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Introduction

The transmission eigenvalue problem plays a role in the inverse scattering theory for inhomogeneous media. This eigenvalue problem is connected to the injectivity of the relative scattering operator [START_REF] Colton | The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium[END_REF], [START_REF] Kirsch | The denseness of the far field patterns for the transmission problem[END_REF]. Transmission eigenvalues are related to interrogating frequencies for which there is an incident field that is not scattered by the medium. In the acoustic setting, the transmission problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. After four decades of extensive study, the spectral properties are known to depend on a type of contrasts of the media near the boundary (i.e., a difference of some relation of the respective coefficients in each of the equations). Natural and interesting questions on the inverse scattering theory include: discreteness of the spectrum (see e.g. [START_REF] Cakoni | The interior transmission eigenvalue problem[END_REF][START_REF] Bonnet-Ben Dhia | On the use of T -coercivity to study the interior transmission eigenvalue problem[END_REF][START_REF] Sylvester | Discreteness of transmission eigenvalues via upper triangular compact operators[END_REF][START_REF] Lakshtanov | Ellipticity in the interior transmission problem in anisotropic media[END_REF][START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF]) location of transmission eigenvalues (see [START_REF] Cakoni | The existence of an infinite discrete set of transmission eigenvalues[END_REF][START_REF] Leung | Complex transmission eigenvalues for spherically stratified media[END_REF][START_REF] Vodev | Transmission eigenvalue-free regions[END_REF][START_REF]High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF], and also [START_REF] Cakoni | Analysis of the linear sampling method for imaging penetrable obstacles in the time domain[END_REF] for the application in time domain), and the Weyl law of transmission eigenvalues and the completeness of the generalized eigenfunctions (see e.g. [START_REF] Lakshtanov | Ellipticity in the interior transmission problem in anisotropic media[END_REF][START_REF]Remarks on interior transmission eigenvalues, Weyl formula and branching billiards[END_REF][START_REF] Blästen | Completeness of generalized transmission eigenstates[END_REF][START_REF]Sharp Weyl law for signed counting function of positive interior transmission eigenvalues[END_REF][START_REF]Counting function for interior transmission eigenvalues[END_REF]). We refer the reader to [START_REF] Cakoni | Inverse scattering theory and transmission eigenvalues[END_REF] for a recent, and self-contained introduction to the transmission problem and its applications.

This paper concerns the Weyl law of eigenvalues and the completeness of the generalized eigenfunctions of the transmission problem in the time-harmonic acoustic setting. Let us introduce its mathematical formulation. Let Ω be a bounded, simply connected, open subset of R d of class C 2 with d ě 2. Let A 1 , A 2 be two real, symmetric matrix-valued functions, and let Σ 1 , Σ 2 be two bounded positive functions that are all defined in Ω. Assume that A 1 and A 2 are uniformly elliptic, and Σ 1 and Σ 2 are bounded below by a positive constant in Ω, i.e., for some constant Λ ě 1, one has, for j " 1, 2, (1.1) Λ ´1|ξ| 2 ď xA j pxqξ, ξy ď Λ|ξ| 2 for all ξ P R d , for a.e. x P Ω, and

(1.2) Λ ´1 ď Σ j pxq ď Λ for a.e. x P Ω.

Here and in what follows, x¨, ¨y denotes the Euclidean scalar product in R d and | ¨| is the corresponding norm. A complex number λ is called an eigenvalue of the transmission eigenvalue problem associated with the pairs pA 1 , Σ 1 q and pA 2 , Σ 2 q in Ω if there is a non-zero pair of functions pu 1 , u 2 q P rH 1 pΩqs 2 that satisfy the system

(1.3) $ ' ' & ' ' % divpA 1 ∇u 1 q ´λΣ 1 u 1 " 0 in Ω,
divpA 2 ∇u 2 q ´λΣ 2 u 2 " 0 in Ω,

u 1 " u 2 , A 1 ∇u 1 ¨ν " A 2 ∇u 2 ¨ν on Γ.
Here and in what follows, Γ denotes BΩ, and ν denotes the outward, normal, unit vector on Γ. Such a pair pu 1 , u 2 q is then called an eigenfunction pair of (1.3).

The Weyl law of transmission eigenvalues has been investigated under various assumptions on pA 1 , Σ 1 q and pA 2 , Σ 2 q. Robbiano [START_REF]Counting function for interior transmission eigenvalues[END_REF] (see also [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF]) gives the sharp order of the counting number when A 1 " A 2 " I, and Σ 2 ‰ Σ 1 " 1 near the boundary and Σ 2 is smooth. The analysis is based on both the microanalysis (see e.g. [START_REF] Grigis | Microlocal analysis for differential operators[END_REF][START_REF] Zworski | Semiclassical analysis[END_REF]) and the regularity theory for the transmission problem. In [START_REF]Remarks on interior transmission eigenvalues, Weyl formula and branching billiards[END_REF], Lakshtanov and Vainberg obtained similar results when A 1 " I, Σ 1 " 1, under certain assumptions on A 2 and Σ 2 . In particular, they required that Σ ´1 2 A 2 ´I is positive definite or negative definite in the whole domain Ω. They also investigated the order of the counting functions for positive and negative eigenvalues under different assumptions on A 2 and Σ 2 (see also [START_REF] Pham | Weyl asymptotics of the transmission eigenvalues for a constant index of refraction[END_REF][START_REF]Sharp Weyl law for signed counting function of positive interior transmission eigenvalues[END_REF]) via concepts on billiard trajectories. In the isotropic case, the Weyl law for the remainder was established by Petkov and Vodev [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF] and Vodev [START_REF]High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF][START_REF]Parabolic transmission eigenvalue-free regions in the degenerate isotropic case[END_REF][START_REF]Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map[END_REF] for C 8 coefficients that satisfy the conditions (1.4) and (1.5) below. The case where A 1 " A 2 and represent scalar functions was also investigated in their work. Their analysis is heavily based on microanalysis and required a strong smoothness condition. In addition, their work involved a delicate analysis on the Dirichlet to Neumann maps using non-standard parametrix construction initiated by Vodev [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF]. It is not clear how one can improve the C 8 condition and extend their results to the anisotropic setting using their analysis. Concerning the completeness of the generalized eigenfunctions, we want to mention the work of Robbiano [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF] where A 1 " A 2 " I and Σ 2 ‰ Σ 1 " 1, and the work of Blästen and Päivärinta [START_REF] Blästen | Completeness of generalized transmission eigenstates[END_REF] where A 1 " A 2 " I, and Σ 2 ´Σ1 " Σ 2 ´1 ą 0 and smooth in Ω.

In this paper, we investigate the Weyl law of eigenvalues and the completeness of the generalized eigenfunctions for transmission problem under quite general assumptions on A 1 , A 2 , Σ 1 , Σ 2 . These are only imposed on the boundary of BΩ except for the continuity requirement. The starting point and one of the main motivations of our work are our discreteness result established in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF]. We demonstrated the discreteness holds if A 1 , A 2 , Σ 1 , Σ 2 are continuous in a neighborhood of the boundary Γ, and satisfy the following two conditions, with ν " νpxq:

(1.4)
xA 2 pxqν, νyxA 2 pxqξ, ξy ´xA 2 pxqν, ξy 2 ‰ xA 1 pxqν, νyxA 1 pxqξ, ξy ´xA 1 pxqν, ξy 2 , for all x P Γ and for all ξ P R d zt0u with xξ, νy " 0, and

(1.5) @ A 2 pxqν, ν D Σ 2 pxq ‰ @ A 1 pxqν, ν D Σ 1 pxq, @ x P Γ.
Condition (1.4) is equivalent to the celebrated complementing condition due to Agmon, Douglis, and Nirenberg [START_REF]Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF] (see also [START_REF] Shmuel Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]). The explicit formula given here was derived in [START_REF]Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF].

In this paper, we establish that if conditions (1.4) and (1.5) hold then the Weyl law for transmission eigenvalues and the completeness of the generalized eigenfunctions hold as well, under the mild assumption that the coefficients are continuous in Ω. More precisely, we have Theorem 1. Assume that A 1 , A 2 , Σ 1 , Σ 2 P C 0 p Ωq, and (1.4) and (1.5) hold. Then

N ptq :" # ! k P N : |λ k | ď t ) " ct d 2 `opt d 2 q as t Ñ `8, (1.6)
where

(1.7) c " 1 p2πq d 2 ÿ j"1 ˆΩ ˇˇ!ξ P R d : xA j pxqξ, ξy ă Σ j pxq )ˇˇˇd x.
For a measurable subset D of R d , we denote |D| its (Lebesgue) measure.

We also have Theorem 2. Assume that A 1 , A 2 , Σ 1 , Σ 2 P C 0 p Ωq, and (1.4) and (1.5) hold. Then the generalized eigenfunctions are complete in rL 2 pΩqs 2 .

Remark 1. As a direct consequence of either Theorem 1 or Theorem 2, the number of eigenvalues of the transmission problem is infinite. As far as we know, this fact is new under the general assumptions stated here.

Some comments on Theorem 1 and Theorem 2 are in order. In the conclusion of Theorem 1, the multiplicity of eigenvalues is taken into account. The meaning of the multiplicity is understood as follows. One can show (see [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF], and also Theorem 3) that the well-posedness of the following system in rH 1 pΩqs 2 :

(1.8) $ ' ' & ' ' % divpA 1 ∇u 1 q ´λΣ 1 u 1 " Σ 1 f 1 in Ω, divpA 2 ∇u 2 q ´λΣ 2 u 2 " Σ 2 f 2 in Ω, u 1 " u 2 , A 1 ∇u 1 ¨ν " A 2 ∇u 2 ¨ν on Γ,
holds for all pf 1 , f 2 q P rL 2 pΩqs 2 and for some λ P C under the assumptions of Theorem 1. We then define the operator T λ : rL 2 pΩqs 2 Ñ rL 2 pΩqs 2 by (1.9) T λ pf 1 , f 2 q " pu 1 , u 2 q where pu 1 , u 2 q is the unique solution of (1.8).

