and ad-
ditive properties was a significant problem in cryptography, until the work of

2



Gentry [3]. Gentry proposed a first Fully homomorphic encryption based on
ideal lattices. The HE is categorized depending on the number of mathemat-
ical operations performed on the encrypted message as following: Partially
Homomorphic Encryption (PHE), Somewhat Homomorphic Encryp-
tion (SHE), and Fully Homomorphic Encryption (FHE). Over encrypted
data, FHE allows arbitrary addition and multiplication. Because any functions
may be expressed as Boolean circuits, an encryption scheme capable of per-
forming addition and multiplication can theoretically evaluate any polynomial
function[4]. When operations are performed on ciphertexts, the noise increases
and too much noise disables accurate decryption. The bootstrapping approach
is used by FHE systems to get around this as stated in [3]. Bootstrapping de-
creases the collected noise, allowing further computation. This procedure can
be done as many times as necessary to analyze any particular circuit. However,
bootstrapping is computationally costly, so many solutions do not employ it in
reality. Therefore, we recommend the reader to refer to [5] for more detailed
information on the different homomorphic encryption schemes. We have cho-
sen not to describe the entire functioning of cryptosystems due to the lack of
space. Also, selecting secure and efficient instantiations of the underlying cryp-
tographic problem is hard for most of encryption and homomorphic schemes.
Therefore, we have chosen to list the most studied schemes by the community
of researchers and developers interested in advancing homomorphic encryption.

As usual, new cryptographic proposals need a few years before widespread
adoption in the industry, as was the case of Elliptic Curve Cryptography, post-
quantum encryption and many other standardization projects.

We are waiting for the standardization results and recommendations of the
workshops, which include representatives from industry, government organiza-
tions and academia.

This brief review aims to guide readers fast enough, even if they are not
cryptography specialists, to the appropriate HE scheme by directing them to
the library(ies) where HE is implementable.

1.1 HE Schemes

Research in the field of FHE may be classified into four major groups. The first
family represents the difficulty based on the lattice reduction problem, which
mainly comes from Gentry’s seminal work[3]. The second category consists of
integer-based methods [6], the hardness of which is based on the Approximate
of Greatest Common Divisor (A-GCD) problem [7]. Schemes based on Learning
with Error (LWE) [8] and Ring Learning with Error (RLWE) [9], both reducible
to lattice problems, constitute the third family. Finally, the Nth-Degree Trun-
cated Polynomial Ring Unit (NTRU) family [10].

All HE schemes have common steps: key generation, encryption, decryption
and homomorphic operations on the ciphertexts.

Table 1 summarizes the most implemented and studied schemes by the cryp-
tographic community, and the figure 2 give an overvieww of the Homomorphic
Encryption timeline.

3



Figure 2: Homomorphic Encryption timeline

Table 1: Comparison of HE schemes

Operation
SCHEMES

BFV BGV CKKS FHEW TFHE
Native Add/Sub ✓ ✓ ✓ ✗ ✗

Native Mult ✓ ✓ ✓ ✗ ✗

Boolean Logic ✗ ✗ ✗ ✓ ✓

SIMD ✓ ✓ ✓ ✓ ✓

The choice of encryption scheme has a multitude of implications:

• It specifies which operations are possible and, as a result, which types of
activation and architectures may be employed.

• It can determine the plaintext space. Messages should be encoded before
they may be sent in plaintext. The majority of schemes, including BGV,
BFV, only support integers. CKKS can handle real numbers, but TFHE
can only handle individual bits.

1.2 HE Librairies

There exist several open-source libraries for the implementation of the HE
scheme. They provide key generation, encryption, decryption, and homomor-
phic operations for each scheme; library APIs frequently include additional fea-
tures for maintaining and manipulating ciphertexts. Even though there is a lack
of technical interoperability, but also a lack of conceptual interoperability; for

4



Table 2: Overview of existing FHE librairies: CPU-targeting (top)
and GPU-targeting (bottom)

Name
Input

language

Supported schemes

BFV BGV CKKS FHEW TFHE
HE-CPU-TARGETING

Concrete Rust ✗ ✗ ✗ ✗ ✓

FHEW C++ ✗ ✗ ✗ ✓ ✗

FV-NFlib C++ ✓ ✗ ✗ ✗ ✗

HEAAN C++ ✗ ✗ ✓ ✗ ✗

HElib C++ ✓ ✓ ✓ ✗ ✗

lattigo Go ✓ ✗ ✓ ✗ ✗

PALISADE C++ ✓ ✓ ✓ ✓ ✓

SEAL C++, .NET ✓ ✓ ✓ ✗ ✗

TFHE C++ ✗ ✗ ✗ ✗ ✓

HE-GPU-TARGETING
cuFHE C++, Python ✗ ✗ ✗ ✗ ✓

nuFHE C++, Python ✗ ✗ ✗ ✗ ✓

example, even libraries that use the same scheme can provide surprisingly dif-
ferent results. The ongoing standardization efforts attempt to develop a unified
view of the most popular schemes.

