
HAL Id: hal-03933277
https://hal.science/hal-03933277

Submitted on 10 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure and non-interactive k-NN classifier using
symmetric fully homomorphic encryption

Yulliwas Ameur, Rezak Aziz, Vincent Audigier, Samia Bouzefrane

To cite this version:
Yulliwas Ameur, Rezak Aziz, Vincent Audigier, Samia Bouzefrane. Secure and non-interactive k-NN
classifier using symmetric fully homomorphic encryption. Privacy in statistical databases (PSD’2022),
Sep 2022, Paris, France. pp.142-154, �10.1007/978-3-031-13945-1_11�. �hal-03933277�

https://hal.science/hal-03933277
https://hal.archives-ouvertes.fr


Secure and non-interactive k-NN classifier using
symmetric fully homomorphic encryption

Yulliwas Ameur1[0000−0003−1435−2982], Rezak Aziz1[0000−0002−9637−4220],
Vincent Audigier1[0000−0002−4169−7866], and Samia

Bouzefrane1[0000−0002−0979−1289]

CEDRIC Lab, Cnam, 292 rue Saint Martin, Paris, 75141, France
yulliwas.ameur@lecnam.net

Abstract. ”Machine learning as a service” (MLaaS) in the cloud ac-
celerates the adoption of machine learning techniques. Nevertheless, the
externalization of data on the cloud raises a serious vulnerability issue be-
cause it requires disclosing private data to the cloud provider. This paper
deals with this problem and brings a solution for the K-nearest neighbors
(k-NN) algorithm with a homomorphic encryption scheme (called TFHE)
by operating on end-to-end encrypted data while preserving privacy. The
proposed solution addresses all stages of k-NN algorithm with fully en-
crypted data, including the majority vote for the class-label assignment.
Unlike existing techniques, our solution does not require intermediate
interactions between the server and the client when executing the classi-
fication task. Our algorithm has been assessed with quantitative variables
and has demonstrated its efficiency on large and relevant real-world data
sets while scaling well across different parameters on simulated data.

Keywords: k-nearest neighbors · homomorphic encryption · TFHE ·
data privacy · IoT · cloud computing · privacy-preserving.

1 INTRODUCTION

Cloud services have become central to data storage and data exploitation. Among
these services, a machine-learning service is offered to train different models to
predict for decision-making purposes. However, this raises the issue of data se-
curity because the data processed by the cloud may be sensitive and confidential
while belonging to entities that do not trust the cloud provider.

The most commonly used cryptographic techniques are secret sharing, multi-
party computation, and homomorphic encryption (HE) to achieve privacy-preserving
for machine learning. Several techniques ensure strong privacy protection, often
coming at the expense of reduced in terms of speed and communication.

homomorphic encryption is an encryption technique that allows computa-
tions directly on encrypted data. The results are encrypted and can be re-
vealed/decrypted only by the owner of the secret key. This principle is very
useful in many domains where data sharing and privacy preservation are re-
quired. For example, externalizing personal data considered as sensitive such as



2 Ameur et al.

medical data or banking transactions [10]. This paper considers a scenario where
sensitive data are collected by IoT devices and outsourced on a resourceful cloud
for Machine Learning (ML) processing. Considering that the cloud provider is
not trustworthy, we propose using HE to preserve privacy.

ML over encrypted data has been particularly investigated in the domain of
neural networks (NN). However, as state-of-the-art non-linear NN layers (pool-
ing and activation) are too complex to be directly executed in the encrypted
world, there is a strong need for approximating them. Much of the subsequent
works have been proposed to address the limitation of implementing the non-
linear activation function by a polynomial approximation using Taylor series and
Chebyshev polynomials, among others [5, 7, 1, 3]. Due to the high cost of the HE
systems, those methods do not scale well and are not appropriate for deep neural
networks [12], which are time-consuming due to the great depth of the network.