We can also prove that such a T λ is compact using a priori estimates. If λ j is an eigenvalue of the transmission problem, then λ j ‰ λ, and λ j ´λ is a characteristic value of T λ (i.e., pλ j ´λq ´1 is its eigenvalue) and conversely. One can show that the multiplicity of the characteristic values λ j ´λ and λ j ´λ (which are the multiplicity of pλ j ´λq ´1 and pλ j ´λq ´1, see Definition 1 below) associated with T λ and T λ are the same as long as T λ and T λ are well-defined (see Remark 11). Hence, the multiplicity of eigenvalues that are associated with T λ is independent of λ and it is used in Assertion (1.6). One can also prove that T λ and T λ have the same set of the generalized eigenfunctions. In Theorem 2, the generalized eigenfunctions are associated to such a T λ . We recall that the generalized eigenfunctions are complete in rL 2 pΩqs 2 if the subspace spanned by them is dense in rL 2 pΩqs 2 .

Recall that, see e.g. [2, Definition 12.5]:

Definition 1. Let γ be an eigenvalue of a linear continuous operator A : H Ñ H where H is a Hilbert space. A non-zero vector v is a generalized eigenvector of A corresponding to γ if pγI ´Aq k v " 0 holds for some positive integer k. The set of all generalized eigenvectors of A corresponding to the eigenvalue γ together with the origin in H, forms a subspace of H, whose dimension is the multiplicity of γ.

Theorem 1 gives the order of the counting function N ptq and its first-order approximation. Theorem 1 and Theorem 2 provide new general conditions on the coefficients for which the Weyl law and the completeness of the generalized eigenfunctions hold. These conditions are imposed only on the boundary and the regularity assumption is very mild.

Remark 2. It is worth noting that the convention of eigenvalues of the transmission problem in the work of Lakshtanov and Vainberg is similar to ours and different from that of Robbiano (also the work Petkov and Vodev, and Vodev mentioned above) where λ 2 is used in (1.3) instead of λ (where λ is used but t 2 is considered instead of t in the formula of the counting function). Remark 3. In [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF], Petkov and Vodev considered the isotropic setting and obtained a shaper estimate for the remainder of (1.6) as in the spirit of Hörmander [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF]. Other refined estimates were given in [START_REF]High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF][START_REF]Parabolic transmission eigenvalue-free regions in the degenerate isotropic case[END_REF][START_REF]Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map[END_REF] and are obtained under the C 8 smoothness assumption. Under the continuity assumption on the smoothness of coefficients, a better estimate for the remainder of (1.6) as in [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF] is implausible. Nevertheless, it is interesting to obtain better estimates for the remainder as in [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF][START_REF]High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF][START_REF]Parabolic transmission eigenvalue-free regions in the degenerate isotropic case[END_REF][START_REF]Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map[END_REF] for sufficiently regular coefficients and/or for the anisotropic setting.

Our strategy of the analysis is to develop the approach in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] at the level where one can apply the general spectral theory for Hilbert-Schmidt operators in Hilbert space as given in Agmon [2] (see also [START_REF] Shmuel Agmon | On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems[END_REF]). Two important steps are follows. One is on sharp estimates for }T λ } L p ÑW 1,p for p ą 1 and its consequences (see Theorem 3) for large |λ| with an appropriate direction. This, in particular, shows that T :" T μ1 ˝¨¨¨˝T μk`1 with k " rd{2s is a Hilbert -Schmidt operator (see Proposition 1) for an appropriate choice of μj P C. The analysis of this part is on the regularity theory of the transmission problems in L p -scale. This is one of the cores of this paper and has its own interest. To this end, we first investigate the corresponding problems in the whole space and in a half space with constant coefficients, and then use the freezing-coefficient technique. The analysis also involves the Mikhlin-Hörmander multiplier theorem (in particular the theory of singular integrals) and Gagliardo-Nirenberg interpolation inequalities. The second step is to apply the spectral theory for Hilbert-Schmidt operators. To this end, we use the estimates for T λ to obtain an approximation of the trace of the kernel of the product of T and its appropriate modified operator (see Proposition 3). The approximation of the trace of the kernel is then used to derive information for the Weyl law via a formula for eigenvalues established in Proposition 2. This formula is derived from the spectral theory of Hilbert-Schmidt operator and is interesting itself. The completeness of the generalized eigenfunctions follows directly from the estimates for T λ in Theorem 3 where we pay special attention to the possible directions of λ where the information can be derived, after applying the spectral theory in [2].

Remark 4. We use the regularity theory and spectral theory for Hilbert-Schmidt operators to investigate the Weyl law, which was also presented by Robbiano [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF]. Nevertheless, the way we derive the regularity theory in this paper is distinct from [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF], which involved Carleman's inequalities and the theory of microanalysis. The way we explore the information of Hilbert-Schmidt operators allows us to exactly obtain the first term of the Weyl Law in (1.6) instead of its magnitude order as in [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF].

We propose a new approach to establish the Weyl law of eigenvalues and the completeness of the generalized eigenfunctions. This allows us to obtain new significant results and strongly weaken the smoothness assumption in various known results, that is out of reach previously. The transmission problem also appears naturally for electromagnetic waves. In this case, it is a system of two Maxwell systems equipped the Cauchy data on the boundary. The spectral theory of the transmission problem for electromagnetic waves is much less known. On this aspect, we point the reader to [START_REF] Cakoni | On the Discreteness of Transmission Eigenvalues for the Maxwell Equations[END_REF] on the discreteness, and to [START_REF] Haddar | The spectral analysis of the interior transmission eigenvalue problem for Maxwell's equations[END_REF] on the completeness. More information can be found in the references therein. The analysis in this paper will be developed for the Maxwell setting in our forthcoming work.

The transmission problem has an interesting connection with the study of negative-index materials which are modeled by the Helmholtz or Maxwell equations with sign changing coefficients. In fact, our work has its roots in [START_REF]Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] where the stability of solutions of the Helmholtz equations with sign changing coefficients was studied. Concerning the Maxwell equations, the stability was studied in [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Maxwell equations with anisotropic sign changing coefficients[END_REF]. It is not coincident that the transmission problem and the Helmholtz equations with sign-changing coefficients share some common analysis. In fact, using reflections (a class of changes of variables), the Cauchy problems appear naturally in the context of the Helmholtz with sign-changing coefficients as first observed in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] (see also [START_REF]Superlensing using complementary media and reflecting complementary media for electromagnetic waves[END_REF] for the Maxwell setting). Other properties of the Cauchy problems related to resonant (unstable) aspects and applications of negative-index materials such as cloaking and superlensing can be found in [START_REF]Superlensing using complementary media[END_REF][START_REF]Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF][START_REF]Cloaking using complementary media in the quasistatic regime[END_REF][START_REF]Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF][START_REF]Cloaking using complementary media for electromagnetic waves[END_REF][START_REF]Cloaking property of a plasmonic structure in doubly complementary media and three-sphere inequalities with partial data[END_REF] and the references therein.

The paper is organized as follows. In Section 2, we introduce several notations used throughout the paper. In Section 3, we establish Theorem 3, which describes the regularity theory for the transmission problem in L p -scale. In Section 4, we recall some definitions, properties of Hilbert-Schmidt operators, and their finite double-norms. We then derive their applications in the context of the transmission problem. The main result of this section is Proposition 2, which is derived from Theorem 3. The Weyl law and the completeness are then established in Section 5 and in Section 6, respectively.

Notations

We denote, for τ ą 0, Ω τ "

! x P Ω : distpx, Γq ă τ ) . For d ě 2, set R d `" ! x P R d ; x d ą 0 ) and R d 0 " ! x P R d ; x d " 0
) .

We will identify R d 0 with R d´1 in several places. For θ P R and a ą 0, denote (2.1)

Lpθ, aq "

! re iθ P C : r ě a
) .

Regularity theory for transmission problems

In this section, we establish several estimates for T λ for appropriate values of λ. The main results are as follows.

Theorem 3. Let ε 0 ą 0 and Λ ě 1. Assume that (1.1) and (1.2) hold, and A 1 , A 2 , Σ 1 , Σ 2 are continuous in Ω. Assume that (1.4) and (1.5) hold in the following sense, with ν " νpxq, (3.1) ˇˇxA 2 pxqν, νyxA 2 pxqξ, ξy ´xA 2 pxqν, ξy 2 ´´xA 1 pxqν, νyxA 1 pxqξ, ξy ´xA 1 pxqν, ξy 2 ¯ˇˇě Λ ´1|ξ| 2 , for all x P Γ and for all ξ P R d zt0u with xξ, νy " 0, and

(3.2) ˇˇxA 2 pxqν, νyΣ 2 pxq ´xA 1 pxqν, νyΣ 1 pxq ˇˇě Λ ´1, @ x P Γ.
There exist two positive constants Λ 0 and C depending only on Λ, ε 0 , Ω, and the continuity modulus of A 1 , A 2 , Σ 1 , and Σ 2 in Ω such that for θ P R with inf nPZ |θ ´nπ| ě ε 0 , and for λ P Lpθ, Λ 0 q, the following fact holds: for g " pg 1 , g 2 q P rL 2 pΩqs 2 , there exists a unique solution u " pu 1 , u 2 q P rH 1 pΩqs 2 of the system

(3.3) $ ' ' & ' ' % divpA 1 ∇u 1 q ´λΣ 1 u 1 " g 1 in Ω, divpA 2 ∇u 2 q ´λΣ 2 u 2 " g 2 in Ω, u 1 ´u2 " 0, pA 1 ∇u 1 ´A2 ∇u 2 q ¨ν " 0 on Γ.
Moreover, for 1 ă p ă 8,

(3.4) }∇u} L p pΩq `|λ| 1{2 }u} L p pΩq ď C|λ| ´1 2 }g} L p pΩq .
As a consequence, we have ' for 1 ă p ă d and p ď q ď dp d´p ,

(3.5) ||u|| L q pΩq ď C|λ| ´1`d 2 ´1 p ´1 q ¯}g} L p pΩq , ' for p ą d, (3.6) }u} L 8 pΩq ď C|λ| ´1`d 2p }g} L p pΩq ,
' for p ą d and q " p p´1 ,

(3.7) }u} L q pΩq ď C|λ| ´1`d 2 ´d 2q }g} L 1 pΩq .
The remainder of this section contains two subsections, which are organized as follows. In the first subsection, we establish several lemmas used in the proof of Theorem 3. The proof of Theorem 3 is given in the second subsection.

