

Amplified spontaneous and stimulated Mg *L* emission from MgO pumped by FEL pulses

P. Jonnard, J.-M. André, K. Le Guen, M.-Y. Wu

Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7614, Laboratoire de Chimie Physique - Matière et Rayonnement, Paris, France

E. Principi, A. Simoncig, A. Gessini, R. Mincigrucci, C. Masciovecchio

EIS TIMEX beam line, FERMI FEL Elettra-Sincrotrone Trieste, Trieste, Italy

O. Peyrusse

Physique des Interactions Ioniques et Moléculaires, Université Aix-Marseille, France

Elettra and FERMI lightsources

Context: stimulated emission in the solid state Beye *et al.* experiment

M. Beye et al., Nature **501**, 191 (2013)

Context: stimulated emission in the solid state Yoneda *et al.* experiment Cu sample – Cu Kα emission – 8050 eV

H. Yoneda et al., Nature **524**, 446 (2015)

Experimental setup

Sample: MgO single crystal

IC: ionization chamber APD: avalanche photodiode

- Incident FEL beam 56.8 eV (21.8 nm)
 - 65 fs
 - 10¹³ photons /shot
 - single shot

Filter cuts

- scattered incident beam
- visible light
- seeding laser

Emitted photon energy: Mg L2,3 emission band (3sd-2p_{1/2,3/2} transition) centered around 45 eV

Single shot experiment

Telemicroscope image

Sample damage One shot (65 fs) – one intensity measurement

> Time for **thermalisation** $10^{-10} - 10^{-11}$ s (**10**⁴ – **10**⁵ fs)

Observation before damaging occurs

AFM image Crater - width 15 μ m - depth 2 μ m

Results

Model: rate equation

rate equation:

ρ_c density of core holes

generated by the incident photon beam at a point **P**

$$\partial_t \rho_c(\mathbf{P}, t) = p(N(\mathbf{P}) - \rho_c(\mathbf{P}, t)) - \frac{\rho_c(\mathbf{P}, t)}{\tau_c} - r \rho_c(\mathbf{P}, t)$$

Creation by ionization Loss by spontaneous Loss by stimulated
emission and Auger effect emission

p photoionization rate, N concentration of atoms, r stimulated recombination rate, τ_c phenomenological lifetime which may include possible collisional ionization effects

Model: State of the sample under FEL exposure

Depth distribution of the electron temperature

Formation of a solid-density plasma

Quick change of the density of states

p photoionization rate depends on σ_{ion} , $\phi(P, t)$, $P(\varepsilon, T)$

r stimulated recombination rate depends on σ_{sti} , $I_{\Sigma}(P, t)$, *DOS*, *FDS*

 σ_{ion} photoionization cross-section, $\phi(\mathbf{P}, t)$ local FEL intensity, $P(\varepsilon, T)$ Pauli-blocking factor depending of the Fermi-Dirac statistics (FDS) σ_{sti} cross-section for stimulated effect, $I_{\Sigma}(\mathbf{P}, t)$ spontaneous and stimulated intensities coming at \mathbf{P} from the whole volume Σ , n_e electronic density, DOS density of states

Adapted from Diode Lasers and Photonic Integrated Circuits, L.A. Coldren et al. Wiley, 2012

Model: transport equation

Set of coupled differential equations governing the intensity growth

Growth and
saturation termSource term associatedAttenuation termsaturation termto spontaneous emissionmainly photo-absorption

$$I(\chi) = I^{+}(\chi) + I^{-}(\chi) \quad s = \sigma_{st} \tau_{c} \qquad T = \sqrt{\tau^{2} + \tau_{c}^{2}} \P$$
$$L = \frac{\Lambda}{\sin \beta} \qquad F^{\pm}(\chi) = \omega_{sp} g^{\pm}(\chi)$$

 $\rho_c(\chi) \sigma_{st} \frac{I^{\pm}(\chi)}{1}$

 $\pm \partial_{\chi} I^{\pm}(\chi)$

 ρ_c density of core holes, σ_{st} stimulation cross-section, s saturation parameter, F fluorescence and geometry factor, T time constant governing the kinetics, L absorption length

Comparisons

Experiment

Simulation

Angular distribution

Preferred direction

Comparisons

Preferred direction

Beye's experiment Nature **501**, 191 (2013) **Pumping threshold** Model: 5.1 10¹⁴ W cm⁻²

Conclusion

EUV stimulated emission pumped by FEL pulses

- from a solid target (MgO)
- in the regime of travelling-wave ASE
- in backward geometry

Model of

- rate equation and
- transport coupled equations

Experiment

- directionality and
- pumping threshold

Perspectives

Amplification of the stimulated emission is limited

Distributed feedback (DFB) laser

active medium = optical medium necessary for the feedback

- with periodic nanometer multilayers in the EUV and soft x-ray ranges
- with crystals in the **soft and hard x-ray ranges**

Acknowledgments

PEPS SASLELX 2015 CNRS

Soutien aux Activités Scientifiques Françaises autour des Lasers à Électrons Libres Émettant des Rayons X

AFM measurements

Thank you

dépasser les frontières