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We present a new pre-training method, Multimodal Inverse Cloze Task, for Knowledge-based Visual Question Answering about named Entities (KVQAE). KVQAE is a recently introduced task that consists in answering questions about named entities grounded in a visual context using a Knowledge Base. Therefore, the interaction between the modalities is paramount to retrieve information and must be captured with complex fusion models. As these models require a lot of training data, we design this pre-training task, which leverages contextualized images in multimodal documents to generate visual pseudo-questions. Our method is applicable to different neural network architectures and leads to a 9% relative-MRR and 15% relative-F1 gain for retrieval and reading comprehension, respectively, over a no-pre-training baseline.

Introduction

Knowledge-based Visual Question Answering about named Entities (KVQAE) is a challenging task recently introduced in [START_REF] Shah | KVQA: Knowledge-Aware Visual Question Answering[END_REF]. It consists in answering questions about named entities grounded in a visual context using a Knowledge Base (KB). Figure 1 provides two examples of visual questions along with relevant visual passages from a KB. To address the task, one must thus retrieve relevant information from a KB. This contrasts with standard Visual Question Answering (VQA [START_REF] Antol | VQA: Visual Question Answering[END_REF]), where questions target the content of the image (e.g. the color of an object or the number of objects) or Knowledge-based VQA (about coarse-grained object categories) [START_REF] Marino | OK-VQA: A visual question answering benchmark requiring external knowledge[END_REF], where one can rely on off-the-shelf object detection [START_REF] Gardères | ConceptBert: Concept-Aware Representation for Visual Question Answering[END_REF]. In KVQAE, both text and image modalities bring useful information that must be

Visual Question (input)

Relevant visual passage in the Knowledge Base "Which constituency did this man represent when he was Prime Minister?" "In which year did this ocean liner make her maiden voyage?"

Queen Elizabeth 2, often referred to simply as QE2, is a floating hotel and retired ocean liner built for the Cunard Line which was operated by Cunard as both a transatlantic liner and a cruise ship from 1969 to 2008.

Macmillan indeed lost Stockton in the landslide Labour victory of 1945, but returned to Parliament in the November 1945 by-election in Bromley.

Fig. 1: Example of visual questions about named entities from the ViQuAE dataset along with relevant visual passages from its Knowledge Base [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF].

combined. Therefore, the task is more broadly related to Multimodal Information Retrieval (IR) and Multimodal Fusion.

There are two paradigms for multimodal IR and for multimodal learning more generally: early fusion (data-and feature-level) and late fusion (score-and decision-level) [START_REF] Kludas | Information fusion in multimedia information retrieval[END_REF]. On the one hand, late fusion is more straightforward as both Natural Language Processing and Computer Vision techniques can be applied independently. However, it neglects interactions between modalities. For example, in Figure 1, attempting to recognize Harold Macmillan without accounting for him being a Prime Minister is suboptimal. On the other hand, the richness of early fusion often comes at the cost of increasing complexity and model parameters. This adds an extra challenge for KVQAE, where the two existing datasets are either small, because of a costly annotation process (ViQuAE [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF]), or generated automatically (KVQA [START_REF] Shah | KVQA: Knowledge-Aware Visual Question Answering[END_REF]), which leads to several limitations discussed in [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF]. To address this challenge, we propose the multimodal Inverse Cloze Task (ICT) for pre-training the two early fusion models we define in this article for tackling KVQAE. Multimodal ICT consists in considering a sentence paired with a nearby image as a visual pseudo-question and its multimodal context as a relevant visual passage. It is related to the visual cloze task proposed by [START_REF] Zhang | Modeling temporal-modal entity graph for procedural multimodal machine comprehension[END_REF], a downstream task that requires modeling temporal events. Textual ICT was first introduced in [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] to pre-train a neural retriever for textual Question Answering (QA) and can be seen as a generalization of the skip-gram objective [START_REF] Mikolov | Distributed Representations of Words and Phrases and their Compositionality[END_REF].

Our main contributions are: (i) Multimodal ICT, a new pre-training method that allows tackling KVQAE, even for small datasets as ViQuAE; (ii) a multimodal IR framework for KVQAE; (iii) experiments with different neural network architectures, including recently proposed multimodal BERTs.

