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We perform direct numerical simulations of a gas bubble dissolving in a surrounding
liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical
implementation of an immersed boundary method, coupling the gas diffusion and
the Navier–Stokes equations. The methods are validated against planar and spherical
geometries’ analytical moving boundary problems, including the classic Epstein–Plesset
problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer
coefficient kL can be described by the classic Levich formula kL = (2/

√
π)

√
Dl U(t)/d(t),

with d(t) and U(t) the time-varying bubble size and rise velocity, and Dl the gas
diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble
in homogeneous and isotropic turbulence flow, extending Farsoiya et al. (J. Fluid Mech.,
vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial
subrange, the mass transfer coefficient in turbulence kL is controlled by the smallest scales
of the flow, the Kolmogorov η and Batchelor ηB microscales, and is independent of the
bubble size. This leads to the non-dimensional transfer rate Sh = kLL�/Dl scaling as
Sh/Sc1/2 ∝ Re3/4, where Re is the macroscale Reynolds number Re = urmsL�/νl, with
urms the velocity fluctuations, L∗ the integral length scale, νl the liquid viscosity, and
Sc = νl/Dl the Schmidt number. This scaling can be expressed in terms of the turbulence
dissipation rate ε as kL ∝ Sc−1/2(ενl)

1/4, in agreement with the model proposed by
Lamont & Scott (AIChE J., vol. 16, issue 4, 1970, pp. 513–519) and corresponding to
the high Re regime from Theofanous et al. (Intl J. Heat Mass Transfer, vol. 19, issue 6,
1976, pp. 613–624).
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1. Introduction

Gas transfer from bubbles to liquids is critical in multiple chemical engineering and
environmental processes such as scrubbers, bubble reactors and lake oxygenation, and
depends on the local flow agitation (Risso 2018), while at the ocean surface, air
entrainment by breaking waves contributes to the exchange of gases critical for the climate
system (Garbe et al. 2014; Reichl & Deike 2020; Deike 2022). Modelling approaches
of bubble-mediated gas transfer in a turbulent environment require knowledge of the
individual bubble mass transfer coefficient kL (Woolf & Thorpe 1991; Keeling 1993; Liang
et al. 2011; Deike & Melville 2018).

Mass exchange related to bubble dissolution presents similarities to other heat and
mass transfer problems. The classic Stefan problem (Stefan 1891) describes heat or
mass transfer coupled with a moving boundary and was initially studied in the context
of ice growth at solid–liquid interfaces (Crepeau 2007). Akin to the spherical Stefan
problem, Epstein & Plesset (1950) provided a quasi-stationary analytical solution to
the stagnant spherical bubble dissolution. Peñas-López et al. (2016) studied the bubble
growth and dissolution by removing the quasi-static radius approximation, and investigated
the effect of the history term that relates to the mass transfer coupled with moving
boundary. Lohse & Zhang (2015) and Zhu et al. (2018) investigated a surface nano-bubble
experimentally and numerically, comparing to the Epstein & Plesset (1950) results, and
found that pinning of the contact line and oversaturation stabilizes the nano-bubble from
dissolution.

The mass transfer from a rising bubble in a steady state (ignoring the moving boundary
effect) was described by Levich (1962) using a thin boundary layer and potential flow
assumptions around the bubble, leading to a mass transfer coefficient given by kL =
(2/

√
π)

√
DlU/d, with d the bubble diameter, U the bubble rise velocity, and Dl the gas

diffusivity in the liquid. This can be written in terms of the non-dimensional transfer rate
(Sherwood number) Sh = kLd/Dl as Sh = (2/

√
π) Pe1/2, where Pe = Re Sc is the Péclet

number, Re = Ud/νl is the Reynolds number, and Sc = νl/Dl is the Schmidt number,
with νl the liquid viscosity. These approximations are similar to the penetration theory
(Higbie 1935) that is based on the fact that in unsteady heat or mass transfer, the depth
of penetration into the exposed boundary is dependent on the time of contact. The longer
the contact time, the deeper the penetration, and the equivalence for both theories is valid
for high Péclet numbers (ratio of the rate of advective transport to the diffusive transport;
Sideman 1966). The application of the penetration theory then relies on finding the correct
time scale of contact. An experimental study on rising CO2 bubbles by Bowman &
Johnson (1962) found that the mass transfer coefficients were in close agreement with the
theoretical predictions from Higbie (1935) and Levich (1962). Takemura & Yabe (1998)
developed an experimental set-up to measure the size of individual O2 bubbles rising in
silicone oil, and estimated the mass transfer coefficient with results comparable to the
penetration theory. The bubbles formed at the atmosphere–ocean interface correspond to
high Schmidt number (Sc ≈ 600 for CO2 at 20 ◦C), while the Sc � 1 regime occurs in
liquid metals and astrophysics (Gotoh et al. 2013).

A configuration of practical importance in industrial applications involves dense bubble
clouds, or swarms, and requires estimations of the bubble gas transfer coefficient in
this bubbly turbulent environment. Roghair (2012) found that the gas transfer coefficient
increases with gas hold-up (the ratio of gas volume to total volume) by numerical
simulations, while experimental studies on bubble swarms (Colombet et al. 2011, 2015)
revealed that the global gas transfer coefficient at high Schmidt numbers is described
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Bubble-mediated gas transfer

approximately by the Levich (1962) formula kL = (2/
√

π)
√

DlŪ/d, considering the mean
bubble rise speed Ū in the swarm, which is affected by turbulent fluctuations.

The mass transfer of a passive scalar at the surface of a turbulent flow has received
much attention. Fortescue & Pearson (1967) studied the absorption of CO2 in a turbulent
water flow through an open channel, and approximated the mass transfer coefficient using
a large eddy model kL ∝ (Dlurms/L�)1/2, where urms is the root-mean-square velocity
of the turbulent flow. Theofanous, Houze & Brumfield (1976) identified two distinct
mass transfer regimes for energy-containing and energy-dissipating turbulent motions, i.e.
kL ∝ (Dlurms/L�)1/2 for low Re, and kL ∝ (νl/Dl)

−1/2(ενl)
1/4 at high Re, where ε is the

turbulence dissipation rate. Here, the Reynolds number is defined using a macroscopic
scale allowing for comparisons between various configurations. These scalings can be
written in terms of the non-dimensional transfer rate Sh = kLL�/Dl, where L� is the
integral length scale, as Sh ∝ (Sc Re)1/2 (for low Re) and Sh ∝ Sc1/2Re3/4 (for high Re).
Herlina & Wissink (2016, 2019) and Pinelli et al. (2022) estimated the critical Reynolds
number where this transition occurs as Re ≈ 500 using numerical simulations. Lamont &
Scott (1970) presented experiments on mass transfer from bubbles in concurrent turbulent
flows, and argued that the small-scale motions of the turbulent flow control the mass
transfer, leading to kL ∝ (νl/Dl)

−1/2(ενl)
1/4, corresponding to the high Re regime from

Theofanous et al. (1976). An earlier discussion of a gas bubble suspended in a turbulent
liquid stream was provided by Levich (1962), who proposed an estimate for the gas
transfer coefficient from a single bubble similar to the low Re regime from Theofanous
et al. (1976), and mentioned the difficulty of experimental verification of the theories.
In Farsoiya, Popinet & Deike (2021), we performed direct numerical simulations of a
single bubble in homogeneous isotropic turbulence for a dilute gas component (so that the
bubble size did not change as it transferred gas) and bubble size in the inertial subrange.
We proposed that the gas transfer coefficient scaled as Sh ∝ (Sc Re)1/2, comparable to the
low Re regime from Theofanous et al. (1976), with simulations performed at relatively low
Re, without variations of the bubble size.