3.1. Preliminaries. In this section, we establish several results used in the proof of Theorem 3, which is based on freezing coefficient technique. We begin with the corresponding settings/variants with constant coefficients in R d and in R d

`. The first one is Lemma 1. Let d ě 2, Λ ě 1, ε 0 ą 0, 1 ă p ă 8, and let A and Σ be a symmetric matrix and a non-zero real constant, respectively. Assume that inf nPZ |θ ´nπ| ě ε 0 and λ P Lpθ, 1q,

(3.8) Λ ´1 ď A ď Λ and Λ ´1 ď |Σ| ď Λ.
For g P L p pR d q and G P rL p pR d qs d , let u P W 1,p pR d q be the unique solution of

divpA∇uq ´λΣu " g `divpGq in R d .
We have

(3.9) |λ| 1{2 }∇u} L p pR d q `|λ|}u} L p pR d q ď C ´}g} L p pR d q `|λ| 1{2 }G} L p pR d q ¯,
and, if G " 0,

(3.10) }∇ 2 u} L p pR d q ď C}g} L p pR d q .
Here C denotes a positive constant depending only on p, d, Λ, and ε 0 .

Here and in what follows, for two d ˆd symmetric matrices M 1 and M 2 , we denote

M 1 ě M 2 (resp. M 1 ď M 2 ) if xM 1 ξ, ξy ě xM 2 ξ, ξy (resp. xM 1 ξ, ξy ď xM 2 ξ, ξy) for all ξ P R d .
Proof. For an appropriate function/vector field f defined in R d , let Ff denote its Fourier transform. We have 

Fupξq

}u} L p pR d q ď C|λ| ´1}g} L p pR d q .
The other estimates in Assertion (3.9) and (3.10) can be derived in the same manner. The proof is complete.

Here is a result on a half space.

Lemma 2. Let A 1 , A 2 be two constant, symmetric matrices, and let Σ 1 , Σ 2 be two non-zero, real constants. Assume that, for some Λ ě 1, 

(3.11) Λ ´1 ď A 1 , A 2 ď Λ, Λ ´1 ď |Σ 1 |, |Σ 2 | ď Λ, ( 3 
(3.13) ˇˇ@A 2 e d , e d D Σ 2 ´@A 1 e d , e d D Σ 1 ˇˇě Λ ´1.
Let p ą 1, ε 0 ą 0, g 1 , g 2 P L p pR d `q, G 1 , G 2 P rL p pR d `qs d , and ϕ P W 1´1{p,p pR d 0 q. There exist two positive constants C and Λ 0 depending only on Λ and ε 0 such that for θ P R with min nPZ |θ ´nπ| ě ε 0 and for λ P Lpθ, Λ 0 q, there exists a unique solution u " pu 1 , u 2 q P rW 1,p pR d `qs 2 of the system

(3.14) $ ' ' & ' ' % divpA 1 ∇v 1 q ´λΣ 1 v 1 " g 1 `divpG 1 q in R d `, divpA 2 ∇v 2 q ´λΣ 2 v 2 " g 2 `divpG 2 q in R d `, v 1 ´v2 " ϕ, pA 1 ∇v 1 ´G1 q ¨ed ´pA 2 ∇v 2 ´G2 q ¨ed " 0 on R d 0 . Moreover, (3.15) }∇v} L p pR d `q `|λ| 1{2 }v} L p pR d `q ď C ´|λ| ´1{2 }g} L p pR d `q `}G} L p pR d `q `λ1{2´1{p2pq }ϕ} L p pR d 0 q `}ϕ} 9 W 1´1{p,p pR d 0 q ¯.
Proof. We only establish (3.15). The uniqueness for (3.14) is a consequence of (3.15). The existence of pv 1 , v 2 q follows from the proof of (3.15) and is omitted. Let u j P W 1,p pR d q be the unique solution of the equation divpA j ∇u j q ´λΣ j u j "

g j 1 R d ``divpG j 1 R d `q in R d . It follows from Lemma 1 that }∇u j } L p pR d q `|λ| 1{2 }u j } L p pR d q ď C ´|λ| ´1{2 }g j } L p pR d `q `}G j } L p pR d `q¯.
We have

|λ| 1{2´1{p2pq }u j } L p pR d 0 q ď C ´}∇u j } L p pR d `q `|λ| 1{2 }u j } L p pR d `q¯,
pA j ∇u j ´Gj q ¨ed " 0 on R d 0 , and, by the trace theory,

}u j } W 1´1{p,p pR d 0 q ď C}u j } W 1,p pR d `q.
Therefore, without loss of generality, one might assume that g 1 " g 2 " 0 and G 1 " G 2 " 0. This will be assumed from now on. Let vj pξ 1 , tq for j " 1, 2 and φpξ 1 , tq be the Fourier transform of v j and ϕ with respect to x 1 P R d´1 , i.e., for pξ 1 , tq P R d´1 ˆp0, `8q, vj pξ 1 , tq " ˆRd´1 v j px 1 , tqe ´ix 1 ¨ξ1 dx 1 for j " 1, 2, and φpξ 1 , tq "

ˆRd´1 ϕpx 1 qe ´ix 1 ¨ξ1 dx 1 . Since divpA j ∇v j q ´λΣ j v j " 0 in R d `,
it follows that a j v 2 j ptq `2ib j v 1 j ptq ´pc j `λΣ j qv j ptq " 0 for t ą 0, where

a j " pA j q d,d , b j " d´1 ÿ k"1 pA j q d,k ξ k , and c j " d´1 ÿ k"1 d´1 ÿ l"1 pA j q k,l ξ k ξ l .
Here pA j q k,l denotes the pk, lq component of A j for j " 1, 2 and the symmetry of A j is used. Define, for j " 1, 2, (3.16) ∆ j " ´b2 j `aj pc j `λΣ j q. Denote ξ " pξ 1 , 0q. Since A j is symmetric and positive, it is clear that, for j " 1, 2, (3.17) a j " xA j e d , e d y, b j " xA j ξ, e d y, c j " xA j ξ, ξy, and a j c j ´b2 j ą 0. Since vj pξ 1 , tq P L 2 pR d `q, we have vj pξ 1 , tq " α j pξ 1 qe η j pξ 1 qt , for some α j pξ 1 q P C, where η j " p´ib j ´a∆ j q{a j .

Here a ∆ j denotes the square root of ∆ j with positive real part. Using the fact that v 1 ´v2 " ϕ and A 1 ∇v 1 ¨ed ´A2 ∇v 2 ¨ed " 0 on R d 0 , we derive that (3.18) α 1 pξ 1 q ´α2 pξ 1 q " φpξ 1 q and α 1 pξ 1 qxiA 1 ξ `η1 A 1 e d , e d y ´α2 pξ 1 qxiA 2 ξ `η2 A 2 e d , e d y " 0.

Note that, by (3.17), xA j ξ, e d y ´xA j e d , e d yb j {a j " 0. The last identity of (3.18) is equivalent to

α 1 pξ 1 q a ∆ 1 " α 2 pξ 1 q a ∆ 2 .
Combining this identity and the first one of (3.18) yields

(3.19) α 1 pξ 1 q " φpξ 1 q ? ∆ 2 ? ∆ 2 ´?∆ 1 .
Extend v 1 px 1 , tq by 0 for t ă 0. We then obtain

Fv 1 pξq " ´φpξ 1 q ? ∆ 2 ? ∆ 2 ´?∆ 1 1 η j ´iξ d .
Here, F is the Fourier transform in R d . Set

gptq " e ´|λ| 1{2 t 1 tě0 for t P R and Φpxq " ϕpx 1 qgpx d q for x P R d .

It follows that

Fv 1 pξq " FΦpξq ? ∆ 2 ? ∆ 2 ´?∆ 1 |λ| 1{2 `iξ d ´ηj `iξ d .
We have 

|∆ 2 ´∆1 | 2 ě Cp|ξ 1 | 4 `|λ| 2 q, |∆ j | ď Cp|ξ 1 | 2 `
}v 1 } L p pR d q ď C}Φ} L p pR d q ď C|λ| ´1{p2pq }ϕ} L p pR d´1 q .
We next deal with ∇v 1 . We have

(3.21) B t v1 pξ 1 , tq " η 1 v1 pξ 1 , tq in R d `.
It is clear that η 1 " η 1,1 `η1,2 , where η 1,1 "

´?a 1 λΣ 1 a 1 , and η 1,2 " ´ib 1 a 1

´?∆ 1 ´?a 1 λΣ 1 a 1 .

As above, one can prove that

(3.22) } F´1 pη 1,1 v1 q} L p pR d `q ď C|λ| 1{2 }Φ} L p pR d q ď
C|λ| 1{2´1{p2pq }ϕ} L p pR d´1 q , and, for some γ ą 0,

} F´1 pη 1,2 v1 q} L p pR d `q ď C}g} L p pR d `q,
where F´1 denotes the Fourier inverse with respect to ξ 1 in R d´1 and ĝpξ 1 , tq " iξ 1 φpξ 1 qe ´γ|ξ 1 |t .

