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A hybrid quantum state is a combination of the Hartle-Hawking state for the physical particles and the
Boulware state for the nonphysical ones (such as ghosts), as was introduced in our earlier work [Y. Potaux
et al., Phys. Rev. D 105, 025015 (2022).]. We present a two-dimensional example, based on the Russo-
Susskind-Thorlacius model, when the corresponding backreacted spacetime is a causal diamond,
geodesically complete and free of the curvature singularities. In the static case it shows no presence of
the horizon while it has a wormhole structure mimicking the black hole. In the dynamical case, perturbed
by a pulse of classical matter, there appears an apparent horizon while the spacetime remains to be a regular
causal diamond. We compute the asymptotic radiation both in the static and dynamical case. We define
entropy of the asymptotic radiation and demonstrate that as a function of the retarded time it shows the
behavior typical for the Page curve. We suggest interpretation of our findings.
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Introduction.—Since its inception by Hawking, the black
hole (BH) information problem remained a classic, impor-
tant, and unsolved problem. In the present note, in an attempt
to answer these important questions, we follow the same
route that we started in [1,2] some time ago. The key idea in
this approach is that we first have to look, in a nonperturba-
tive way, at the geometry that arises in the semiclassical
description of the quantum gravity and that replaces the
classical black hole geometry. The nonlocality present in the
quantum effective action manifests itself in certain ambi-
guities, which are usually understood as some freedom in the
choice of the quantum state. Some of the quantum states that
have been discussed in the literature are as follows.
The Hartle-Hawking state: It contains thermal radia-

tion at infinity and the stress-energy tensor is regular at the
horizon. It describes a black hole in thermal equilibrium
with the Hawking radiation.
The Boulware state: The stress-energy tensor is van-

ishing at infinity and there is no radiation there. However,
being considered on a classical black hole metric, it is
singular at the horizon.
If nonphysical particles are present, such as ghosts, the

Boulware (B) state is the most appropriate one since it is

the only one where one does not detect the flow of the
nonphysical particles at the asymptotic infinity of a
classical black hole. Earlier discussions of the problem
of ghosts appear in [3,4]. In fact, if both physical and
nonphysical particles are present the adequate quantum
state is a hybrid one [1]: the physical particles are in the
Hartle-Hawking (HH) state while the nonphysical ones are
in the Boulware state. The other observation, made on the
case by case analysis for the hybrid state is that if at least
some particles (either physical or nonphysical) are in the
Boulware state, the respective backreacted geometry is
horizonless and resembles that of a black hole mimicker,
similarly to the one considered in [5]. This gives us an
indication that hybrid state might provide a concrete
example against the BH information paradox.
The hybrid RST model.—Many aspects of black holes

may be tested in the two-dimensional case [6]. In the
present note we give a complete analysis, within the two-
dimensional Russo-Susskind-Thorlacius (RST) model [7],
of the global structure of the backreacted geometry and of
the radiation at the asymptotic infinity in a particular case
when the number of the nonphysical fields exceeds the
number of the physical fields. In the quantum case the
classical action is modified by the terms that originate from
integrating out the quantum conformal fields with the
respective central charge κ. We here consider a case when
there are two types of quantum fields with, respectively,
positive and negative central charges, κ1 > 0 and κ2 < 0,
that corresponds to the physical and nonphysical fields. The
complete action is a version of the two-dimensional RST
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action (W0 is a classical term that describes the string-
inspired dilaton gravity coupled to a classical conformal
field f, while W1 þW2 is quantum; W1 is a local form of
the Polyakov action),

W ¼ W0 þW1 þW2;

W0 ¼
1

2π

Z �
e−2ϕ½Rþ 4ð∇ϕÞ2 þ 4λ2� − 1

2
ð∇fÞ2

�
;

W1 ¼
X2
i¼1

−
κi
2π

Z �
1

2
ð∇ψ iÞ2 þ ψ iR

�
;

W2 ¼ −
κ

2π

Z
ϕR; κ ¼ κ1 þ κ2; ð1Þ

where we introduced two different auxiliary fields ψ i; i¼ 1,
2. They both satisfy the same equation □ψ i ¼ R but with
different boundary conditions. The difference is due to the
fact that the physical fields will be in the HH state while the
nonphysical fields will be in the B state. The metric

variation Tð0Þ
μν þ Tð1Þ

μν þ Tð2Þ
μν ¼ 0, where (see [8] for some

of the relevant equations used below)

Tð1Þ
μν ¼

X2
κ¼1

κi
π

�
1

2
∂μψ i∂νψ i −∇μ∇νψ i

þ gμν

�
□ψ i −

1

4
ð∇ψ iÞ2

��
;

