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Abstract. We present a new pre-training method, Multimodal Inverse
Cloze Task, for Knowledge-based Visual Question Answering about named
Entities (KVQAE). KVQAE is a recently introduced task that consists
in answering questions about named entities grounded in a visual context
using a Knowledge Base. Therefore, the interaction between the modalities
is paramount to retrieve information and must be captured with complex
fusion models. As these models require a lot of training data, we design this
pre-training task, which leverages contextualized images in multimodal
documents to generate visual pseudo-questions. Our method is applicable
to different neural network architectures and leads to a 9% relative-
MRR and 15% relative-F1 gain for retrieval and reading comprehension,
respectively, over a no-pre-training baseline.

Keywords: Visual Question Answering · Pre-training · Multimodal
Fusion.

1 Introduction

Knowledge-based Visual Question Answering about named Entities (KVQAE) is
a challenging task recently introduced in [50]. It consists in answering questions
about named entities grounded in a visual context using a Knowledge Base
(KB). Figure 1 provides two examples of visual questions along with relevant
visual passages from a KB. To address the task, one must thus retrieve relevant
information from a KB. This contrasts with standard Visual Question Answering
(VQA [1]), where questions target the content of the image (e.g. the color of an
object or the number of objects) or Knowledge-based VQA (about coarse-grained
object categories) [40], where one can rely on off-the-shelf object detection [17]. In
KVQAE, both text and image modalities bring useful information that must be
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Visual Question (input) Relevant visual passage in the Knowledge Base
“Which constituency
did this man
represent when he
was Prime
Minister?”

“In which year did
this ocean liner
make her maiden
voyage?”

Queen Elizabeth 2, often referred to simply
as QE2, is a floating hotel and retired ocean
liner built for the Cunard Line which was
operated by Cunard  as both a transatlantic
liner and a cruise ship from 1969 to 2008.

Macmillan indeed lost Stockton in the
landslide Labour victory of 1945, but
returned to Parliament in the November
1945 by-election in Bromley. 

Fig. 1: Example of visual questions about named entities from the ViQuAE
dataset along with relevant visual passages from its Knowledge Base [32].

combined. Therefore, the task is more broadly related to Multimodal Information
Retrieval (IR) and Multimodal Fusion.

There are two paradigms for multimodal IR and for multimodal learning
more generally: early fusion (data- and feature-level) and late fusion (score- and
decision-level) [30]. On the one hand, late fusion is more straightforward as both
Natural Language Processing and Computer Vision techniques can be applied
independently. However, it neglects interactions between modalities. For example,
in Figure 1, attempting to recognize Harold Macmillan without accounting for
him being a Prime Minister is suboptimal. On the other hand, the richness of early
fusion often comes at the cost of increasing complexity and model parameters.
This adds an extra challenge for KVQAE, where the two existing datasets are
either small, because of a costly annotation process (ViQuAE [32]), or generated
automatically (KVQA [50]), which leads to several limitations discussed in [32].
To address this challenge, we propose the multimodal Inverse Cloze Task (ICT)
for pre-training the two early fusion models we define in this article for tackling
KVQAE. Multimodal ICT consists in considering a sentence paired with a nearby
image as a visual pseudo-question and its multimodal context as a relevant visual
passage. It is related to the visual cloze task proposed by [61], a downstream
task that requires modeling temporal events. Textual ICT was first introduced
in [31] to pre-train a neural retriever for textual Question Answering (QA) and
can be seen as a generalization of the skip-gram objective [41].

Our main contributions are: (i) Multimodal ICT, a new pre-training method
that allows tackling KVQAE, even for small datasets as ViQuAE; (ii) a multi-
modal IR framework for KVQAE; (iii) experiments with different neural network
architectures, including recently proposed multimodal BERTs.



Multimodal Inverse Cloze Task for KVQAE 3

2 Related Work

Dense Retrieval. Dense Retrieval is a rapidly evolving field, surveyed in [36,11],
with new pre-training tasks, optimizing methods, and variants of the Transformer
architecture emerging [47,23,15,14]. [31] were the first to outperform sparse bag-
of-words representations such as BM25 with dense representations for QA. Their
approach relies on three components: (i) pre-trained language models such as
BERT [10], which allow to encode the semantic of a sentence in a dense vec-
tor; (ii) a contrastive learning objective that optimizes the similarities between
questions’ and text passages’ embeddings (see Section 3); (iii) an unsupervised
training task, ICT (see Section 1). [27] criticize the latter for being computa-
tionally intensive3 and argue that regular sentences are not good surrogates of
questions. Instead, they propose DPR, which takes advantage of (i) the heuristic
of whether the passage contains the answer to the question to deem it relevant;
(ii) unsupervised IR methods such as BM25 to mine hard negatives examples,
which proved to be the key of their method’s success. We aim to take advan-
tage of both approaches by (i) pre-training our model on text QA datasets like
DPR; (ii) incorporating multimodality into this hopefully-well-initialized model
by adapting the ICT of [31] to multimodal documents.