It is clear that gpxq " ∇ x 1 vpxq, where v is the unique solution of the system }B x d v 1 } L p pR d `q ď C}ϕ} 9 W 1{p´1,p pR d´1 q `C|λ| 1{2´1{p2pq }ϕ} L p pR d´1 q . By the same manner, we also obtain (3.25) }∇ x 1 v 1 } L p pR d `q ď C}ϕ} 9 W 1{p´1,p pR d´1 q . From (3.20), (3.24), and (3.25), we obtain

∆ x 1 v `γB 2 x d v " 0 in R d
(3.26) |λ| 1{2 }v 1 } L p pR d `q `}∇ x v 1 } L p pR d `q ď C}ϕ} 9
W 1{p´1,p pR d´1 q `C|λ| 1{2´1{p2pq }ϕ} L p pR d´1 q . Similar to (3.26), we also get

(3.27) |λ| 1{2 }v 2 } L p pR d `q `}∇ x v 2 } L p pR d `q ď C}ϕ} 9
W 1{p´1,p pR d´1 q `C|λ| 1{2´1{p2pq }ϕ} L p pR d´1 q . The conclusion thus follows from (3.26) and (3.27). The proof is complete.

Remark 5. Assertion (3.14) was previously established in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] for p " 2 (see [32, the proof of Theorem 4]). The analysis given here has its root in [START_REF]Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF][START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF]. Nevertheless, instead of using Parseval's theorem to derive L 2 -estimates, the new ingredient involves Mikhlin-Hörmander's multiplier theory.

We now derive consequences of Lemmas 1 and 2 via the freezing-coefficient technique. As a consequence of Lemma 1, we have Corollary 1. Let d ě 2, p ą 1, Λ ě 1, ε 0 ą 0, and let A be a symmetric, matrix-valued function, and let Σ be a real function defined in Ω. Assume that A and Σ are continuous in Ω,

(3.28) Λ ´1 ď A ď Λ and Λ ´1 ď |Σ| ď Λ in Ω,
for some Λ ě 1, inf nPZ |θ ´nπ| ě ε 0 , and λ P Lpθ, 1q. For g P L p pΩq and G P rL p pΩqs d , let u P W 1,p pΩq be a solution of divpA∇uq ´λΣu " g `divpGq in Ω.

We have, for τ ą 0,

(3.29) }∇u} L p pΩzΩτ q `|λ| 1{2 }u} L p pΩzΩτ q ď C ´|λ| ´1{2 }g} L p pΩq `}G} L p pΩq ¯`C|λ| ´1 2 ´}∇u} L p pΩq `|λ| 1{2 }u} L p pΩq ¯.
Here C denotes a positive constant depending only on Λ, p, ε 0 , τ , Ω, and the continuity modulus of A 1 , A 2 , Σ 1 , and Σ 2 in Ω.

Proof. Let χ be an arbitrary smooth function with support in Ω. Set v " χu in Ω. We have

divpA∇vq ´λΣv " f `div F in Ω,
where f " χg `A∇u∇χ ´F ¨∇χ and F " χF `uA∇ϕ.

The conclusion follows from Lemma 1 by the freezing-coefficient technique and the computations above.

Similarly, as a consequence of Lemma 2, we obtain Corollary 2. Let d ě 2, p ą 1, ε 0 ą 0, τ ą 0, and Λ ě 1, and let A 1 , A 2 be two symmetric, matrixvalued functions, and let Σ 1 , Σ 2 be two real functions defined in Ω. Assume that A 1 , A 2 , Σ 1 , Σ 2 are continuous in Ω 2τ , (3.28) holds, and (1.4) and (1.5) are satisfied. There exist two positive constants Λ 0 and C, depending only on Λ, ε 0 , and the continuity of A 1 , A 2 , Σ 1 , and Σ 2 in Ω 2τ such that for θ P R, for λ P Lpθ, Λ 0 q with inf nPZ |θ ´nπ| ě ε 0 , and for g " pg 1 , g 2 q P rL p pΩqs 2 , and G " pG 1 , G 2 q P rL p pΩqs d ˆrL p pΩqs d , let u " pu 1 , u 2 q P rW 1,p pΩqs 2 be a solution of the system

(3.30) $ ' ' & ' ' % divpA 1 ∇u 1 q ´λΣ 1 u 1 " g 1 `divpG 1 q in Ω, divpA 2 ∇u 2 q ´λΣ 2 u 2 " g 2 `divpG 2 q in Ω,
u 2 ´u1 " 0, pA 2 ∇u 2 ´A1 ∇u 1 ´G2 `G1 q ¨ν " 0 on Γ.

Moreover, we have

(3.31) }∇v} L p pΩτ q `|λ| 1{2 }v} L p pΩτ q ď C ´|λ| ´1{2 }g} L p pΩq `}G} L p pΩq ¯`C|λ| ´1 2 ´}∇v} L p pΩq `|λ| 1{2 }v} L p pΩq ¯.
Here C denotes a positive constant depending only on Λ, p, ε 0 , τ , Ω, and the continuity modulus of A 1 , A 2 , Σ 1 , and Σ 2 in Ω 2τ .

3.2. Proof of Theorem 3. We first assume the well-posedness of (3. and if 1 ă p ă d, and u P W 1,p pΩq, then, for p ď q ă dp d´p , (3.33) }u} L q pΩq ď C}u} dp 1 p ´1 q q W 1,p pΩq }u} 1´dp 1 p ´1 q q L p pΩq . Assertions (3.5) and (3.6) now follow from (3.4), (3.32), (3.33), and Hölder's inequality.

We finally establish (3.7). Let

T δ : rL 2 pΩqs 2 Ñ rL 2 pΩqs 2 g Þ Ñ u,
where u " pu 1 , u 2 q P rH 1 pΩqs 2 is the unique solution of (3.3) with pg 1 , g 2 q " g. We have, for q " p p´1 and p ą d, }u} L q pΩq " sup It remains to prove the well-posedness of (3.3). It is clear that the uniqueness of (3.3) follows from (3.4). To establish the existence for (3.3), we use the principle of limiting absorption and the Fredholm theory. We only consider the case where pλq ă 0; the other case can be proved similarly. For δ ą 0, by the Lax-Milgram theory, there exists a unique solution v δ " pv 1,δ , v 2,δ q P rH 1 pΩqs 2 of the system

f
$ ' ' & ' ' % div `p1 ´iδqA 1 ∇v 1,δ ˘´λΣ 1 v 1,δ " g 1 in Ω, div `p1 `iδqA 2 ∇v 2,δ ˘`λΣ 2 v 2,δ " g 2 in Ω,
v 2,δ ´v1,δ " 0, `p1 `iδqA 2 ∇v 2,δ ´p1 ´iδqA 1 ∇v 1,δ ˘¨ν " 0 on Γ.

Moreover, by Corollaries 1 and 2, applied with G 1 " iδA 1 ∇v 1,δ and G 2 " ´iδA 2 ∇v 2,δ , we have, for sufficiently small δ,

}∇u δ } L 2 pΩq `|λ| 1{2 }u δ } L 2 pΩq ď C|λ| ´1{2 }g} L 2 pΩq .
By taking δ Ñ 0 `, one derives the existence of a solution v " pv 1 , v 2 q P rH 1 pΩqs 2 of the system, with Σ2 " ´Σ2

(3.35) $ ' ' & ' ' % div `A1 ∇v 1 ˘´λΣ 1 v 1 " g 1 in Ω, div `A2 ∇v 2 ˘´λ Σ2 v 2 " g 2 in Ω, v 2 ´v1 " 0, `A2 ∇v 2 ´A1 ∇v 1 ˘¨ν " 0 on Γ, which satisfies (3.36) }∇v} L 2 pΩq `|λ| 1{2 }v} L 2 pΩq ď C|λ| ´1{2 }g} L 2 pΩq .
The uniqueness of (3.35) is again a consequence of Corollary 1 and Corollary 2. Define T :

rL 2 pΩqs 2 Ñ rL 2 pΩqs 2 g Þ Ñ v,
where v " pv 1 , v 2 q P rH 1 pΩqs 2 is the unique solution of (3.35). It follows from (3.36) that T is compact.

It is clear that u " pu 1 , u 2 q P rH 1 pΩqs 2 is a solution of (3.3) if and only if

$ ' ' & ' ' % divpA 1 ∇u 1 q ´λΣ 1 u 1 " g 1 in Ω, divpA 2 ∇u 2 q ´λ Σ2 u 2 " g 2 `2λΣ 2 u 2 in Ω,
u 1 ´u2 " 0, pA 1 ∇u 1 ´A2 ∇u 2 q ¨ν " 0 on Γ.

In other words, pu 1 , u 2 q " T pg 1 , g 2 q `T p0, 2λΣ 2 u 2 q. Since this equation has at most one solution and T is compact, this equation has a unique solution by the Fredholm theory. The proof is complete. Remark 6. Note from (3.34) that T λ is not self-adjoint.

Hilbert-Schmidt operators

We now devote two subsections to the applications of Hilbert-Schmidt operators for the transmission problem. In the first subsection, we recall some basis facts on Hilbert-Schmidt operators and the finite double norms. In the second subsection, we derive their applications for the transmission problem. The main result here is Proposition 2. 4.1. Some basic facts on Hilbert-Schmidt operators. In this section, we recall the definition and several properties of Hilbert-Schmidt operators. We begin with Definition 2. Let H be a separable Hilbert space and let pφ k q 8

k"1 be an orthogonal basis. A bounded linear operator T : H Ñ H is Hilbert Schmidt if its finite double norm (4.1) ~T~:"

˜8 ÿ k"1 }Tpφ k q} 2 H ¸1{2 ă `8.
The trace of T is then defined by

(4.2) tracepTq " 8 ÿ k"1 xTpφ k q, φ k y.
Remark 7. The definition of ~T~and of tracepTq do not depend on the choice of pφ k q, see e.g.