Related Work

Dense Retrieval. Dense Retrieval is a rapidly evolving field, surveyed in [START_REF] Lin | Pretrained transformers for text ranking: Bert and beyond[END_REF][START_REF] Fan | Pretraining Methods in Information Retrieval[END_REF], with new pre-training tasks, optimizing methods, and variants of the Transformer architecture emerging [START_REF] Ram | Learning to Retrieve Passages without Supervision[END_REF][START_REF] Hofstätter | Efficiently teaching an effective dense retriever with balanced topic aware sampling[END_REF][START_REF] Gao | Unsupervised corpus aware language model pre-training for dense passage retrieval[END_REF][START_REF] Gao | Condenser: a Pre-training Architecture for Dense Retrieval[END_REF]. [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] were the first to outperform sparse bagof-words representations such as BM25 with dense representations for QA. Their approach relies on three components: (i) pre-trained language models such as BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], which allow to encode the semantic of a sentence in a dense vector; (ii) a contrastive learning objective that optimizes the similarities between questions' and text passages' embeddings (see Section 3); (iii) an unsupervised training task, ICT (see Section 1). [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF] criticize the latter for being computationally intensive 3 and argue that regular sentences are not good surrogates of questions. Instead, they propose DPR, which takes advantage of (i) the heuristic of whether the passage contains the answer to the question to deem it relevant; (ii) unsupervised IR methods such as BM25 to mine hard negatives examples, which proved to be the key of their method's success. We aim to take advantage of both approaches by (i) pre-training our model on text QA datasets like DPR; (ii) incorporating multimodality into this hopefully-well-initialized model by adapting the ICT of [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] to multimodal documents.

Multimodal Fusion and Pre-Training. The success of BERT in NLP [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF], which relies on the easily-parallelizable Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF], an unsupervised training objective, and a task-agnostic architecture, has concurrently inspired many works in the VQA and cross-modal retrieval fields [START_REF] Tan | LXMERT: Learning Cross-Modality Encoder Representations from Transformers[END_REF][START_REF] Lu | ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks[END_REF][START_REF] Li | Visualbert: A simple and performant baseline for vision and language[END_REF][START_REF] Su | Vl-bert: Pre-training of generic visual-linguistic representations[END_REF][START_REF] Li | Unicoder-VL: A Universal Encoder for Vision and Language by Cross-Modal Pre-Training[END_REF][START_REF] Chen | Uniter: Universal image-text representation learning[END_REF]. These models are unified under a single framework in [START_REF] Bugliarello | Multimodal Pretraining Unmasked: A Meta-Analysis and a Unified Framework of Vision-and-Language BERTs[END_REF] and partly reviewed in [START_REF] Khan | Transformers in vision: A survey[END_REF]. All of these models rely on the Transformer architecture, often initialized with a pre-trained BERT, in order to fuse image and text. The training is weakly supervised, based upon image caption datasets such as COCO [START_REF] Lin | Microsoft COCO: Common Objects in Context[END_REF] or Conceptual Captions [START_REF] Sharma | Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning[END_REF], and pre-trained object detectors like Faster R-CNN [START_REF] Ren | Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[END_REF]. [START_REF] Hessel | Does my multimodal model learn cross-modal interactions? it's harder to tell than you might think![END_REF] show that these models learn nontrivial interactions between the modalities for VQA. Multimodal BERTs can be broadly categorized into single-stream and multi-stream. Single-stream models feed both text tokens' embeddings and image regions' embeddings to the same Transformer model, relying on the self-attention mechanism to fuse them. Instead, in the multi-stream architecture, text and image are first processed by two independent Transformers before using crossattention to fuse the modalities. Both architectures have been shown to perform equally well in [START_REF] Bugliarello | Multimodal Pretraining Unmasked: A Meta-Analysis and a Unified Framework of Vision-and-Language BERTs[END_REF]. In this work, we use a single-stream model to take advantage of pre-training on text-only (on QA datasets). Also note that, while inspired by these work, we do not use the same training objectives or data, which are arguably unsuited for named entities' representations, as explained in the next section.