1.3 FHE Restrictions

Current HE methods have a significant restriction. They cannot support di-
vision operations and comparisons easily, such as the equality/inequality test.
Number comparison and sign determination are critical processes for MLaaS

2 Privacy-Preserving in Machine Learning (PPML):HE-
solutions

Using a third-party infrastructure reduces the problems of resources and com-
plexity but introduces privacy issues of sensitive information. To construct
a privacy-preserving framework for machine learning techniques, it must first
identify the most important privacy requirements:

• Input privacy: Only the real data owner should have access to the input.

• Output privacy: The output/result of the ML methods’ assessment is not
permitted to be known by the cloud server.

• Model privacy: A private machine learning model that is also an asset
should not be shared with anyone except its owner.

5



Another approach is to look if the privacy-preserving framework targets the
learning phase or the inference phase of the machine learning algorithm.

Depending on the framework we want to design, we have to use privacy-
preserving technologies. The leading privacy Preserving Machine Learning tech-
niques are

• Multi-party Computation: These methods involve one or more trusted
parties that can be used to outsource specific computations by the algo-
rithm owner.

• Differential Privacy: These methods rely on data randomization and
perturbation. Because it affects the information, this method has the
drawback of negatively influencing the model’s performance.

• Federated Learning: Federated learning is a machine learning setting
where many clients collaboratively train a model under the administration
of a central server while keeping the training data local.

• Garbled Circruit: Garbled Circuit, also known as Yao’s garbled circuit,
is an underlying technology of secure two-party computation initially pro-
posed by Andrew Yao. GC provides an interactive protocol for two parties
(a garbler and an evaluator) obliviously evaluate an arbitrary function rep-
resented as a Boolean circuit.

• Homomorphic Encryption: An encryption that allows performing op-
erations over encrypted data. See section 1 for more detail.

• Hybrid PPML Techniques: In addition to the above-mentioned single-
protocol PPML, some commonly used frameworks typically use hybrid
protocols, which combine two or more protocols by making use of the
advantages and avoiding the problems of each. For example, the basic
idea behind the mixed protocol that combines HE and GC is to calcu-
late operations that have an efficient representation as Arithmetic circuits
(e.g., additions and multiplications) using HE and operations that have
an efficient representation as Boolean circuits (e.g., comparisons) using
GC. However, converting between share systems is not simple, and the
charges are very high. Furthermore, various frameworks integrate MPC
with Differential Privacy.

We are interested therein Machine Learning Research Using Homomorphic En-
cryption ”HEML”. According to this Bibliometrics [11], the number of papers
on HEML has constantly been rising since 2009. Each year from 2005 to 2015,
fewer than 100 HEML papers were published. However, the number of publica-
tions per year increased significantly after 2015, reaching between 200 and 500
in recent years. This section summarizes recent works and gives many practi-
cal applications of homomorphic encryption for privacy-preserving purposes for
each machine learning algorithm. We end the section with a summary of the
work to ease the reading of this synthesis.

6



Figure 3: HEML scenario

2.1 Logistic Regression

Logistic regression is a powerful machine-learning approach that uses a logistic
function to model two or more variables. Logistic models are commonly used in
the medical community to predict binary outcomes, such as whether a patient
requires treatment or whether a disease appears [12]. It has been utilized in
applications such as evaluating diabetes patients’ medications [13], and social
sciences[14].

iDASH is an annual competition that attempts to deploy novel cryptographic
methods in a biological environment. Since 2014, genomics and biomedical pri-
vacy have been incorporated into iDASH. Both the third track of the 2017
iDASH competition [15] and the second track of the 2018 iDASH competition
driven the development of homomorphic encryption-based solutions for build-
ing a Logistic regression model over encrypted data. The performance of LR
training based on homomorphic encryption (HE) has improved significantly as
a result of these two competitions.

Homomorphic encryption has been used in much research on training logistic
regression models.

[16] trained a privacy-preserving logistic regression model using HE; however,
the time complexity of linear HE increases exponentially with the number of
parameters.

[17] used an additive HE scheme and delegated particular challenging HE
computations to a trusted client, the authors in this work introduced an ap-
proximation to convert the likelihood function into a low-degree polynomial.

The issue of doing LR training in an encrypted environment was discussed
by [18]. They used complete batch gradient descent in the training phase, using

7



the least-squares approach to approximate the logistic regression. They also
employed the CKKS scheme, which allows for a homomorphic approximation of
the sigmoid function.

There is no closed-form solution to logistic regressions, so we must use non-
linear optimization methods to find the maximum likelihood estimators of the
regression parameters. During training, gradient descent and Newton-Raphson
are the most commonly used methods. The Newton-Raphson method requires
matrix inversion, and most HE schemes do not natively support division and
matrix inversion. On the other hand, Gradient descent does not require the
division operation and so is a better candidate for homomorphic logistic regres-
sion.