The importance of the topic has motivated the development of numerical methods
to solve mass transfer in bubbly flows. Sato, Jung & Abe (2000) and Davidson &
Rudman (2002) developed numerical techniques where the gas concentration is continuous
across the fluid–fluid interface, while the effect of the discontinuous concentration due to
solubility is considered by Bothe et al. (2004). Darmana, Deen & Kuipers (2006) provided
a three-dimensional front tracking model with mass transfer. Haroun, Legendre & Raynal
(2010) and Marschall et al. (2012) presented a one-fluid formulation for the algebraic
volume of fluid method. Bothe & Fleckenstein (2013) introduced a two-field approach
using a geometrical volume of fluid method for multicomponent conjugate mass transfer.
Subgrid scale models to simulate high-Schmidt-number bubble-mediated mass exchange
have been developed by Bothe & Fleckenstein (2013), Weiner & Bothe (2017) and Claassen
et al. (2020). All the above numerical techniques do not consider local changes in volume
due to gas dissolution. Recent advances in numerical methods by Tanguy et al. (2014),
Fleckenstein & Bothe (2015), Dodd (2017), Scapin, Costa & Brandt (2020), Maes &
Soulaine (2020) and Gennari, Jefferson-Loveday & Pickering (2022) allow us to simulate
problems of mass transfer with local volume changes.

In the present study, the initial size of the bubble is in the inertial range of the
turbulent flow, and gas from the bubble dissolves in the liquid outside as the bubble
volume decreases. We use an immersed boundary method based on volume penalization
(Magdelaine 2019) to model the gas diffusion from the bubble. This paper is organized as
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follows. In § 2, we present the numerical framework and validate our approach against
exact solutions of the moving interface due to dissolution in the planar and spherical
geometries, and discuss the special case of the Epstein & Plesset (1950) problem. In § 3, we
apply our numerical methods to study the mass transfer coefficient of a bubble dissolving
while rising in quiescent water, and show that the classic Levich formula can describe
the mass transfer coefficient, extended for a time-varying bubble size d(t) and velocity
U(t), leading to kL = (2/

√
π)

√
Dl U(t)/d(t). In § 4, we study the dissolution of a single

bubble in an otherwise homogeneous and isotropic turbulence flow, and show that the mass
transfer coefficient can be described by Sh/Sc1/2 ∝ Re3/4, with the turbulent Sherwood
number Sh = kLL�/Dl and macroscale Reynolds number Re = urmsL�/νl, with urms the
velocity fluctuations, and L∗ the integral length scale. This relationship is equivalent to
kL ∝ Sc−1/2(ενl)

1/4, showing that the smallest scales control the gas transfer in the flow,
namely the Kolmogorov and Batchelor length scales.

2. Numerical framework

2.1. The Basilisk solver
We solve the three-dimensional (3-D), incompressible, two-phase Navier–Stokes
equations using the open-source solver Basilisk (Popinet 2009, 2013, 2015):

∂u
∂t

+ ∇ · (uu) = 1
ρ

[−∇p + ∇ · (μ(∇u + ∇uT))
] + γ

ρ
κδsn, (2.1)

∇ · u = 0, (2.2)

∂T
∂t

+ u · ∇T = 0, (2.3)

where u, p, γ , μ, ρ, κ , n and T are the velocity, pressure, surface tension coefficient,
viscosity, density, curvature, interface normal and volume fraction fields, respectively.
The Dirac distribution function δs concentrates the surface tension force on the interface
(Popinet 2009). The solver has been validated extensively for complex interfacial flows
(Popinet 2015; van Hooft et al. 2018; Berny et al. 2020; Gumulya et al. 2020; Farsoiya
et al. 2021; Mostert, Popinet & Deike 2021; Rivière et al. 2021). It uses the projection
method to compute the velocity and pressure, and the geometric volume of fluid method
for the evolution of the interface between two immiscible fluids (Tryggvason, Scardovelli
& Zaleski 2011). The piecewise linear interface calculation geometric interface and flux
reconstruction ensures a sharp representation of the interface (Scardovelli & Zaleski 1999;
Marić, Kothe & Bothe 2020) and is combined with an accurate height-function curvature
calculation and a well-balanced, continuum surface tension model (Brackbill, Kothe
& Zemach 1992; Popinet 2018). Well-balanced numerical schemes ensure that specific
equilibrium solutions of the (continuous) partial differential equations are recovered by
the (discrete) numerical scheme. Such schemes are important when surface tension is
the dominant force, such as in two-phase interfacial flows including drops or bubbles
close to Laplace’s equilibrium (Popinet 2018). Test cases by Popinet (2009) demonstrate
second-order convergence towards the exact circular equilibrium shape as a function of
spatial resolution.
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Bubble-mediated gas transfer

2.2. Immersed boundary method for gas diffusion
We use the numerical method developed by Magdelaine (2019), which relies on a
distributed Dirac-like forcing term, as in the immersed boundary method of Peskin (1972),
in order to enforce Dirichlet conditions for the gas concentration on the evolving interface.
The time evolution of the gas concentration is given by

∂c
∂t

+ ∇ · (uc) = ∇ · (Dl ∇c) + F, (2.4)

where the forcing term F relaxes the concentration toward its gas phase value on a time
scale τc in the gas phase region B, and can be written as a surface integral:

F(x) =
∫

x(s)∈B

(
cg − c

τc

)
δ(x − x(s)) ds, (2.5)

where δ(x) is a two-dimensional Dirac function, and ds represents the surface element of
the boundary (Peskin 1972). Equation (2.4) can then be re-expressed as

∂c
∂t

+ ∇ · (uc) = ∇ · (Dl ∇c) − c − cg

τc
H(x). (2.6)

Here, H(x) = ∫ 0
−∞ δ(x − x(s)) ds is a (surface) Heaviside function for the non-diffusive

phase (gas phase) with the relaxation time scale τc = 10−6Δ2/Dl, with Δ the grid size.
The relaxation time scale needs to be small enough to ensure an accurate imposition
of the Dirichlet condition on the interface, while being large enough to avoid possible
amplification of round-off errors.

The assumption of continuous chemical potentials, which is good for most applications
at an interface Σ(t), results in Henry’s law (Bothe & Fleckenstein 2013):

cl = cgα at Σ(t), (2.7)

where the dimensionless ratio of the liquid phase concentration to the gas phase
concentration of the component transferred, α, is Henry’s law solubility constant
(solubility hereafter). We consider a single component and an isothermal configuration,
and there is no bubble break-up or large deformation of the interface that can change
the pressure inside the bubble significantly. Hence the solubility, which depends on
temperature, pressure and mole fraction of the gas components (Bothe & Fleckenstein
2013), is assumed to be constant. We modify the last term in (2.4) to account for the
solubility:

∂c
∂t

+ ∇ · (uc) = ∇ · (Dl ∇c) − c − Ξ

τc
H, (2.8)

where Ξ is a conditional variable equal to αcg and cg in the interfacial and non-interfacial
cells, respectively. The gradients of c are calculated using central differences, and the
Heaviside function is approximated as 1 − T .

