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I. INTRODUCTION

Since the pioneering work of Mie [1] and Ritchie [2], there has been a vast amount of research effort to investigate the
electromagnetic (EM) properties of metal/dielectric interfaces (seee.g[3–6] and references therein). Surface plasmon polaritons
(SPPs) can show strong coupling to light and have wavelengthof only a few tens of nanometers, hence beating the classical
diffraction limit [7, 8]. In particular, localized surfaceplasmons (LSPs) can be excited in a metal particle and give rise to
a local enhancement of the EM field. In the literature, the maximization of the field enhancement is generally obtained by
combining the strong overall resonance of the plasmonic structure with very small and sharp geometric features where hot
spots arise. Following this principle, several plasmonic structures have been investigated, such that triangles/squares with sharp
corners [9, 10], nanoparticle dimers [10–24], crescent-shaped nanoparticles [25–32] or nanoshells [33–38]. The significant field
enhancement, that such structures may provide, has drawn a considerable attention in surface enhanced Raman spectroscopy
[16, 25, 39–42] or enhanced fluorescent emission [43, 44]. Until now, the theoretical description of the optical response of such
structures has remained a challenge: numerical simulations are generally performed and few qualitative arguments areproposed
to explain these numerical results. An elegant physical picture to describe the interaction of LSPs in dimers or nanoshells is the
plasmon hybridization model [15, 36]. In analogy with molecular orbital theory, the dimer plasmons can be viewed as bonding
and antibonding combinations of the individual nanoparticle plasmons. However, albeit elegant, the plasmon hybridization
picture is a limited tool: numerical simulations are still needed to calculate the optical response of a dimer. Another severe
challenge for potential applications lies in the spectrum bandwidth over which plasmonic particles can efficiently operate. Indeed,
small devices tend to be efficient collectors at just a few resonant frequencies, contrary to an infinite structure that naturally
shows a broadband spectrum [6]. Nevertheless, transformation optics (TO) can take up this challenge by leading to the design
of broadband plasmonic nanostructures acting as strong field concentrators [45].

TO has been used as a tool in electromagnetic design for some time [46–48] and has drawn considerable attention in the last
six years sparked by the seminal works of Leonhardt [49] and Pendry [50]. Whereas the Leonhardt approach approximates
Maxwell’s equations by the Helmhotz equation which is restricted to the far field, the latter approach is exact at the level of
Maxwell’s equations and can be deployed to treat both near and far fields, and has even been applied to static fields. In this
review we are concerned with near field applications.

The paths of EM waves can be controlled by devising a materialwhose constitutive parameters should vary spatially in a way
prescribed by coordinate transformations. Various applications have been proposed and implemented experimentally,among
which the famous EM cloak [51–56]. This strategy has been recently extended to plasmonics [57–64]. At visible and infrared
frequencies, most of the energy of SPPs is contained in the dielectric layer adjacent to the metal slab. Hence, by devising the
optical parameters of the dielectric placed on top of a metalsurface, one can design plasmonic devices capable of different
functionalities such as beam shifting, waveguide bending,cloaking or focusing. Following this strategy, plasmonic Luneburg
and Eaton lenses have been implemented experimentally at optical frequencies [60]. The carpet-cloak concept [52] has also been
extended to plasmonics and tested experimentally in the visible regime [59, 64].

In a series of papers [45, 65–76], an alternative strategy based on TO has been proposed for plasmonics. It consists in designing
and studying analytically plasmonic devices capable of

• an efficient harvesting of light over a broadband spectrum both in the visible and the near infrared regimes

• a strong far-field to near-field conversion of energy, leading to a considerable field confinement and enhancement.

The strategy is as follows: start with an infinite plasmonic system that naturally shows a broadband spectrum and then apply a
mathematical transformation that converts the infinite structure into a finite one while preserving the spectrum [45]. TO provides
us with a very general set of transformations but here we shall concentrate on a specific subset: the conformal transformations
(CT) [77]. Both the electrostatic potentials and the material permittivity are preserved under 2D conformal mapping. Hence, it
does not require the delicate design of a metamaterial with aspatial variation in its constitutive parameters. Note that conformal
mapping has also been used in the past to study the electrostatic interaction between dielectric or metallic particles in the context
of effective medium theory [78–82]. Following the CT strategy, various broadband plasmonic structures have been designed and
studied analytically, such as 2D crescents [65, 71], kissing nanowires [70], touching spheres [67], groove/wedge-like plasmonic
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structures [65], nanoparticle dimers [66, 73] or rough surfaces[75]. All these structures have in common to display geometrical
singularities that allow simultaneously a broadband interaction with the incoming light as well as a spectacular nanofocusing of
its energy.

Despite the power and elegance of the CT approach, one could claim that these theoretical predictions will be difficult to
retrieve experimentally. First, the singular structures derived from the CT approach will suffer from inevitable imperfections
due to the nanofabrication process. This issue has been solved in a recent paper [68]. Blunt-ended nanostructures can also be
derivedviaCT and the possibility of designing devices with an absorption property insensitive to the geometry bluntness has been
demonstrated. Second, the CT approach relies on the quasi-static approximation. Its range of application should be restricted
to plasmonic devices whose dimension is at least one order ofmagnitude smaller than the wavelength (typically 40 nm in the
optical regime). However, a conformal map of radiative losses allows to go beyond the electrostatic approximation and extend
the range of validity of the CT approach until a nanostructure dimension of 200 nm [72]. The third potential limitation ofthe
CT approach is non-locality. The spatial extent of the EM fields in singular structures is comparable to the Coulomb screening
length in noble metals, hence non-local effects can be important in the vicinity of the structure singularity. A recent study has
shown how non-locality can be taken into account by conformal mapping [69]. A conpromise can be found between radiative
losses and non-local effects by adjusting the nanostructure dimension such that the absorption band width and field enhancement
capabilities of the nanostructure are maximized.

In this chapter, we review the main designs provided by the CTapproach and present the corresponding analytical predictions.
The first section presents the general strategy and the threefamilies of nanostructures that one can derivevia conformal mapping:
the perfectly singular plasmonic devices, the singular nanostructures and the resonant ones. In Sec.III and IV, the broadband
light harvesting and nanofocusing properties of singular structures are investigated. The vertex angle, which characterizes the
strength of the singularity, is shown to be a key parameter. The conformal picture also provides novel physical insightson
the formation of hot spots in the vicinity of the structure singularities. The issue of the nanostructure bluntness willalso be
addressed. The fourth section is dedicated to resonant nanostructures. The plasmonic hybridization model is revisited with TO
and a full-analytical solution is provided for 2D nanostructures. In Sec.VI, we show how to take into account radiative losses
in the CT approach. Besides being capable to predict analytically the optical properties of nanostrutures until a dimension of
200 nm, the fluorescence enhancement of a molecule as well as its quantum yield can be predicted analytically in the vicinity of
complex nanostructures. At last, the CT strategy is refined to investigate the impact that non-locality has on the optical properties
of plasmonic nanostructures.

II. THE CONFORMAL TRANSFORMATION APPROACH

A conformal map is an analytic transformationz′ = f(z) that preserves local angles [77]. If we consider an analyticfunction
φ(z) in the complex plane withz = x+ iy, it will satisfy

∂2φ

∂x2
+

∂2φ

∂y2
= 0 (1)

If we now make a coordinate transformationz′ = x′+ iy′ = f(z), φ(z′) also satisfies the Laplace equation in the new coordinate
system:

∂2φ

∂x′2
+

∂2φ

∂y′2
= 0 (2)

provided that the transformation is everywhere analytic inthe region under consideration. Hence, in 2D electrostatics, a CT
preserves the potential in each coordinate system:

φ(x, y) = φ′(x′, y′) (3)

Moreover, the continuities of the tangential component of the electric fieldE|| and of the normal component of the displacement
currentD⊥ = ǫE⊥ across a boundary are also conserved due to the preservationof local angles. Thus, the permittivity of each
material is the same in each geometry:

ǫ(x, y) = ǫ(x′, y′) (4)

On the one hand, the CT approach allows a tractable analytical study of complex structures, in contrast with full-wave coordinate
transformations that generally imply strong spatial variations and anisotropy for the constitutive parameters. On the other hand,
the CT approach is only valid in the quasi-static approximation: the plasmonic structures that we will deduce by conformal
mapping should be one order of magnitude smaller than the wavelength. However, we will show in Sec.VI how to go beyond
the quasi-static limit and take into account radiative losses in the CT picture.
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The strategy of our approach is as follows: start with an infinite plasmonic system that generally shows a broadband spectrum
and apply a mathematical transformation that converts the infinite structure into a finite one whilst preserving the spectrum.
We will start by describing a set of canonic structures easily tractable analytically on which we will then apply an ensemble of
transformations.