Tð2Þ
μν ¼ κ

π
ðgμν□ϕ −∇μ∇νϕÞ: ð2Þ

Another equation comes from variation of the action with
respect to the dilaton. In the classical case, κ1 ¼ 0, κ2 ¼ 0,
the solution is static, ds2 ¼ ½dxþdx−=ðλ2xþx− −M=λÞ�,
see [9]. It describes a black hole of mass πM and temper-
ature TH ¼ λ=2π. The horizon is at xþx− ¼ 0 and the
curvature singularity at xþx− ¼ 0.
In the conformal gauge the metric ds2 ¼ −e2ρdxþdx−,

where ρ ¼ ϕ as in the classical case. In the complete
quantum case, the appropriate analysis was done in [1]. The
physical fields (with κ1 > 0) are in the Hartle-Hawking
state (in the present context discussed in [10]), that is
regular at the classical horizon (xþx− ¼ 0). On the other
hand, the nonphysical fields (with κ2 < 0) are in the
Boulware state. In the absence of matter (f ¼ 0) the
solution is static. The dilaton ϕðxþx−Þ is found to be a
solution of the master equation,

ΩðϕÞ ¼ −λ2xþx− −
κ2
2
ln jλ2xþx−j þM

λ
; ð3Þ

whereΩðϕÞ ¼ e−2ϕ þ κϕ. In what follows we shall consider
the case κ < 0 as the solution in this case shows the most
remarkable properties. The case of general κ will be consid-
ered in detail in an upcoming paper by the same authors.

The global structure of the static solution for κ < 0.—It
corresponds to a totally regular spacetime, as we show
below. We consider the causal diamond defined as
M≡ ðxþ ≥ 0; x− ≤ 0Þ. For any value of xþx− in this
domain there exists only one value of the dilaton ϕ, i.e.,
it is a single valued function here. One finds that, in terms
of variable r ¼ e−ϕ, rðϕÞ → þ∞ when −xþx− → þ∞
while r → 0 when −xþx− → 0. In both these limits the
spacetime is asymptotically flat. For any null geodesic the
boundary of M lies at infinite values of the affine
parameter. This proves that M is geodesically complete.
The static spacetime metric admits a timelike Killing

vector ξ ¼ λðxþ∂þ − x−∂−Þ. Its norm ξ2 ¼ λ2xþx−e2ϕ is
everywhere negative inside M. The possible apparent
horizon is defined by the condition that ð∇ϕÞ2 vanishes
there. One finds that ð∇ϕÞ2 ¼ 0 when xþx− ¼ 0. However,
this happens on the border of the domain M and hence it
cannot define a boundary of the trapped region. Thus, we
conclude that in the domain M there exists neither Killing
nor apparent horizons. The spacetime M is geodesically
complete and horizonless. It has the global structure of a
causal diamond similar to the Minkowski spacetime.
Let us define the ðttÞ metric function gðxþx−Þ ¼ −ξ2 as

minus the norm of the Killing vector ξ. As we have
discussed above it never vanishes and hence is positive
everywhere in M. It develops a minimum

minMg ≃
�
2e
κ1

�
−ðκ1=κ2Þ

e−Scl=jκ2j; ð4Þ

where Scl ¼ 2M=λ is the entropy of the classical black hole,
that can be exponentially small for large values of M. This
shows that the spacetime M has the structure of a worm-
hole, the region where g takes its minimum is defined as the
throat in which the time flows extremely slowly with
respect to the time of an external observer (see [5,11,12]).
The global structure of a dynamical solution for κ < 0.—

Let us consider the same domain fxþ > 0; x− < 0g with
a shock wave of classical matter traveling along the
geodesic xþ ¼ xþ0 in the x− direction with mass m > 0,
1
2
ð∂þfÞ2 ¼ ðm=λxþ0 Þδðxþ − xþ0 Þ. In this case one finds for

the master equation, for xþ ≥ xþ0 ,

FIG. 1. Causal diamond structure of the static (left) and
dynamic (right) solution.
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ΩðϕÞ ¼ −λ2xþ
�
x− þ m

λ3xþ0

�
−
κ2
2
lnð−λ2xþx−Þ þMþm

λ
:

ð5Þ

The spacetime above the line xþ ¼ xþ0 is no more static. It
becomes evolving and an apparent horizon appears. The
equation ∂þϕ ¼ 0 defines a curve