Although the gradient descent approach appears to be better suited for ho-
momorphic evaluation than other training methods, some technical issues re-
main for implementation. The sigmoid function is the most challenging to evalu-
ate since existing homomorphic encryption techniques only allow the evaluation
of polynomial functions, so Taylor polynomials have been widely employed for
sigmoid function approximation [19, 20]

For implementation and performance of Private Logistic Regression (He-
based solutions), see the table 3

2.2 Naive Bayes and Decision Trees

Naive Bayesian classification is a simple probabilistic Bayesian classification
based on Bayes’ theorem. It uses a naive Bayesian classifier, or naive Bayes
classifier, belonging to the family of linear classifiers. [21] propose a privacy-
preserving Naive Bayes classification algorithm. A client learns the classification
of her data point X in their model without knowing the classification model or
disclosing any information about her input. The model’s estimated parameters
are encrypted and transferred to a cloud server. The authors use two partially
homomorphic encryption schemes, Quadratic Reciprocity [22] and Paillier [1],
in the same work[21] implements a privacy-preserving strategy for three algo-
rithms, and one of those is decision trees. This work has shown that polynomials
may be utilized to express decision trees. The decision tree node values must
be compared to the evaluation data, and the outputs must be used to construct
the polynomial, yielding the evaluation results.

For implementation and performance of Private Naive Bayes and Decision
tree (He-based solutions), see the table 4

2.3 K-nearest neighbors

The k-Nearest Neighbors (k-NN) a simple method that can handle continuous,
categorical, and mixed data. Furthermore, as a non-parametric method, k-NN
can be relevant for many data structures as long as the number of observations is
sufficiently large. In addition, for a predefined number of neighbors k, the model
does not require any training step since the prediction for a new observation is
obtained by:

8



Table 3: Summary of main works on Private Prediction for Logistic Regression

REF
HE

scheme
/ Type

Plateform
Evaluation

Time
Accuracy Datasets

Logistic Regression

[16]
[1]

/LHE
- - 82.89%

Dataset SPECT
-267 instances
-23 features

[17]
[1]

/LHE

2.60 GHz
x 2 CPU,

128 GB RAM.
- 73.7%

SPECTF heart
dataset

-267 instances
-44 features)

[17]
[1]

/LHE

2.60 GHz
x 2 CPU,

128 GB RAM.
- 80.7%

Pima diabetes
dataset

-768 instances
-8 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

131min 86.03%
Edinburgh

-1253 instances
-10 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

101min 69.30%
Lbw

-189 instances
-10 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

265min 79.23%
Nhanes3

-15649 instances
-16 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

119min 68.85%
Pcs

- 379 instances
- 10 features

[18]
CKKS
/ LHE

intel Xeon
2.3 GHz processor

with 16 cores
and 64GB of RAM,

109min 74.43%
Uis

-575 instances,
-9 features

[19]
YASHE
/ LHE

Intel Core i7-
3520M at

2893.484 MHz
- -

Heart Disease
Framingham

-4,000 instances
- 15 features

[20]
linearly

homomorphic
encryption

Amazon EC2
c4.8xlarge
machines

running Linux,
with

60GB of RAM each.

149.7sec 98.62%

MNIST
dataset

-60 000 instances
-784 features

9



Table 4: Summary of main works on Private Prediction for Naive Bayes and
Decision Tree

REF
HE

scheme
/ Type

Plateform
Evaluation

Time
Accuracy Datasets

Naive Bayes

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

479 ms -
Breast Cancer

-2 classes
-9 features

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

1415 ms -
Nursery
-9 classes
-5 features

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

3810 ms -
Audiology
-14 classes
-70 features

Decision tree

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

239 ms - Nursery

[21]
[1] + [22]
/LHE

two Intel Core
i7 (64 bit)

processors for
a total 4 cores

running at 2.66 GHz
and 8 GB RAM.

899 ms - ECG

10



Table 5: Summary of main works on Private K-nearest neighbors

REF
HE

scheme
/ Type

Plateform
Evaluation

Time
Accuracy Datasets

K-nearest neighbors

[23]
[1]

/LHE
- - 97.85%

Cancer 1
(9 features)

[23]
[1]

/LHE
- - 96.49%

Cancer 2
-569 instances,
-30 features)

[23]
[1]

/LHE
- - 81.82% Diabetes

[23]
[1]

/LHE
- - 97%

MNIST
dataset

-60 000 instances
-784 features

[26]
[27]

/FHE

Intel Core
i7-6600U
CPU

11.6 min 94.8

MNIST
dataset

-60 000 instances
-784 features

• Identifying the k nearest neighbors (according to a given distance)

• Computing the majority class among them (for a classification problem)
or by averaging values (for a regression problem).

Homomorphic encryption has already been investigated by various authors
for k-NN [23, 24, 25, 26].

The authors of [23] suggested a Homomorphic additive encryption scheme
[1]. They investigated the privacy preservation in an outsourced k-NN system
with various data owners. The untrusted entity securely computes the compu-
tations of distances by using HE. However, the comparison and classification
phases require interactions. Given that the computational and communication
difficulties scale linearly, they admit that the method may not be practical for
massive data volumes. The cost of communications between the entities is also
a limitation in the deployment of this work [24].