A. A set of canonic plasmonic structures

The set of infinite plasmonic structures displayed in Fig.1 correspond to the initial geometries used for the CT approach.
Fig.1(a) and (b) correspond to the classical insulator-metal-insulator (IMI) and metal-insulator-metal (MIM) structures widely
studied in plasmonics [5]. A 2D dipole pumps energy into the SP modes of the metallic slab(s) that transport the energy out
to infinity. Although the SP spectrum of a plane surface is degenerate atωsp, the SP frequency, in a thin slab, hybridization
of SPs on opposing surfaces creates a continuous spectrum with a lower bound at zero frequency and an upper bound at the
bulk plasma frequencyωp. Conformal mapping of such structures will give rise to a setof perfectly singular metallic structures
(kissing nanowires, 2D crescent with touching tipsetc.) capable of an efficient harvesting and a strong nanofocusing of light
over a broadband spectrum [45] (see Sec.II B).

FIG. 1: A set of canonical structures. A thin layer of metal (a) and two semi-infinite metallic slabs separated by a thin dielectric film (b) support
SPs that couple to a 2D dipole source, transporting its energy to infinity. (c)-(d) An infinite and periodic stack of metallic slabs separated by
dielectric layers can support hybridized SPs excited by an array of line dipoles. (e)-(f) The SP modes of the IMI and MIM structures are now
excited by an array of 2D dipoles.

The CT is not only dedicated to the design of broadband plasmonic nanostructures. It can also generate resonant nanostructures.
To that aim, an array of 2D dipoles can be used to excite SPs in IMI and MIM geometries (see Fig.1(e)-(f)). In that case, SPs
can only be excited at certain resonant frequencies fixed by the pitch of the dipole array. Such a structure will give rise after
conformal mapping to resonant nanostructures, such as metallic dimers [10–13, 15, 17, 18, 20–22, 24], 2D nanoshells [33–38]
or a nanowire placed on top of metal plate [39, 42, 83–85], that have been widely studied both numerically and experimentally
in plasmonics (see Sec.II D).

At last, more exotic structures can be studied like the one shown in Fig.1(c)-(d). A periodic and infinite stack of metallic
slabs supports hybridized SPs over a broadband spectrum. The latter ones are excited by an infinite array of dipoles placed
between each metallic slab. This geometry is unrealistic experimentally but can be transformed by conformal mapping into tips
or wedge-like structures [86–88], common in plasmonics, but also to finite nanostructures such as 2D open crescents [25–32]
or overlapping nanowires [14, 18, 19] (see Sec.II C). The propagation of SPs along rough metal surfaces [89–91] can also be
investigated through a conformal map of the structures shown in Fig.1(c)-(d).

B. Perfect singular structures

Our canonical system is a line dipole that can be located neara thin layer of metal (Fig.2(a)) or between two semi-infinite
metal slabs (Fig.2(d)). In the following of the study, the metal permittivity is denoted asǫ and the dielectric permittivityǫd is
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fixed arbitrarily to 1. Now apply the following CT:

z′ =
g2

z
(5)

wherez = x+ iy andz′ = x′+ iy′ are the usual complex number notations andg is an arbitrary length scale constant. Obviously
all points at infinity inz translate to the origin inz′ and planes translate into cylinders. Hence the resulting structures are a 2D
crescent with touching tips (Fig.2(b)) and two kissing cylinders (Fig.2(e)).

FIG. 2: (a) A thin layer of metal supports SPs that couple to a line dipole. (b) The latter structure is mapped onto a crescent-shaped nanowire
illuminated by a uniform electric field following an inverse transformation of Eq.5. (c) If the dipole is placed on the metallic surface in the
original frame (a = 0), the inversion map of Eq.5 leads to a semi-infinite metal slab with a hole drilledjust below its surface. (d) Two
semi-infinite metallic slabs separated by a thin dielectric film support SPs excited by a 2D dipole source. (e) The latter structure is mapped
with Eq.5 onto two kissing nanowires illuminated by a uniform electric field. (f)If the dipole is placed at the surface of one of the metal plates
in the initial geometry, the transformed structure is a nanowire placed just on top of a metal plate.

For the crescent, we define a key parameterρ which is the ratio between the inner and outer diameters of the crescent,Di

andDo respectively (ρ = Di/Do). Note that, if the line dipole is placed on the surface of themetal plate in the initial frames
(Fig.2(a)-(d)), the resulting asymptotic structures are acylindric hole drilled just below the surface of a metallic slab (Fig.2(e))
and a nanowire placed on top of a metal film (Fig.2(f)).

Transformation of the dipole is equally interesting - see Fig.2. We have chosen the origin of our inversion at the center of the
dipole. Thus the two charges comprising the dipole, very close to the origin inz, translate to near infinity inz′, which gives
rise to a uniform electric fieldE′

0 in the transformed geometry. To prove it more rigorously, one can first express the incident
potential due to the dipole∆ = ∆xux +∆yuy in the slab geometry,

φ0(x, y) = − 1

2πǫ0

∆xx+∆yy

x2 + y2
= − 1

2πǫ0
Re

{

∆

z

}

(6)

with ∆ = ∆x + i∆y the complex notation applied to the dipole moment∆. The incident potential is preserved under the CT
(φ0(z) = φ′

0(z
′)), which yields the following expression for the incident potential in the transformed geometry,

φ′
0(z

′) = − 1

2πǫ0g2
Re

{

∆z′
}

(7)

This incident potential can be related to a uniform electricfield,E′
0 = −∇φ′

0, such that

E′
0 =

1

2πǫ0

∆xux −∆yuy

g2
, (8)

with ux′ anduy′ the unitary vectors along the axis(Ox′) and(Oy′). This confirms our previous intuition that the dipole∆
should map to a uniform electric fieldE′

0. As we assume that the dimensions of the crescent and the kissing cylinders are small
compared to the wavelength, the SP modes are well described in the near field approximation. The uniform electric field can
then be taken as due to an incident plane wave of polarizationE′

0.
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The mathematics of CT closely links the physics at work in each of the very different geometries. Solving the relatively
tractable slab problems solves the crescent and kissing cylinders problems. In particular, the dispersion relation ofthe SP modes
supported by IMI and MIM structures under the near-field approximation can be transposed to all the transformed geometries.
The dispersion of the excitations can be derived from the following condition [70, 71]:

e2|k|a2 −
(

ǫ− 1

ǫ+ 1

)2

= 0 (9)

The dispersion relation is thus given by,

ka2 = α =







ln
(

ǫ−1
ǫ+1

)

, if Re[ǫ] < −1

ln
(

1−ǫ
ǫ+1

)

, if − 1 < Re[ǫ] < 1
(10)

with k the wavenumber of the SP modes. The dispersion relation is shown in Fig.3. The metal is assumed to be silver with
a SP frequencyωsp = 3.67 eV and permittivity taken from Johnson and Christy [92]. Thespectrum of modes is continuous

FIG. 3: Dispersion relation for IMI and MIM plasmonic structures shownin Fig.2(a) and (d).

with a lower bound at zero frequency and an upper bound at the bulk plasma frequencyωp. At the SP frequencyωsp, there
is a singularity where the symmetry of the potential modes switches from antisymmetric to symmetric. Fig.3 indicate that the
symmetric mode (namely, the SP excitation above the surfaceplasma frequency) is relatively narrow-band compared to the
antisymmetric mode. Therefore, in the following of this review, we shall focus on the frequency range below the surface plasma
frequencyωsp.