One way to solve the computational cost problem inherent to HE is to investi-
gate less complex supervised methods. The k-nearest neighbors (k-NN) approach
presents several advantages. Indeed, for a predefined number of neighbors k, the
model does not require any training step, the value of the response variable for a
given individual is obtained directly from the values observed on the neighbors
without needing to estimate new parameters. In addition, the method can han-
dle continuous, categorical, and mixed data. Furthermore, as a non-parametric
method, k-NN can be relevant for many data structures as long as the number
of observations is sufficiently large.

The prediction for a new observation is obtained by:

– Identifying the k nearest neighbors (according to a given distance)

– Computing the majority class among them (for a classification problem) or
by averaging values (for a regression problem).

HE has been recently investigated by various authors for k-NN [9, 13, 14, 16].

[9] suggested a Homomorphic additive encryption scheme [11]. They inves-
tigated the privacy preservation in an outsourced k-NN system with various
data owners. The untrusted entity securely computes the computations of dis-
tances by using HE. However, the comparison and classification phases require
interactions. Given that the computational and communication difficulties scale
linearly, they admit that the method may not be practical for massive data vol-
umes. The cost of communications between the entities is also a limitation in
the deployment of this work [13].

[14], used an “asymmetric scalar-product-preserving encryption”(ASPE). How-
ever, the client has the ciphertext, and the server can decrypt it. The proposed
solution is vulnerable to Chosen Plaintext Attacks as stated by [15].

Recently, [16] proposed a secure k-NN algorithm in quadratic complexity
concerning the size of the database completely non-interactively by using a fully
homomorphic encryption [6]. However, they assume that the majority vote is
done on a clear-text domain, which is a significant security flaw that we will
address here. Doing a majority vote on a clear-text domain imposes interaction
between entities, which causes information leakage.



Title Suppressed Due to Excessive Length 3

Unlike other existing works, in this paper, we propose a new methodology to
apply k-NN on encrypted data by using fully homomorphic encryption avoiding
interaction between entities.

We consider a client/service provider architecture that supports scenarios de-
scribed here. The service provider is a company that owns a labeled training
dataset D composed of sensitive data allowing predict for novel observation by
k-NN. This model is offered as a service.

We assume a context that is concerned by some privacy issues as in the
following:

– Because the training data are sensitive, they cannot be shared with a third
party such as a client.

– The model is an intellectual property of the service provider. Hence, the
service provider does not want to share the used model with his clients.

– A client who needs to perform classification on the service-provider platform
does not trust the service provider.

This work aims to do a classification using k-NN algorithm on sensitive data
using HE. Our solution assumes that the service provider, which is the dataset
owner, has all the necessary resources to perform the data classification and
storage. This assumption ensures that encrypting the training dataset is not
necessary since these data are kept with the data owner. Only the client will
need to encrypt his query that includes his data by using a private key and by
sending it to the data owner for classification. The goal is to protect the training
dataset, the query, and the model parameter k. Our solution meets the following
privacy requirement as in the following:

– The contents of D are known only by the data owner since they are not sent
to other parties.

– The client’s query is not revealed to the data owner.
– The client knows only the predicted class.
– The index of the k nearest neighbors is unknown from the data owner or the

client.

Our solution has a greater added value than the existing literature solutions.
First, it guarantees that no information leakage occurs during the process: the
only things known by the data owner are the dataset and the model used. The
only things that the client knows are the query and the class. All intermediate
results are encrypted. In addition, our solution is fully non-interactive since
prediction is performed by the data owner and do not need any decryption
during the process. Finally, it supports multi-label classification.

The rest of this paper is organized as follows: Section 2 presents the back-
ground of HE before highlighting the principle of Fast Fully homomorphic en-
cryption over the Torus (TFHE). Our proposed solution is then described in
Section 3. A simulation study is presented in Section 4 to assess our methodol-
ogy based on real datasets. Finally, Section 5 concludes the paper.