Multimodal Fusion and Pre-Training. The success of BERT in NLP [10],
which relies on the easily-parallelizable Transformer architecture [57], an unsu-
pervised training objective, and a task-agnostic architecture, has concurrently
inspired many works in the VQA and cross-modal retrieval fields [56,38,35,55,34,7].
These models are unified under a single framework in [5] and partly reviewed
in [28]. All of these models rely on the Transformer architecture, often initialized
with a pre-trained BERT, in order to fuse image and text. The training is weakly
supervised, based upon image caption datasets such as COCO [37] or Conceptual
Captions [51], and pre-trained object detectors like Faster R-CNN [48]. [22]
show that these models learn nontrivial interactions between the modalities for
VQA. Multimodal BERTs can be broadly categorized into single-stream and
multi-stream. Single-stream models feed both text tokens’ embeddings and image
regions’ embeddings to the same Transformer model, relying on the self-attention
mechanism to fuse them. Instead, in the multi-stream architecture, text and
image are first processed by two independent Transformers before using cross-
attention to fuse the modalities. Both architectures have been shown to perform
equally well in [5]. In this work, we use a single-stream model to take advantage
of pre-training on text-only (on QA datasets). Also note that, while inspired
by these work, we do not use the same training objectives or data, which are
arguably unsuited for named entities’ representations, as explained in the next
section.

3 [31] use a batch size of over 4K questions.
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Multimodal Information Retrieval and KVQAE. Multimodal IR has
largely been addressed using late fusion techniques (see [9] for a survey) but we
are mostly interested in early fusion techniques in this work.

[9] review first attempts at early fusion. It was then systematically done by
concatenating the features of both modalities in a single vector, with a focus
on the feature weighting scheme. Concatenation is confronted with the curse of
dimensionality as the resulting feature space equals the sum of the dimensions of
each modality’s features.

[44] and [39] concurrently proposed an approach quite similar to ours for
Knowledge-based VQA. They adapt DPR [27] by replacing the question encoder
with LXMERT [56], which allows to fuse the question and image. However, unlike
us, they keep the passage encoder based on text-only and use the same pre-
training objectives as [56], namely Masked Language Modeling, Masked Region
Modeling, and Image-Text Matching. We expect that these objectives are suited
to learn representations of coarse-grained object categories but not named entities.
In other words, they are suited for standard VQA but not KVQAE. For example,
Masked Region Modeling relies on an object detector, which is not applicable
to KVQAE. While both [44] and [39] experiment on OK-VQA [40], their results
are inconsistent: [44] show that their model is competitive with a BM25 baseline
that takes as input the question and the human-written caption of the image
while the model of [39] is outperformed by BM25 with an automatically-generated
caption. The discrepancies between these works can be explained because they
use neither the same KB nor the same evaluation metrics. [19] also experiment
with different multimodal BERTs but dispense passage-level annotation for an
end-to-end training of the retriever and answer classifier4.

Although they experiment with KVQA [50], we do not consider the work
of [16,21] as their systems take a human-written caption as input, which makes
the role of the image content unclear. [50] follow a late fusion approach at the
decision-level. First, they detect and disambiguate the named entity mentions in
the question. Then, they rely on a face recognition step as their dataset, KVQA,
is restricted to questions about person named entities. Facts from both textually-
and visually-detected entities are retrieved from Wikidata5 and processed by
a memory network [59]. In contrast, our work is in line with [32], who use
unstructured text from Wikipedia as KB. Unlike the late fusion approach of [32],
which considers the question and the image independently, we aim at a unified
representation of the text and image, both on the visual question and KB sides.

3 Methods

In this section, we first formalize our KVQAE framework, then describe the
models before diving into the three training stages: (i) DPR for textual Ques-
tion Answering; (ii) Multimodal Inverse Cloze Task, our main contribution;

4 Standard (Knowledge-based) VQA is often treated as a classification task.
5 https://www.wikidata.org/

https://www.wikidata.org/
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(iii) Fine-tuning for KVQAE. Finally, we discuss the inference mechanism and
implementation details.