[2, Chapter 12].

One can check, see [2, Theorem 12.12], that if T 1 and T 2 are Hilbert Schmidt then T 1 T 2 is also Hilbert Schmidt, and

(4.3) |tracepT 1 T 2 q| ď ~T1 ~~T 2 ~.
Let m P N and T : rL 2 pΩqs m Ñ rL 2 pΩqs m be a Hilbert Schmidt operator. There exists a unique kernel K P rL 2 pΩ ˆΩqs mˆm , see e.g. [2, Theorems 12. [START_REF] Kirsch | The denseness of the far field patterns for the transmission problem[END_REF] Here C m denotes a positive constant depending only on m.

Proof. The proof is quite standard as in [2]. We present the details of this proof for the convenience of the reader. Let pφ k q 8

k"1 be an orthonormal basis of rL 2 pΩqs m and set ϕ j " Tpφ j q. Let a 1 , ..., a N P C m be arbitrary. By (4.6), we have

ˇˇN ÿ j"1 a j ¨ϕj pxq ˇˇď M } N ÿ j"1 a j ¨φj } L 2 pΩq ď C m M ˜N ÿ j"1 |a j | 2 ¸1{2 @x P Ω.
Choosing a j " ϕ j pxq yields

N ÿ j"1 |ϕ j pxq| 2 ď C m M 2 @x P Ω.
Integrating over Ω, we obtain

N ÿ j"1 }ϕ j } 2 L 2 pΩq ď C m |Ω|M 2 ,
which implies (4.7). Assertion (4.8) follows from (4.6) by (4.4). It is clear that (4.10) is a consequence of (4.9) by the definition of the kernel.

We next recall a basic, useful property of a Hilbert-Schmidt operator, see e.g., [2, Theorem 12.21]1 : Lemma 4. Let m P N and let T 1 , T 2 be two Hilbert-Schmidt operators in rL 2 pΩqs m with the corresponding kernels K 1 and K 2 . Then T :" T 1 T 2 is a Hilbert-Schmidt operator with the kernel K given by (4.11) Kpx, yq " ˆΩ K 1 px, zqK 2 pz, yq dz.

Moreover, (4.12) tracepT 1 T 2 q " ˆΩ trace Kpx, xqdx. Hence Kpx, xq P rL 1 pΩqs mˆm .

4.2. Applications of the theory of Hilbert-Schmidt operators. In this section, we apply the theory of Hilbert-Schmidt operators to the operator T λ mentioned in the introduction. The main ingredient of the analysis is Theorem 3. We begin with Definition 3. Let ε 0 ą 0 and Λ ě 1. Assume the assumptions of Theorem 3 hold. Let Λ 0 and C be the constants in Theorem 3. For λ P Lpθ, Λ 0 q with inf nPZ |θ ´nπ| ą ε 0 , define

T λ : rL 2 pΩqs 2 Ñ rL 2 pΩqs 2 f Þ Ñ u,
where u " pu 1 , u 2 q P rH 1 pΩqs 2 is the unique solution of, with pf 1 , f 2 q " f ,

(4.13) $ ' ' & ' ' % divpA 1 ∇u 1 q ´λΣ 1 u 1 " Σ 1 f 1 in Ω, divpA 2 ∇u 2 q ´λΣ 2 u 2 " Σ 2 f 2 in Ω, u 1 " u 2 , A 1 ∇u 1 ¨ν " A 2 ∇u 2 ¨ν on Γ.
From now on, we fix the constant Λ 0 as required in Definition 3 for a given ε 0 and set

(4.14) λ 0 " Λ 0 e iπ{2 .
Remark 9. Let T ‹ λ be the adjoint operator of T λ , i.e., xT λ pf q, gy " xf, T λ pgqy for any f, g P rL 2 pΩqs 2 . Integrating by parts, one has

ˆˆΩ divpA 1 ∇u 1 qv 1 ´divpA 2 ∇u 2 qv 2 ˙´ˆˆΩ u 1 divpA 1 ∇v 1 q ´u2 divpA 2 ∇v 2 q " ˆˆΓ v 1 .A 1 ∇u 1 ¨ν ´v2 .A 2 ∇u 2 ¨ν˙´ˆˆΓ u 1 A 1 ∇v 1 ¨ν ´u2 A 2 ∇v 2 ¨ν˙.
This implies

(4.15) T λ " ˆΣ1 0 0 ´Σ2 ˙Tλ ˆ1{Σ 1 0 0 ´1{Σ 2 ˙.
Thus T λ is not self-adjoint.

For the operator T λ defined above, the following estimates hold:

Proposition 1. We have 

(4.16) }T λ } L p ÑL 8 ď C|λ| ´1`d 2p if p ą d, (4.17) }T λ } L p ÑL q ď C|λ| ´1`d 2 ´1 p ´1 q ¯if 1 ă p ă d, p ď q ă dp d ´p , (4.18) }T λ } L 1 ÑL q ď C|λ| ´1`d 2 ´d 2q if 1 ă q ă d d ´1 . Assume that λ 1 , ..., λ k`1 satisfy the assumption of Theorem 3 with k " k d " " d 2 ‰ , and 
|λ 1 | " |λ 2 | " ... " |λ k`1 | " t. Then operator ś k`1 j"1 T λ j " T λ k`1 ˝Tλ k ˝...
› › › k`1 ź j"1 T λ j › › › L 2 ÑL 8 ď }T λ 1 } L p 1 ÑL p 2 ....}T λ k } L p k ÑL p k`1 }T λ k`1 } L p k`1 ÑL 8 ď C ˜k ź j"1 |λ| ´1`d 2 ´1 p j ´1 p j`1 ¯¸|λ| ´1`d 2p k`1 " C|λ| d 4 ´pk`1q .
The conclusions now follow from Lemma 3.

The following is the main result of this section and plays a crucial role in our analysis.

Proposition 2. Let k " k d " " d 2 ‰
and denote

θ j " ´1 4 `2pj ´1q ¯π k `1 and θ k`1`j " ´5 4 `2pj ´1q ¯π k `1 for 1 ď j ď k `1.
Let t ą 10Λ 0 and set µ j " λ 0 `tz j with z j " e iθ j for j " 1, . . . , 2pk `1q. We have trace pT µ 2pk`1q ˝Tµ 2k`1 ˝... ˝Tµ 1 q "

ÿ j 1 r λ 2pk`1q j ´it 2pk`1q , (4.20)
where each characteristic value r λ j of T λ 0 is repeated a number of times equal to its multiplicity.

Remark 10. In Proposition 2, Λ 0 is chosen large and corresponds with ε 0 " π 8pk`1q .

Proof. It is clear that z 1 , . . . , z k`1 are the solutions of z k`1 ´ei π 4 " 0 in C and z k`2 , . . . , z 2pk`1q are the solutions of z k`1 ´ei 5π 4 " 0 in C. One then has, for z P C,

(4.21) k`1 ź j"1 pz ´zj q " z k`1 ´ei π 4 , k`1 ź j"1 p1 ´zj zq " 1 ´ei π 4 z k`1 and (4.22) 2pk`1q ź j"k`2 pz ´zj q " z k`1 ´ei 5π 4 , 2pk`1q ź j"k`2 p1 ´zj zq " 1 ´ei 5π 4 z k`1 .
Note that, if T λ and T λ`s exist, and T λ is compact, then s is not a characteristic value of T λ , and (4.23) T λ`s " T λ pI ´sT λ q ´1 " pI ´sT λ q ´1T λ .

Indeed, if T λ and T λ`s exist, one can check that I ´sT λ is injective, and therefore subjective since T λ is compact. One can then show that (4.23) holds. As a consequence of (4.23), T λ`s is the modified operator of T λ with respect to s. Set T " T µ 2pk`1q ˝... ˝Tµ k`2 .

It follows from Proposition 1 that T is Hilbert-Schmidt, and

~T~ď Ct d 4 ´1´k
, and }T} L 2 ÑL 2 ď Ct ´k´1 .

Let s 1 , s 2 , . . . be the characteristic values of T repeated a number of times equal to their multiplicities. Thanks to [2, Theorem 12.17], one has, for a non-characteristic value λ of T, trace pT ˝pTq λ q " ÿ j 1 s j ps j ´λq `ct , (4. [START_REF]Superlensing using complementary media[END_REF] where pTq λ is the modified operator associated with T and λ, i.e., pTq λ :" TpI ´λTq ´1, for some c t P C.

By applying (4.24) with λ " 2e iπ 4 t k`1 , it suffices to establish (4.25)

pTq λ " T µ k`1 ˝... ˝Tµ 1 for λ " 2e iπ 4 t k`1 , (4.26) 
s j " r λ k`1 ´ei 5π 4 t k`1 , for some , and (4.27) the multiplicity of s j is equal to the sum of the multiplicity of r λ such that (4.26) holds, and (4.28) c t " 0.

This will be done in the next three steps.