Multimodal Information Retrieval and KVQAE. Multimodal IR has largely been addressed using late fusion techniques (see [START_REF] Depeursinge | Fusion Techniques for Combining Textual and Visual Information Retrieval[END_REF] for a survey) but we are mostly interested in early fusion techniques in this work. [START_REF] Depeursinge | Fusion Techniques for Combining Textual and Visual Information Retrieval[END_REF] review first attempts at early fusion. It was then systematically done by concatenating the features of both modalities in a single vector, with a focus on the feature weighting scheme. Concatenation is confronted with the curse of dimensionality as the resulting feature space equals the sum of the dimensions of each modality's features.

[44] and [START_REF] Luo | Weakly-supervised visual-retriever-reader for knowledge-based question answering[END_REF] concurrently proposed an approach quite similar to ours for Knowledge-based VQA. They adapt DPR [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF] by replacing the question encoder with LXMERT [START_REF] Tan | LXMERT: Learning Cross-Modality Encoder Representations from Transformers[END_REF], which allows to fuse the question and image. However, unlike us, they keep the passage encoder based on text-only and use the same pretraining objectives as [START_REF] Tan | LXMERT: Learning Cross-Modality Encoder Representations from Transformers[END_REF], namely Masked Language Modeling, Masked Region Modeling, and Image-Text Matching. We expect that these objectives are suited to learn representations of coarse-grained object categories but not named entities. In other words, they are suited for standard VQA but not KVQAE. For example, Masked Region Modeling relies on an object detector, which is not applicable to KVQAE. While both [START_REF] Qu | Passage retrieval for outside-knowledge visual question answering[END_REF] and [START_REF] Luo | Weakly-supervised visual-retriever-reader for knowledge-based question answering[END_REF] experiment on OK-VQA [START_REF] Marino | OK-VQA: A visual question answering benchmark requiring external knowledge[END_REF], their results are inconsistent: [START_REF] Qu | Passage retrieval for outside-knowledge visual question answering[END_REF] show that their model is competitive with a BM25 baseline that takes as input the question and the human-written caption of the image while the model of [START_REF] Luo | Weakly-supervised visual-retriever-reader for knowledge-based question answering[END_REF] is outperformed by BM25 with an automatically-generated caption. The discrepancies between these works can be explained because they use neither the same KB nor the same evaluation metrics. [START_REF] Guo | A unified end-to-end retriever-reader framework for knowledge-based vqa[END_REF] also experiment with different multimodal BERTs but dispense passage-level annotation for an end-to-end training of the retriever and answer classifier 4 .

Although they experiment with KVQA [START_REF] Shah | KVQA: Knowledge-Aware Visual Question Answering[END_REF], we do not consider the work of [START_REF] Garcia-Olano | Improving and diagnosing knowledgebased visual question answering via entity enhanced knowledge injection[END_REF][START_REF] Heo | Hypergraph Transformer: Weaklysupervised multi-hop reasoning for knowledge-based visual question answering[END_REF] as their systems take a human-written caption as input, which makes the role of the image content unclear. [START_REF] Shah | KVQA: Knowledge-Aware Visual Question Answering[END_REF] follow a late fusion approach at the decision-level. First, they detect and disambiguate the named entity mentions in the question. Then, they rely on a face recognition step as their dataset, KVQA, is restricted to questions about person named entities. Facts from both textuallyand visually-detected entities are retrieved from Wikidata5 and processed by a memory network [START_REF] Weston | Memory networks[END_REF]. In contrast, our work is in line with [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF], who use unstructured text from Wikipedia as KB. Unlike the late fusion approach of [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF], which considers the question and the image independently, we aim at a unified representation of the text and image, both on the visual question and KB sides.

Methods

In this section, we first formalize our KVQAE framework, then describe the models before diving into the three training stages: (i) DPR for textual Question Answering; (ii) Multimodal Inverse Cloze Task, our main contribution;

(iii) Fine-tuning for KVQAE. Finally, we discuss the inference mechanism and implementation details.

Information Retrieval Framework

In our multimodal setting, both visual questions (from the dataset) and visual passages (from the KB) consist of a text-image pair (t, i), as in Figure 1. Our goal is to find the optimal model E to encode adequate representations q = E(t q , i q ) and p = E(t p , i p ) such that they are close if (t p , i p ) is relevant for (t q , i q ) (denoted with the superscripts ( + ) and ( -)). Search then boils down to retrieving the K closest visual passages to the visual question. When computing the similarity between two vectors, here with the dot product, the objective used throughout all the training stages ( §3.3) is to minimize the following negative log-likelihood loss for all visual questions in the dataset (see Figure 2) [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF][START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF].