3.1 Information Retrieval Framework

In our multimodal setting, both visual questions (from the dataset) and visual
passages (from the KB) consist of a text-image pair (t, i), as in Figure 1. Our goal
is to find the optimal model E to encode adequate representations q = E(tq, iq)
and p = E(tp, ip) such that they are close if (tp, ip) is relevant for (tq, iq) (denoted
with the superscripts (+) and (−)). Search then boils down to retrieving the K
closest visual passages to the visual question. When computing the similarity
between two vectors, here with the dot product, the objective used throughout
all the training stages (§3.3) is to minimize the following negative log-likelihood
loss for all visual questions in the dataset (see Figure 2) [31,27].

− log
exp (q · p+)

exp (q · p+) +
∑

j exp (q · p−
j )

(1)

This contrastive objective allows to efficiently utilize passages relevant to other
questions in the batch as in-batch negatives, since computing the similarity
between two vectors is rather inexpensive compared to the forward pass of the
whole model. We present two different models E in the next section according to
their fusion mechanism.

3.2 Models

All of the models described in this section take advantage of CLIP6 [46] to
represent images and BERT7 [10] to represent either text or multimodal data.
BERT is trained for masked language modeling and next sentence prediction
on Wikipedia and BooksCorpus [62]. CLIP has been trained with a contrastive
objective in a weakly-supervised manner over 400M image and caption pairs. It
has demonstrated better generalization capacities than fully-supervised models
and is efficient for KVQAE, as empirically demonstrated in [32]. We experiment
with two different fusion techniques: ECA and ILF.

Early Cross-Attention fusion (ECA) is carried out by a single-stream Trans-
former model like the multimodal BERTs described above (e.g. UNITER [7]).
However, instead of relying on a fixed object detector such as Faster R-CNN, we
take advantage of CLIP, as motivated above. To enable early fusion, the visual
embedding produced by CLIP is projected in the same space as the text using a
linear layer with Wc ∈ Rc×d parameters trained from scratch: ec = CLIP(i) ·Wc.
The resulting embedding is then concatenated with the word embeddings of the
text, acting as an additional “visual token”. Those embeddings, noted [t; ec],
are then fed to the Transformer model, where the attention mechanism should

6 With a ResNet-50 backbone [20].
7 Uncased “base” 12-layers version available at https://huggingface.co.

https://huggingface.co
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Sentence.

Context.

...

...

...

Cross-entropy

Barack Obama
…

…

U.S. Senate (2005-2008)

A sentence about Obama being a senator.
In the context we find related sentences.
Believed to be relevant.

Fig. 2: Overview of Multimodal Inverse Cloze Task via Wikipedia/WIT.

enable interaction between the modalities. The final embedding corresponds to
the special [CLS] token: ECA(t, i) = BERT([t; ec])[CLS]. The Transformer model
is first initialized from BERT.

Intermediate Linear Fusion (ILF) introduces an additional Wt ∈ Rd×d pa-
rameters trained from scratch used to simply project the representation of the
[CLS] token in the same space as the CLIP embedding before summing the two8:
ILF(t, i) = BERT(t)[CLS] ·Wt + ec.

Because both ECA and ILF produce multimodal representations q and p,
ranking is done directly using their similarity q · p. As a baseline, we follow [32]
and linearly combine text and image similarities after zero-mean and unit-variance
normalization (omitted in the following equation):

α× BERT(tq)[CLS] · BERT(tp)[CLS] + (1− α)× cos(CLIP(iq),CLIP(ip)) (2)

The interpolation hyperparameter α is optimized on the validation set using grid
search to maximize Mean Reciprocal Rank. The left term (text similarity) is
referred to as DPR in the rest of the paper.

3.3 Training stages

The models are trained sequentially in three stages. The first two stages correspond
to pre-training stages: the first one is dedicated to IR for Question Answering
while the second one focuses on multimodal IR. The last stage corresponds to
the training for our target task of IR for KVQAE.

8 Note that this is equivalent to concatenating both before projecting like
[BERT(t)[CLS]; CLIP(i)] · [Wt;Wc].
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Stage 1: DPR for textual Question Answering. Leaving visual represen-
tations aside, a DPR model is trained starting from the BERT initialization [27].
DPR consists of two BERT encoders: one for the question tq and one for the
text passage tp. We use the model pre-trained by [32] on TriviaQA, filtered of
all questions used in their dataset, ViQuAE. They use the KILT [43] version
of TriviaQA and Wikipedia, which serves as KB at this stage. Each article is
then split into disjoint passages of 100 words for text retrieval, while preserving
sentence boundaries, and the title of the article is appended to the beginning
of each passage. This yields 32M passages, that is ≈ 5.4 passages per article.
Following [27], irrelevant passages (i.e. hard negatives) are mined using BM25 [49].