4 Ameur et al.

2 BACKGROUND

2.1 homomorphic encryption

HE allows a third party (a service provider in our scenario) to compute functions
on ciphertexts to preserve the confidentiality of the data. An encryption scheme
is called homomorphic over an operation ∗ if it supports the following property:

E(m1) ∗ E(m2) = E(m1 ∗m2)

where E is the encryption algorithm and m1,m2 belong to M the set of all pos-
sible messages. An additional algorithm is needed for homomorphic encryption
schemes, called the Eval algorithm. This algorithm is defined as follows:

Eval(f, C1, C2) = f(m1,m2)

where Dec(C1) = m1 and Dec(C2) = m2 and f is a function that determines the
type of the HE scheme. In case f supports the evaluation of arbitrary functions
for an unlimited number of times, the HE is called Fully homomorphic encryption
(FHE).

This paper uses “TFHE: Fast Fully homomorphic encryption over the Torus”
as an RLWE-based scheme in his fully homomorphic setting, especially in gate
bootstrapping mode. The bootstrapping procedure is the homomorphic evalua-
tion of a decryption circuit on the encryption of a secret key.

2.2 Functional Bootstrap in TFHE

TFHE defines three types of ciphertexts, TLWE Sample, TRLWE Sample and
TRGSW Sample.

There are two bootstraps algorithms in TFHE. Gate Bootstrap was intro-
duced to implement logic gates, and the Circuit Bootstrap, which converts
TLWE samples to TRGSW samples. In our work, we use Functional Bootstrap.
By ”Functional” we mean that the bootstrap can evaluate functions using a
BlindRotate algorithm to perform a lookup table (Lut) evaluation. LUTs are
a simple, efficient way of evaluating discretized functions. For instance the sign
function was used in [2] and [8].

3 OUR CONTRIBUTION

3.1 The System Model

Our system uses the client-server architecture (see Figure 1). The client is the
querier, and the server is the data owner.

1. The data owner: owns the data and can do heavy calculations. For example,
it receives the query in an encrypted way, performs an encrypted k-NN
algorithm then sends the result to the querier for decryption.

2. The querier: generates the keys, encrypts the query that contains its data and
sends it to the data owner for computations before decrypting the result. The
querier can be an ordinary computer or any IoT device that collects data.



Title Suppressed Due to Excessive Length 5

Fig. 1: The system model: the client is the querier, and the server is the data
owner: the data owner receives the query in an encrypted way, performs an

encrypted k-NN algorithm then sends the result to the querier for decryption.

3.2 Encrypted k-NN Challenges

In order to propose an encrypted version of k-NN, we should substitute the
challenging operations used in the standard k-NN with equivalent operations in
encrypted domains. As seen before, k-NN is composed of three parts: the distance
calculation, the distance sorting, the selection of the k nearest neighbors, and
the majority vote.

This subsection will introduce the equivalent operations as integrated with
our solution.

Distance Calculation The euclidean distance calculation between the dataset
entries xi as well as the query q are necessary in order to find the k nearest
neighbors to the query. We can use the standard formula of the distance as in
(1).

d2(xi, q) =

p∑
j=0

x2
ij +

p∑
j=0

q2j − 2 ∗
p∑

j=0

xijqj (1)

What is relevant in our case is the difference between two distances to compare
them. So, we get the formula (2) as follows:

d2(xi, q)− d2(xi′ , q) =

p∑
j=0

(x2
ij − x2

i′j)− 2 ∗
p∑

j=0

(xi′j − xij)qj (2)

Since the dataset is a clear text, we can easily calculate formula (2) using the
TFHE scheme. However, we need to adapt it. Using TFHE, the difference be-
tween the distances should be in the range of [− 1

2 ,
1
2 ]. Another constraint is that

the multiplication is done between a clear-text integer and a ciphertext. Two
rescaling values are required to resolve these constraints. Let v be the first one.
It is used to have values of the differences between [− 1

2 ,
1
2 ]. Let p be the second

one. It indicates the precision of the differences. Each attribute of the dataset
as well as the query are rescaled using v. p is used when calculating the product
(xi′j − xij)qj .