H∶ − λ2xþ
�
x− þ m

λ3xþ0

�
¼ κ2

2
< 0; xþ ≤ xþ0 ð6Þ

which has a branch in the domain fxþ > 0; x− < 0g. This
curve starts at the point ½x− ¼ 0; xþ ¼ xþh ¼ ð−κ2Þλxþ0 =2m�
and ends at the point ½x− ¼ x−h ¼ −ðm=λ3xþ0 Þ; xþ ¼ þ∞Þ.
rðϕÞ approaches 0 at the left (L) future infinity both inside
and outside the apparent horizon H while at the right (R)
future infinity it approaches 0 insideH and infinity outside
H. Scalar curvature approaches zero everywhere on the left
and right future infinity except for the point C at which
horizon H intersects asymptotic region R, where it takes a
finite positive value. Thus, the curvature is not smooth on
the future null infinity.
In the dynamic case, just like in the static case, all null

and timelike geodesics can be continued indefinitely, the
variation in the affine parameter is infinite approaching the
future null infinity, both outside and inside the apparent
horizon. Thus, the dynamical version of the spacetime M
is geodesically complete. The dynamical geometry in this
case (as well as the static counterpart) has been illustrated
in Fig. 1.
Asymptotic energy density.—We consider the stress-

energy Tð12Þ
μν as the part due to the quantum matter while

Tð0Þ
μν is purely geometrical, similar to the Einstein tensor in

the 4D gravitational equations. In the hybrid quantum state
and considered on the solution to the complete gravitational
equations (2), this part reads

2πTð12Þ
�� ¼ 2ðκ1 þ κ2Þ∂2�ϕ −

κ2
ðx�Þ2 : ð7Þ

Clearly, it has two contributions: one, proportional to κ1, is
due to the physical fields and the other, proportional to κ2,
is due to the nonphysical fields. Some particular limits are
of interest both in the static and the dynamic cases.
Static case: (i) Left future null infinity: Tð12Þ

þþ ¼ 0, so
that in this asymptotic region the out-going radiation of
physical particles and nonphysical particles exactly com-
pensate each other. (ii) Right future null infinity: 2πTð12Þ

−− ¼
½κ1=ðx−Þ2� (and Tð12Þ

þþ ¼ 0). Thus, only the physical par-
ticles contribute to the asymptotic energy density, which is
positive. This is expected as the hybrid quantum state is
designed to have precisely this property. This is the energy
density of the thermal gas with temperature T ¼ λ=2π as
can be seen by passing to the asymptotic coordinates

ðσþ;σ−Þ∶ λxþ ¼ eλσ
þ
, λx−¼−e−λσ− in which metric is

constant ds2 ¼ −dσþdσ−. Thus, despite the absence
of a horizon an outside observer detects the thermal
radiation.
Dynamical case: Compared to the static case the

spacetime now is divided into two regions, inside and
outside the apparent horizon. As a result, there are addi-
tional asymptotic limits. (i) Left future null infinity, both
inside and outside apparent horizon: the stress energy
vanishes in the same way as in the static case. (ii) Right
future null infinity, inside apparent horizon (x− > x−h ): the
stress energy vanishes, Tð12Þ

−− ¼ 0. Effectively, inside the
apparent horizon no outgoing radiation appears in any
asymptotic region there. (iii) Right future null infinity,
outside the apparent horizon (x− < x−h ):

2πTð12Þ
−− ¼ κ1

ðx̃−Þ2 þ κ2

�
1

ðx̃−Þ2 −
1

ðx−Þ2
�
; ð8Þ

where x̃− ¼ x− − x−h . For large negative values of x− it
approaches the positive thermal energy density as in the
static case while as x− increases there appears a negative
contribution due to the nonphysical particles. (iv) At the
point C ðx− ¼ x−h ; x

þ → ∞Þ on the apparent horizon Tð12Þ
−−

is negative and divergent.
Note that Tð12Þ

þþ ¼ 0 everywhere on the right future
infinity.
Entropy of radiation and the Page curve.—Entropy of

the radiation in the right asymptotic region can be defined
by the differential equation,

∂−S ¼ 2πð−x−ÞTð12Þ
−− : ð9Þ

This equation is a differential form of the first law,
dS ¼ T−1dE, where T ¼ λ=2π and dE ¼ T−−dσ− is the
energy defined in terms of the coordinates ðσþ; σ−Þ
introduced above. Using Eq. (8) one finds that for large
negative values of x− the entropy S is increasing. It is
due to the positive energy density of the physical particles.
Then there exists a point x−m at which the entropy has
maximum (its derivative ∂−S ¼ 0). This happens at x−m ¼
ð1 − ffiffiffiffiffiffiffiffiffi

κ=κ2
p Þ−1x−h so that x−m < x−h . Then, for values

x− > x−m the entropy is monotonically decreasing. In order
to avoid the singularity at point C we may consider the
change in the entropy along the line of large but finite value
of xþ. Then Sðx−Þ shows the behavior typical for the Page
curve. The total change in the entropy along the line of
constant xþ while x− is changing in the interval ð−∞; 0Þ is
given by integral,