Stage 2: Multimodal Inverse Cloze Task. This is the main contribution
of the paper. We propose to extend the ICT of [31] to multimodal documents.
ICT consists in considering a sentence as a pseudo-question tq and its context
as a relevant passage t+p . Note that the title of the article is appended to the
beginning of each passage tp (as in Stage 1). We extend it using the contextual
images of Wikipedia paragraphs for the pseudo-question and the infobox image
for the passage (see Figure 2). [31] empirically demonstrated that a key success
of their approach was to leave the pseudo-question in the relevant passage in 10%
of the training samples so that the model will learn to perform word matching,
as lexical overlap is ultimately a very useful feature for retrieval. In our case,
however, we argue that it is neither necessary, as the model should be strongly
initialized from Stage 1 training on TriviaQA, nor beneficial, as the model could
then ignore the image modality. Question and passage encoders pre-trained in
Stage 1 are used to initialize the visual question and visual passage encoders,
respectively.

The process is eased thanks to the WIT dataset [53]. WIT consists of millions
of images with associated text from Wikipedia and Wikimedia Commons in 108
different languages. We are, however, only interested in English for this work.
While [53] have multiple strategies to find text related to a given Wikipedia
image, such as its Commons’ caption, we use only the contextual paragraph as
text source in order to mimic the downstream KVQAE setting. The resulting
English subset of WIT yields 400K infobox images/articles that correspond to
1.2M paragraphs/images. Those 1.2M paragraphs consist of 13.6M sentences,
i.e. potential pseudo-questions, which are 26 words long on average. Therefore,
to stick as close as possible to stages 1 and 3, where passages are up to 100
words long, passages consist of four sentences. This slightly differs from [31] who
consider passages of up to 288 wordpieces, prior to the pseudo-question masking.

Because both ViQuAE and WIT images are taken from Wikimedia Commons9,
we can estimate from the image URLs that 14% of ViQuAE images overlap with
WIT. This might lead to a bias that we analyze in Section 4.1.

Inspired by [2], to prevent catastrophic forgetting and enforce a modality-
invariant representation of the entities, the last l layers of BERT are frozen during
this stage. In this way, we tune only the first, modality-specific layers of ECA,

9 https://commons.wikimedia.org/

https://commons.wikimedia.org/
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the intuition being to “replace” the text-named entities learned during Stage 1
with the “visual” entities present in the images. ILF fully freezes BERT during
this stage, relying only on the Wt parameters to tune the text representation.
Furthermore, CLIP is systematically frozen throughout all stages.

We do not have a straightforward way of mining irrelevant visual passages
at this stage. In early experiments, we tried to synthesize them by permuting
images in the batch: (t+p , i

+
p )← (t+p , i

−
p ), but it did not improve the results.

After filtering corrupted images or images with inappropriate image formats
(e.g. .svg) and paragraphs with a single sentence, we end up with 975K para-
graphs/images. We refer to it as WIT in the rest of the paper. It is split into
train (878K), validation (48K, to tune hyperparameters), and test (48K, as a
sanity check) subsets such that there is no overlap between articles.

Stage 3: Knowledge-based Visual Question Answering about Named
Entities. This stage consists in fine-tuning the model on a downstream KVQAE
dataset, which provides visual questions (tq, iq) and relevant visual passages
(t+p , i

+
p ). Following [2], all layers of the model are tuned during this stage.

A subtlety of this stage is the selection of irrelevant visual passages (t−p , i
−
p ).

As mentioned in Section 2, it was shown to be essential to DPR [27], and it is
more generally important for contrastive learning [26]. In [32], irrelevant passages
are mined with BM25 to train DPR. However, we suppose that this is suboptimal
for ECA and ILF as BM25 will only mine textually-plausible passages but not
visually-plausible ones. Therefore, we use the system provided by [32] to mine
irrelevant passages. It is a late-fusion of DPR, ArcFace [8], CLIP, and ImageNet-
ResNet [20]. This leads to different training setups between DPR (used as a
baseline) and our models. However, we have experimented both for DPR and
found no significant differences10.

We use the same KB as [32], which is based upon KILT’s Wikipedia and
Wikidata images of the corresponding entities. It consists of 1.5M articles (thus
images/entities) split into 12M passages of at most 100 words as in Stage 1.