6 Ameur et al.

Sorting Sorting computed distances is a crucial step in k-NN. The standard
algorithm for sorting, like the bubble sort, can be used while considering en-
crypted data. However, these algorithms are time-consuming in an encrypted
world because the worst case is computed every time. The authors [4] propose
two methods to sort an array of values. The method of the direct sort is used in
[16]. It is based on a matrix of comparison called delta matrix:

m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n


with

mi,j = ¯sign(Xi −Xj) =

{
1 if Xi < Xj

0 else.

When summing columns of this matrix, we will have a sorting index of the
distances.

Majority Vote The majority vote can cause a problem because the operation
requires comparison to detect the class. To determine the predicted class, we
need to know k nearest neighbors’ classes. This step is challenging in two ways:
first, we need to avoid information leakage, unlike the solutions in the literature.
Second, the majority vote requires comparison in order to predict the class.

To the best of our knowledge, no solution in the literature studied this point
in an encrypted way without information leakage. Therefore, in the following
subsection, we will demonstrate a solution to process k-NN with the majority
vote in an encrypted way while supporting a multi-label classification.

3.3 Our proposed k-NN algorithm

Our proposed algorithm, called ”HE-kNN-V”, is composed of three steps: the
construction of the delta matrix, the selection of k-nearest neighbors, and the
majority vote. The two first steps are similar to the solution of [16] even if we
adapt the existing formulas in order to eliminate unnecessary calculations. [16]
use polynomials to define the formulas, while what interests us is just one term
of those polynomials to eliminate un-necessary calculations. The majority vote is
our added value and is specific to our solution. We will discuss in this subsection
the design of our solution, including each building block.

Building the delta matrix To build the delta matrix, we need to know the
sign of the differences between the distances to sort. Since we defined a method
to calculate the differences in the last subsection, the sign can easily be achieved
using the standard bootstrapping sign function in TFHE. However, the standard
bootstrapping function returns +1 if the phase is greater than 0 and -1 if the



Title Suppressed Due to Excessive Length 7

phase is lower than 0. Therefore, since we need to have 0 or 1 in the matrix, we
need to adapt the bootstrapping operation to return 1

2 and − 1
2 then by adding

1
2 to the result we will have 0 or 1.

Even if building this matrix is time-consuming, it is highly parallelizable.

Selecting the k-nearest neighbors To select the k–nearest neighbors, we
use the scoring operation proposed by Zuber [16]. By using the delta matrix, the
principle is as follows:

1. Sum m values in each column with m the number of possible operations
without bootstrapping.

2. If there are still values to sum: do a bootstrapping operation using the mod-
ified sign bootstrapping function (See Algorithm 1 in [16]) and go to Step
1.

3. Otherwise, execute the modified sign bootstrapping and return the last sign
returned by this operation.

Finally, we obtain an encrypted vector where the position i equals the cipher
of 1 if the individual with index i is among the k-nearest neighbors, the cipher
of 0 otherwise. We call this vector the “mask” (See Figure 2 for more clarity).

Majority vote The majority vote is the most important added value in our
work. We propose to do the majority vote without any leakage of information,
unlike existing works like that of [16] in which the majority value is done in clear
text or by using other alternative solutions proposed in the literature.

First, we illustrate the issue with the method of [16]. We consider the sce-
nario where the querier does the calculations. The majority vote is done in clear
text, but we need to decrypt the vector of indexes of the nearest neighbor. The
data owner does the decryption. Significant information leakage occurs if the
data owner knows the vector of indexes. Then, he will know the classification
of the query, and by doing some triangulation, he can approximate the query.
In addition, the solution will be interactive. If we consider the scenario where
the data owner does the calculation, the decryption of the vector is done by the
querier. However, to do the classification, the querier should know the labels
of the dataset, which is also a critical leakage of information. In addition, the
querier will know the size of the dataset and the k parameter of nearest neigh-
bors considered. This information is considered as internal information of the
model used, and it should be protected.