-log exp (q • p + ) exp (q • p + ) + j exp (q • p - j ) (1) 
This contrastive objective allows to efficiently utilize passages relevant to other questions in the batch as in-batch negatives, since computing the similarity between two vectors is rather inexpensive compared to the forward pass of the whole model. We present two different models E in the next section according to their fusion mechanism.

Models

All of the models described in this section take advantage of CLIP6 [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] to represent images and BERT7 [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] to represent either text or multimodal data.

BERT is trained for masked language modeling and next sentence prediction on Wikipedia and BooksCorpus [START_REF] Zhu | Aligning books and movies: Towards story-like visual explanations by watching movies and reading books[END_REF]. CLIP has been trained with a contrastive objective in a weakly-supervised manner over 400M image and caption pairs. It has demonstrated better generalization capacities than fully-supervised models and is efficient for KVQAE, as empirically demonstrated in [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF]. We experiment with two different fusion techniques: ECA and ILF.

Early Cross-Attention fusion (ECA) is carried out by a single-stream Transformer model like the multimodal BERTs described above (e.g. UNITER [START_REF] Chen | Uniter: Universal image-text representation learning[END_REF]). However, instead of relying on a fixed object detector such as Faster R-CNN, we take advantage of CLIP, as motivated above. To enable early fusion, the visual embedding produced by CLIP is projected in the same space as the text using a linear layer with W c ∈ R c×d parameters trained from scratch: e c = CLIP(i) • W c . The resulting embedding is then concatenated with the word embeddings of the text, acting as an additional "visual token". 

Cross-entropy

Barack Obama

… …

U.S. Senate (2005-2008)

A sentence about Obama being a senator. In the context we find related sentences.

Believed to be relevant. Intermediate Linear Fusion (ILF) introduces an additional W t ∈ R d×d parameters trained from scratch used to simply project the representation of the [CLS] token in the same space as the CLIP embedding before summing the two8 :

ILF(t, i) = BERT(t) [CLS] • W t + e c .
Because both ECA and ILF produce multimodal representations q and p, ranking is done directly using their similarity q • p. As a baseline, we follow [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] and linearly combine text and image similarities after zero-mean and unit-variance normalization (omitted in the following equation):

α × BERT(t q ) [CLS] • BERT(t p ) [CLS] + (1 -α) × cos(CLIP(i q ), CLIP(i p )) (2)
The interpolation hyperparameter α is optimized on the validation set using grid search to maximize Mean Reciprocal Rank. The left term (text similarity) is referred to as DPR in the rest of the paper.

Training stages

The models are trained sequentially in three stages. The first two stages correspond to pre-training stages: the first one is dedicated to IR for Question Answering while the second one focuses on multimodal IR. The last stage corresponds to the training for our target task of IR for KVQAE.

Stage 1: DPR for textual Question Answering. Leaving visual representations aside, a DPR model is trained starting from the BERT initialization [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF]. DPR consists of two BERT encoders: one for the question t q and one for the text passage t p . We use the model pre-trained by [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] on TriviaQA, filtered of all questions used in their dataset, ViQuAE. They use the KILT [START_REF] Petroni | KILT: a benchmark for knowledge intensive language tasks[END_REF] version of TriviaQA and Wikipedia, which serves as KB at this stage. Each article is then split into disjoint passages of 100 words for text retrieval, while preserving sentence boundaries, and the title of the article is appended to the beginning of each passage. This yields 32M passages, that is ≈ 5.4 passages per article. Following [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF], irrelevant passages (i.e. hard negatives) are mined using BM25 [START_REF] Robertson | Okapi at TREC-3[END_REF].

Stage 2: Multimodal Inverse Cloze Task. This is the main contribution of the paper. We propose to extend the ICT of [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] to multimodal documents. ICT consists in considering a sentence as a pseudo-question t q and its context as a relevant passage t + p . Note that the title of the article is appended to the beginning of each passage t p (as in Stage 1). We extend it using the contextual images of Wikipedia paragraphs for the pseudo-question and the infobox image for the passage (see Figure 2). [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] empirically demonstrated that a key success of their approach was to leave the pseudo-question in the relevant passage in 10% of the training samples so that the model will learn to perform word matching, as lexical overlap is ultimately a very useful feature for retrieval. In our case, however, we argue that it is neither necessary, as the model should be strongly initialized from Stage 1 training on TriviaQA, nor beneficial, as the model could then ignore the image modality. Question and passage encoders pre-trained in Stage 1 are used to initialize the visual question and visual passage encoders, respectively.