Step 1: Proof of (4.25). Since µ j ´λ0 " z j t, it follows from the second identity in (

l"1 `1 ´pµ l ´λ0 qz ˘" 1 ´ei π 4 t k`1 z k`1 . 4.21) that (4.29) k`1 ź 
One has

(4.30) T µ k`1 ˝... ˝Tµ 1 (4.23) 
" T λ 0 pI ´pµ k`1 ´λ0 qT λ 0 q ´1 ˝... ˝Tλ 0 pI ´pµ 1 ´λ0 qT λ 0 q ´1 (4.23)

" T k`1 λ 0 k`1 ź l"1
pI ´pµ l ´λ0 qT λ 0 q ´1 (4.29)

" T k`1 λ 0 ´I ´ei π 4 t k`1 T k`1 λ 0 ¯´1 .
In other words, we have

(4.31) T µ k`1 ˝... ˝Tµ 1 " ´T k`1 λ 0 ¯ei π 4 t k`1 . Similarly, we obtain (4.32) T " T µ 2pk`1q ˝... ˝Tµ k`2 " ´T k`1 λ 0 ¯ei 5π 4 t k`1 . Using the property ´´T k`1 λ 0 ¯γ1 ¯γ2 " ´T k`1 λ 0 ¯γ1 `γ2 ,
for γ 1 and γ 1 `γ2 non-characteristic values of T k`1 λ 0 , we derive from (4.31) and (4.32) that Step 2: Proof of (4.26) and (4.27). Since T " pT k`1 λ 0 q e i5π{4 t k`1 , it follows, see e.g. [2, Theorem 12.4], that s ´1 j is an eigenvalue of T that is not equal to ´e´i5π{4 t ´pk`1q if and only if

pTq λ " ´T k`1 λ 0 ¯ei 5π 4 t k`1 `λ " ´T k`1 λ 0 ¯ei π 4 t k`1 " T µ k`1 ˝...
s ´1 j 1`s ´1 j e i5π{4 t k`1 " 1 s j `ei5π{4 t k`1 is an eigenvalue of T k`1 λ 0 (or equivalently s j `ei5π{4 t k`1 is a characteristic value of T k`1 λ 0 ),
and they have the same multiplicity. One can check that ´e´i5π{4 t ´pk`1q is not an eigenvalue of T. Assertions (4.26) and (4.27) follow.

Step 3: Proof of (4.28). For z P Lpθ, 1q with inf nPZ |θ ´nπ| ą ε 0 and |z| large enough, let τ 1 , ¨¨¨, τ k`1 be the k `1 distinct roots in C of the equation x k`1 " z. Set

η l " λ 0 `τl for 1 ď l ď k `1.
As in the proof of (4.30), one has

T η k`1 ˝¨¨¨˝T η 1 " T k`1 λ 0 ´I ´zT k`1 λ 0 ¯´1 . It follows that T η k`1 ˝¨¨¨˝T η 1 " ´T k`1 λ 0 ¯z.
Consider λ defined by e i 5π 4 t k`1 `λ " z. We have, for large |z|, The proof is complete.

(
Remark 11. Let λ j be an eigenvalue of the transmission problem. Then λ j ´λ and λ j ´λ are the characteristic values of T λ and T λ respectively, provided that T λ and T λ exist. Using (4.23) and applying [2, Theorem 12.4], one can show that the multiplicity of λ j ´λ and the multiplicity of λ j ´λ are the same.

5.

The Weyl law for eigenvalues of the transmission problem -Proof of Theorem 1

5.1. Approximation of the trace of the kernel and their applications. For λ P Lpθ, 1q with θ ‰ nπ for all n P Z, and x 0 P Ω, set (5.1) S j,λ,x 0 :

L 2 pR d q Ñ L 2 pR d q f j Þ Ñ v j ,
where v j P H 1 pR d q is the unique solution of divpA j px 0 q∇v j q ´λΣ j px 0 qv j " Σ j px 0 qf j in R d .

We also define

(5.2) S λ,x 0 : rL 2 pR d qs 2 Ñ rL 2 pR d qs 2 pf 1 , f 2 q Þ Ñ pS 1,λ,x 0 f 1 , S 2,λ,x 0 f 2 q.
One then has S j,λ,x 0 f pxq " ˆRd F j,λ px 0 , x ´yqf j pyqdy, where F j,λ px 0 , zq " ´1 p2πq d ˆRd e izξ Σ j px 0 q ´1xA j px 0 qξ, ξy `λ dξ for z P R d .

By Lemma 1, we get, for 1 ă p ă `8,

(5.3) }∇ 2 S j,λ,x 0 f j } L p pR d q `|λ| 1{2 }∇S j,λ,x 0 f j } L p pR d q `|λ|}S j,λ,x 0 f j } L p pR d q ď C}f j } L p pR d q .
As in the proof of Theorem 3, we obtain from the interpolation inequalities (3.32) and (3.33) that (5.4)

}S λ,x 0 } L p ÑL 8 ď C|λ| ´1`d 2p if p ą d, (5.5 
) }S λ,x 0 } L p ÑL q ď C|λ| ´1`d 2 ´1 p ´1 q ¯if 1 ă p ă d, p ď q ă dp d ´p , (5.6) }S λ,x 0 } L 1 ÑL q ď C|λ| ´1`d 2 ´d 2q if 1 ă q ă d d ´1 .
Let t ą 10Λ 0 and let µ 1 , . . . , µ 2pk`1q be defined in Proposition 2. Set, for z P R d , F j,t px 0 , zq " 1 p2πq d ˆRd e izξ ś 2pk`1q l"1 ´Σj px 0 q ´1xA j px 0 qξ, ξy `µl ¯dξ, (5.7) and define S j,t,x 0 " 2pk`1q ź l"1 S j,µ l ,x 0 . Then S j,t,x 0 f j pxq " ˆRd F j,t px 0 , x ´yqf j pyqdy.

Since, by the definition of µ l and z l , 2pk`1q ź l"1 ´Σj px 0 q ´1xA j px 0 qξ, ξy `µl ¯" 2pk`1q ź l"1 ´Σj px 0 q ´1xA j px 0 qξ, ξy `λ0 `tz l " `Σj px 0 q ´1xA j px 0 qξ, ξy `λ0 ˘2pk`1q ´it 2pk`1q , it follows from (5.7) that F j,t px 0 , zq " 1 p2πq d ˆRd e izξ `Σ´1 j px 0 qxA j px 0 qξ, ξy `λ0 q 2pk`1q ´it 2pk`1q dξ.

(5.8)

As a consequence of (5.8), we obtain, by a change of variables, (5.9) F j,t px 0 , 0q " We next introduce S t,x 0 : rL 2 pR d qs 2 Ñ rL 2 pR d qs 2 by S t,x 0 " S µ 2pk`1q ,x 0 ˝¨¨¨˝S µ 1 ,x 0 , where S µ l ,x 0 " ˆS1,µ l ,x 0 0 0 S 2,µ l ,x 0 ˙.

Set

F t px 0 , ¨q " ˆF1,t px 0 , ¨q 0 0 F 2,t px 0 , ¨q˙. We then have S t,x 0 f pxq " ˆRd F t px 0 , x ´yqf pyqdy.

Let K t denote the kernel corresponding to ś 2pk`1q

l"1

T µ l " T µ 2pk`1q ˝¨¨¨˝T µ 1 .
Here is the main result of this section. The conclusion then follows from (5.10).

The main point of the proof is to establish (5.13). Let ϕ be a function in

C 8 pR d q such that 0 ď ϕ ď 1, ϕ " 1 in B 1 2 and supp ϕ Ă B 1 2 `1 100d
. Let δ 0 ą 0 and x 0 P Ω be such that distpx 0 , BΩq ą δ 0 .

For δ P p0, 10 ´2δ 0 q, set ϕ δ pxq " ϕpδ ´1px ´x0 qq and Φpδ, x 0 q " sup B 10δ px 0 q 2 ÿ j"1 p|A j pxq ´Aj px 0 q| `|Σ j pxq ´Σj px 0 q|q .

The essential ingredient of the analysis is the following estimate, for t ą δ ´4: (5.14) }ϕ 2δ ´Tµ 2pk`1q ˝... ˝Tµ 1 ´St,x 0 ¯ϕδ } L 1 ÑL 8 ď C δ 0 ´Φpδ, x 0 q `δ´1 t ´1{2 ¯t d 2 ´2pk`1q .

We first assume (5.14) and continue the proof. We have ´ϕ2δ ´Tµ 2pk`1q ˝... ˝Tµ 1 ´St,x 0 ¯ϕδ ¯pf qpxq " ϕ 2δ pxq ˆΩ ´Kt px, yq ´Ft px 0 , x ´yq ¯ϕδ pyqf pyqdy.

It follows from (5.14) that, for x, y P Ω and for t ą δ ´4, ˇˇϕ 2δ pxqϕ δ pyq `Kt px, yq ´Ft px 0 , x ´yq ˘ˇˇď C δ 0 ´Φpδ, x 0 q `δ´1 t ´1{2 ¯t d 2 ´2pk`1q .

This implies that, for t ą δ ´4,

(5.15) |trace K t px 0 , x 0 q ´trace F t px 0 , 0q| ď C δ 0 ´Φpδ, x 0 q `δ´1 t ´1{2 ¯t d 2 ´2pk`1q .

Here we used the fact that ϕ 2δ px 0 q " ϕ δ px 0 q " 1. Using Proposition It remains to prove (5.14). We have (5.18) 

ϕ 2δ ´Tµ 2pk`1q ˝¨¨¨˝T µ 1 ´St,x 0 ¯ϕδ " 2pk`1q ÿ l"1
ϕ 2δ ´Tµ 2pk`1q ˝. . . T µ l`1 ˝pT µ l ´Sµ l ,x 0 q ˝Sµ l´1 ,x 0 ¨¨¨˝S µ 1 ,x 0 ¯ϕδ . Fix β 0 " 1 ă β 1 ă ... ă β 2k´1 ă β 2pk`1q " 2 with β l`1 ´βl ą 1{p10dq. Set S µ l ,x 0 ,1 " ϕ β l δ S µ l ,x 0 , and S µ l ,x 0 ,2 " p1 ´ϕβ l δ qS µ l ,x 0 .