Visual questions in ViQuAE are split into train (1,190), validation (1,250), and
test (1,257) without overlap between images’ URLs [32]. We do not experiment
with KVQA [50] for the following reasons: (i) it is generated automatically
from Wikidata so our text-based KB has a poor coverage of the answers; (ii)
it comprises yes/no questions for which passage relevance cannot be assessed
automatically.

3.4 Inference

For efficient retrieval, every passage in the KB is embedded along with its
corresponding image by the visual passage encoder beforehand. Given a question
grounded in an image, both are embedded by the visual question encoder. Search
is then carried out with maximum inner product search using Faiss [25].

10 Evaluation methods are detailed in Section 4.
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3.5 Implementation Details

Our code is built upon PyTorch [42], Hugging Face’s transformers [60] and
datasets [33] (itself wrapping Faiss). It is freely available along with the data
and trained models11.

To train ECA, we use the same hyperparameters as [32] for DPR, themselves
based upon [27]. In particular, we use a learning rate of 2× 10−5 along with the
Adam optimizer [29]. It is scheduled linearly with 100 and 4 warm-up steps for
stages 2 and 3, respectively. However, for ILF, we found, based on the validation
set, that it converged faster with a learning rate of 2 × 10−3 and a constant
scheduler during Stage 2. We believe this is because ILF fully freezes BERT
in Stage 2, so it does not require careful scheduling or a small learning rate.
Dropout [54] is applied in BERT and after projecting embedding with Wc and
Wt with a probability of 0.1 (as in the standard BERT configuration). Likewise,
layer normalization [3] is applied in BERT and after summing the two embeddings
in ILF. Gradients’ norms are clipped at 2.

Models in stages 2 and 3 are trained with a batch size of 512 and 298 visual
questions, respectively. The success of contrastive learning partly relies on a
large number of in-batch negatives and, therefore, a large batch size [45]. We
found that gradient checkpointing [6] enables the use of much larger batch sizes.
Instead of [32] who use four NVIDIA V100 GPUs with 32GB of RAM each for a
total batch size of 128 questions, we are able to fit a batch of 298 questions (as
stated above) in a single V100 GPU. Stage 2 takes most of the compute budget,
with most models converging after ≈ 8K steps, which takes around three days12.
Checkpoint selection is made based on the validation in-batch Mean Reciprocal
Rank, for all stages. In-batch means that only the other visual passages in the
batch are ranked and that each visual question is paired with only one relevant
visual passage (as during training).

4 Results

The retrieval models are evaluated in two different ways: (i) by computing
standard IR metrics on visual passage retrieval; (ii) by feeding retrieved visual
passages to a reader module that is tasked with extracting the concise answer to
the question, thus achieving KVQAE. Put differently, either evaluate whether
the system is able to retrieve a relevant passage for the question or whether it is
able to answer the question. We find both metrics to correlate. Ablation studies
are carried out with IR metrics.

ViQuAE is based upon TriviaQA, so it is only distantly supervised: the answer
is considered correct if it string-matches the ground truth and, likewise, a passage

11 https://github.com/PaulLerner/ViQuAE
12 Jean Zay GPUs consume 0.482kW (or 0.259kW after heat recovery) in France,

which has an average grid emission factor of 0.0569 kgCO2e/kWh according to
https://bilans-ges.ademe.fr/en.

https://github.com/PaulLerner/ViQuAE
https://bilans-ges.ademe.fr/en
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Table 1: IR evaluation on ViQuAE. l: Number of frozen layers during Multimodal
ICT. Superscripts denote significant differences in Fisher’s randomization test
with p ≤ 0.01. Hits@1 is omitted as it is equivalent to P@1.

# Model Multimodal ICT MRR@100 P@1 P@20 Hits@20

a DPR NA 32.8 22.8 16.4 61.2
b DPR + CLIP NA 34.5a 24.8a 15.8 61.8

c ECA (l = NA) 7 34.6 25.9a 17.2ab 61.6

d ECA (l = 6) 3 37.8abce 26.7a 19.5abce 67.6abce

e ECA (l = 0) 3 35.1 24.7 17.6b 63.7

f ILF (l = 12) 3 37.3a 26.8a 19.1abce 66.9abc

is deemed relevant if it contains the ground truth13. Moreover, Wikipedia aliases
of the ground truth are considered to be valid answers.

4.1 Information Retrieval

Because of the setting of ViQuAE, it is impossible to get complete coverage
of relevant passages. Therefore we do not use any metric based on recall (e.g.
R-Precision, mAP, etc.). Instead, we evaluate the models with Precision@K
(P@K), Mean Reciprocal Rank (MRR), and Hits@K. Hits@K is the proportion of
questions for which IR retrieves at least one relevant passage in top-K. Statistical
significance tests are conducted using Fisher’s randomization test [12,52]. Metrics
and statistical tests are computed with ranx [4] and are reported in Table 1.