The advection and diffusion terms in (2.8) are treated in a time-split manner. For
diffusion we use a time-implicit Euler discretization

cn+1 − cn

Δt
= ∇ · (Dl ∇cn+1) + βcn+1 + r, (2.9)

where β = −H/τc and r = −HΞ/τc. Equation (2.9) gives a set of linear equations that
are solved efficiently using the multigrid method (Popinet 2015).
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The solubility boundary condition (2.7) presents a discontinuity for the concentration
field across the interface similar to the volume fraction field T . As discussed by Bothe &
Fleckenstein (2013), when the mass transfer is coupled with fluid flow, the concentration
discontinuity given by Henry’s law must be satisfied at the fluid–fluid interface. Moreover,
the advection of the concentration field c must be consistent with the advection of the
volume fraction field since any relative motion would lead to artificial mass transfer across
the interface. To avoid this numerical diffusion across the interface, we use the two-scalar
approach for advection proposed by López-Herrera et al. (2015), i.e. two tracer fields φg
and φl associated with the volume of fluid T are defined:

φl = clT , φg = cg(1 − T ), (2.10a,b)

c = T cl + (1 − T )cg. (2.11)

Using (2.7) and (2.11), we get

φn
l = cnαT

αT + (1 − T )
, φn

g = cn(1 − T )

αT + (1 − T )
. (2.12a,b)

The advection equation for φg/l reads

∂φg/l

∂t
+ ∇ · (uφg/l) = 0, (2.13)

and is solved using the volume-of-fluid associated fields (López-Herrera et al. 2015;
Farsoiya et al. 2021) that guarantee strictly non-diffusive transport close to the interface.
The concentration tracer is updated after advection using

c = φg + φl. (2.14)

We then calculate the dissolution velocity at the interface, uΣ , which is used to update
the volume fractions (Magdelaine 2019):

∂T
∂t

+ uΣ · ∇T = 0. (2.15)

The boundary condition for molar mass flux at an interface is given by (Fleckenstein &
Bothe 2015)

[[c(u − uΣ)]] · n + [[ j]] · nΣ = 0, (2.16)

where u and uΣ are the barycentric and interface velocities, respectively.
The Stefan currents from a dissolving bubble can be estimated from the source term in

the continuity equation. They are discussed by Dodd (2017) in the context of evaporating
droplets in homogeneous and isotropic turbulence (HIT) flow

∇ · u = 1
Pe

(∇Yv · n δ(n)

1 − Yv

) (
1 − ρg

ρl

)
, (2.17)

where Yv is the mass fraction of the vapour. The numerical simulations performed for
the bubble in turbulent flow are in the region ρg � ρl (ρl/ρg = 850) and Pe 
 1 (80 �
Pe � 5 × 104), the Péclet number being defined based on some characteristic velocity of
the flow. Hence the Stefan currents are small compared to the flow around the bubble.
In addition, the vapour recoil and surface tension typical of air bubbles dissolution
in water scale as (ρg(u − uΣ) · nΣ)2(1/ρg) ≈ O(10−6) and γ κ ≈ O(102), respectively.
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These forces can be comparable for the cases of strong evaporation of a droplet and
cavitation of a bubble (Fleckenstein & Bothe 2015), which is not the case in our study.
Consequently, Stefan currents and vapour recoil are not included in the present numerical
framework.

As the Stefan currents are not modelled, the interface velocity uΣ from (2.16) reduces to

uΣ = Mw

ρg(1 − α)
Dl ∇c, (2.18)

where Mw is the molecular mass of the gas. The time step is not restricted by the scalar
diffusion terms as we are using an implicit discretization for diffusion terms. However,
fast diffusion calculates the phase change interface velocity, which restricts the time step,
and the interfacial velocity uΣ restricts the computational time step in accordance with
Courant–Friedrichs–Lewy criteria.

Moreover, this approach is convenient in simulating HIT flows as these require periodic
conditions on the computational domain boundaries, and having a source term in the
continuity equation is then needed to be compensated for the extra liquid inside the
domain. We thus assume that the solvent is an infinite reservoir, and study the bubble
dissolution in an HIT flow. Note also that there are methods developed by Fleckenstein
& Bothe (2015), Malan (2018), Scapin et al. (2020) and Maes & Soulaine (2020) for
inclusion of Stefan currents. A recent independent development by Gennari et al. (2022)
in Basilisk based on the two-scalar approach by Fleckenstein & Bothe (2015) treats the
velocity discontinuity at the interface that is due to the mass transfer between the phases.

2.3. Validation

2.3.1. Stefan problem
We test our methods with the classical moving boundary problem, called the Stefan
problem (Stefan 1891) in planar geometry, where the liquid and gas phases are separated
by a moving interface Y(t). The concentration of gas in the liquid phase (neglecting the
advection) is given by

∂c
∂t

= Dl
∂2c
∂y2 , for y > Y(t) (liquid phase). (2.19)

The moving interface concentration is constant:

c(Y(t), t) = αcg, t ≥ 0, (2.20)

and

c( y → ∞, t) = 0, c( y > Y(t), 0) = 0, (2.21a,b)

where α is Henry’s solubility constant, and cg is the gas concentration in the gas
phase. The problem can be non-dimensionalized using the characteristic length L, ζ =
( y − Y(0))/L, the time as a mass Fourier number Fom = Dl/L2t, the moving boundary
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Σ(Fom) = (Y(t) − Y(0))/L, and the concentration Θ = c( y, t)/(αcg), so that

∂Θ

∂Fom
= ∂2Θ

∂ζ 2 , for ζ > Σ(Fom) (liquid phase). (2.22)

The moving interface concentration is constant:

Θ(Σ, Fom) = 1, Fom ≥ 0. (2.23)

The velocity of the moving interface from (2.16), Y(t), is given by

dΣ

dFo
= St

(
∂Θ

∂ζ

)
ζ=Σ(Fom)

, Fom > 0, (2.24)

with conditions

Θ(ζ → ∞, t) = 0, Σ(0) = 0, Θ(ζ > 0, 0) = 0, (2.25a–c)

and Stefan number

St = α

1 − α
. (2.26)

The time evolution of the interface and concentration is given by (Alexiades & Solomon
2018)

Σ(Fom) = 2λ
√

Fom, (2.27)

Θ(ζ, Fom) = 1
erfc(λ)

erfc
(

ζ

2
√

Fom

)
, (2.28)

where λ is the solution of the equation

λ erfc(λ) eλ
2 = − St√

π
. (2.29)

Comparing the integration of concentration profile (2.28),

∫ ∞

Σ(Fom)

Θ(ζ, Fom) dζ =
∫ ∞

0

[
1

erfc(λ)
erfc

(
ζ

2
√

Fom

)]
dζ = −2λ

√
Fom, (2.30)

with (2.27) shows that the solution conserves mass. Note that (2.27) (displacement of
interface) and (2.30) (mass of gas) have negative and positive signs, respectively (λ < 0).