In Fig.2(a)-(d), the dipole pumps energy into the SP modes ofthe metallic slab(s) which transport the energy out to infinity
without reflection. The same modes are excited in the crescent and the kissing cylinders by the incident electric fieldE′

0 (Eq.8).
Since we make the near field approximation all dimensions areless than the wavelength but the changed geometry means that
the excited modes have a net dipole moment. This provides coupling to the external field. Transformation of the modes tells us
that in the crescent, modes are excited mainly at the fat partof the crescent and propagate around to the claws in an adiabatic
fashion (Fig.2(c)). Similarly, the plasmon modes propagate along the surface of the kissing cylinders towards the touching point
(Fig.2(e)). As SPs propagate towards the structure singularity, their wavelength shortens and velocity decreases in proportion.
Just as modes excited in the original slab never reach infinity in a finite time, modes excited in the crescent or in kissing
cylinders never reach the tips or the touching point. In an ideal lossless metal, energy accumulates towards the singularity,
its density increasing with time without bound. In practicefinite loss will resolve the situation leading to a balance between
energy accumulation and dissipation. The harvesting and nanofocusing properties of the 2D crescent and kissing nanowires will
be described in more details in Sec.III. The physics described until now is similar for the two asymptotic structures shown in
Fig.2(c) and (f). The system consisting in a nanowire placedon top of a metal plate is investigated in details in Ref.[70].

Solving the 2D problem is interesting but quite restrictivein terms of applications. One can wonder if similar broadband and
nanofocusing properties can be observed with 3D nanostructures like kissing spheres or a 3D crescent. This extension to3D has
been performed by A. Fernández-Doḿınguezet al., using coordinate transformation [67]. Starting this timefrom the desired
geometry, a dimer of kissing spheres (see Fig.4), the following 3D inversion can be applied

r′ =
g2

|r|2
r (11)

wherer andr′ are the position vectors in the transformed and original space, respectively. Eq.11 transforms the spheres into two
semi-infinite slabs. In contrast to 2D conformal mapping, the 3D inversion also acts on the material properties of the system.
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FIG. 4: Figure courtesy of Antonio Fernández-Doḿınguez [67]: Transformation used to solve the kissing spheres problem. (a) Two metal
nanospheres of radiiR1 andR2 touching at a single point. (b) Slab geometry with the illumination and permittivitiesobtained from the
inversion of the kissing nanospheres.

TO determines that the transformed slabs are not filled with aconventional metal, but with a modified material having a spatially
dependent dielectric function of the formǫ′(r′) = ǫg2/r′2 and that the relative permittivity between them isǫ′v(r

′) = g2/r′2.
Fig.4(b) describes the geometry and the permittivity distribution obtained from the inversion of Fig.4(a).

Albeit more difficult to solve analytically, the 3D problem is actually very close to the 2D problem in terms of physics [67].
The SP propagate along the surface of the two kissing spherestowards the touching point. As they approach the structure
singularity, their velocity decreases, which leads to an accumulation of energy. Actually, the nanofocusing performance is even
better since the energy is focused onto a single point in 3D instead of a line in 2D. The system also displays a continuous spectrum
with a lower bound at zero frequency and an upper bound at the bulk plasma frequency. The light absorption and nanofocusing
properties of the kissing spheres will be described in more details in Sec.III C.

C. Singular plasmonic structures

1. Conformal mapping of singular structures

A more systematic study of singularities in plasmonics is now presented and relies on the work made by Y. Luoet al. [65].
The mothersystem is more complex than in the previous subsection (Fig.5(a) and (b)). It consists in an array of 2D dipoles
located atz = i2πmd (with m an integer) embedded into a periodic stack of infinite metallic films. Each element of the dipole
array is assumed to have a dipole moment∆. The total incident fieldφ0 is given by:

φ0(z) = − 1

2πǫ0
Re

{

m=+∞
∑

m=−∞

∆

z − i2πmd

}

(12)

Now apply the following exponential transformation

w = d exp
(z

d

)

(13)

wherew = u+ iv is the complex number notation. This CT maps lines parallel to they−axis of the original coordinate system
to circles centered around the origin in thew−plane. A metallic wedge (Fig.5(c)) and a V-shaped metallic groove (Fig.5(d)) are
thus obtained. A geometric singularity is created at the origin by the exponential map. The vertex angle of the wedge and the
groove is denoted asθ. As to the transformation of the source, the conservation ofthe incident potential (φ0(z) = φ′

0(w)) leads
to:

φ′
0(w) = − 1

2πǫ0
Re

{

m=+∞
∑

m=−∞

∆

d ln(w/d)

}

(14)

Expanding the field about its singularity (w = d) leads to

φ′
0(w) = − 1

2πǫ0
Re

{

∆

w − d

}

(15)

(16)
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Hence, the line dipole array is mapped to a single line dipoleof same strength∆ located atw = d.

FIG. 5: (a),(b) Periodic metallic thin films support SPs that couple to a dipole array. The exponential map (Eq.13) transforms these two
structures into a metallic wedge (c) and a V-shaped metallic groove (d). The array of dipoles is transformed into a single dipole of same strength
∆ located atw = d (Eq.15). Finally, under the inversion mapping (Eq.17), the wedge/groove-like structures are converted to a metallic open
crescent (e) and to overlapping nanowires (f). The dipole is mapped toa uniformed electric fieldE′

0. In the particular case of a dipole placed
along the metal wedge or groove, the transformed structures become acylindrical groove engraved onto a metal surface (e) and a cylindrical
protrusion partly embedded in a metal surface (f).

A new CT can be applied to the metallic groove and wedge. It consists in an inverse transformation about the dipole location:

z′ =
g2

w − d
(17)

On the one hand, this transformation maps the groove to an open crescent-shaped structure in the general case and asymptotically
to a cylindrical groove engraved onto a metal surface (convex rough surface, see Fig.5(e)). On the other hand, the inversion
map of the wedge gives rise to overlapping nanowires in the general case and asymptotically to a cylindrical protrusion partly
embedded in a metal surface (concave rough surface, see Fig.5(f)). In both cases, the dipole is transformed into a uniform electric
fieldE′

0 that we shall take as due to incident plane wave (Eq.8).
All the structures shown in Fig.5 share the sameDNA. In particular, the singular structures derived in Fig.5(c)-(f) are

characterized by the same vertex angleθ. Note that theperfectsingular structures previously described in Sec.II B (Fig.2)
constitute a particular case of the singular nanostructures under study with a vertex angleθ = 0. The behavior of SPs in
singular structures can be deduced from themothersystems (Figs.5(a)-(b)). In particular, the dispersion relation of the SP modes
supported by the initial system can be transposed to all the transformed geometries. This dispersion relation is definedby the
following equation [65]:

(

ǫ− 1

ǫ+ 1

)2
[

e(2π−θ)|k|d − eθ|k|d
]2

−
[

e2π|k|d − 1
]2

= 0 (18)

Although, this relation is not tractable analytically, it can be solved recursively. The result is shown in Fig.6(a). The metal is
still assumed to be silver [92]. The plasmonic system is shown to support a continuous spectrum of bounded SP modes with
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symmetric and antisymmetric profiles of the tangential fieldEx. The symmetric (or even) mode spans the frequency range
[ωc, ωsp], while the antisymmetric (or odd) mode spans the range[ωsp, ω

′
c]. ωc andω′

c are the lower and upper bound cutoff
frequencies determined by the following conditions:

Re{ǫ(ωc)} =
θ − 2π

θ
, Re{ǫ(ω′

c)} =
θ

θ − 2π
(19)

Although the dispersion relation cannot be solved analytically, two asymptotic solutions can be derived [73]:

kdθ =

√

3(ǫ− ǫc)

ǫ− ǫ3c
, for Re{ǫ} → ǫc (20)

kdθ =
1

2
ln

(

ǫ− 1

ǫ+ 1

)

, for

∣

∣

∣

∣

ln

(

ǫ− 1

ǫ+ 1

)∣

∣

∣

∣

>> −ǫ−1
c (21)

These two asymptotes are superimposed to the dispersion relation in Fig.6(a).