The best models pre-trained with Multimodal ICT (d and f) outperform
the text-only (a) and late-fusion (b) baselines on all metrics. Some qualitative
examples are shown in Figure 3. In the first row, we can see evidence of cross-input
cross-modal interactions between the image depicting Winston Churchill and
the passage that mentions him (while being illustrated by a totally different
image). In contrast, the late fusion baseline exhibits textual bias by returning
a passage that mentions several English palaces (highlighted in red). The same
observation can be made for the second row, where St Paul’s Cathedral is only
mentioned in the relevant passage but not depicted in the contextual image.
Cross-modal interactions prove useful in this case because of the heterogeneity of
visual depictions: Winston Churchill is depicted by a statue in the visual question
but by a photograph in the KB.

We can see that Multimodal ICT is essential to ECA (c vs. d). Without it,
it performs on par with late fusion. We believe this is because of overfitting
on the small training set of ViQuAE. However, we find that fine-tuning on
ViQuAE is also essential to ECA, which exhibits catastrophic forgetting because
of the sequential learning setup: indeed, after Stage 2, it falls behind DPR (not
shown in the table). We see that the freezing technique of [2] helps to prevent
catastrophic forgetting to some extent (d vs. e). It is also visible in the upstream

13 After standard preprocessing (lowercasing, stripping articles, and punctuation).
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Visual Question ECA top-1 DPR + CLIP top-1

“In which English palace was
this man born?”

“Who designed this cathedral?”

He was appointed
[...] Surveyor of the
Fabric of St Paul's
Cathedral, where
he was responsible
for maintaining the
building designed
by Sir Christopher
Wren.

Sir George Gilbert
Scott led the
restoration of
Salisbury Cathedral
between 1863 –
1878. It was during
this time that
Skidmore created
the cathedral's choir
screen. 

Blenheim Palace was the birthplace of
the 1st Duke's famous descendant,
Winston Churchill [...] 

In 1762, George
purchased Buckingham
House (on the site now
occupied by
Buckingham Palace)
for use as a family
retreat. His other
residences were Kew  

and Windsor Castle. St James's Palace was
retained for official use. 

Fig. 3: Qualitative examples where ECA (l = 6) finds a relevant visual passage in
top-1 but late fusion falls behind (column on the right). We can see evidence of
cross-input cross-modal interactions with ECA.

Table 2: In-batch results (re-ranking 1024 visual passages) on the upstream WIT
test set.

# Model In-batch MRR In-batch P@1

d ECA (l = 6) 91.6 86.6
e ECA (l = 0) 92.9 88.3
f ILF (l = 12) 87.1 79.9

WIT pre-training where ECA achieves 91.6 and 92.9 in-batch MRR on WIT’s
test set with l = 6 and l = 0, respectively: fitting WIT better leads to further
forgetting (cf. Table 2).

Unlike what is suggested by related work (§2), we find that the linear fusion
model performs on par with the more early, cross-attention based, fusion model
(f vs. d in Table 1). This suggests that the improvement over the late fusion
baseline indeed comes from the Multimodal ICT pre-training, which is not
very sensitive to the model’s architecture. Interestingly, cross-input cross-modal
interactions (as shown in Figure 3) are possible with both ECA and ILF. So
they may be the primary reason for performance improvement. Moreover, the
architecture of ILF allows to fully freeze BERT during Stage 2, which circumvents
catastrophic forgetting14. We leave other training strategies (e.g. multi-tasking,
using adapters [24]) for future work.

14 ILF only achieves 87.1 in-batch MRR on WIT’s test set because of the freezing.
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Table 3: Reading Comprehension evaluation on ViQuAE, averaged over 5 runs of
the reader. l: Number of frozen layers during Multimodal ICT.

# IR Model Multimodal ICT Exact Match F1

a DPR NA 16.9 ± 0.4 20.1 ± 0.5
b DPR + CLIP NA 19.0 ± 0.4 22.3 ± 0.4
c ECA (l = NA) 7 17.7 ± 0.6 21.2 ± 0.8
d ECA (l = 6) 3 20.6 ± 0.3 24.4 ± 0.2
e ECA (l = 0) 3 20.8 ± 0.8 24.3 ± 0.9
f ILF (l = 12) 3 21.3 ± 0.6 25.4 ± 0.3

Nothing suggests that ECA is better on the 14% of ViQuAE images that
overlap with WIT. ECA is better on the out-of-WIT subset (38.0 vs. 36.5 MRR),
but it is the other way around for DPR and late fusion.