In our solution, the majority vote is done by the data owner in an encrypted
way. First, the data owner encodes the labels using one hot encoding. Having
the mask and the matrix of labels in one hot form, it is easy to do an AND
operation between the mask and each column of the labels, as in Figure 2. We
get a matrix A (for affectation) with Aij equal to 1 if the individual i is among
the k-nearest neighbors and its class is j. Using this matrix, it is possible to sum
the columns and obtain the probability of each class. We can now return only
the class and guarantee no information leakage and no interactivity.



8 Ameur et al.

Fig. 2: Majority Vote illustration by using the mask

4 PERFORMANCE EVALUATION

In this section, we discuss the experiments of our solution. First, we describe the
technical and the setup of the environment. Then, we will evaluate the perfor-
mances of our solution according to different criteria: execution time, accuracy,
bandwidth consumption.

4.1 Test Environment

Setup Our solution is implemented using the TFHE scheme in C/C++ and
Python for training k-NN in clear text and for tests. To test the effect of paral-
lelism, we used OpenMP to do some parallelization. The source code is available
in the following github ”https://github.com/Yulliwas/HE-kNN-V”. Our solution
is tested on Linux Ubuntu 64-bit machine with i7-8700 CPU 3.20GHz.

Table 1 shows the parameters used to setup TFHE scheme.

λ N σ

110 1024 10−9

Table 1: TFHE Parameters:
λ for the overall security, N for the size of the

polynomials,σ for the Gaussian noise parameter.

m v p b

64 4 1000 4*m-4

Table 2: HE-kNN Parameters:
the number of operations m

without needing a
bootstrapping, the

bootstrapping base b, and the
rescaling factors v and p

Datasets To test our solution, we choose to use 6 datasets: Iris, Breast Cancer,
Wine, Heart, Glass and MNIST as in Table 3. The goal is to test the perfor-
mances of our algorithm in different distributions of data, so that to confirm
that our solution works with any dataset and that has performances that are
equivalent to those of clear-text domains.



Title Suppressed Due to Excessive Length 9

Dataset n d classes

Iris 150 4 3
Wine 178 13 3
Heart 303 75 5

Breast Cancer 699 10 2
Glass 214 10 2
MNIST 1797 10 3

Table 3: Datasets:
number of individuals(n), the size of the model (d) and number of classes

Simulation procedure First, we preprocess the data by rescaling each at-
tributes to a value between 0 and 1. Our dataset and the query should be rescaled
by a factor of v as seen above. We must also multiply the dataset vectors by
the precision factor τ and then rounded. In the other hand, the query vector is
divided by this same factor. To obtain the classification rate, first we need to
divide our dataset to a training set and a test set. We choose to use 20% of our
dataset as a test set and the rest as a training set. Among the training set, we
select a certain number of points that represent as well as possible our dataset.
The process for choosing the best points that represent our training set is as
follows:

1. choose n individuals randomly ;
2. calculate the classification rate ;
3. Repeat the previous Step 1 and Step 2 a certain amount of time and keep

the best accuracy and the best individuals.

To select the k parameter, we use the same procedure as in the clear domain. In
our case, we tested different values of k and we keep the best k value that gives
the best results.

4.2 Performance results

To position our approach according to existing works, and especially regarding
the voting step that is performed without information leakage, we compare in
Table 4 our solution with Zuber’s solution and with a clear-text version based on
the Iris dataset and a fixed k=3. The comparison is done in terms of complexity
(C), Information Leakage (L), accuracy (A), interactivity (I) and execution time
(T). The accuracy and the prediction time are indicated only when it is possible.