FIG. 6: (a) Dispersion relation of the SP modes supported by the plasmonic structures shown in Fig.5. (b) Evolution of the lower bound cut-off
frequencyωc (red line, Eq.19) and the critical frequencyω0 (white line, Eq.36) as a function of the wavelengthλ and of the vertex angleθ.
The spectrum of SPs is continuous fromωc to ωsp (blue and light blue areas). The field is divergent at the singularity of thenanostructure for
ω < ω0 (blue area). For both panels, the metal is assumed to be silver [92].

The fact that all the plasmonic structures shown in Fig.5 share the same dispersion relation implies that they display the same
broadband properties fromωc to ω′

c, as summarized in Fig.6(b). The bandwidth of these structures only depends on the vertex
angleθ. The stronger the singularity is (i.esmaller theta), the broader the bandwidth of the light harvesting process is. As shown
by Fig.5, they also share the same nanofocusing mechanism with an accumulation of energy about their geometrical singularity
due to the distortion of the space under conformal mapping. The field is even divergent at the singularity below a certain
critical frequencyω0 that we will define in Sec.IV A (see Fig.6(b)). However, the nonlocal properties ofǫ encountered at small
length scales will prevent the electric field from divergingat the singularity (see Sec.VII). Moreover, due to nanofabrication
imperfections, the singularity of these structures cannotbe perfectly reproduced in practice, which reduces the accumulation of
energy at the tip of the singular structures.

2. Conformal mapping of blunt-ended singular structures

In this paragraph, the CT approach is applied to investigatethe effect of the singularity bluntness on the harvesting and
nanofocusing capabilities of singular nanostructures shown in Fig.5 [68]. To that aim, we will consider the example of blunted
open crescents designedvia conformal mapping as depicted in Fig.5(e).

Fig.7 shows the basic idea of the transformation strategy todeal with that issue. Compared to the original transformation
shown in Fig.5, the blunt nanocrescent is simply obtained byblunting the sharp tips of the singular crescent structure (see
Fig.7(b)). This change in the transformed frame implies a truncation of the infinite metallo-dielectric system on both sides in the
initial frame (Fig.7(a)). The distances from the dipole to the two truncation pointsl1 andl2 determine, respectively, the bluntness
of each tip of the crescent [68]

δj =
D sinβ tan(θ/2)

|sinh[(lj + iβ)/2] sinh[(lj + iβ + iθ)/2]| (22)
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FIG. 7: Figure courtesy of Yu Luo [68]. The coordinate transformation which bridges (a) the truncated periodic metallodielectric system and
(b) the blunt crescent.D is the total dimension of the crescent,a denotes the distance between the two crescent tips,t represents the maximum
distance between the inner and outer crescent boundaries (referredto as the crescent thickness),θ is the vertex angle, andβ denotes the angle
between thex-axis and the outer boundary of the crescent.

δ1 andδ2 denote the bluntness dimensions (or the diameters at the twoblunt tips). The remaining geometrical parameters D,θ,
andβ are defined in the figure caption of Fig.7.

Since the whole system under investigation has now a finite size alongx, the SP modes are now distributed at several discrete
spatial frequencieskn = nπ/(l1 + l2), with n an integer. Replacing the continuous spatial frequencyk by the discrete spatial
frequencieskn into the previous dispersion relation (Eq.18) leads to the following resonance condition,

(

ǫ− 1

ǫ+ 1

)2
[

endπ(2π−θ)/(l1+l2) − endπθ/(l1+l2)
]2

−
[

e2ndπ
2/(l1+l2) − 1

]2

= 0 (23)

The bluntness imposed to the geometrical singularity makesthe spectrum of modes become discrete. As shown in Ref.[68],
the number of SP modes decreases exponentially as the tip bluntness increases. The SP modes are characterized by a linear
momentumkn in the original frame that maps onto an angular momentn in the transformed geometries. In Sec.IV B, we will
show in more details the effect of the tip bluntness on the light harvesting and nanofocusing capabilities of singular nanostructures.

D. Resonant plasmonic structures

Until now, only singular structures have been studied within the CT approach. Resonant plasmonic structures are now
considered since they do not rely on any geometrical singularity and thus will be easier to implement experimentally. Tothat
aim, the initial geometry we consider are the MIM and IMI structures excited by an array of dipoles shown in Fig.8(a) and (b).
Unlike in Sec.II B, the modes supported by these systems are discrete due to the presence of the dipole array and characterized
by a linear momentumkn = 2πn/d, with n an integer.

Now apply the exponential transformation already defined inEq.13. The IMI structure (Fig.8(a)) leads to a metallic nanotube
(see Fig.8(c)), whereas the MIM structure (Fig.8(b)) givesrise to the complementary structure,i.e an insulator nanotube drilled
into a block of metal (see Fig.8(d)). The transformation of the source is the same as before: the array of dipoles∆ maps into a
single dipole∆ located atw = d (Eq.15). The linear momentum of the SP modes supported by theoriginal systems now map
to the angular momentum of SPs that propagate along the insulator-metal surfaces. The configurations described in Fig.8(c)-(d)
can correspond to the experimental situation of a molecule of transition dipole moment∆ interacting with LSPs supported by
a nanotube [93, 94], but we can go beyond these simple configurations by applying a new inverse transformation at the dipole
position (Eq.17). On the one hand, the metallic tube (Fig.8(c)) is transformed into an off-axis nanotube in the general case and
asymptotically to a hole drilled below the surface of a metalplate (Fig.8(e)). On the other hand, the insulator tube (Fig.8(d))
maps to a dimer of nanowires in the general case and asymptotically to a nanowire on top of a metal plate separated by a thin
layer of insulator (Fig.8(f)). Once again, the dipole of Fig.8(c)-(d) maps to an incident plane waveE′

0 (Eq.8).
As their mother system, the new structures display a discrete spectrum of modeskn = 2πn/d, in agreement with the

hybridization picture [15, 36]. Replacing the continuous spatial frequencyk by kn into Eq.9 leads to the following resonance
condition,

exp

(

4πna2
d

)

=

(

ǫ− 1

ǫ+ 1

)2

(24)
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FIG. 8: An array of dipoles∆ with a pitch2πd excites the SP modes supported by an IMI (a) and MIM (b) structure. Upon exponential
mapping (Eq.13), these two materials are transformed into a metallic nanotube (c) and its complementary structure (d) excited by a single
dipole of same strength∆. Finally, an inverse transformation of (c) and (d) about the dipole location (Eq.17) leads to a nanotube (e) and a
dimer of nanowires (f) illuminated by a uniform electric fieldE′

0. When the dipole is placed at the metal surface in (c) and (d), these two
structures become asymptotically an insulator hole drilled into a semi-infinite metal plate (e) and a nanowire placed on top of a metal plate
with a thin layer of insulator between them (f).

This resonance condition can be rewritten for the transformed geometry. For instance, it yields for a dimer with nanowires of
equal diameter (D = D1 = D2) [66, 74],

(

√

ρ′ +
√

1 + ρ′
)4n

= Re

{

ǫ− 1

ǫ+ 1

}

(25)

Note that this condition of resonance only depends on the ratio ρ′ = δ/(2D) between the gapδ and the overall physical cross-
section2D. Each mode may give rise to a resonance which is red-shifted when the two nanowires approach each other, as it will
be shown in Sec.V. The transformation shown in Fig.8 tells usthat these modes couple to each other in the narrow gap separating
the two nanowires (Fig.8(f)) or when the nanotube gets thinner (Fig.8(e)): their wavelength and velocity decrease, leading to
an important field enhancement at this location. However, contrary to the kissing cylinders or the crescent-shaped cylinder (see
Sec.II B), their velocity does not vanish, hence the LSPs turn infinitely around the nanoparticles before being absorbed. This
accounts for their resonant behavior. This brief qualitative account will be completed by quantitative results in Sec.V.

This section has presented the three main families of nanostructures that can be derived by conformal mapping from the
classical MIM and IMI structures (Fig.1). In the three next sections, we will present the main analytical results provided by this
CT approach for each of these families.