ΔS¼ 2π

Z
−ϵ

−l
dx−ð−x−ÞTð12Þ

−− ; xþ ¼ const; ð10Þ
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where we introduced two regulators, l and ϵ to regularize
the possible divergences for, respectively, large negative x−

and x− close to 0, and Tð12Þ
−− is given by (7). The

computation shows that (10) does not depend on ϵ so that
one can safely take the limit ϵ → 0. On the other hand, the
large l regulator should be kept till the end. The result (for
large l) is

ΔS ¼ κ1 lnðλ2xþl=eÞ þ
2M
λ

þ 2m
λ

�
1 −

xþ

xþ0

�
: ð11Þ

Notice that, rather surprisingly, it contains the two last
terms that are completely classical and do not depend on κ1.
Computationally, they come from the upper limit in the
integral (10). The other observation is that (11) does not
depend on κ2 so that effectively only physical particles
contribute to the total change in the entropy. Provided
κ1 ¼ N=24, by passing to coordinates σþ, σ− and intro-
ducing the respective regulator L (that effectively replaces
l), the first term can be rewritten as ðπ=3ÞNTL. This is
precisely the thermal entropy (with temperature T ¼ λ=2π)
of the outgoing modes. On the other hand, the second term
is precisely the entropy of the classical static black hole. It
is modified by the third term that is due to the perturbation
and that is decreasing in the xþ direction. The Eq. (11) thus
represents a balance in the entropy of two components of
the system: thermal gas and the black hole. The general
behavior of Sðx−Þ, illustrated in Fig. 2, is the behavior
expected for the Page curve [13] (for a recent series of
discussions on this direction see [14]). The characteristic
Page time x−m ¼ ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiðκ=κ2Þ

p Þ−1x−h is a function of two
parameters κ1 and κ ¼ κ1 þ κ2. It can be made macroscopic
(large negative x−m) by an appropriate choice of these
parameters. This is consistent with the original Page
analysis that showed that consistency with semiclassical
physics requires the information to come out at macro-
scopic scales.
Interpretation and conclusions.—A possible interpreta-

tion of our result comes from considering a pair creation of
physical and nonphysical particles, much like Hawking’s
pair creation. In the static case, the spontaneously created

left-moving (physical and nonphysical) particles reach the
left future null infinity and precisely compensate the energy
of each other so that the total energy flux vanishes.
A similar pair of the right-moving particles behaves differ-
ently. The physical particles go to the right future null
infinity and form the asymptotic radiation there. On the
other hand, their nonphysical counterpart stays in the bulk
and does not reach the asymptotic region. They are in the
Boulware quantum state that guarantees that the nonphysi-
cal particles are not visible in the asymptotic region in the
static case. In the dynamical case there appears an apparent
horizon that changes the behavior of the right-moving
nonphysical particles. They now can reach the right
asymptotic infinity but at much later retarded time x− than
when they were spontaneously created. For the entropy of
the radiation this explains the declining part of the curve
Sðx−Þ. Two lessons could be learned from the two-
dimensional example considered here. First, when the back
reaction is taken into account, the presence of particles in
the Boulware quantum state may drastically change the
global geometry of the spacetime, that classically describes
a black hole. Here, we have presented the case when
the backreacted spacetime is a completely regular and
geodesically complete causal diamond, in which the
classical horizon is replaced by a wormhole throat.
Second, the particles in the Boulware quantum state may
carry the important information, that is missing when only
the particles in the Hartle-Hawking quantum state are
considered. The ultimate release of the Boulware particles
helps to reconstruct the complete information present in
the system.
The analysis presented here should be compared with the

earlier discussions of the Page curve [14]. Two principal
differences have to be mentioned. First of all the earlier
discussion of the Page curve was done in terms of the
entanglement entropy while here we obtain the Page curve
directly for the entropy of the asymptotic radiation. Since
the radiation is directly accessible for an external observer
this appears to have obvious observational advantages. The
other point to be mentioned is that here we deal directly
with the nonperturbative solution of the quantum gravita-
tional equations while the earlier analysis appears to be
perturbative.
The RST model is rather special and one may wonder

how much of the present analysis would survive in a
different two-dimensional model of gravity or, in fact, be
relevant in four-dimensions. Although a detailed analysis is
needed in each concrete cases, we do anticipate that in the
principal aspects, the present picture will be relevant to
other quantum gravitational models. The presence of the
Boulware particles, such as ghosts, will necessarily modify
the global structure of the spacetime, remove the classical
horizon and replace it with a structure similar to that of the
black hole mimicker. That it is the case in four-dimensions
was demonstrated in [2]. The contribution of the Boulware

FIG. 2. Schematic behaviour of asymptotic radiation entropy
Sðx−Þ as function of the retarded time x−.

PHYSICAL REVIEW LETTERS 130, 261501 (2023)

261501-4



particles in the total energy and entropy balance should
play an important role in the general understanding of the
information recovery and the quantum unitarity.
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