The process is eased thanks to the WIT dataset [START_REF] Srinivasan | Wit: Wikipediabased image text dataset for multimodal multilingual machine learning[END_REF]. WIT consists of millions of images with associated text from Wikipedia and Wikimedia Commons in 108 different languages. We are, however, only interested in English for this work. While [START_REF] Srinivasan | Wit: Wikipediabased image text dataset for multimodal multilingual machine learning[END_REF] have multiple strategies to find text related to a given Wikipedia image, such as its Commons' caption, we use only the contextual paragraph as text source in order to mimic the downstream KVQAE setting. The resulting English subset of WIT yields 400K infobox images/articles that correspond to 1.2M paragraphs/images. Those 1.2M paragraphs consist of 13.6M sentences, i.e. potential pseudo-questions, which are 26 words long on average. Therefore, to stick as close as possible to stages 1 and 3, where passages are up to 100 words long, passages consist of four sentences. This slightly differs from [START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] who consider passages of up to 288 wordpieces, prior to the pseudo-question masking.

Because both ViQuAE and WIT images are taken from Wikimedia Commons9 , we can estimate from the image URLs that 14% of ViQuAE images overlap with WIT. This might lead to a bias that we analyze in Section 4.1.

Inspired by [START_REF] Aytar | Cross-modal scene networks[END_REF], to prevent catastrophic forgetting and enforce a modalityinvariant representation of the entities, the last l layers of BERT are frozen during this stage. In this way, we tune only the first, modality-specific layers of ECA, Stage 3: Knowledge-based Visual Question Answering about Named Entities. This stage consists in fine-tuning the model on a downstream KVQAE dataset, which provides visual questions (t q , i q ) and relevant visual passages (t + p , i + p ). Following [START_REF] Aytar | Cross-modal scene networks[END_REF], all layers of the model are tuned during this stage. A subtlety of this stage is the selection of irrelevant visual passages (t - p , i - p ). As mentioned in Section 2, it was shown to be essential to DPR [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF], and it is more generally important for contrastive learning [START_REF] Kalantidis | Hard Negative Mixing for Contrastive Learning[END_REF]. In [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF], irrelevant passages are mined with BM25 to train DPR. However, we suppose that this is suboptimal for ECA and ILF as BM25 will only mine textually-plausible passages but not visually-plausible ones. Therefore, we use the system provided by [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] to mine irrelevant passages. It is a late-fusion of DPR, ArcFace [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF], CLIP, and ImageNet-ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. This leads to different training setups between DPR (used as a baseline) and our models. However, we have experimented both for DPR and found no significant differences 10 .

We use the same KB as [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF], which is based upon KILT's Wikipedia and Wikidata images of the corresponding entities. It consists of 1.5M articles (thus images/entities) split into 12M passages of at most 100 words as in Stage 1.

Visual questions in ViQuAE are split into train [START_REF] Antol | VQA: Visual Question Answering[END_REF]190), validation (1,250), and test [START_REF] Antol | VQA: Visual Question Answering[END_REF]257) without overlap between images' URLs [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF]. We do not experiment with KVQA [START_REF] Shah | KVQA: Knowledge-Aware Visual Question Answering[END_REF] for the following reasons: (i) it is generated automatically from Wikidata so our text-based KB has a poor coverage of the answers; (ii) it comprises yes/no questions for which passage relevance cannot be assessed automatically.

Inference

For efficient retrieval, every passage in the KB is embedded along with its corresponding image by the visual passage encoder beforehand. Given a question grounded in an image, both are embedded by the visual question encoder. Search is then carried out with maximum inner product search using Faiss [START_REF] Johnson | Billion-scale similarity search with GPUs[END_REF].

Implementation Details

Our code is built upon PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF], Hugging Face's transformers [START_REF] Wolf | HuggingFace's Transformers: State-of-the-art Natural Language Processing[END_REF] and datasets [START_REF] Lhoest | Datasets: A Community Library for Natural Language Processing[END_REF] (itself wrapping Faiss). It is freely available along with the data and trained models 11 .