III. BROADBAND LIGHT HARVESTING AND NANOFOCUSING

This section deals with the light harvesting and nanofocusing properties of touching dimers and crescents-shaped nanostructures
(see Fig.2). It reviews the main results presented in a series of three papers [45, 70, 71].

A. Broadband light absorption

The absorption cross-section of nanostructures can be directly derived from the dipole power dissipated in the initialframe
[70, 71]. The energy pumped into the SPs in the metal slab(s) (Fig.2(a)) can be calculated from the scalar product of the induced
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electric field and the dipole [95]:

P = −ω

2
Im {∆∗.E(z = 0)} (26)

This quantity can be calculated in the near field approximation by picking out the poles due to the propagating SP modes [70, 71].
This dipole power dissipated maps directly onto the power absorbed from a plane wave incident on the nanostructure in the
transformed geometry. Following this strategy, the absorption cross-sectionσa of the crescent can be deduced forǫ < −1 [71]

σa =
π2ω

c

[

ρDo

1− ρ

]2

Re

{

ln

(

ǫ− 1

ǫ+ 1

)

4ǫ

1− ǫ2

(

ǫ− 1

ǫ+ 1

)− 2ρ

1−ρ

}

(27)

Note that all orientations of the incident electric field areequally effective at excitation. This isotropy is allowed by the contact
between the two crescent tips. On the contrary, an highly anisotropic behavior is expected as soon as the tips are no longer
touching [26–29, 65]. At the surface plasma frequency whereǫ = −1 , Eq.27 is singular ifρ = Di/Do < 1/3, i.e only for
fat crescents. Fig.9(a) and (b) display the wave-length dependence absorption cross-sectionσa as a fraction of the physical
cross-section, forDo = 20 nm and considering silver [92]. Forρ > 1/3, the crescent exhibits a broadband spectrum that shifts
towards red when the crescent gets thinner. The efficiency ofthe crescent in light harvesting is also significant since its absorption
cross-section is of the order of the physical cross-sectioneven for such a small particle size (Do = 20 nm).

FIG. 9: (a) Absorption cross-section of the 2D crescent as a fractionof the physical cross-section as a function ofρ and the wavelength. (b)
The same result is shown forρ =0.2, 0.5, 0.8 and compared to the case of a single nanowire [96]. (c)Absorption cross-section of the kissing
cylinders as a fraction of the physical cross-sectionDo = 2D as a function of the wavelengthλ for an incident electric field polarized along
x′. The overall sizeDo of each device is 20 nm. All the graphs are shown in log-scale.

The same analytical calculation can be performed for two kissing nanowires of same diameter (D = D1 = D2). However,
unlike the crescent, this plasmonic device is strongly dependent on the polarization of the incoming field. Indeed, the two kissing
cylinders geometry is derived from a MIM plasmonic structure (Fig.2(d)). This configuration only supports odd SP modes for
ǫ < −1 [70]. If the dipole is placed at the center of the two metal slabs, only itsx−component can give rise to odd SP modes
and itsy−component is totally ineffective. In the transformed geometry, it means that only thex′−component of the incident
electric field can excite SPs for two kissing cylinders of thesame diameter. The corresponding absorption cross-section σa can
be derived forǫ < −1 [70]

σa =
π2ω

c
D2 Re

{

ln

(

ǫ− 1

ǫ+ 1

)}

(28)

Fig.9(c) displaysσa as a fraction of the physical cross-section (Do = 2D = 20 nm). Similarly to the crescent, the two kissing
cylinders are powerful light harvesting devices over a broadband spectrum for an incident wave polarized alongx′. Note that, in
both cases,σa/D scales linearly withD. Thus higher cross-sections could be obtained for larger dimension but in this case our
near field analytic theory may not be valid [45, 72] (see Sec.VI B).

B. Balance between energy accumulation and dissipation

The 2D crescent and kissing nanowires are capable of an efficient harvesting of light over the visible and near infrared spectra.
As we will see now, they are also strong far-field to near-fieldconverters of energy, providing a considerable confinementand
amplification of the electric field in the vicinity of their physical singularity. Fig.10(a) and (b) illustrate this factby showing our
analytical calculation of the field distribution in the two nanostructures. The metal is still silver [92]. In the slab frame, the SP
modes transport the energy of the dipole out to infinity (see Fig.2). In the transformed frame, the same modes are excited in the
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FIG. 10: Amplitude of thex′-component of the electric field normalized by the incoming field (polarizedalongx′). The (a) and (b) panels
display the field in the crescent (forρ = 0.8) and in the two kissing cylinders respectively, considering silver atω = 0.9ωsp. The color scale
is restricted to [-5 5] but note that the field magnitude is by far larger around the singularity of the structures. (c) The electric field is plotted
along the surface of the kissing nanowires, plotted as a function of the angle, γ, defined in the figure, forω = 0.75ωsp, ǫ = −7.06 + 0.21i
[92] (blue curve) andǫ = −7.06 + 2× 0.21i (red curve, losses×2). Both curves are normalized to the incoming field amplitudeE′

0.

fat part of the crescent and the diametrically opposite sides of the kissing cylinders. Then, they propagate around the claws of
the crescent and the surface of nanowires in an adiabatic fashion.

Fig.10(c) shows our analytic calculation of the electric field induced at the surface of the kissing cylinders by a plane wave
polarized along thex′ axis. As pointed out previously, the wavelength of SPPs shortens as they approach the touching point,
leading to an enhancement of the electric field. The growth ofthe field is then truncated by absorption losses at a finite angle. A
total field enhancement of2 × 103 arises here at an angleθ = 179.75 deg. Also shown is a second calculation in which losses
are increased by a factor of two greatly reducing the enhancement, and decreasing the angle at which maximum enhancement
occurs.

For kissing nanowires, the field enhancement|E′|/E′
0x along the nanowire can be expressed, forǫ < −1, as [70]

∣

∣

∣

∣

E′

E′
0x

∣

∣

∣

∣

=
π

2
|α| |cosh(α)|1/2 exp (−Im{γ}| tan(γ/2)|/2)

cos2(γ/2)
(29)

with γ, the angle defined in the inset of Fig.10(c), andα defined in Eq.10. The exponential term of the last equation shows how
the dissipation losses truncate the growth of the field alongthe cylinders surface. From this expression of|E′|/E′

0x and using the
fact that Im{α} = atan(2ǫI/(|ǫ|2 − 1)), the angleγmax at which the maximum field enhancement occurs can be easily deduced
as a function of the permittivity imaginary partǫI [70],

γmax ≃ π − 2(1− ρ)ǫI
|ǫ|2 − 1

, if ǫI << |ǫ|2 − 1 (30)

This expression ofγmax shows that an increase of the dissipation losses makes the maximum field enhancement shift to smaller
angles, resulting in a worse confinement of the field around the structure singularity.

By injecting the expression ofγmax (Eq.30) into Eq.29 and replacingα by its expression (Eq.10), one can deduce the maximum
field enhancement,|E′

max|/E′
0x, that can be expected at the surface of the kissing cylinders, for ǫI << |ǫ|2 − 1 [70],

∣

∣

∣

∣

E′
max

E′
0x

∣

∣

∣

∣

≃ 2π

e2

∣

∣

∣

∣

∣

ln

(

ǫ− 1

ǫ+ 1

)

√

ǫ2 + 1

ǫ2 − 1

∣

∣

∣

∣

∣

(|ǫ|2 − 1)2

ǫ2I
(31)

The dissipation losses reduce the field enhancement as the inverse square of the permittivity imaginary partǫI . This explains the
ratio 4 observed between the blue and red curves in Fig.10(c). The same analytic calculations can be performed for the crescent
[71] or for a nanowire placed on top of a metal plate [70] (Fig.2(f)).

Note that the field enhancement displayed by Fig.10(c) may beunrealistic in practice. There are indeed two limits to the CT
approach:

• A micro-scale limit: when the size of the device becomes comparable with the wave length, radiation losses are non longer
negligible and will reduce the field enhancement induced by the nanostructure. This point has been addressed for kissing
nanowires in Ref.[72] and will be discussed in this review inSec.VI B for the case of a dimer of non-touching nanowires.