Then

`Sµ l´1 ,x 0 ˝¨¨¨˝S µ 1 ,x 0 ˘ϕδ " `pS µ l´1 ,x 0 ,1 `Sµ l´1 ,x 0 ,2 q ˝¨¨¨˝pS µ 1 ,x 0 ,1 `Sµ 1 ,x 0 ,2 q ˘ϕδ . Since ϕ β l´1 δ " ϕ β l δ ϕ β l´1 δ , it follows from (5.18) that

(5.19) ϕ 2δ ´Tµ 2pk`1q ˝¨¨¨˝T µ 1 ´St,x 0 ¯ϕδ " 2pk`1q ÿ l"1 ϕ 2δ ´Tµ 2pk`1q ˝¨¨¨˝T µ l`1 ¯˝ppT µ l ´Sµ l ,x 0 qϕ β l δ q ˝`S µ l´1 ,x 0 ,1 ˝¨¨¨˝S µ 1 ,x 0 ,1 ϕ δ ˘2pk`1q ÿ l"1 ϕ 2δ ´Tµ 2pk`1q ˝¨¨¨˝T µ l`1 ¯˝pT µ l ´Sµ l ,x 0 q˝`S µ l´1 ,x 0 ˝¨¨¨˝S µ 1 ,x 0 ´Sµ l´1 ,x 0 ,1 ˝¨¨¨˝S µ 1 ,x 0 ,1 ˘ϕδ .
Let p 1 " 1 ă p 2 ă ... ă p 2k ă d ă p 2pk`1q ă `8 be such that p l`1 ă p l d{pd ´pl q for 1 ď l ď 2k `1.

Using the exponential decay property: for γ ą 1, r ą 0, y P R d , and for f with supp f Ă B r , it holds, for t ą r ´3{2

(5.20) }S µ l f } L 8 pΩzBγrpyqq ď C γ e ´cγ rt }f } L q pBrpyqq , one has for l " 2, ..., 2pk `2q `1, } pT µ l ´Sµ l ,x 0 q ϕ β l δ } L p l ÑL p l`1 ď C δ 0 ´Φpδ, x 0 q `δ´1 t ´1{2 ¯t´1`d 2 ˆ1 p l ´1 p l`1 ˙. (5.23) Step 1: Proof of (5.22). We will prove the following stronger result, which will be used in the proof of (5.23): for λ P Lpθ, Λ 0 q and sup nPZ |θ ´nπ| ą ε 0 , β P r1, 2s; and for 1 ă p ă d, p ď q ă pd d´p or for d ą p and q " `8:

(5.21) } `Sµ l´1 ,x 0 ¨¨¨˝S µ 1 ,x 0 ˘ϕδ ´`S µ l´1 ,x 0 ,1 ¨¨¨˝S µ 1 ,x 0 ,1 ˘ϕδ } L 1 ÑL p l
(5. [START_REF]Superlensing using complementary media[END_REF] }ϕ βδ pT λ ´Sλ,x 0 q } L p ÑL q ď C δ 0 ,ε 0 ´Φpδ,

x 0 q `|λ| ´1{2 δ ´1¯| λ| ´1`d 2 ´1 p ´1 q ¯.
Denote u " T λ pf q and v " S λ,x 0 f. Set u j,δ " ϕ βδ u j and v j,δ " ϕ βδ v j . Since, in Ω, divpA j ∇u j q ´λΣ j u j " Σ j f j , and divpA j px 0 q∇v j q ´λΣ j px 0 qv j " Σ j px 0 qf j , we have, in Ω, divpA j px 0 q∇u j,δ q ´λΣ j px 0 qu j,δ " f j,δ and divpA j px 0 q∇u j,δ q ´λΣ j px 0 qu j,δ " g j,δ , where f j,δ " r f j,δ `div r F j,δ and g j,δ " r g j,δ `div r G j,δ , with r f j,δ " ϕ βδ Σ j f j `Aj ∇u j ∇ϕ βδ ´λ`Σ j px 0 q ´Σj pxq ˘uj,δ , r F j,δ " u j A j ∇ϕ βδ ``A j px 0 q ´Aj pxq ˘∇u j,δ , r g j,δ " ϕ βδ Σ j px 0 qf j `Aj px 0 q∇v j ∇ϕ βδ , and r G j,δ " v j A j px 0 q∇ϕ βδ . By Theorem 3 and (5.3), we have for 1 ă p ă `8,

(5.25) }∇u} L p pΩq `}∇v} L p pR d q `|λ| 1{2 ´}u} L p pΩq `}v} L p pR d q ¯ď C|λ| ´1 2 }f } L p pΩq .
By Lemma 1, we obtain for 1 ă p ă `8,

(5.26) |λ| 1{2 }∇pu j,δ ´vj,δ q} L p pR d q `|λ|}u j,δ ´vj,δ } L p pR d q ď C ´} r f j,δ ´r g j,δ } L p pR d q `|λ| 1{2 } r F j,δ ´r G j,δ } L p pR d q ¯.
Using (5.25), we derive, for 1 ă p ă `8, that, with u δ " pu 1,δ , u 2,δ q and v δ " pv 1,δ , v 2,δ q, }∇pu δ ´vδ q}

L p pR d q `|λ| 1{2 }u δ ´vδ } L p pR d q ď C δ 0 ´Φpδ, x 0 q `|λ| ´1{2 δ ´1¯| λ| ´1{2 }f } L p pΩq .
By Gagliardo-Nirenberg's interpolation inequalities, one gets that for 1 ă p ă d and p ď q ď dp d´p }u δ ´vδ } L q pR d q ď C δ 0 ´Φpδ,

x 0 q `|λ| ´1{2 δ ´1¯| λ| ´1`d 2 ´1 p ´1 q ¯}f } L p pΩq ,
and for p ą d,

}u δ ´vδ } L 8 pΩq ď C δ 0 ´Φpδ, x 0 q `|λ| ´1{2 δ ´1¯| λ| ´1`d 2p }f } L p pΩq ,
and assertion (5.24) follows.

Step 2: Proof of (5.23). By (4.15),

T ‹ λ ´S‹ λ,x 0 " ˆΣ1 0 0 ´Σ2 ˙pT λ ´Sλ,x 0 q ˆ1{Σ 1 0 0 ´1{Σ 2 ˙,
it follows that by (5.24), for λ P Lpθ, Λ 0 q with sup nPZ |θ ´nπ| ą ε 0 , β P r1, 2s; and for 1 ă p ă d, p ď q ă pd d´p or for d ą p and q " `8:

}ϕ βδ `T λ ´Sλ ,x 0 ˘}L p ÑL q ď C δ 0 ,ε 0 ´Φpδ, x 0 q `|λ| ´1{2 δ ´1¯| λ| ´1`d 2 ´1 p ´1 q ¯, which implies } pT λ ´Sλ,x 0 q ϕ βδ } L q q´1 ÑL p p´1 ď C δ 0 ,ε 0 ´Φpδ, x 0 q `|λ| ´1{2 δ ´1¯| λ| ´1`d 2 ´q´1 q ´p´1 p ¯. (5.27)
This gives (5.23). The proof is complete.

As a consequence of Proposition 2 and Proposition 3, we obtain Corollary 3. We have

ÿ j 1 | r λ j | 2pk`1q ´it 2pk`1q " ĉt d 2 ´2pk`1q `opt d 2 ´2pk`1q q as t Ñ 8,
where each characteristic value r λ j of T λ 0 is repeated a number of times equal to its multiplicity, and ĉ is defined by (5.12).

Proof. By Propositions 2 and 3, and (4.12) in Lemma 4, we have

ÿ j 1 r λ 2pk`1q j ´it 2pk`1q " ĉt d 2 ´2pk`1q `opt d 2 ´2pk`1q q as t Ñ 8.
For j 0 P N large and for t ě 2| r λ j 0 |, we have (5.28) Here in the last identity, an integration by parts is used. We therefore have c " 1 p2πq d ÿ j"1,2 ˆΩ ˇˇ!ξ : xA j pxqξ, ξy ă Σ j pxq )ˇˇˇd

ˇˇˇˇ8 ÿ j"1 1 r λ 2pk`1q j ´t2pk`1q i ´8 ÿ j"1 1 | r λ j | 2pk`1q ´t2pk`1q i ˇˇˇď j 0 ÿ j"1 1 | r λ 2pk`1q j ´t2pk`1q i| `1 ˇˇ| r λ j | 2pk`1q ´t2pk`1q i ˇ8 ÿ j"j 0 `1 C| r λ j | 2k`1 | r λ j | | r λ 2pk`1q j ´t2pk`1q i| ˇˇ| r λ j | 2pk`
x.

The proof is complete.

Completeness of generalized eigenfunctions of the transmission problem -Proof of Theorem 2

Fix ε 0 ą 0. For z P Lpθ, 1q with inf nPZ |θ ´nπ| ą ε 0 and |z| large enough, let τ 1 , ¨¨¨, τ k`1 with k " k d " rd{2s be the k `1 distinct roots in C of the equation x k`1 " z. Set η l " λ 0 `τl for 1 ď l ď k `1.

As in the proof of (4.30), one has

T η k`1 ˝¨¨¨˝T η 1 " T k`1 λ 0 ´I ´zT k`1 λ 0 ¯´1 .
It follows that T η k`1 ˝¨¨¨˝T η 1 " ´T k`1 λ 0 ¯z. Since T k`1 λ 0 is a Hilbert-Schmidt operator, it follows from [2, Theorem 16.4] that:

1) the space spanned by the general eigenfunctions of T k`1 λ 0 is equal to RpT k`1 λ 0 q, the closure of the range of T k`1 λ 0 with respect to the L 2 -topology. On the other hand, we have 2) the range RpT k`1 λ 0 q of T k`1 λ 0 is dense in rL 2 pΩqs 2 , since RpT λ 0 q is dense in rL 2 pΩqs 2 and T λ 0 is continuous, 3) the space spanned by the general eigenfunctions of T k`1 λ 0 associated to the non-zero eigenvalues of T k`1 λ 0 is equal to the space spanned by the general eigenfunctions of T λ 0 associated to the non-zero eigenvalues of T λ 0 . This can be done as in the last part of the proof of [2, Theorem 16.5]. Consequently, the space spanned by all generalized eigenfunctions of T k`1 λ 0 is equal to the space spanned by all generalized eigenfunctions of T λ 0 .