Empirical study

Classification rate To evaluate the classification rate, we have chosen the accu-
racy instead of other metrics like: recall or F1-score. We studied the accuracy
according to two parameters: the number of data sampled from the dataset and
the number k of neighbors. The goal is to choose the best points that represent
the datasets and the best k parameters for each dataset.



10 Ameur et al.

Work C L I A T

HE-kNN-V O(n2) N N 0.97 1.72s
HE-kNN-VP O(n2) N N 0.97 0.46s

Zuber O(n2) Y Y 0.98 1.74s
Clear k-NN O(n) Y N 0.95 1.8ms

Table 4: Comparison between solutions for Iris Dataset:
complexity (C), Information Leakage (L), accuracy (A), interactivity (I) and

execution time (T).

We chose real-world datasets in order to see the evolution of the accuracy
and compared it to clear-text accuracy.

In one hand, we know that the accuracy depends on the k parameter and we
can confirm it easily in the graphs. On the other hand, the assumption that the
accuracy depends on the number of data used is not complete. For the dataset
where the data is well separated (like Iris), having a lot of data is not necessary,
the best accuracy can be achieved using only few data. But, in the case where
data is not well separated (like in Heart dataset), the accuracy seems to depend
on the number of data.

Fig. 3: Encrypted Accuracy vs
number of individuals

Fig. 4: Clear-text Accuracy vs
number of attributes

Fig. 5: Encrypted Accuracy vs
k-parameter

Fig. 6: Clear-text Accuracy vs
k-parameter



Title Suppressed Due to Excessive Length 11

According to our different simulations illustrated in Figure 3 and Figure 4,
we do not lose accuracy when we apply our HE-kNN-V method on the encrypted
data compared to the application of the kNN on the plain data. This is possible
by varying the number of individuals and by fixing k to 3.

We also notice that by setting the number of individuals to 40 and varying
k, (see Figure 5 and Figure 6) the accuracy behaves in the same way between
the application of the kNN on the plain data and the application of our method
HE-kNN-V on the encrypted data.

Execution time In our solution, the execution time is independent of the content
of the dataset, it does not depend on the values, but does depend on the content,
since it depends on the number of tuples . We can use either simulated dataset
or real world dataset. To visualize the evolution of the execution time according
to k, n and d, we choose to use the Breast Cancer dataset instead of simulating
a new dataset. We change n, k, d and we see the evolution of the execution time.

Fig. 7: Execution time vs
number of individuals

Fig. 8: Execution time vs
number of attributes

Fig. 9: Execution time vs k-parameter



12 Ameur et al.

Our simulations, as depicted in Figure 7, illustrate that HE-kNN-V is paral-
lelizable, and also that the number of individuals strongly impacts the execution
time unlike the two simulations of Figure 8 and Figure 9 where the variation
of respectively d the number of attributes and k does not impact the execution
time.

Bandwidth In our solution, the only thing that is communicated is the query
in the ciphertext and the response in the ciphertext. The size of the query is
proportional to the number of attributes d. Each attribute is a TLWE Sample
with the size of 4 KB and the size of the response (number of classes)*4 KB.
The bandwidth according to each dataset is illustrated in Table 5.

Table 5: Bandwidth
Dataset Bandwidth (KB)

Iris 28
Wine 64
Heart 64

Breast Cancer 128
Glass 60
MNIST 296

Discussion According to our experiments, we can say that the accuracy in our
case depends on three factors: the number of individuals, the representativ-
ity of these individuals and the k parameter. To have a better model that fits
our dataset, we must select the individuals that are more representative of our
dataset and the best k parameter. We also should take care of the number of
individuals because most of the execution time depends on that number.

5 CONCLUSION

We proposed HE-kNN-V a method for performing k-NN on encrypted data that
includes a majority vote for class-label assignment. The proposed solution ad-
dresses all stages of k-NN algorithm with fully encrypted data. It guarantees
that no information leakage occurs during the process. Unlike other techniques,
our solution eliminates the need for intermediate interactions between the server
and the client when performing classification tasks. Our algorithm has been eval-
uated using quantitative variables and demonstrated its efficiency on large and
relevant real-world data sets. As a perspective, it would be interesting to see
how a hardware acceleration of the TFHE scheme could improve the computa-
tion time of our proposed solution HE-kNN-V.