• A nano-scale limit: at small length scales, continuum electrodynamics is no longer valid and non-local effects can result in
an increase of the permittivity imaginary part [4, 97–100].This issue will be addressed in Sec.VII. Furthermore, quantum
mechanical effects, such as electron tunnelling or screening, have to be taken into account in the vicinity of the structure
singularity and may also reduce the field enhancement relative to classical predictions [101].
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C. Extension to 3D

In Sec.II B, we have shown how the 2D conformal mapping of kissing nanowires can be extended to 3D leading to the study
of the kissing spheres (Fig.4). The problem cannot be solvedexactly due to the spatial variations of the permittivity inthe slab
frame, but describe accurately the EM fields behavior at the touching point of the spheres. A quite simple expression can be
found for the absorption cross-section of two identical kissing spheres of radiiR1 with an incident polarization alongx′ [67]

σa =
64π2

3

ω

c
R3

1Re
{

α2 − α
}

(32)

Fig.11(a) plots the absorption cross-sectionσa normalized byR3
1 for kissing spheres of different dimensions calculated using

COMSOL multiphysics (color or shaded dots). The metal is assumed to be silver with a permittivity taken from Palik [102].
The analytical spectrum obtained from Eq.32 is also shown inblack solid line. The agreement between theory and simulations
is remarkable for radii up to 35 nm, where the near-field approximation fails and radiation losses become significant. Note that
the comparison for smallR1 worsens at high frequencies, as metal absorption prevents EM fields from reaching the touching
point, where the theoretical result is the most accurate. Fig.11(a) indicates thatσa for small dimers is of the order of the physical
size even at frequencies well below the single sphere resonance (black dots). This demonstrates that touching dimers strongly
interact with radiation over the whole optical spectrum, and that their cross-section presents a much smoother dependence on
frequency than an isolated nanoparticle.

FIG. 11: Figure courtesy of Antonio Fernández-Doḿınguez [67]. (a) Numerical absorption cross sectionσa versus incident frequency for
twin Ag touching spheres of different radiiR1 (color or shaded dots), and a single 5 nm radius sphere (black dots). Black solid line plots the
analytical result obtained from Eq.32. All the spectra are normalized toR3

1. (b) Electric field amplitude enhancement versus angleθ (defined
in the inset) at 500 THz (R1 = 20 nm). Black (red or gray) line corresponds to analytical (numerical)calculations (Eq.33).

In order to gain a physical insight into the origin of the broadband response of touching spheres, the amplitude enhancement
of thez−component of the electric field close to the contact point is plotted in Fig.11(b). Fields are evaluated at 600 nm (500
THz, ǫ = −16.0 + 2.1i), where the dimer cross section is 50 times larger than the single sphere. For this magnitude, the TO
approach yields [67]

E′
z

E′
0

=
π√

2(1 + cos θ)3/2
Re

{

α2(3eα/2 + e−α/2)J0

(

α

2

sin θ

1 + cos θ

)}

(33)

whereθ is defined in the inset of Fig.11(b) andJ0 is the Bessel function of rank 0. There is again a good agreement between
theory (black) and simulations (red) for spheres of radius 20 nm. E′

z/E
′
0 is superior to104 at the vicinity of the contact point

of the spheres far from the single particle resonance. This is a clear demonstration of the broadband superfocusing capabilities
of the structure. The physics is similar to the 2D case: energy accumulates due to the drastic reduction of group velocityand
effective wavelength that the surface waves experience while approaching the contact point of the dimer. Note that neither the
TO model nor the numerical simulations include nonlocal effects (see Sec.VII).

D. Conclusion

This section has highlighted the power and elegance of the CTapproach. On the one hand, this approach allows to design a path
towards a broadband nanofocusing of light at the nanoscale.On the other hand, it provides novel insights on the physicalbehavior
of SPs at the nanoscale. The nanostructures derived from conformal mapping should rely on perfectly shaped singularities on
which drastic hot spots arise. In practice, such a geometry will be particularly difficult to implement. In the next section,
this issue is addressed by considering the bluntness of plasmonic structures at the nanoscale, considering the conformal map
described in Sec.II C 2.
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IV. SURFACE PLASMONS AND SINGULARITIES

This section deals with the light harvesting and nanofocusing properties provided by the family of nanostructures described
in Fig.5 (V-groove, wedge, open crescent, rough surface, overlapping nanowires). These nanotructures have been studied in
details in a series of paper [65, 73, 75]. Here we will first focus on the effect of the vertex angle on the bandwidth of the light
harvesting properties by considering the example of overlapping nanowires [73]. Second, we will show how conformal mapping
can address the issue of not perfectly shaped singularities[68], inherent in any nanofabrication process.

A. Control of the bandwidth with the vertex angle

The last section has addressed the issue of singular nanostructures (crescent, kissing nanowires) whose singularity are
characterized by a zero vertex angle. This situation is quite irrealistic experimentally, hence one can wonder what happens when
the vertex angleθ increases. Here, we will study the transition between kissing nanowires studied in Sec.III and overlapping
nanowires (Fig.5(f)) that has been studied in details by D. Y. Lei et al. [73].

Solving the problem in the slab frame allows to derive the absorption cross-sectionσa following the same strategy as the one
described in Sec.III A. A full-analytical expression ofσa for two overlapping nanowires of same diameterD is not available but
one can derive the following asymptotic limits for an incident wave polarized alongx′ [73]

σa ∼ 4π2
√
3
ω

c

sin2(θ/2)

θ2
D2Re

{
√

ǫc
1− ǫ2c

1√
ǫ− ǫc

}

, if Re{ǫ} → ǫc (34)

σa ∼ 4π2ω

c

sin2(θ/2)

θ2
D2Re

{

ln

(

ǫ− 1

ǫ+ 1

)}

, if

∣

∣

∣

∣

ln

(

ǫ− 1

ǫ+ 1

)∣

∣

∣

∣

>> −ǫ−1
c (35)

with ǫc, the permittivity threshold defined in Eq.19. The first asymptote ofσa (Eq. 34) displays a square-root singularity at
the cut-off frequencyωc, for which Re{ǫ} = ǫc. The second asymptote (Eq. 35) applies for larger frequencies thanωc and
is strictly identical to the expression derived for kissingcylinders (Eq.28). Fig.12(a) displays the absorption cross-section of
overlapping nanowires normalized by the overall physical cross-sectionDo as a function of the wavelengthλ and the vertex
angleθ. Fig.12(b) displays the wavelength dependence ofσa for different values of the vertex angleθ. The two asymptotes
derived in Eqs.34 and 35 are superimposed toσa. As shown in Fig.12, the absorption spectrum is strongly dependent on the

FIG. 12: (a) Absorption cross-sectionσa normalized by the physical cross-sectionDo as a function ofθ andλ for an overlapping cylinders
pair of overall sizeDo = 20 nm. The white dashed line represents the low-frequency cut-offωc. The white continuous line represents the
frequencyωo (Eq.36). The color bar is in log-scale. (b) The same quantity is displayedas a function of frequency for different values ofθ = 5

o

(blue),20o (green),40o (red). The low-frequency asymptotes (coloured dots, Eq.34) and the high-frequency asymptote (black dots, Eq.35) are
shown. At last, the single cylinder case is also shown for comparison [96] (cyan continuous line). For both panels, the metal is silver [92]

vertex angleθ, which governs the cut-off frequencyωc (Eq.19). Three distinct regimes can be distinguished:

• Kissing cylinders regime (θ → 0o): The absorption spectrum of kissing nanowires corresponds to the high-frequency
asymptote derived in Eq.35 (see Fig.12(b)). In that case, the cut-off frequencyωc is zero and the absorption cross-section
displays a continuous and broadband absorption spectrum over the whole visible and near-infrared spectra.

• Overlapping regime (0o < θ < 90o): When the vertex angleθ increases, the cut-off frequencyωc blue-shifts, which limits
the bandwidth of the light harvesting process. An absorption peak is observed aroundωc and its line shape is well predicted
by Eq.34 forω < ωc. Whenω → ωsp, the device behaves like kissing cylinders (Eq.35) in termsof light harvesting (see
Fig.12(b)). The comparison stops here since the nanofocusing behaviors differ in both situations.
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• Single nanowire regime (θ → 90o): the two nanowires merge into a single one. The absorption spectrum exhibits one
sharp resonance at the SP frequencyωsp (see Fig.12(b)).