The test simulation is performed in a two-dimensional square box with St = 0.8, with an
adaptive resolution of 2048 cells per side of the domain. The position of the interface with
time is shown in figure 1(a), and the concentration of gas in the liquid at a location in the
domain is shown in figure 1(b). Both quantities show good agreement with the theoretical
predictions (2.27) and (2.28), respectively. In figure 1(c), the net mass of gas is conserved,
and liquid side mass shows good agreement with (2.30). Figures 1(d,e) show first-order
convergence of the numerical methods. The agreement is good throughout the full time
and space evolution.
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Figure 1. Test results for the planar Stefan problem, for St = 0.8 and grid size (211)2 (adaptive). (a) The
interface position shows good agreement with (2.27). (b) Concentration at ζ = 0.02 shows good agreement
with (2.28). (c) Gas mass is conserved and shows good agreement with (2.30). The scripts for the test cases
are available; see Farsoiya, Popinet & Deike (2022a). (d) Maximum relative error at different resolutions,
max |c11 − cN |/cs, where c11 and cN are numerical solutions at resolution 211 and lower, respectively,
displaying first-order convergence. (e) Maximum relative error in mass conservation at different resolutions,
max |m(t) − m(0)|/m(0), where m(t) and m(0) are net mass (time evolution) and initial net mass, displaying
first-order convergence.

2.3.2. Dissolution of a static spherical bubble
We now apply our numerical methods to the dissolution of a static spherical bubble.
The gas diffusion in the liquid phase outside a spherical bubble, neglecting advection,
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is governed by

∂c
∂t

= Dl
1
r2

∂

∂r

(
r2 ∂c

∂r

)
, for r > R(t) (liquid phase). (2.31)

The moving interface concentration is constant:

c(R(t), t) = αcg, t ≥ 0, (2.32)

and c(r → ∞, t) → 0, where α is Henry’s solubility constant, and cg is the gas
concentration in the gas phase. The velocity of the moving interface R(t) from (2.16) is
given by

dR(t)
dt

= Dl

cg(1 − α)

(
∂c
∂r

)
r=R(t)

, t > 0, (2.33)

with initial conditions R(0) = R0 and c(r > R0, 0) = 0. We consider the configuration
for a large driving force for transport given by a large Stefan number (which will apply
in particular to larger solubility), here St = 0.8. At this Stefan number, the change in
bubble size affects the diffusion of gas (St ∼ O(1)) over time. We solve numerically
(forward Euler method) the moving boundary problem given by (2.31)–(2.33) (numerical
moving boundary problem, NMBP). The concentration c and bubble radius R(t) can be
non-dimensionalized as Θ = c(r, t)/(αcg) and ε = R(t)/R0 (2.36a–c).

The non-dimensional bubble radius is shown in figure 2(a), and the concentration at a
location outside the bubble at r = R0 + 0.2 is shown in figure 2(b). Good agreement is
found with the numerical solution to the moving boundary problem. Figure 2(c) illustrates
the mass conservation properties. The numerical method is robust in keeping the shape
of the shrinking bubble nearly spherical, as shown in figure 2(d), with the sphericity Ψ =
π1/3(6Vb)

2/3/Ab, where Vb and Ab are the volume and area of the bubble, respectively. As
the bubble shrinks, the number of cells per diameter decreases, and the amplitude of the
oscillations in sphericity increases, which is expected.

2.3.3. Epstein–Plesset test
Epstein & Plesset (1950) provided an analytical solution on the dissolution of a spherical
bubble under the quasi-static radius approximation (Weinberg & Subramanian 1980;
Peñas-López et al. 2016), i.e. treating the bubble radius as a constant at the concentration
boundary condition at the interface. It is valid if the motion of the interface is much slower
than the diffusion process. The Epstein & Plesset (1950) test and approximations have been
discussed in Duncan & Needham (2004), Peñas-López et al. (2016), Chu & Prosperetti
(2016) and Zhu et al. (2018).

Under these approximations, the time evolution of the interface is given by Epstein &
Plesset (1950) as

dR
dt

= −Dl
Mw(αcg − c0)

ρg

{
1
R

+ 1√
πDlt

}
. (2.34)

In dimensionless form,
dε

dx
= − x

ε
− 2ξ, (2.35)
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Mass in liquid (Basilisk)
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(c) (d)
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t  /R0
2t  /R0

2

Figure 2. Dissolution of a static bubble in the high-St-regime (St = 4) large driving force for transport. Grid
size 200 cells per initial diameter. (a) Time evolution of bubble radius. (b) Concentration at r = R0 + 0.2 shows
good agreement with numerical solution of the moving boundary problem given by (2.31)–(2.33). (c) The net
mass of gas is conserved, and the evolution of the mass of gas dissolved in the liquid agrees with the volume
integration of c (NMBP). (d) Sphericity remains close to unity as the bubble shrinks.

where

ε = R(t)
R0

, x2 = 2DlMw(αcg − c0)

ρgR2
0

t, ξ =
√

Mw(αcg − c0)

2πρg
=

√
St
2π

, (2.36a–c)

where St is the Stefan number. The solution of (2.35) is given in the parametric form

ε = e−ξz
(

cos
(

z
√

1 − ξ2
)

− ξ
1√

1 − ξ2
sin

(
z
√

1 − ξ2
))

, (2.37a)

x = 1√
1 − ξ2

e−ξz sin
(

z
√

1 − ξ2
)

. (2.37b)

The analytical solution of (2.31) (Darmana et al. 2006) can be used for a quasi-static
boundary R(t) to get the concentration as

c = c0 + (αcg − c0)
R(t)

r
erfc

(
r − R(t)√

4Dlt

)
. (2.38)

We set up a test case to mimic the Epstein & Plesset (1950) conditions by considering
uΣ

EP = 2 × 10−4uΣ in (2.18), valid for a quasi-stationary bubble. This approximation
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x x
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0.3
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(2.38)
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3-D Basilisk

ε Θ

(b)(a)

Figure 3. Dissolution of a static bubble in the quasi-stationary approximation uΣ
EP = 2 × 10−4uΣ . The grid

size is 200 cells per initial diameter. (a) The time evolution of the bubble radius shows good agreement with
(2.37a), (2.37b). (b) Concentration Θ = (c(r, t) − αcg)/(c0 − αcg) at r = R0 + 0.2, in good agreement with
(2.38). Scripts for test cases are available; see Farsoiya, Popinet & Deike (2022b).

creates a mass source and hence does not conserve the total mass of the gas. The test
is performed with an adaptive local resolution of 200 cells per initial diameter. The
diffusivity Dl non-dimensionalizes the time as a Fourier number Fom = Dl/R2

0t, while the
non-dimensional spatial variable can be written as x2 = 2 Fom St. The motion of the bubble
boundary in figure 3(a) shows good agreement with (2.37a), (2.37b). Figure 3(b) shows
good agreement of the concentration at r = R0 + 0.2 with (2.38). The good agreement is
observed for most of the time evolution of the bubble dissolution, with small deviations
at later times related to the quasi-stationary approximation by Epstein & Plesset (1950).
This validates our numerical implementation in the configuration considered by Epstein
& Plesset (1950).