To train ECA, we use the same hyperparameters as [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] for DPR, themselves based upon [START_REF] Karpukhin | Dense passage retrieval for open-domain question answering[END_REF]. In particular, we use a learning rate of 2 × 10 -5 along with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. It is scheduled linearly with 100 and 4 warm-up steps for stages 2 and 3, respectively. However, for ILF, we found, based on the validation set, that it converged faster with a learning rate of 2 × 10 -3 and a constant scheduler during Stage 2. We believe this is because ILF fully freezes BERT in Stage 2, so it does not require careful scheduling or a small learning rate. Dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] is applied in BERT and after projecting embedding with W c and W t with a probability of 0.1 (as in the standard BERT configuration). Likewise, layer normalization [START_REF] Ba | Layer Normalization[END_REF] is applied in BERT and after summing the two embeddings in ILF. Gradients' norms are clipped at 2. Models in stages 2 and 3 are trained with a batch size of 512 and 298 visual questions, respectively. The success of contrastive learning partly relies on a large number of in-batch negatives and, therefore, a large batch size [START_REF] Qu | RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering[END_REF]. We found that gradient checkpointing [START_REF] Chen | Training Deep Nets with Sublinear Memory Cost[END_REF] enables the use of much larger batch sizes. Instead of [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] who use four NVIDIA V100 GPUs with 32GB of RAM each for a total batch size of 128 questions, we are able to fit a batch of 298 questions (as stated above) in a single V100 GPU. Stage 2 takes most of the compute budget, with most models converging after ≈ 8K steps, which takes around three days 12 . Checkpoint selection is made based on the validation in-batch Mean Reciprocal Rank, for all stages. In-batch means that only the other visual passages in the batch are ranked and that each visual question is paired with only one relevant visual passage (as during training).

Results

The retrieval models are evaluated in two different ways: (i) by computing standard IR metrics on visual passage retrieval; (ii) by feeding retrieved visual passages to a reader module that is tasked with extracting the concise answer to the question, thus achieving KVQAE. Put differently, either evaluate whether the system is able to retrieve a relevant passage for the question or whether it is able to answer the question. We find both metrics to correlate. Ablation studies are carried out with IR metrics.

ViQuAE is based upon TriviaQA, so it is only distantly supervised: the answer is considered correct if it string-matches the ground truth and, likewise, a passage Table 1: IR evaluation on ViQuAE. l: Number of frozen layers during Multimodal ICT. Superscripts denote significant differences in Fisher's randomization test with p ≤ 0.01. Hits@1 is omitted as it is equivalent to P@1.

# Model

Multimodal ICT MRR@100 P@1 P@20 Hits@20 is deemed relevant if it contains the ground truth 13 . Moreover, Wikipedia aliases of the ground truth are considered to be valid answers.

Information Retrieval

Because of the setting of ViQuAE, it is impossible to get complete coverage of relevant passages. Therefore we do not use any metric based on recall (e.g. R-Precision, mAP, etc.). Instead, we evaluate the models with Precision@K (P@K), Mean Reciprocal Rank (MRR), and Hits@K. Hits@K is the proportion of questions for which IR retrieves at least one relevant passage in top-K. Statistical significance tests are conducted using Fisher's randomization test [START_REF] Fisher | The design of experiments[END_REF][START_REF] Smucker | A comparison of statistical significance tests for information retrieval evaluation[END_REF]. Metrics and statistical tests are computed with ranx [START_REF] Bassani | ranx: A Blazing-Fast Python Library for Ranking Evaluation and Comparison[END_REF] and are reported in Table 1.

The best models pre-trained with Multimodal ICT (d and f) outperform the text-only (a) and late-fusion (b) baselines on all metrics. Some qualitative examples are shown in Figure 3. In the first row, we can see evidence of cross-input cross-modal interactions between the image depicting Winston Churchill and the passage that mentions him (while being illustrated by a totally different image). In contrast, the late fusion baseline exhibits textual bias by returning a passage that mentions several English palaces (highlighted in red). The same observation can be made for the second row, where St Paul's Cathedral is only mentioned in the relevant passage but not depicted in the contextual image. Cross-modal interactions prove useful in this case because of the heterogeneity of visual depictions: Winston Churchill is depicted by a statue in the visual question but by a photograph in the KB.