4.2 Reading Comprehension

To extract the answers from the retrieved passages, we keep the same model
as [32]. It uses the Multi-passage BERT architecture [58] and is thus based on
text only because once the relevant passage has been retrieved, the question may
be answered without looking at the image. To limit the variations due to training
and the number of experiments, we use the model trained by [32] off-the-shelf
and simply change its input passages. It takes the top-24 passages as input. The
model was first trained on TriviaQA (filtered of all questions used in ViQuAE),
then fine-tuned on ViQuAE, much like stages 1 and 3. The authors provide five
different versions of the model that correspond to different random seeds.

We use Exact Match and F1-score (at the bag-of-words level) to evaluate the
extracted answers. In Table 3 we can verify that more relevant passages indeed
lead to better downstream answers. The only difference with the IR evaluation is
the role of the freezing technique of [2] (d vs. e), which is less clear here.

5 Generic vs. Specialized Image Representations

Numbers reported in the previous section are actually on par with the best results
of [32]. This is because the latter is based on ArcFace and ImageNet-ResNet,
in addition to DPR and CLIP. In particular, [32] have a heuristic for taking
advantage of the face representations provided by ArcFace: they use ArcFace if
faces are detected and a combination of CLIP and ImageNet-ResNet otherwise.
They show that this method improves retrieval precision for questions about
persons (for which face representations are relevant). However, this approach
is not scalable for two reasons: (i) there are near 1,000 different entity types
in ViQuAE (according to Wikidata’s ontology), and not all can benefit from
specialized representations; (ii) combining several representations (e.g. CLIP and
ImageNet-ResNet) for the same entity type is computationally expensive and
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quickly saturates. To provide a comparable system to the late fusion of [32], we
have tried integrating ArcFace and ImageNet-ResNet in ECA. However, we have
failed to outperform the CLIP-only version of ECA. Intuitively, we think that
ECA dilutes the specialized representations of ArcFace and is unable to preserve
them throughout all twelve layers of BERT. Therefore, in this setting, ECA is
overall on par with late fusion (37.7 vs. 37.9 MRR, not significant) but better on
questions about non-persons (39.3 vs. 35.7 MRR), which again suggests that it
is unable to exploit ArcFace’s representations.

6 Conclusion and Perspectives

We have presented a new pre-training method, Multimodal Inverse Cloze Task, for
Knowledge-based Visual Question Answering about Named Entities. Multimodal
ICT leverages contextual images in multimodal documents to generate visual
pseudo-questions. It enables the use of more complex multimodal fusion models
than previously proposed late fusion methods. Consequently, our method improves
retrieval accuracy over the latter by 10% relative-MRR, leading to a 9% relative-F1
improvement in downstream reading comprehension (i.e. answer extraction), on
the recently introduced ViQuAE dataset. We believe it is thanks to cross-modal
interactions, which are prohibited by late fusion. More precisely, we qualitatively
observed that cross-input interactions occurred between the image of the visual
question and the text of the KB, which counteracts the heterogeneity of visual
depictions.

We have experimented our pre-training method with two different neural
networks architectures: (i) ECA, which follows recently proposed Multimodal
BERTs by fusing modalities Early via Cross-Attention; (ii) ILF, a more standard
model that fuses modalities through a linear projection. We found that both
perform equally well, unlike in standard VQA and cross-modal retrieval. We
argue that it might be because cross-input cross-modal interactions are the most
important and may be captured by both models. However, further investigations
are required, it might also be because of their different training settings, which
leads ECA to catastrophic forgetting.

While aiming for generic multimodal representations of named entities, we
found that integrating specialized representations in our models, such as ArcFace
for faces, was not beneficial. We hypothesize that the studied architectures may
be inappropriate but we leave this issue for future studies.

For future work, we think that generalizing Multimodal ICT for re-ranking
(processing (tq, iq) and (tp, ip) simultaneously) and reading comprehension (gen-
erating or extracting the answer from (tp, ip)) is an exciting research lead. Indeed,
there is evidence that sharing the same model for IR and reading comprehen-
sion, or IR and re-ranking, is beneficial for textual QA [13] and cross-modal
retrieval [18], respectively: two tasks that closely relate to KVQAE.
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Smart: Cooperative and Joint Approaches for Improved Cross-Modal Retrieval.
Transactions of the Association for Computational Linguistics 10, 503–521 (05 2022).
https://doi.org/10.1162/tacl a 00473, https://doi.org/10.1162/tacl_a_00473

19. Guo, Y., Nie, L., Wong, Y., Liu, Y., Cheng, Z., Kankanhalli, M.: A
unified end-to-end retriever-reader framework for knowledge-based vqa. In:
Proceedings of the 30th ACM International Conference on Multimedia. p.
2061–2069. MM ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3503161.3547870, https://doi.org/10.