3. Dissolution of a rising bubble

After considering the cases of static bubbles dissolving in a liquid, we now consider the
effects of advection and the case of a bubble rising and dissolving in an initially quiescent
liquid. The bubble is initially spherical and rises due to buoyancy while shrinking due to
the dissolution of gas. Levich (1962) proposed a model for the gas transfer velocity from
a bubble rising with terminal velocity U as kL = 2

√
DlU/πd, assuming a spherical shape

and a constant size and surface concentration. Legendre & Magnaudet (1999) obtained
a similar result for a steady axisymmetric straining flow mass transfer coefficient Sh =
2
√

Pe0/π. This relationship considers a steady state with a constant terminal velocity and
does not account for changes in bubble size; hence it is valid in the limit of exchange
of dilute components from the bubble, and we have verified this result previously for a
constant bubble size (Farsoiya et al. 2021).

We propose to extend the formula from Levich (1962) to the case of a bubble changing
its size and associated rising velocity, writing

kL(t) = 2√
π

√
Dl U(t)

d(t)
, (3.1)

where U(t) and d(t) are the now time-varying rise velocity and equivalent bubble diameter
of a sphere having the same volume.
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Bubble-mediated gas transfer

We compare this model against numerical simulations of a bubble rising in an initially
quiescent liquid and shrinking in size due to dissolution, leading to a time-varying
rise velocity U(t), and instantaneous size d(t). We define the non-dimensional mass
transfer coefficient (or Sherwood number) Sh = kL(t)d0/Dl, while the specific bubble rise
configuration can be defined by the bubble Morton number Mo = gμ4

l /(ρlγ
3) and Bond

number Bo = ρlgd2
0γ (Moore 1965; Maxworthy et al. 1996; Clift, Grace & Weber 2005;

Cano-Lozano et al. 2016).
Figures 4(a–d) show a bubble rising for given Morton and Bond numbers. The bubble

is resolved with up to 200 cells per diameter. The values of Mo and Bo are chosen from
Farsoiya et al. (2021) and Deising, Marschall & Bothe (2016). In figures 4(a–d), we
observe the bubble rising and shrinking in size, as well as the associated wake of gas
left behind.

The total mass N and average gas concentration c̄ inside and outside the bubble is
computed as

Ng =
∫

Vg

c dV, Nl =
∫

Vl

c dV, c̄g = 1
Vg

∫
Vg

c dV, c̄l = 1
Vl

∫
Vl

c dV, (3.2a–d)

where Vg and Vl are the volumes of bubble and liquid, respectively. Given that the gas
does not leave the domain, the mass transfer coefficient kL is calculated as

kL = 1
Ag(αcg − cl)

dN
dt

, or kL = Nn+1
l − Nn

l

Ag Δt (αc̄n+1/2
g − c̄n+1/2

l )
, (3.3a,b)

where Ag is the instantaneous surface area of the bubble.
Figures 4(e, f ) show the time evolution of the non-dimensional transfer coefficient Sh

from the simulations. Good agreement with (3.1) is observed. Figure 4(g) shows the
time evolution of the diameter of the bubble for both axisymmetric and 3-D simulations.
Figure 4(h) shows that the net mass of gas is conserved as the bubble gets dissolved
completely in the liquid.

We note that the gas bubble has shrunk more for the initial volume at a lower Schmidt
number as it corresponds to a gas with higher diffusivity. The formula (3.1) works when
provided with the instantaneous rise velocity and size of the bubble. Therefore, we expect
that it would apply to a wide range of initial bubble configurations, defined by the bubble
Bond and Morton numbers, including configurations at higher Reynolds numbers with
spiralling or zigzagging bubble trajectories. The increase in diffusivity Dl increases the
diffusion of gas from the bubble. Higher solubility α gives higher concentration at the
bubble boundary and results in a higher concentration gradient and higher gas transfer.
The Stefan number is O(1) and does not affect (3.1) for the high Péclet regime.

4. Bubble dissolution in HIT flow

We now present direct numerical simulations of bubble dissolution in HIT. First, we
perform a precursor simulation to achieve a stationary HIT state, and then we insert
the bubble. The methodology is similar to the preceding work on bubble deformation
(Perrard et al. 2021), break-up (Rivière et al. 2021) and dilute gas transfer (Farsoiya et al.
2021). A similar approach has been taken in independent studies by Loisy & Naso (2017),
Dodd & Ferrante (2016) and Dodd et al. (2021). Naso & Prosperetti (2010) have observed
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Figure 4. (a–d) Interface of a 3-D bubble (white, only left half shown in order to see the concentration field
of gas inside the bubble) for various Mo and Bo (specified in the keys). (e) Non-dimensional mass transfer
coefficient Sh = kL(t)d0/Dl as a function of time t

√
g/d0 for the four cases shown in (a–d). ( f ) Coefficient

Sh as a function of time for increasing Sc = 1, 10, 100, at Mo = 5 × 10−7 and Bo = 3.125, and corresponding
curves for (3.1), using the instantaneous bubble size and velocity. (g) Time evolution of the bubble diameter
for varying Sc = 1, 10, 100, for Mo = 5 × 10−7 and Bo = 3.125. Good agreement between the axisymmetric
and 3-D simulations is observed. (h) Net gas mass is conserved until the bubble dissolves completely (Sc = 1,
Mo = 5 × 10−7 and Bo = 3.125).
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an unstable behaviour in such a configuration when coupling to a rigid sphere. Such
instability is specific to the two-way coupling with rigid (non-deformable) particles with
a density close to that of the carrying fluid, and is not observed in deformable bubbles and
droplets. The methodology is summarized briefly for completeness.

4.1. Precursor simulation
A cubic domain of size L periodic in all three dimensions is subjected to linear
volumetric forcing f = A u(x, t) (Lundgren 2003) in (2.1). Rosales & Meneveau (2005)
have demonstrated that this leads to a turbulent field with similar statistics to that obtained
with a spectral code, and leads to a well-characterized HIT flow. We use adaptive mesh
refinement on the velocity field, and the maximum level of refinement can be used to
compare the resolution with that of a fixed grid. The domain consists of fluid of density
ρl and viscosity μl. The turbulent flow is generated for increasing resolutions, with the
maximum level of refinement going from 6 to 8, corresponding to an equivalent grid
size of 643 to 2563. The turbulence state is characterized by the kinetic energy density
K, turbulence dissipation rate ε, and Taylor microscale Reynolds number Reλ, which are
given by (Pope 2001)

K = 1
V

∫
V

1
2

ρl |u′(x, t)|2 dV, ε = 1
V

∫
V

νl

(
∂ui

∂xj

∂ui

∂xj

)
dV, Reλ = 2K

3νl

√
15νl

ε
,

(4.1a–c)

and are computed over time to characterize the turbulent flow. The root-mean-square of
the velocity is urms = √

2K/3ρl, and the eddy turnover time at the integral length scale
L� = u3

rms/ε is given by tc = (L�)2/3ε−1/3 (Pope 2001).
Figure 5(a) shows the evolution of the turbulent kinetic energy with time for

increasing Reynolds numbers. It shows that at t/tc ≈ 10, the flow has reached a
statistically stationary state. We show that the state is grid-independent when using
an adaptive mesh refinement L7 ≡ 27, L8 ≡ 28 and L9 ≡ 29. The turbulence viscous
dissipation and the turbulence Reynolds number are shown in figures 5(b) and 5(c),
respectively. The range of turbulence Taylor Reynolds numbers is Reλ ≈ 38–150,
typical of current two-phase simulations of turbulent flow (Loisy, Naso & Spelt
2017; Elghobashi 2019; Farsoiya et al. 2021). We characterize the turbulent stationary
state using the second-order structure functions in the longitudinal DLL(r) and
transverse DNN(r) directions, given by DLL(r) = 1

3
∑

i〈(ui(r, t) − ui(r + dr̂i, t))2〉 and
DNN(r) = 1

6
∑

i /= j〈(ui(r, t) − ui(r + dr̂j, t))2〉, where r̂i is the unit vector along the ith
direction. Figure 5(d) shows that the scaled structure functions plateau at C = 2 (Pope
2001) in the inertial range. The relation DLL = 3/4DNN is verified. The bubble is inserted
once the turbulent stationary state is reached, and is of a size within the inertial range. We
have verified in Farsoiya et al. (2021) that the Kolmogorov length scale is reasonably well
resolved in these simulations.