Recently, [26] proposed a secure k-NN algorithm in quadratic complexity
concerning the size of the database completely non-interactively by using a fully
homomorphic encryption [27]. However, they assume that the majority vote is
done on a clear-text domain, which is a significant security flaw that we will
address here. Doing a majority vote on a clear-text domain imposes interaction
between entities, which causes information leakage. For implementation and
performance of Private k nearest neighbors (He-based solutions), see the table
5

11



2.4 Neural Networks and Deep Learning

Deep learning is one of the most sophisticated techniques in machine learning,
and it has received a lot of attention in recent years. It is presently employed
in a variety of areas and applications, including pattern recognition, medical
prediction, and speech recognition. Deep learning experiences are enhanced sig-
nificantly by utilizing strong infrastructures such as clouds and implementing
collaborative learning for model training. However, this compromises privacy,
particularly when sensitive data is processed during the training and prediction
stages, as well as when the training model is disseminated. In this section, we
discuss known privacy-preserving deep learning algorithms based on homomor-
phic encryption, we present recent challenges concerning the intersection of HE
cryptosystems and Neural Networks models, as well as methods to overcome
limitations.

HE cannot be used naively in neural networks algorithms. There are a lot
of challenges and restrictions that must be overcome. The constraints differ
according to the scheme, however, several common issues emerge in most sys-
tems. The learning and inference phases of the deep learning algorithm can be
distinguished.

2.4.1 Privacy preserving deep learning: Private training

Several techniques have been proposed; they consider collaborative training,
in which the training is performed collaboratively between different participants,
or individual training, in which the training is performed by a single partici-
pant, such as a client who wants to use a cloud to train its model.

[28] proposed a solution in collaborative learning mode, where partici-
pants send the calculated encrypted local gradients to the cloud after each iter-
ation of local training, starting with the initial weights obtained from the cloud.
To ensure homomorphic ciphertext integrity, each participant uses a unique
TLS/SSL secure channel. The cloud then updates the encrypted global weights
vector, which the participants download. The approach theoretically achieves
the same accuracy as standard asynchronous SGD, whereas evaluations show
that MLP and CNN reach 97 percent and 99 percent accuracy, respectively.
In terms of efficiency, an overhead in communication and calculation was seen;
however, the authors considered it negligible. However, the accuracy/privacy
trade-off might be adjusted to efficiency/Privacy, allowing the precision to be
preserved while maintaining Privacy.

The privacy-preserving back-propagation technique described in [29] is based
on BGV fully homomorphic encryption and Maclaulin polynomial approxima-
tion of the sigmoid activation function. The client encrypts input data and
configured parameters before uploading them to the cloud, which executes one
loop. The client downloads and decrypts the findings before updating its local
model. It then encrypts and sends the updated parameters back to the cloud,
which repeats the process. This method is repeated until the maximum er-
ror threshold or number of iterations is achieved. Although BGV encryption

12



provides for the protection of private data throughout the learning process, it
does need the approximation of the activation function. This might lead to a
drop in accuracy. In terms of efficiency, while the solution achieved a two times
greater efficiency, i.e., 45 percent of the training time of the standard model,
it experienced compute and communication costs due to the encryption-related
overhead.

[30] employs the Taylor theorem to estimate the sigmoid activation func-
tion polynomially. The evaluation findings revealed a reduction in accuracy for
both classification and prediction tasks. However, the authors proposed adding
additional Taylor series terms to decrease classification loss, raising the BGV
encryption level, resulting in poor performance. The method could achieve 2.5
times greater classification efficiency and two times higher overall efficiency in
learning time.

[31] described a more recent solution based on encryption. A client who
wants to participate to the model’s training transmits its data encrypted using
the Paillier scheme [1] to the server, which performs all possible neural network
calculations except non-linear activation functions. To continue execution, the
encrypted weighted sums before each activation function are provided to the
client, who will be in charge of performing the calculation. The result is then
encrypted again and sent back to the server.

2.4.2 privacy preserving deep learning: Private inference

Fully homomorphic encryption is deployed in a line of research that performs
private classification of encrypted data using a neural network that has been
trained using plain data.

[32] is the first solution for Privacy-preserving deep learning for inference,
developed by Microsoft Research. The approach is based on the YASHE a (Lev-
eled Homomorphic Encryption) LHE scheme was proposed. The user encrypts
their data and sends it to the cloud, which runs the model and returns an en-
crypted prediction. It has since been demonstrated that the YASHE scheme
is vulnerable to subfield lattice attack [33]. To make the network compatible
with homomorphic encryption, max-pooling is replaced by a scaled-mean pool
function, and activation functions are approximated by the square function,
which is the lowest-degree non-linear polynomial function. According to the
authors, these adjustments should preferably be considered during training on
unencrypted data. For example, the solution could achieve 99% accuracy and
59000 predictions per hour on a single PC for the MNIST dataset.

[34] To overcome the heavy computation cost of HE, a dual cloud model was
proposed, in which two clouds, A and B, collaborate to generate classification
results in a secure environment. Cloud A operates the neural network on pri-
vate data encrypted by the client with Paillier cryptosystem[1], but delegates
activation function computations to the cloud B since they share a key. The
technique is repeated until the final layer is reached. Client A then protects the
final output with a random salt from cloud B, which uses the softmax function
and sends the final encrypted result to the client. A theoretical scenarios-based

13



security and accuracy study demonstrated how the approach successfully de-
fends against potential threats.