Title Suppressed Due to Excessive Length 13

References

1. Ahmad Al Badawi, Chao Jin, Jie Lin, Chan Fook Mun, Sim Jun Jie, Benjamin
Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, and Vijay Ramaseshan Chan-
drasekhar. Towards the alexnet moment for homomorphic encryption: Hcnn, the
first homomorphic CNN on encrypted data with gpus. IEEE Trans. Emerg. Top.
Comput., 9(3):1330–1343, 2021.

2. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast Ho-
momorphic Evaluation of Deep Discretized Neural Networks: 38th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part III, pages 483–512. 01 2018.

3. Alon Brutzkus, Oren Elisha, and Ran Gilad-Bachrach. Low latency privacy pre-
serving inference. ArXiv, abs/1812.10659, 2019.

4. Gizem S Çetin, Yarkın Doröz, Berk Sunar, and Erkay Savaş. Depth optimized
efficient homomorphic sorting. In International Conference on Cryptology and
Information Security in Latin America, pages 61–80. Springer, 2015.

5. H. Chabanne, Amaury de Wargny, J. Milgram, Constance Morel, and E. Prouff.
Privacy-preserving classification on deep neural network. IACR Cryptol. ePrint
Arch., 2017:35, 2017.

6. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

7. Ehsan Hesamifard, H. Takabi, and Mehdi Ghasemi. Cryptodl: Deep neural net-
works over encrypted data. ArXiv, abs/1711.05189, 2017.

8. Malika Izabachène, Renaud Sirdey, and Martin Zuber. Practical Fully Homomor-
phic Encryption for Fully Masked Neural Networks, pages 24–36. 10 2019.

9. Frank Li, Richard Shin, and Vern Paxson. Exploring privacy preservation in out-
sourced k-nearest neighbors with multiple data owners. In Proceedings of the 2015
ACM Workshop on Cloud Computing Security Workshop, CCSW ’15, page 53–64,
New York, NY, USA, 2015. Association for Computing Machinery.

10. Oliver Masters, Hamish Hunt, Enrico Steffinlongo, Jack Crawford, and F. Bergam-
aschi. Towards a homomorphic machine learning big data pipeline for the financial
services sector. IACR Cryptol. ePrint Arch., 2019:1113, 2019.

11. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. volume 5, pages 223–238, 05 1999.

12. Luis Pulido-Gaytan, Andrei Tchernykh, Jorge Cortés-Mendoza, Mikhail Babenko,
Gleb Radchenko, Arutyun Avetisyan, and Alexander Drozdov. Privacy-preserving
neural networks with homomorphic encryption: Challenges and opportunities.
Peer-to-Peer Networking and Applications, 14, 05 2021.

13. Bharath K. Samanthula, Yousef Elmehdwi, and Wei Jiang. k-nearest neighbor clas-
sification over semantically secure encrypted relational data. IEEE Transactions
on Knowledge and Data Engineering, 27(5):1261–1273, 2015.

14. Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos Mamoulis. Secure knn
computation on encrypted databases. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’09, page 139–152,
New York, NY, USA, 2009. Association for Computing Machinery.

15. Xiaokui Xiao, Feifei Li, and Bin Yao. Secure nearest neighbor revisited. In Pro-
ceedings of the 2013 IEEE International Conference on Data Engineering (ICDE
2013), ICDE ’13, page 733–744, USA, 2013. IEEE Computer Society.

16. Martin Zuber and R. Sirdey. Efficient homomorphic evaluation of k-nn classifiers.
Proceedings on Privacy Enhancing Technologies, 2021:111 – 129, 2021.