4.2. Bubble insertion
A bubble is inserted at the centroid of the cubic domain that has achieved a stationary
HIT state, i.e. for t0 > 15tc. The bubble has diameter d0, viscosity μg, density ρg, and
surface tension coefficient γ . The Weber number We = 2ρlε

2/3d5/3
0 /γ ≈ 2 is kept below
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Figure 5. Precursor simulation demonstrating the HIT flow. (a) Kinetic energy as a function of time.
(b) Turbulence dissipation rate as a function of time. (c) Reynolds number at the Taylor length scale as a
function of time. In all cases, these quantities reach a statistically stationary value after some time, and the
bubble is inserted in this HIT flow. (d) Second-order structure function, which demonstrates good agreement
with turbulence scaling.

the critical value for break-up, Wec (Rivière et al. 2021) so that the bubble might deform
but never breaks. With bubble dissolution, the bubble’s diameter, and hence the Weber
number, reduce further, so that we never observe bubble break-up. Note that the forcing of
the turbulence continues to be applied as in Perrard et al. (2021), Rivière et al. (2021) and
Farsoiya et al. (2021) once the bubble is inserted, and that we do not consider the effects
of gravity/buyoancy.

The bubble has initial gas concentration c = ρg/Mw, with the solubility and diffusivity
of the gas in the outside fluid given by α and Dl, respectively. The turbulence properties
and simulation parameters are given in table 1. The highest resolutions for Sc = 1 and
Sc = 10, 30 cases are L10 and L12, respectively. Figure 6 shows a 3-D rendering of the
concentration field for Reλ = 150, Sc = 10, for the time of bubble insertion (figure 6a)
and then three instants during the first eddy turnover time. The bubble size can be seen
as being reduced while the gas diffuses out, following turbulent fluctuations. The vorticity
field is also indicated.

Another illustration of the dissolution dynamics in turbulence is provided in figure 7.
Figures 7(a–d) show the reduction in bubble volume at different time instants for the
case Reλ = 150, Sc = 1. Note that the bubble volume reduces at a faster rate compared
to the radius. The interface shown at (t − t0)/tc = 2.5 corresponding to R(t)/R(0) ≈ 0.4
implies V(t)/V(0) ≈ 0.064. The bubble interface is shown at an instant (t − t0)/tc = 1 in

954 A29-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

99
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.994


Bubble-mediated gas transfer

Resolution (2L) d0/λ L�/d0 We ρr μr Sc α Reλ Re

L9 ≡ 29 to L12 ≡ 212 1.56 1.51 1.8 850 25 (1, 10, 30) (0.5, 0.3) 38 85
L9 ≡ 29 to L12 ≡ 212 2.19 1.75 1.8 850 25 (1, 10, 30) (0.5, 0.3) 55 170
L9 ≡ 29 to L12 ≡ 212 2.72 1.88 1.8 850 25 (1, 10, 30) (0.5, 0.3) 77 400
L9 ≡ 29 to L12 ≡ 212 3.18 2.51 1.8 850 25 (1, 10, 30) (0.5, 0.3) 100 800
L9 ≡ 29 to L12 ≡ 212 3.24 3.29 1.8 850 25 (1, 10, 30) (0.5, 0.3) 150 1600

Table 1. Parameters (with adaptive mesh refinement) of the simulations of bubble dissolution in turbulence.
Four Reynolds numbers are used, while the Weber number (below break-up threshold), density and viscosity
ratio are kept constant. The solubility α = 0.3 is for cases with Sc = 1 only.

6.3 × 10–2

40

30

|Ω|

20

10

6.3 × 10–2

40

30

|Ω|

20

10

6.3 × 10–2

40

30

|Ω|

20

10

6.3 × 10–2

1 × 10–5

2 × 10–5

3 × 10–5

404.1 × 10–5

0

30

|Ω|c

1 × 10–5

2 × 10–5

3 × 10–5

4.1 × 10–5

0

c

1 × 10–5

2 × 10–5

3 × 10–5

4.1 × 10–5

0

c

1 × 10–5

2 × 10–5

3 × 10–5

4.1 × 10–5

0

c

20

10

(b)(a)

(c) (d )

Figure 6. Concentration field for Reλ = 150, Sc = 10 at (a) t = t0 (bubble insertion), (b) (t − t0)/tc = 0.5,
(c) (t − t0)/tc = 0.75, and (d) (t − t0)/tc = 1. Diffusion of gas around the bubble is shown by field c: the
darker blue region is a high concentration inside the bubble, and yellow is a low concentration distributed due
to advection and diffusion. Magnitude of vorticity is shown at the boundaries of the box behind the bubble.

figures 7(e–h), for two Sc values (1 and 10), for the same turbulence condition. The
vorticity field on a plane intersecting the bubble is shown in figures 7(e, f ) and the
corresponding concentration field is shown in figures 7(g,h) for Sc = 1 and Sc = 10,
respectively. In figure 7(h), the transient boundary layers for Sc = 10 are thinner compared
to Sc = 1 (figure 7g). The smaller bubble size can also be noticed in figure 7(g) (Sc = 1)
compared to figure 7(h) (Sc = 10), as more mass has diffused into the outer fluid. The
concentration fields are similar to the patterns of the surrounding vorticity field.
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Figure 7. Interface of bubble at different time instants showing dissolution for the case Reλ = 150, Sc = 1,
with vorticity field shown on a planar slice at the boundary behind the bubble: (a) (t − t0)/tc = 0, (b) (t −
t0)/tc = 1, (c) (t − t0)/tc = 2, and (d) (t − t0)/tc = 2.5. Vorticity and concentration field (shown on a planar
slice intersecting the bubble) for Reλ = 150 at (t − t0)/tc = 1 for (e,g) Sc = 1, ( f,h) Sc = 10.
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Figure 8. Bubble size and non-dimensional mass transfer coefficient (based on the initial bubble size), as a
function of time: (a,b) Reλ = 38, Sc = 1; (c,d) Reλ = 55, Sc = 10; (e, f ) Reλ = 150, Sc = 10. The Sc = 1
results are converged between L9 and L10, and the Sc = 10 results are converged between L10 and L12.
Solubility α rescales the constant concentration at the bubble boundary, kL = (dc/dt)/(αcg).