[35] suggested a method for classification problems over the CNN model
based on BGV an FHE scheme. The combination of polynomial approximation
and batch normalization is the major technological breakthrough. During the
training phase, a batch normalization layer is introduced before each ReLU
layer to avoid excessive accuracy deterioration, and max-pooling is replaced by
average-pooling, which is more FHE-friendly and has a small overhead.

Prior to each ReLU, a batch normalization layer is introduced with a low-
degree (2) polynomial approximation. When the model is complete, the user
encrypts its private data and sends it to the model, carrying out the specified
analysis. The evaluation findings revealed that the solution has a short running
time, with comparable performance, as if there was no privacy.

[36] Attempt to use HE for deep learning problems. They provide methods
by using low degree polynomials to approximate the most generally used neural
network activation functions (ReLU, Sigmoid, and Tanh). This is a critical
step in the development of effective homomorphic encryption methods. They
then train convolutional neural networks using those approximation polynomial
functions before implementing the models over encrypted data and evaluating
its performance.

[37] suggest a recent homomorphic encryption-based approach. The user en-
crypts their personal information and transmits it to the server for prediction.
The Paillier scheme accelerates linear, convolutional, and pooling transforma-
tions. The authors chose ReLU as the activation function and suggested, rather
than utilizing polynomial approximation, an interactive protocol between the
client and the server for its computation. The user gets the ReLU input data,
decrypts it, and communicates the positivity or negativity of this input to the
server, enabling the server to calculate the output. The evaluation findings re-
vealed that the solution could reach near model accuracy in plain text and was
similar to Cryptonet[32]. In terms of efficiency, the approach saves a significant
amount of time.

Recently, authors in [38] have resulted in considerable improvements by us-
ing the scheme TFHE [27]. FHE methods permit unrestricted encrypted opera-
tions and give accurate polynomial approximations to non-polynomial activation
functions using a programmable bootstrapping technique, an extension of the
bootstrapping technique that allows resetting the noise in ciphertext to a fixed
level while—at the same time—evaluating a function for free.

2.5 Clustering

Clustering is an unsupervised machine learning problem that automatically
identifies natural grouping (clusters) in data.

A clustering algorithm can be collaborative or individual. In both cases, a
model can be based on a server, and the calculations are exclusively performed
on the server or assisted by a server. In this case, some calculations are delegated
to the server.

14



Three models can be found in the literature:

1. data comes from several parties, and these parties collaborate to train a
clustering model.

2. single party that holds the data but not the computational resources
needed to perform the calculations. The data is outsourced to perform
clustering.

3. data comes from multiple parties and is paired to build a shared database.
Then the data is outsourced to perform clustering.

Cases 2 and 3 are similar; this case is called ”outsourced clustering”. The
first case is called ”distributed clustering”. Plenty of clustering algorithms have
been seen in the privacy-preserving framework: k-means, k-medoids, GMM,
Meanshift, DBSCAN, baseline agglomerative HC BIRCH and Affinity Propa-
gation. Among them, k-means has been intensively studied. In what follows,
we focus on works that use homomorphic encryption.

2.6 Collaborative clustering

In the case of collaborative clustering, several parties own data and want to
collaborate to get good quality clustering without disclosing the information
contained in the data. This case has been extensively studied in two parts. [39]
interested in the case where two parties with limited computational resources
would like to run k-means by outsourcing the computations to the cloud. Both
parties will have a result based on both datasets. In this case, one party’s data
should be kept confidential from the cloud and the other party. The authors
based two schemes to propose a solution: the Liu encryption and the Pallier
encryption. Each party encrypts the data and sends it to the cloud. The cloud
performs calculations and comparisons based on additional information about
both parties. To recalculate the centers, the cloud sends the sum of all vectors
to both parties, and the parties use a protocol to calculate the new centers. The
authors [40] propose a protocol to perform secure k-means in the semi-honest
model. In this work, the Pallier scheme has been used. The computation of
the Euclidean distance requires interaction with the data owner to perform the
multiplications. The comparison is performed using bit-by-bit encryption.

The authors [41] studied clustering using the k-medoids algorithm applied
to intrusion detection. Multiple organizations collaborate to perform clustering
and have better results without sharing the content of this information in the
clear. In addition, the system relies on a semi-honest party to perform cluster-
ing using Pallier encryption. The k-medoid algorithm requires more complex
operations than addition. This requires interactions between collaborators to
decrypt this data at runtime and thus perform the operations.

15



2.7 Individual clustering

A clustering is individual if only one person has data and he wants to have the
results of the clustering of this data. Most of the works interested in this kind
of clustering require an intermediate decryption step.