1145/3503161.3547870

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. pp. 770–778 (2016), https://openaccess.thecvf.com/content_cvpr_2016/
papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

21. Heo, Y.J., Kim, E.S., Choi, W.S., Zhang, B.T.: Hypergraph Transformer: Weakly-
supervised multi-hop reasoning for knowledge-based visual question answering. In:
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). pp. 373–390. Association for Computational
Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-
long.29, https://aclanthology.org/2022.acl-long.29

22. Hessel, J., Lee, L.: Does my multimodal model learn cross-modal interac-
tions? it’s harder to tell than you might think! In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP).
pp. 861–877. Association for Computational Linguistics, Online (Nov 2020).

https://www.cabdirect.org/cabdirect/abstract/19371601600
http://arxiv.org/abs/2104.10129
https://aclanthology.org/2021.emnlp-main.75
https://aclanthology.org/2021.emnlp-main.75
https://doi.org/10.18653/v1/2022.acl-long.203
https://aclanthology.org/2022.acl-long.203
https://aclanthology.org/2022.acl-long.203
https://doi.org/10.1145/3487553.3524648
https://doi.org/10.1145/3487553.3524648
https://doi.org/10.1145/3487553.3524648
https://aclanthology.org/2020.findings-emnlp.44/
https://aclanthology.org/2020.findings-emnlp.44/
https://doi.org/10.1162/tacl_a_00473
https://doi.org/10.1162/tacl_a_00473
https://doi.org/10.1145/3503161.3547870
https://doi.org/10.1145/3503161.3547870
https://doi.org/10.1145/3503161.3547870
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.29
https://doi.org/10.18653/v1/2022.acl-long.29
https://aclanthology.org/2022.acl-long.29


16 P. Lerner et al.

https://doi.org/10.18653/v1/2020.emnlp-main.62, https://aclanthology.org/

2020.emnlp-main.62

23. Hofstätter, S., Lin, S.C., Yang, J.H., Lin, J., Hanbury, A.: Efficiently teaching an
effective dense retriever with balanced topic aware sampling. In: Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. p. 113–122. SIGIR ’21, Association for Computing Machinery,
New York, NY, USA (2021). https://doi.org/10.1145/3404835.3462891, https:

//doi.org/10.1145/3404835.3462891

24. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., Laroussilhe, Q.D., Ges-
mundo, A., Attariyan, M., Gelly, S.: Parameter-Efficient Transfer Learning for
NLP. In: Proceedings of the 36th International Conference on Machine Learn-
ing. pp. 2790–2799. PMLR (May 2019), https://proceedings.mlr.press/v97/
houlsby19a.html, iSSN: 2640-3498

25. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search
with GPUs. IEEE Transactions on Big Data 7(3), 535–547 (2019).
https://doi.org/10.1109/TBDATA.2019.2921572

26. Kalantidis, Y., Sariyildiz, M.B., Pion, N., Weinzaepfel, P., Larlus, D.:
Hard Negative Mixing for Contrastive Learning. In: Advances in Neu-
ral Information Processing Systems. vol. 33, pp. 21798–21809. Curran
Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/hash/

f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html

27. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., Yih,
W.t.: Dense passage retrieval for open-domain question answering. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). pp. 6769–6781. Association for Computational Linguistics, Online (Nov
2020), https://www.aclweb.org/anthology/2020.emnlp-main.550

28. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in
vision: A survey. ACM Comput. Surv. (dec 2021). https://doi.org/10.1145/3505244,
https://doi.org/10.1145/3505244, just Accepted

29. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(Poster) (2015), http://arxiv.org/abs/1412.6980

30. Kludas, J., Bruno, E., Marchand-Maillet, S.: Information fusion in multimedia
information retrieval. In: International Workshop on Adaptive Multimedia Retrieval.
pp. 147–159. Springer (2007)

31. Lee, K., Chang, M.W., Toutanova, K.: Latent Retrieval for Weakly Supervised Open
Domain Question Answering. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. pp. 6086–6096. Association for Computa-
tional Linguistics, Florence, Italy (Jul 2019). https://doi.org/10.18653/v1/P19-1612,
https://aclanthology.org/P19-1612

32. Lerner, P., Ferret, O., Guinaudeau, C., Le Borgne, H., Besançon, R., Moreno,
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