4.3. Dynamics and mass transfer associated with bubble dissolution in turbulence
The time evolution of the bubble radius and associated non-dimensional mass transfer
coefficient are shown in figure 8 for increasing Reynolds number (Reλ = 38, Sc = 1,
α = 0.5, 0.3 in figures 8(a,b), Reλ = 55, Sc = 10, α = 0.5 in figures 8(c,d), and
Reλ = 150, Sc = 10, α = 0.5 in figures 8(e, f )). The mass transfer coefficient kL is
calculated using (3.3b), and the associated instantaneous Sh(t) is defined as Sh(t) =
kL(t)L�/Dl. The mass boundary layer thickness δk ≈ d0 Pe1/2 is resolved up to 4 cells
for each case by increasing the resolution.
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Figure 8(a) shows that the time evolution of the bubble radius is grid-converged
between L9 and L10 for Sc = 1. Next, figure 8(b) shows that the non-dimensional transfer
coefficient is almost constant with time, and Sh(t) (non-dimensionalized kL) reaches a
stationary value, while the bubble size is shrinking. The results at Reλ = 55, Sc = 10
confirm this observation, as shown in figures 8(c,d), with convergence obtained between
L10 and L11. For Reλ = 150, Sc = 10, the time evolution of the bubble radius and Sh is
converging to a constant value as resolution is increased to L12. The features in figure 8
are general to all the cases that we simulated for a wide range of Re and Sc, as summarized
in table 1.

We also test the sensitivity of the transfer rate results with the Stefan number, or gas
solubility. The Stefan number is St = α/(1 − α) = 1 for α = 0.5, and St ≈ 0.43 for α =
0.3. The effect of solubility α and concentration of the bubble should not affect the mass
transfer coefficient kL for fully unsaturated cl = 0 conditions as it just rescales the constant
concentration at the bubble boundary kL = (dc/dt)/(αcg − cl). This can also be seen in
figure 8(b), where there is negligible change in kL when α is reduced from 0.5 to 0.3. As
the Reynolds and Schmidt numbers are increased, the boundary layer thickness decreases
as δk ∼ Pe−1/2.

The observation of a constant mass transfer coefficient while the bubble size is shrinking
contradicts the proposed scaling from Levich (1962) for the mass transfer coefficient in
turbulence, Sh ∝ (d/L�) Re3/4 Sc1/2, which involves a bubble size dependence d, as well
as our more recent scaling Sh/Sc1/2 ∝ Re1/2 (Farsoiya et al. 2021). As the bubble size was
constant in Farsoiya et al. (2021), the dependency with bubble size had not been tested. We
performed additional simulations with the dilute transfer framework from Farsoiya et al.
(2021), varying the bubble sizes in the same turbulent flow and confirm that the mass
transfer coefficient kL in turbulence does not depend on the bubble size, as demonstrated
in figure 8. This result can be rationalized by the fact that the smallest length scale of the
turbulent flow will control the gas exchange, as described by Lamont & Scott (1970) and
the high Re regime from Theofanous et al. (1976). As will be shown in the next subsection,
all the data from the present study and Farsoiya et al. (2021) can be described by a high Re
scaling reading, Sh/Sc1/2 ∝ Re3/4, with the Reynolds number and the Sherwood number
defined using the integral length scale L�: Sh = kLL∗/Dl and Re = urmsL�/νl, with urms
the velocity fluctuations.

Figure 9(a) shows the concentration of gas transferred in the liquid as a function
of time for Re = 38, Sc = 1. The mass transfer rate dN/dt ∝ −kLA reduces as the
bubble size decreases, and reaches zero when the bubble gets dissolved completely as
A → 0 (figure 9a). The corresponding rate of change of the bubble volume is then
dV/dt ∝ dN/dt ∝ −kLA. For a spherical bubble, V ∝ R(t)3, A ∝ R(t)2, so we have
d(R(t)3)/dt ∝ −kL R(t)2, and this implies dR/dt ∝ −kL (or Sh). Figure 9(b) shows the
normalized rate of change of the bubble radius as a function of the Sherwood number,
and we indeed observe (dR/dt)L∗/(αDl) ∝ Sh. (The data in figure 9(b) have Pearson
correlation coefficient ρ((dR/dt)L∗/(αDl), Sh) = 0.94.) As discussed above, the transfer
rate kL and its non-dimensional version Sh are constant while the bubble dissolves (see
figures 8b,d), so the rate of change of the bubble radius is approximately linear with time
(which is visible in figures 8a,c). Even if the mass transfer coefficient kL is independent
of the bubble size, a larger bubble has a larger interfacial area, leading to a higher mass
transfer than a smaller one. The interfacial area is the determining factor for a given kL,
and if a larger bubble breaks into smaller bubbles due to the turbulence, then more surface
area is created and the gas transfer increases.
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Figure 9. (a) Normalized concentration of gas in surrounding liquid (where c(td) is the gas concentration in
the liquid when the bubble is dissolved completely) for case Sc = 1 (highest resolution, L10) for increasing
Reynolds number. The gas transfer rate dc/dt decreases and reaches zero as the bubble dissolves fully.
(b) Normalized rate of change of the bubble radius (dR/dt)L∗/(αDl) as a function of Sh (highest resolution
points). A linear scaling is observed.

4.4. Model for the mass transfer coefficient
The mass transfer coefficient kL from the classic penetration theory (Higbie 1935) reads

kL ∝
√

Dl/θ. (4.2)

We observe that the mass transfer coefficient is a function of the bulk turbulence
characteristics, but not the bubble size, so we propose the time factor θ for the gas diffusion
in an HIT flow to scale with the Kolmogorov time scale τη = (νl/ε)

1/2 or integral time
scale τL� = L�/urms. A similar discussion for scalings of the exchange velocities can be
found in Lamont & Scott (1970), Theofanous et al. (1976) and Herlina & Wissink (2016).

Considering the Kolmogorov time scale, the mass transfer coefficient scales as

kL/(νlε)
1/4 ∝ Sc−1/2, (4.3)

while considering the integral time scale, the coefficient scales as

kL/urms ∝ Sc−1/2 Re−1/2. (4.4)

If we scale kL by Dl/L�, and define a turbulent Sherwood number Sh = kLL∗/Dl, then
we obtain

Sh/Sc1/2 ∝ Re3/4 (4.5)

and

Sh/Sc1/2 ∝ Re1/2, (4.6)

respectively. The scaling equation (4.5) would be expected to apply only at a high enough
Reynolds number while (4.6) would apply to a lower Re, similarly to the discussion in
Theofanous et al. (1976).
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Figure 10. (a) Mean non-dimensional mass transfer coefficient Sh after reaching stationary state and R(t) >

0.3R0, normalized by Sc1/2. The highest (converged) resolution points are shown from table 1. Lines provide
the power law for Ren, where Re = L�urms/νl, with a solid line for n = 3/4, and a dashed line for n = 1/2.
The high Re data align with the n = 3/4 exponent (when grid convergence is achieved). Circles, squares and
diamonds are dissolving data, while triangles are simulations performed under the dilute approximation; see
Farsoiya et al. (2021). All data converge to Sh/Sc1/2 ∝ Re3/4. (b) The same scaling but with data plotted as
kL/(εν)1/4 as a function of Sc, leading to kL/(εν)1/4 ∝ Sc−1/2 (solid line).