The authors [42] demonstrate a solution to perform k-means using a collab-
oration between the client and a server. They used the BV scheme [43]. In
this work, they proposed three variant solutions. Each solution takes as input
a dataset of dimension nxd, an integer k wich denotes a the number of clusters
and a threshold of iterations. The algorithm returns a matrix of dimension kxd
that indicates the cluster centers. In the first variant, the computation of the
centers and the assignment are done at the client level, which implies that the
client performs a lot of computations (only the distances are computed at the
server level). In the second variant, the client performs the comparisons and
the division. At the same time, the server calculates the distances and the as-
signment of the points, then the sum to calculate the new centers. This variant
induces an information leakage on how the points are distributed on the clus-
ters. Finally, a third variant tries to solve the information leakage problem by
returning an encrypted assignment vector of a point instead of the clear assign-
ment. The authors [44] propose a method for k-means that limits interaction
with the data owner using the concept of ”Updatable Distance Matrix (UDM)”.
The latter is a 3D matrix whose first two dimensions equal the number of data
in the dataset, and the third dimension equals the number of attributes. Each
cell in the matrix is initialized to the difference between the attributes of the
data vectors. The idea is to save the encrypted data and the UDM matrix to a
third party. This matrix is updated at each iteration of k-means using an offset
matrix obtained by calculating the difference between the new and current cen-
ters. This method is expensive in terms of time and memory to store the UDM
matrix.

The authors [45] have tried an exact implementation of k-means that requires
no intermediate decryption. Instead, the method relies on building a logic cir-
cuit to perform k-means using TFHE. From a theoretical point of view, the
method gives equivalent results to the plaintext version. However, this method
is not feasible; with two dimensions and 400 points, the execution time has been
estimated at 25 days.

The authors[46] also propose a solution that focuses on k-means. In this
solution, the BGV scheme [47] is used. The authors remark that deciphering the
intermediate steps at the client level is a costly operation. The proposed solution
relies on using a third party as a trusted entity to decrypt the intermediate
results. A private key equivalent (but different) to the owner’s and a switch
matrix are generated to be used by the trusted server. The proposed solution
is considered secure in a semi-honest model but not in the malicious case.

16



3 Discussion and challenges

Many challenges need to be tackled to apply privacy-preserving machine learning
in real-world applications. Although the HE standards, platforms, and imple-
mentations described in this chapter contribute to the advancement of HEML,
there are still specific remaining challenges to be tackled, including overhead,
performance, interoperability, bootstrapping bottlenecks, sign determination,
and common frameworks:

• Overhead: Compared to its unencrypted counterpart, HEML has signif-
icant overhead, making it unsuitable for many applications. However, for
non-HE models, the training phase of ML comprises a computationally
intensive effort. However, even with modern techniques, it becomes in-
creasingly difficult with HE. A recent trend is to bypass the training step
by employing pre-trained models to find a balance between complexity
and accuracy.

• Parallelization: Incorporating well-known and new leading to many al-
gorithms is one approach to deal with the computational overhead. High-
performance computers, distributed systems, and specialized resources can
all be used in HEML models. Multi-core processing units (GPUs, FPGAs,
etc.) and customized chips (ASICs) provide more friendly and efficient
HEML environments. Another approach to improving overall efficiency is
batching and parallelizing numerous bootstrapping operations.

• Comparison and min/max function: We need new methods to com-
pare numbers which are encrypted by Homomorphic Encryption (HE).
Actually, comparison and min/max functions are evaluated using Boolean
functions where input numbers are encrypted bit-wise. However, the bit-
wise encryption methods require relatively expensive computations for
basic arithmetic operations such as addition and multiplication.

• PPML tools For the deployment of these technologies,it is practically
difficult to design a high-performing and secure PPML solution without a
thorough HE understanding. However, PPML developers must be knowl-
edgeable in both machine learning and security. PPML, which uses HE,
has not been extensively accepted by the ML community due to HE’s high
barrier to entry and the absence of user-friendly tools.

• Hybrid protocols Adopting hybrid protocols, which combine two or
more protocols to use the advantages and avoid the disadvantages of each,
is a promising direction for performance improvements.

17



References

[1] Pascal Paillier. “Public-key cryptosystems based on composite degree resid-
uosity classes”. In: International conference on the theory and applications
of cryptographic techniques. Springer. 1999, pp. 223–238.

[2] R L Rivest, L Adleman, and M L Dertouzos. “On Data Banks and Privacy
Homomorphisms”. In: Foundations of Secure Computation, Academia Press
(1978), pp. 169–179.

[3] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. Ed. by
Michael Mitzenmacher. ACM, 2009, pp. 169–178. doi: 10.1145/1536414.
1536440. url: https://doi.org/10.1145/1536414.1536440.

[4] PALISADE Lattice Cryptography Library (release 1.11.5). https://palisade-
crypto.org/. 2021.

[5] Abbas Acar et al. “A Survey on Homomorphic Encryption Schemes: The-
ory and Implementation”. In: ACM Comput. Surv. 51.4 (2018). issn: 0360-
0300. doi: 10.1145/3214303. url: https://doi.org/10.1145/3214303.

[6] Marten van Dijk et al. “Fully Homomorphic Encryption over the Integers”.
In: Advances in Cryptology – EUROCRYPT 2010. Ed. by Henri Gilbert.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 24–43. isbn: 978-
3-642-13190-5.

[7] Craig Gentry. “Computing Arbitrary Functions of Encrypted Data”. In:
Commun. ACM 53.3 (2010), 97–105. issn: 0001-0782. doi: 10.1145/
1666420.1666444. url: https://doi.org/10.1145/1666420.1666444.