In contrast to kissing nanowires, overlapping nanowires show a clear cut-off frequencyωc in their absorption spectrum. This
cut-off frequency can be adjusted by tailoring the overlap distance between the two nanowires. Note that the spectral properties
shown by overlapping nanowires can be extended to all the structures displayed in Fig.5: A squeezed metallic wedgeθ → 0o

can support SP modes over a broad bandwidth, whereas large anglesθ → 90o imply an extremely narrow line width.
The nanofocusing mechanism is on the contrary quite different compared to kissing nanowires (see Sec.III). The field can

be actually divergent at the singularity for the family of nanostructures shown in Fig.5. The field divergence conditioncan be
rewritten as [65, 73]

arctan

[

2Im{ǫ}
|ǫ|2 + 1

]

< θ (36)

The term on the left is directly related to the dissipation losses in the metal with the imaginary part of the permittivity. The term
on the right is the vertex angle which accounts for the field compression at the structure singularities. Let us introduceω0 the
frequency for which the two terms of the last equation are equal. Belowω0, Eq.36 is checked: the field compression dominates
over dissipation losses and the field diverges at the structure singularities. Beyondω0, Eq.36 is no longer verified: the dissipation
losses are large enough to make the field vanish at the structure singularity. The wavelengths corresponding toω0 andωc are
shown as a function ofθ and are superimposed to the absorption spectrum in Fig.12(a). The comparison between the two curves
shows that the frequencyω0 is clearly larger than the cutoff frequencyωc and that both frequencies blue-shift with the overlap
distance. The divergence of the electric field occurs over most of the overlapping nanowires bandwidth. This divergent behavior
is surprising but not realistic in practice since it is strongly dependent on how sharp the singularity is.

B. Effect of the bluntness

The effect of bluntness on singular nanostructures is now investigated considering the example of blunt-ended nanocrescents
(see Fig.7). However, note that this strategy can be appliedto the whole set of singular plasmonic structures displayedin Figs.2
and 5. The absorption cross sectionσa of the crescent can be directly deduced from the power dissipated by the dipole in the
original frame shown in Fig.7(a). Analytical details are presented in Ref.[68]. Fig.13(a) shows the evolution of the absorption
spectrum as a function of the bluntnessδ of the tip crescent (Eq.22). Three distinct regimes can be distinguished:

FIG. 13: Figure courtesy of Yu Luo [68] (a) Normalized absorption cross sectionsσ/D as a function of frequency and the tip bluntnessδ for a
nanocrescent withθ = 9

o andt = 0.16D. (b) Normalized electric fieldsE′

x′/E′

0 along the inner boundaries of the blunt and the corresponding
singular crescents atf = 368THz (the resonance of the dipole modeωc). Here, the geometry parameters are set asθ = 9

o, t = 0.16D and
δ = 0.01D (for the blunt crescent). The metal is silver considering Palik data [102].

• Single-resonance structure (δ/D > 10−1): the absorption spectrum displays only one sharp resonance atωsp. The system
behaves like a single rounded nanoparticle.

• Multi-resonance regime (0 < δ/D < 10−1): When the tips of the nanocrescent become sharper, resonances associated
to a small angular momentn start to arise at a smaller frequency thanωsp. These resonances are red-shifted when
δ decreases and the absorption spectrum displays several resonances in the visible spectrum in addition to the overall
structure resonance atωsp.



16

• Broadband regime (δ/D → 0): When the tips become extremely sharp, the absorption spectrum becomes continuous and
broadband with a lower cut-off frequencyωc depending only on the vertex angleθ.

Fig.13(a) indicates the degree of sharpness required to obtain a broadband harvesting of light. In the conditions of Fig.13(a)
(θ = 9o, t = 0.16D), a bluntnessδ/D = 10−2 is sufficient to get an efficient light absorption fromf = 350 THz (λ = 850 nm)
to f = 900 THz (λ = 333 nm), i.e over the whole visible spectrum.

Fig.13(b) shows the effect of the bluntness on the field enhancement that arise in the vicinity of the singularity. The normalized
electric fieldE′

x′/E′
0 is plotted along the inner boundaries as a function of the angle γ defined in the inset. The case of the

blunt (red dashed line) and the corresponding singular (blue solid line) crescents are compared. As expected, the maximum
field enhancement is distinctly decreased around25 as the claw tips are rounded. However, away from the tip, the field only
undergoes minor changes due to the bluntness. It should be pointed out that quantum mechanical effects are not considered in
our calculation. For subnanometer bluntness dimensions, amore general quantum description and nonlocal constitutive relation
of the metal may be necessary to further improve the analytical model [15, 97].

V. PLASMONIC HYBRIDIZATION REVISITED WITH TRANSFORMATION OPTICS

This section deals with the light harvesting and nanofocusing properties provided by the family of resonant nanostructures
described in Fig.8 (metallic nanotubes, nanowire dimer,etc.). Such nanotructures have been widely studied both theoretically,
numerically and experimentally in the literature [10, 11, 13, 15, 17, 18, 20, 33–39, 83–85]. An elegant physical pictureto
describe these resonant structures is the plasmon hybridization model [15, 36]. In analogy with molecular orbital theory, the
dimer plasmons can be viewed as bonding and antibonding combinations of the individual nanoparticle plasmons. However,
albeit elegant, the plasmon hybridization picture is a limited tool: numerical simulations are still needed to calculate the optical
response of the nanostructures. On the contrary, the CT approach provides an analytical description of the plasmonic hybridization
and a unique physical insight on the propagation of SPs in that kind of nanostructures [66, 74].

A. A resonant behavior

In this section, we will consider the example of a dimer of nanowires [66, 74] to illustrate the plasmonic hybridization concept.
However, note that the same strategy can be applied to solve the problem of off-axis nanotubes (Fig.8(e)).

The absorption cross-sectionσa of a cylinder pair (Fig.8(f)) can be deduced in the quasi-static limit from the power absorbed
by each dipole in the original frame (Fig.8(b)). The following expression ofσa is found for an incident wave polarized alongx′

[66]

σa = Im
{

16π
ω

c
ρ′(1 + ρ′)D2χ

}

(37)

with, χ =
ǫ− 1

ǫ+ 1

+∞
∑

n=1

n
[√

ρ′ +
√
1 + ρ′

]4n − ǫ−1
ǫ+1

(38)

with ρ′ the ratio between the gapδ between the two nanowires and2D their added diameters. The parameterχ in Eq.38 displays
the sum of each contribution due to the LSP modes supported bythe cylinder pair and denoted by their angular momentn. Each
mode may give rise to a resonance at a frequency satisfying the condition previously defined in Eq.25.

Fig.14 illustrates this resonant feature by displayingσa/(2D) as a function of frequency andρ′ = δ/2D, for an overall
physical cross-section2D = 20 nm. The metal is silver with a permittivity taken from Johnson and Christy [92]. As shown by
Fig.14, the absorption spectrum is strongly dependent on the ratioρ′ = δ/(2D) and let show three distinct regimes:

• Weak coupling regime (ρ′ > 0.5, i.e for a gap larger than the cylinder diameter): all the modes resonate at the vicinity of
the surface plasma frequencyωsp. The coupling between the two nanoparticles is weak and the system exhibits the same
absorption spectrum as an individual cylinder.

• Strong coupling regime (ρ′ < 0.5): when the two nanoparticles are approached by less than onediameter, resonances for
smalln start to arise at a smaller frequency thanωsp. These resonances are red shifted when the gap decreases andthe
absorption spectrum displays several resonances in the visible spectrum in addition to the individual LSPs resonance at
ωsp.

• Kissing cylinders regime (ρ′ → 0): the number of excited modes becomes infinite, leading to a continuous and broadband
absorption spectrum (Fig.9(c)).
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FIG. 14: Absorption cross-sectionσext normalized by the physical cross-section2D as a function ofρ′ and wavelength for a cylinders pair
with Do = 10 nm. The color bar is in log-scale.