We can see that Multimodal ICT is essential to ECA (c vs. d). Without it, it performs on par with late fusion. We believe this is because of overfitting on the small training set of ViQuAE. However, we find that fine-tuning on ViQuAE is also essential to ECA, which exhibits catastrophic forgetting because of the sequential learning setup: indeed, after Stage 2, it falls behind DPR (not shown in the table). We see that the freezing technique of [START_REF] Aytar | Cross-modal scene networks[END_REF] helps to prevent catastrophic forgetting to some extent (d vs. e). It is also visible in the upstream WIT pre-training where ECA achieves 91.6 and 92.9 in-batch MRR on WIT's test set with l = 6 and l = 0, respectively: fitting WIT better leads to further forgetting (cf. Table 2). Unlike what is suggested by related work ( §2), we find that the linear fusion model performs on par with the more early, cross-attention based, fusion model (f vs. d in Table 1). This suggests that the improvement over the late fusion baseline indeed comes from the Multimodal ICT pre-training, which is not very sensitive to the model's architecture. Interestingly, cross-input cross-modal interactions (as shown in Figure 3) are possible with both ECA and ILF. So they may be the primary reason for performance improvement. Moreover, the architecture of ILF allows to fully freeze BERT during Stage 2, which circumvents catastrophic forgetting 14 . We leave other training strategies (e.g. multi-tasking, using adapters [START_REF] Houlsby | Parameter-Efficient Transfer Learning for NLP[END_REF]) for future work. Nothing suggests that ECA is better on the 14% of ViQuAE images that overlap with WIT. ECA is better on the out-of-WIT subset (38.0 vs. 36.5 MRR), but it is the other way around for DPR and late fusion.

Reading Comprehension

To extract the answers from the retrieved passages, we keep the same model as [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF]. It uses the Multi-passage BERT architecture [START_REF] Wang | Multimodal Data Enhanced Representation Learning for Knowledge Graphs[END_REF] and is thus based on text only because once the relevant passage has been retrieved, the question may be answered without looking at the image. To limit the variations due to training and the number of experiments, we use the model trained by [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] off-the-shelf and simply change its input passages. It takes the top-24 passages as input. The model was first trained on TriviaQA (filtered of all questions used in ViQuAE), then fine-tuned on ViQuAE, much like stages 1 and 3. The authors provide five different versions of the model that correspond to different random seeds.

We use Exact Match and F1-score (at the bag-of-words level) to evaluate the extracted answers. In Table 3 we can verify that more relevant passages indeed lead to better downstream answers. The only difference with the IR evaluation is the role of the freezing technique of [START_REF] Aytar | Cross-modal scene networks[END_REF] (d vs. e), which is less clear here.

Generic vs. Specialized Image Representations

Numbers reported in the previous section are actually on par with the best results of [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF]. This is because the latter is based on ArcFace and ImageNet-ResNet, in addition to DPR and CLIP. In particular, [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF] have a heuristic for taking advantage of the face representations provided by ArcFace: they use ArcFace if faces are detected and a combination of CLIP and ImageNet-ResNet otherwise. They show that this method improves retrieval precision for questions about persons (for which face representations are relevant). However, this approach is not scalable for two reasons: (i) there are near 1,000 different entity types in ViQuAE (according to Wikidata's ontology), and not all can benefit from specialized representations; (ii) combining several representations (e.g. CLIP and ImageNet-ResNet) for the same entity type is computationally expensive and quickly saturates. To provide a comparable system to the late fusion of [START_REF] Lerner | ViQuAE, a dataset for knowledge-based visual question answering about named entities[END_REF], we have tried integrating ArcFace and ImageNet-ResNet in ECA. However, we have failed to outperform the CLIP-only version of ECA. Intuitively, we think that ECA dilutes the specialized representations of ArcFace and is unable to preserve them throughout all twelve layers of BERT. Therefore, in this setting, ECA is overall on par with late fusion (37.7 vs. 37.9 MRR, not significant) but better on questions about non-persons (39.3 vs. 35.7 MRR), which again suggests that it is unable to exploit ArcFace's representations.