[8] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography”. In: Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing. STOC ’05. Baltimore, MD, USA:
Association for Computing Machinery, 2005, 84–93. isbn: 1581139608.
doi: 10.1145/1060590.1060603. url: https://doi.org/10.1145/
1060590.1060603.

[9] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices
and Learning with Errors over Rings”. In: J. ACM 60.6 (2013). issn: 0004-
5411. doi: 10.1145/2535925. url: https://doi.org/10.1145/2535925.

[10] Kurt R. Rohloff and David Cousins. “A Scalable Implementation of Fully
Homomorphic Encryption Built on NTRU”. In: Financial Cryptography
Workshops. 2014.

[11] Zhigang Chen et al. “Bibliometrics of Machine Learning Research Using
Homomorphic Encryption”. In: Mathematics 9 (Nov. 2021), p. 2792. doi:
10.3390/math9212792.

[12] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Unsupervised
learning”. In: The elements of statistical learning. Springer, 2009, pp. 485–
585.

18



[13] Ralf Bender and Ulrich Grouven. “Ordinal logistic regression in medical
research”. In: Journal of the Royal College of physicians of London 31.5
(1997), p. 546.

[14] Vernon Gayle, P Lambert, and RB Davies. “Logistic regression models in
sociological research”. In: University of Stirling, Technical Paper 1 (2009).

[15] XiaoFeng Wang et al. iDASH secure genome analysis competition 2017.
2018.

[16] Shuang Wu et al. “Privacy-preservation for stochastic gradient descent
application to secure logistic regression”. In: The 27th Annual Conference
of the Japanese Society for Artificial Intelligence. Vol. 27. 2013, pp. 1–4.

[17] Yoshinori Aono et al. “Scalable and secure logistic regression via homo-
morphic encryption”. In: Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy. 2016, pp. 142–144.

[18] Miran Kim et al. “Secure logistic regression based on homomorphic en-
cryption: Design and evaluation”. In: JMIR medical informatics 6.2 (2018),
e8805.

[19] Joppe W Bos, Kristin Lauter, and Michael Naehrig. “Private predictive
analysis on encrypted medical data”. In: Journal of biomedical informatics
50 (2014), pp. 234–243.

[20] Payman Mohassel and Yupeng Zhang. “Secureml: A system for scalable
privacy-preserving machine learning”. In: 2017 IEEE symposium on secu-
rity and privacy (SP). IEEE. 2017, pp. 19–38.

[21] Raphael Bost et al. “Machine Learning Classification over Encrypted
Data”. In: IACR Cryptol. ePrint Arch. 2014 (2015), p. 331.

[22] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption & How to
Play Mental Poker Keeping Secret All Partial Information”. In: Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Comput-
ing. STOC ’82. San Francisco, California, USA: Association for Comput-
ing Machinery, 1982, 365–377. isbn: 0897910702. doi: 10.1145/800070.
802212. url: https://doi.org/10.1145/800070.802212.

[23] Frank Li, Richard Shin, and Vern Paxson. “Exploring Privacy Preserva-
tion in Outsourced K-Nearest Neighbors with Multiple Data Owners”.
In: Proceedings of the 2015 ACM Workshop on Cloud Computing Se-
curity Workshop. CCSW ’15. Denver, Colorado, USA: Association for
Computing Machinery, 2015, 53–64. isbn: 9781450338257. doi: 10.1145/
2808425.2808430. url: https://doi.org/10.1145/2808425.2808430.

[24] Bharath K. Samanthula, Yousef Elmehdwi, and Wei Jiang. “k-Nearest
Neighbor Classification over Semantically Secure Encrypted Relational
Data”. In: IEEE Transactions on Knowledge and Data Engineering 27.5
(2015), pp. 1261–1273. doi: 10.1109/TKDE.2014.2364027.

19



[25] Wai Kit Wong et al. “Secure KNN Computation on Encrypted Databases”.
In: Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’09. Providence, Rhode Island, USA: As-
sociation for Computing Machinery, 2009, 139–152. isbn: 9781605585512.
doi: 10.1145/1559845.1559862. url: https://doi.org/10.1145/
1559845.1559862.

[26] Martin Zuber and R. Sirdey. “Efficient homomorphic evaluation of k-
NN classifiers”. In: Proceedings on Privacy Enhancing Technologies 2021
(2021), pp. 111 –129.

[27] Ilaria Chillotti et al. “TFHE: fast fully homomorphic encryption over the
torus”. In: Journal of Cryptology 33.1 (2020), pp. 34–91.

[28] Yoshinori Aono et al. “Privacy-preserving deep learning via additively ho-
momorphic encryption”. In: IEEE Transactions on Information Forensics
and Security 13.5 (2017), pp. 1333–1345.

[29] Fanyu Bu et al. “Privacy preserving back-propagation based on BGV
on cloud”. In: 2015 IEEE 17th International Conference on High Per-
formance Computing and Communications, 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th In-
ternational Conference on Embedded Software and Systems. IEEE. 2015,
pp. 1791–1795.