The conclusion now follows from 1), 2), and 3).
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  `and v " ϕ on R d 0 for γ ą 0. It follows that, see e.g. [3, Theorem 3.3], we have (3.23) }g} L p pR d `q ď C}ϕ} 9 W 1{p´1,p pR d´1 q . Combining (3.22) and (3.23) yields (3.24)

3 )

 3 and establish (3.4) -(3.7). It is clear that(3.4) is a consequence of Corollary 1 and Corollary 2. We next deal with (3.5) and(3.6). By Gagliardo-Nirenberg's interpolation inequalities[START_REF] Gagliardo | Ulteriori proprietà di alcune classi di funzioni in più variabili[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF], if p ą d and u P W 1,p pΩq, then u P CpΩq and (3.32) }u} L 8 pΩq ď C}u} d p W 1,p pΩq }u} 1´d p L p pΩq ,

˝Tµ 1 ,

 1 and (4.25) follows.

  .12) ˇˇxA 2 e d , e d yxA 2 ξ, ξy ´xA 2 e d , ξy 2 ´xA 1 e d , e d yxA 1 ξ, ξy ´xA 1 e d , ξy 2 ˇˇě Λ ´1|ξ| 2 @ ξ P P,

where P " ξ P R d ; xξ, e d y " 0 ( , and

  PrL 2 pΩqs 2 ;}f } L p pΩq ď1 2p }g} L 1 pΩq }f } L p pΩq .

				|xu, f y|,
	and			
		xu, f y " xT λ pgq, f y " xg, T λ pf qy.
	One can check that			
	(3.34)	T λ "	ˆ1 0 0 ´1˙T λ	ˆ1 0 0 ´1˙.
	It follows that			
	|xu, f y| ď }g} L 1 pΩq }Tλpf q} L 8 pΩq ´1`d Assertion (3.7) follows. (3.6) ď C|λ|

  and 12.19], such that pTuqpxq " xKpx, .q, uy for a.e. x P Ω, for all u P rL 2 pΩqs m . Let d ě 2, m P N, and T : rL 2 pΩqs m Ñ rL 2 pΩqs m be such that Tpφq P Cp Ωq for ϕ P rL 2 pΩqs m , and(4.6) }Tpφq} L 8 pΩq ď M }φ} L 2 pΩq ,for some M ě 0. Then T is a Hilbert-Schmidt operator,

	Lemma 3. ~T~ď C m |Ω| 1{2 M, (4.7)
	and the kernel K of T satisfies			
	(4.8)	sup xPΩ ˆˆΩ	|Kpx, yq| 2 dy	˙1{2	ď C m |Ω| 1{2 M.
	Assume in addition that				
	(4.9)	}Tpφq} L 8 pΩq ď Ă M ||φ|| L 1 pΩq for φ P rL 2 pΩqs m ,
	for some Ă M ě 0, then the kernel K of T satisfies	
	(4.10)	|Kpx, yq| ď Ă M @x, y P Ω.
	(4.4)				
	Moreover,		ΩˆΩ		
	(4.5)	~T~2 "	|Kpx, yq| 2 dx dy.
	We have				

Note that [2, Theorems 2.18 and 12.19] state for m " 1, nevertheless, the same arguments hold for m P N.

  Remark 8. Using (4.11), one can check that ˆΩ |Kpx, xq| dx ď ˆΩ |K 1 px, zq||K 2 pz, xq| dz dx ď }K 1 } L 2 pΩˆΩq }K 2 } L 2 pΩˆΩq .

  Clearly, (4.16) -(4.18) follow from (3.5) -(3.7). Fix p 1 " 2 ă p 2 ă ... ă p k ă p k`1 ă `8 with p k`1 ą d and p j ă

	dp j´1 d´p j´1 . By (4.16) and (4.17), we obtain

˝Tλ 1 is Hilbert-Schmidt, and

(4.19) k`1 ź j"1 T λ j ď Ct d Proof.

  ˆΩ trace K t px, xqdx " ˆΩ trace F t px, 0qdx `opt

	Proposition 3. We have (5.11) ˆΩ trace K t px, xqdx " ĉt	d 2 ´2pk`1q `opt	d 2 ´2pk`1q q as t Ñ 8,
	where						
	(5.12)	ĉ "	1 p2πq d	2 ÿ j"1	ˆΩ	ˆRd	1 j pxqxA j pxqξ, ξyq 2pk`1q ´i dξ dx. `Σ´1
	Proof. We claim that					
	(5.13)							d 2 ´2pk`1q q as t Ñ 8.

  `1 ď Ce ´cδt .Combining(5.19)-(5.21), and using (4.16)-(4.18) for T µ l , and (5.4)-(5.6) for S µ l , it suffices to prove that(5.22) }ϕ 2δ ´Tµ 2pk`1q ´Sµ 2pk`1q ,x 0 ¯}L p 2pk`1q ÑL 8 ď C δ 0 ´Φpδ, x 0 q `t´1{2 δ

	´1¯t ´1`d 2p 2pk`1q ,
	and for l " 1, 2, ..., 2k `1,

  Proof of Theorem 1. Before giving the proof of Theorem 1, we recall a Tauberian theorem of Hardy and Littlewood, see e.g. [44, Theorem 2a] or [2, Theorem 14.5].Lemma 5. Let σpsq be a non-decreasing function for s ą 0, let a P p0, 1q and P ě 0. Then, as t Ñ 8, ˆ8 0 dσpsq s `t " P t a´1 `˝pt a´1 q, if and only, as s Ñ 8, σpsq " P a ´8 0 t a´1 p1 `tq ´1dt s a `˝ps a q.pΣ j pxq ´1xA j pxqξ, ξyq 2pk`1q ´i dξdx.pΣ j pxq ´1xA j pxqξ, ξyq 4pk`1q `1 dξdx.This implies, by replacing t 4pk`1q by t, Since r λ j " λ j ´λ0 , one obtainsWe have, by Fubini's theorem, ˆRd 1 pΣ j pxq ´1xA j pxqξ, ξyq 4pk`1q `1 dξ " ˆ8 0 ˇˇ!ξ : pΣ j pxq ´1xA j pxqξ, ξyq 4pk`1q ă t )ˇˇˇd t pt `1q 2 . Since ˇˇ!ξ : pΣ j pxq ´1xA j pxqξ, ξyq 4pk`1q ă t )ˇˇˇ" t

	By [2, Theorem 12.14] and Theorem 3, we have
	(5.29)		8 ÿ j"1	8 ÿ jěj 0 |λ j | 4pk`1q `t " ĉ1 t p| r λ j | `|t|q ´2pk`1q ď C~T k`1 ´it ~2, 1 d 8pk`1q ´1 `opt d 8pk`1q ´1q as t Ñ `8.
	and by Proposition 1, we obtain We can write this identity under the form
	(5.30) Since, by Theorem 3, ˆ8 0	1 4pk`1q q `t dN ps s	~T´it ~2 ď Ct " ĉ1 t d 8pk`1q ´1 `opt d 2 ´2pk`1q . d 8pk`1q ´1q as t Ñ 8.
	By Lemma 5, one has (5.32)				˜sup jěj 0	| r λ j | | r λ j | N ptq " ct ¸Ñ 0 as j 0 Ñ `8, d 2 `˝pt d 2 q,
	it follows from (5.28), (5.29), and (5.30) that ˇˇˇˇ8 ÿ j"1 1 r λ 2pk`1q j ´t2pk`1q i ´8 ÿ j"1 | r λ j | 2pk`1q ´t2pk`1q i 1 where c " ĉ1 d 8pk`1q ´8 0 t d 8pk`1q ´1p1 `tq ´1dt ˇˇˇˇ" ˝p1qt .	d 2 ´2pk`1q as t Ñ 8.
	The proof is complete.			
	5.2. We are ready to give			)ˇˇˇˆ8 0 )ˇˇˇd 8pk `1q ˆ8 0 t d 8pk`1q dt pt `1q 2	t
	Proof of Theorem 1. We have, by Corollary 3,
		8 ÿ j"1	1 λ j | 2pk`1q ´t2pk`1q i | r	" ĉt	d 2 ´2pk`1q `opt
	(5.31)		ĉ "	1 p2πq d	ˆΩ ÿ j"1,2 ˆRd	1
	Considering the imaginary part yields,
		8 ÿ j"1	t 2pk`1q λ j | 4pk`1q `t4pk`1q | r	" ĉ1 t	d 2 ´2pk`1q `opt	d 2 ´2pk`1q q as t Ñ `8,
	where	ĉ1 " pĉq "	1 p2πq d	ˆΩ ÿ j"1,2 ˆRd	1q ´t2pk`1q i 1	ˇď
			8 ÿ j"1	1 λ j | 4pk`1q `t " ĉ1 t | r	2j 0 t ´2pk`1q `˜sup jěj 0 8pk`1q ´1 `opt d	| r λ j | | r λ j |	¸8 ÿ j"j 0 `1	1 λ j | `tq 2pk`1q p| r	.

d 2 ´2pk`1q q as t Ñ 8, where ĉ is given by (5.12): d 8pk`1q ´1q as t Ñ `8. d 8pk`1q ˇˇ!ξ : xA j pxqξ, ξy ă Σ j pxq )ˇˇˇ, it follows that ˆRd 1 pΣ j pxq ´1xA j pxqξ, ξyq 4pk`1q `1 dξ " ˇˇ!ξ : xA j pxqξ, ξy ă Σ j pxq " ˇˇ!ξ : xA j pxqξ, ξy ă Σ j pxq d 8pk`1q ´1p1 `tq ´1dt.

Note that [2, Theorems

2.21] states for m " 1, nevertheless, the same arguments hold for m P N.