Figure 10 shows the turbulent Sherwood number Sh for all the simulations for the cases
given in table 1 at the highest numerical resolution (convergence of Sh when resolution is
increased is discussed in Appendix A). The error bars depict the minimum and maximum
values of Sh after reaching stationary state and before the end of the simulation. All
cases with Sc = 1 for all Reynolds numbers (from table 1) are converged to the scaling
Sh/Sc1/2 ∝ Re3/4. The Sc = 10 cases are converged to the scaling for Re ≤ 400, as the
resolution is increased from L10 to L11, while at the highest Sc, the L12 resolution
cases are converging. The accepted resolution criteria for direct numerical simulations
in the literature (Overholt & Pope 1996; Pope 2001; Schumacher, Sreenivasan & Yeung
2005; Dodd et al. 2021; Farsoiya et al. 2021) are typically kmaxη > 1.5 and kmaxηB >

1.5, where kmax, η and ηB are the maximum resolved wavenumber kmax = πN/L, and
the Kolmogorov and Batchelor scales, respectively. The Kolmogorov length scale η =
(ν3

l /ε)1/4 defines the length scale at which viscous dissipation becomes dominant, while
the Batchelor scale is defined as ηB = η/

√
Sc. In all of the cases, the Kolmogorov length

scale is well resolved, with kmaxη > 8, in agreement with the fact that convergence is
already achieved in lower resolutions, as shown in figure 5(a). For the highest Péclet
number Pe = 4.8 × 104 (Re = 1600, Sc = 30), the Batchelor length scale is resolved up
to kmaxηB ≈ 4 (refinement d0/Δx = 546). The boundary layer thickness is δν � 2η and
δk � 2ηB.

The data from dilute gas transfer where bubble size is constant from Farsoiya et al.
(2021) also show agreement with (4.5) within narrow error bounds. A new set of
simulations for a constant size bubble (Farsoiya et al. 2021) with different diameters
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(d0/η ≈ 33, 17, 8, 4) is shown by upward triangles at Re = 800 in figure 10. This also
corroborates that the mass transfer coefficient kL (or Sh) is independent of the bubble
size. We note that the constant size dilute mass transfer study used a different numerical
method (Farsoiya et al. 2021) and typically higher resolution. At the same resolutions, the
error bars between the two methods are comparable. In summary, at the highest resolution
and when the Bachelor length scale is resolved, we observe that the transfer coefficient
follows the high Re scaling, (4.5) and Sh/Sc1/2 ∝ Re3/4, so that the smallest scales of the
turbulent flow drive the mass transfer from the bubble.

The mass transfer scaling can be expressed in terms of kL/(ενl)
1/4 ∝ Sc−1/2 and is

shown in figure 10(b). A similar conclusion can be made, with convergence to (4.3) at a
high enough grid resolution. We note that a higher Sc is achieved for the dilute case and
confirms the above discussion.

5. Conclusion

We developed a numerical framework to simulate gas transfer across fluid–fluid interfaces
including volume change effects. The numerical framework is tested against theoretical
and numerical solutions of moving boundary problems. For a bubble rising in a quiescent
liquid, the mass transfer coefficient kL can be described by kL = (2/

√
π)

√
Dl U(t)/d(t),

with d(t) and U(t) the time-varying bubble size and rise velocity. For a bubble in a
homogeneous and isotropic turbulence flow, with size initially within the inertial range,
we found that the mass transfer coefficient for varying bubble size and Reynolds number
is independent of the bubble size. The results are obtained using two types of numerical
methods: the one from the present study, which allows for dissolution, and the one
presented by Farsoiya et al. (2021) under the dilute approximation, provided that the
turbulent microscales and boundary layers are resolved at least up to 4 grid points. The
transfer rate in the turbulent flow is controlled by the smallest scale in the flow and can
then be described as a function of the Reynolds number and Schmidt number by the
scaling Sh/Sc1/2 ∝ Re3/4, where Sh = kLL�/Dl is a turbulence Sherwood number. This
scaling is equivalent to kL ∝ Sc−1/2(ενl)

1/4, in agreement with the model proposed by
Lamont & Scott (1970) and corresponding to the high Re regime from Theofanous et al.
(1976). This improved understanding of bubble-mediated gas transfer could be applied to
complex systems such as gas transfer related to breaking waves at the air–sea interface or
gas transfer in bubble swarms.
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Figure 11. Difference between theoretical scaling and numerical data as a function of
the grid resolution (level). This is similar to an error convergence plot. We consider
χ = |Sh − 0.65 Re3/4 Sc1/2|/(0.65 Re3/4 Sc1/2) for some cases in table 1. The error decreases with
increased resolution, converging towards the theoretical scaling. (a) Number of grid cells per initial diameter
of the bubble. (b) Number of grid cells per Batchelor scale.

Sh/Sc1/2

Reλ Sc L9 L10 L11 L12

38
1 21 ± 5 21 ± 5 — —

10 19 ± 10 20 ± 20 18 ± 6 19 ± 0.3
30 — 21 ± 70 19 ± 6 22 ± 1

55
1 41 ± 5 40 ± 5 — —

10 47 ± 30 35 ± 20 31 ± 15 42 ± 10
30 — 45 ± 120 45 ± 30 48 ± 17

77
1 57 ± 5 58 ± 5 — —

10 94 ± 60 62 ± 20 61 ± 10 57 ± 4
30 — 81 ± 30 63 ± 7 58 ± 4

100
1 121 ± 7 118 ± 2 — —

10 163 ± 40 140 ± 30 130 ± 15 118 ± 2
30 — 162 ± 100 137 ± 30 133 ± 7

150
1 180 ± 10 173 ± 7 — —

10 496 ± 350 282 ± 70 235 ± 70 186 ± 6
30 — 162 ± 100 137 ± 30 238 ± 10

Table 2. Numerical values for Sh/Sc1/2.

Appendix A. Grid convergence of the mass transfer rate

Figure 11 shows the normalized difference between the numerical mass transfer coefficient
and the theoretical scaling proposed (see (4.5)):

χ = |Sh − 0.65 Re3/4 Sc1/2|/(0.65 Re3/4 Sc1/2) (A1)

for increasing grid resolutions. The values are χ ≤ 0.5 and decreasing when going to L11.
For higher Péclet numbers, more refined grids are used and allow us to bring the values
of χ below 0.5. Note that the parameter χ used here is for grid convergence, calculated
based on a proportionality constant in (4.5) for best fit in figure 10, and is within O(1) for
the data plotted on a log-log scale. Table 2 shows the values for the data points presented
in figure 10.
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Appendix B. Computational cost

The computational cost for the present study is given in table 3.

Resolution (2L) Reλ Re Sc CPUh

L9 ≡ 29 to L12 ≡ 212 38 85 (1, 10, 30) 2.04 × 105

L9 ≡ 29 to L12 ≡ 212 55 170 (1, 10, 30) 3.43 × 105

L9 ≡ 29 to L12 ≡ 212 77 400 (1, 10, 30) 3.27 × 105

L9 ≡ 29 to L12 ≡ 212 100 800 (1, 10, 30) 2.11 × 105

L9 ≡ 29 to L12 ≡ 212 150 1600 (1, 10, 30) 3.70 × 105

— — — — 1.45 × 106

Table 3. Computational cost (with adaptive mesh refinement) of the simulations of bubble dissolution in
turbulence.
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