[30] Qingchen Zhang, Laurence T. Yang, and Zhikui Chen. “Privacy Preserving
Deep Computation Model on Cloud for Big Data Feature Learning”. In:
IEEE Transactions on Computers 65.5 (2016), pp. 1351–1362. doi: 10.
1109/TC.2015.2470255.

[31] Qiao Zhang et al. “GELU-Net: A Globally Encrypted, Locally Unen-
crypted Deep Neural Network for Privacy-Preserved Learning.” In: IJCAI.
2018, pp. 3933–3939.

[32] Ran Gilad-Bachrach et al. “Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy”. In: International con-
ference on machine learning. PMLR. 2016, pp. 201–210.

[33] Martin Albrecht, Shi Bai, and Léo Ducas. “A Subfield Lattice Attack on
Overstretched NTRU Assumptions”. In: Proceedings, Part I, of the 36th
Annual International Cryptology Conference on Advances in Cryptology
— CRYPTO 2016 - Volume 9814. Berlin, Heidelberg: Springer-Verlag,
2016, 153–178. isbn: 9783662530177. doi: 10.1007/978-3-662-53018-
4_6. url: https://doi.org/10.1007/978-3-662-53018-4_6.

[34] Mehmood Baryalai, Julian Jang-Jaccard, and Dongxi Liu. “Towards privacy-
preserving classification in neural networks”. In: 2016 14th Annual Con-
ference on Privacy, Security and Trust (PST). 2016, pp. 392–399. doi:
10.1109/PST.2016.7906962.

[35] Hervé Chabanne et al. “Privacy-preserving classification on deep neural
network”. In: Cryptology ePrint Archive (2017).

20



[36] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. “Deep neural
networks classification over encrypted data”. In: Proceedings of the Ninth
ACM Conference on Data and Application Security and Privacy. 2019,
pp. 97–108.

[37] Qiang Zhu and Xixiang Lv. “2P-DNN: Privacy-preserving deep neural net-
works based on Homomorphic cryptosystem”. In: arXiv preprint arXiv:1807.08459
(2018).

[38] Ilaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable Bootstrap-
ping Enables Efficient Homomorphic Inference of Deep Neural Networks”.
In: Cyber Security Cryptography and Machine Learning. Ed. by Shlomi
Dolev et al. Cham: Springer International Publishing, 2021, pp. 1–19.
isbn: 978-3-030-78086-9.

[39] Xiaoyan Liu et al. “Outsourcing Two-Party Privacy Preserving K-Means
Clustering Protocol in Wireless Sensor Networks”. In: 2015 11th Interna-
tional Conference on Mobile Ad-hoc and Sensor Networks (MSN). 2015,
pp. 124–133. doi: 10.1109/MSN.2015.42.

[40] Zoe L. Jiang et al. “Efficient two-party privacy-preserving collaborative
k-means clustering protocol supporting both storage and computation
outsourcing”. In: Information Sciences 518 (2020), pp. 168–180. issn:
0020-0255. doi: https://doi.org/10.1016/j.ins.2019.12.051.
url: https : / / www . sciencedirect . com / science / article / pii /

S0020025519311624.

[41] Georgios Spathoulas, Georgios Theodoridis, and Georgios-Paraskevas Damiris.
“Using homomorphic encryption for privacy-preserving clustering of intru-
sion detection alerts”. In: International Journal of Information Security
20 (June 2021). doi: 10.1007/s10207-020-00506-7.

[42] Anastasia Theodouli, Konstantinos A. Draziotis, and Anastasios Gounaris.
“Implementing private k-means clustering using a LWE-based cryptosys-
tem”. In: 2017 IEEE Symposium on Computers and Communications
(ISCC) (2017), pp. 88–93.

[43] Zvika Brakerski, Vinod Vaikuntanathan, and Craig Gentry. “Fully homo-
morphic encryption without bootstrapping”. In: In Innovations in Theo-
retical Computer Science. 2012.

[44] Nawal Almutairi, Frans Coenen, and Keith Dures. “K-Means Clustering
Using Homomorphic Encryption and an Updatable Distance Matrix: Se-
cure Third Party Data Clustering with Limited Data Owner Interaction”.
In: DaWaK. 2017.

[45] Angela Jäschke and Frederik Armknecht. “Unsupervised Machine Learn-
ing on Encrypted Data”. In: IACR Cryptol. ePrint Arch. 2018 (2018),
p. 411.

21



[46] Georgios Sakellariou and Anastasios Gounaris. “Homomorphically En-
crypted K-Means on Cloud-Hosted Servers with Low Client-Side Load”.
In: Computing 101.12 (2019), 1813–1836. issn: 0010-485X. doi: 10.1007/
s00607-019-00711-w. url: https://doi.org/10.1007/s00607-019-
00711-w.

[47] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled)
Fully Homomorphic Encryption without Bootstrapping”. In: Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference. ITCS
’12. Cambridge, Massachusetts: Association for Computing Machinery,
2012, 309–325. isbn: 9781450311151. doi: 10.1145/2090236.2090262.
url: https://doi.org/10.1145/2090236.2090262.

22