Conclusion and Perspectives

We have presented a new pre-training method, Multimodal Inverse Cloze Task, for Knowledge-based Visual Question Answering about Named Entities. Multimodal ICT leverages contextual images in multimodal documents to generate visual pseudo-questions. It enables the use of more complex multimodal fusion models than previously proposed late fusion methods. Consequently, our method improves retrieval accuracy over the latter by 10% relative-MRR, leading to a 9% relative-F1 improvement in downstream reading comprehension (i.e. answer extraction), on the recently introduced ViQuAE dataset. We believe it is thanks to cross-modal interactions, which are prohibited by late fusion. More precisely, we qualitatively observed that cross-input interactions occurred between the image of the visual question and the text of the KB, which counteracts the heterogeneity of visual depictions.

We have experimented our pre-training method with two different neural networks architectures: (i) ECA, which follows recently proposed Multimodal BERTs by fusing modalities Early via Cross-Attention; (ii) ILF, a more standard model that fuses modalities through a linear projection. We found that both perform equally well, unlike in standard VQA and cross-modal retrieval. We argue that it might be because cross-input cross-modal interactions are the most important and may be captured by both models. However, further investigations are required, it might also be because of their different training settings, which leads ECA to catastrophic forgetting.

While aiming for generic multimodal representations of named entities, we found that integrating specialized representations in our models, such as ArcFace for faces, was not beneficial. We hypothesize that the studied architectures may be inappropriate but we leave this issue for future studies.

For future work, we think that generalizing Multimodal ICT for re-ranking (processing (t q , i q ) and (t p , i p ) simultaneously) and reading comprehension (generating or extracting the answer from (t p , i p )) is an exciting research lead. Indeed, there is evidence that sharing the same model for IR and reading comprehension, or IR and re-ranking, is beneficial for textual QA [START_REF] Fun | Efficient Retrieval Optimized Multi-task Learning[END_REF] and cross-modal retrieval [START_REF] Geigle | Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for Improved Cross-Modal Retrieval[END_REF], respectively: two tasks that closely relate to KVQAE.
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 2 Fig. 2: Overview of Multimodal Inverse Cloze Task via Wikipedia/WIT.
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 1 In which English palace was this man born?" "Who designed this cathedral?" He was appointed [...] Surveyor of the Fabric of St Paul's Cathedral, and Windsor Castle. St James's Palace was retained for official use.

Fig. 3 :

 3 Fig. 3: Qualitative examples where ECA (l = 6) finds a relevant visual passage in top-1 but late fusion falls behind (column on the right). We can see evidence of cross-input cross-modal interactions with ECA.

Table 3 :

 3 Reading Comprehension evaluation on ViQuAE, averaged over 5 runs of the reader. l: Number of frozen layers during Multimodal ICT.

	# IR Model	Multimodal ICT Exact Match	F1
	a DPR	NA	16.9 ± 0.4 20.1 ± 0.5
	b DPR + CLIP	NA	19.0 ± 0.4 22.3 ± 0.4
	c ECA (l = NA)		17.7 ± 0.6 21.2 ± 0.8
	d ECA (l = 6)		20.6 ± 0.3 24.4 ± 0.2
	e ECA (l = 0)		20.8 ± 0.8 24.3 ± 0.9
	f ILF (l = 12)		21.3 ± 0.6 25.4 ± 0.3

[START_REF] Lee | Latent Retrieval for Weakly Supervised Open Domain Question Answering[END_REF] use a batch size of over

4K questions.

Standard (Knowledge-based) VQA is often treated as a classification task.

https://www.wikidata.org/

With a ResNet-50 backbone[START_REF] He | Deep residual learning for image recognition[END_REF].

Uncased "base" 12-layers version available at https://huggingface.co.

Note that this is equivalent to concatenating both before projecting like [BERT(t) [CLS] ; CLIP(i)] • [Wt; Wc].

https://commons.wikimedia.org/

https://github.com/PaulLerner/ViQuAE

Jean Zay GPUs consume 0.482kW (or 0.259kW after heat recovery) in France, which has an average grid emission factor of 0.0569 kgCO2e/kWh according to https://bilans-ges.ademe.fr/en.

After standard preprocessing (lowercasing, stripping articles, and punctuation).

ILF only achieves 87.1 in-batch MRR on WIT's test set because of the freezing.
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