B. Nanofocusing properties

The electric fieldE′ induced by the dimer can be deduced from the electrostatic potential solved in the original frame(Fig.8(b)).
It can be decomposed as an infinite sum of modesΨ(n): E′ =

∑∞
n=1 Ψ

(n). The analytical expression of the modesΨ(n) is
derived in Ref.[74]. Note that in the near-field approximation, the enhancement of electric field is independent of the size of the
system.

FIG. 15: Electric field forρ′ = 10
−2 associated with the two first modesn = 1, 2 (from top to bottom) at their corresponding resonant

frequencies (Eq.25) for an incident wave polarized alongx′. (a) Amplitude of the imaginary part ofψ(n)

x′ normalized by the incoming fieldE′

0

(polarized alongx′). (b) Amplitude of the imaginary part ofψ(n)

y′ normalized by the incoming fieldE′

0 (polarized alongy′). For (a) and (b)
plots, the color scale is restricted to [-10 10] but note that the field magnitudecan by far larger in the narrow gap between the structures. (c)
Amplitude of the imaginary part ofψ(n)

x′ /E
′

0 (blue) andψ(n)

y′ /E
′

0 (red) along the cylinder surface as a function of the angleγ defined in the
figure.

Fig.15(a) and (b) represent the imaginary part of the field distribution alongx′ andy′, respectively. These figures can be easily
interpreted with CT. In the slab frame, the SP modes transport the energy of the dipoles along the surface of the metal slabs (see
8(b)). The same modes are excited in the transformed frame and propagate along the cylinder surface. As they approach the
gap separating the two nanoparticles, the LSPs supported byeach nanoparticle couple to each other, their wavelength shortens
and group velocity decreases in proportion. This leads to anenhancement of the field in the narrow gap. However, contraryto
the kissing cylinders (Sec.III), the velocity of LSPs does not vanish and energy cannot accumulate infinitely in the narrow gap.
Instead, LSPs propagate indefinitely around the cylinders,leading to the resonant behavior pointed out previously.

Fig.15(c) represents the imaginary part of the field along the surface of the cylinders. The comparison between each mode
allows to confirm our previous qualitative description: theangular momentumn associated to each mode corresponds to the
number of spatial periods covered by the SP when propagatingaround one nanowire. Fig.15(c) also highlights the drasticfield
enhancement that can be induced within the gap between the two nanoparticles. Typically, forδ = D/50, the field enhancement
|E′|/E0 can reach a value of 600. Note that the field enhancement is less than one order of magnitude of the value obtained for
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kissing cylinders (∼ 104) (Fig.10(c)).
Note that the results displayed by Fig.14 and Fig.15 are valid in the quasi-static limit,i.e for D < 20 nm. In the next section,

we show how to take into account the radiative losses in the CTpicture and extend the range of validity of conformal mapping.
Note also that the problem of a nanowire separated from a metal slab by an insulator thin layer (Fig.8(f)) has also been solved
explicitly and the analytical details are presented in Ref.[74].

VI. BEYOND THE QUASI-STATIC APPROXIMATION

Until now, the CT approach has been quite restrictive since it can only apply to nanostructures of a few tens of nanometers
(typically 20 nm). In this section, the range of validity of this approach is extended by taking into account the radiation damping
[72]. The radiative losses are shown to map directly onto thepower dissipated by a fictive absorbing particle in the original
frame. We apply this approach to the case of the nanowire dimer studied in the previous section. Radiative losses are shown
to limit the light harvesting process but improve its broadband feature. The field enhancement induced by the nanostructure
decreases with the structure dimension but remains significant. In a second part, we take advantage of this strategy to study the
interaction of a dipole emitter (e.gmolecule or quantum dot) with complex plasmonic nanostructures by means of conformal
mapping. The fluorescence enhancement as well as the quantumefficiency are derived analytically. Their spectral and spatial
properties are analyzed in the perspective of experiments.

A. Conformal transformation picture

The aim of this section is show how to extend this CT approach to devices of much larger dimensions. Rigorously, this should
be done by considering the magnetic component in addition tothe electric field. However, this would be particularly tedious and
intractable analytically since the permeability is not conserved under conformal mapping and should vary spatially as1/r2 in
the original frame [103]. We propose an alternative and finerroute based on energy arguments [72]. It consists in extending the
electrostatic results by taking into account the radiationdamping. For simplicity but without loss of generality, we will consider
the example of a dimer of nanowires illuminated by an incident plane waveE′

0. A dipolep′ is placed in the vicinity of the
plasmonic system and accounts for the transition dipole moment of a fluorophore (Fig.16(a)). This complex problem can be
mapped to a much simpler geometry through the transformation described in Fig.16 and already studied in the quasi-static limit
in Sec.V.

In the dimer frame, the incoming beam is both absorbed and scattered by the nanostructure. The scattered field can be takenas
uniform in the near field of the nanoparticles. Similarly to the incident field that is transformed into an array of dipolesin the slab
frame, the counterpart of the scattered field in the slab geometry is an array of fictive absorbing particles,∆s, of polarizability
γs = −iπ

2

2 ǫog
2ω2/c2 [74], superimposed to the emitting dipoles∆ (Fig.16(b)). These absorbers account for the radiative losses

in the transformed geometry.

FIG. 16: (a) A pair of metallic nanowires of diameterD and separated by a distanceδ is illuminated by an incident plane waveE′

0. The dipole
p′ accounts for a fluorescent molecule placed in the vicinity of the nanostructure. (b) Using the transformation already described in Sec.II D,
the latter system is transformed into two semi-infinite metallic slabs separated bya thin dielectric film.E′

0 andp′ are transformed into two
dipoles∆ andp, respectively. An absorbing particle∆s accounts for the radiative losses in the initial frame [72].

Radiative losses in the transformed geometry correspond tothe power dissipated by this small absorber in the original frame.
The radiative reaction is then considered to go beyond the electrostatic approximation. Taking into account the radiative reaction
is necessary in order to satisfy the optical theorem (i.eenergy conservation) [104]. In the transformed frame, it corresponds to the
self-interaction between the particle and its own scattered field [104–106]. In the slab frame, the radiative reaction corresponds
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to the field scattered by the fictive absorbing particle and back-emitted toward the metal slabs. The analytical results taking into
account radiation damping will be presented in Sec.VI B and will be confronted to numerical simulations.

The fluorescent moleculep′ located atz′0 in the dimer frame is transformed into an array of dipoles, whose locationz0 and
dipole momentp are given by

z0 = d ln

(

1 +
g2

z′0d

)

, p = − g2/z
′2
0

1 + g2

z′

0
d

p′ (39)

On the one hand, we will be able to study the total decay rate ofthe fluorescent moleculep′ by investigating the total power
of the dipolep dissipated in the slab frame. On the other hand, the radiative decay channel ofp′ will correspond to the power
dissipated by each small absorber∆s in the slab geometry. This problem will be treated in Sec.VI C.

B. Radiative losses

The introduction of a fictive absorbing particle at the origin of the slab frame allows to take into account radiation damping
in the transformed frame. It yields the following expression for the extinction cross-sectionσext of a dimer illuminated with a
x′−polarized incident field [66]

σext = Im

{

16π ω
c ρ

′(1 + ρ′)D2χ

1− i2πρ′(1 + ρ′)D2 ω2

c2 χ

}

(40)

with the parameterχ defined in Eq.38. This expression should be compared with theprevious expression of the absorption cross-
sectionσa derived under the quasi-static limit (Eq.37). Radiation losses lead to a renormalization ofσext by the denominator
of Eq.40. Fig.17(a) shows the effect of radiative damping onthe extinction spectrum for different size of dimers at a fixed
ratioρ′ = δ/(2D) = 0.01. The theoretical predictions (Eq.40) are compared to the results of numerical simulations performed
by D. Y. Lei with the software Comsol. An excellent agreementis found in the quasi-static limit (D = 10 nm). For larger
structure dimensions, the numerical results are slightly red-shifted compared to our theoretical predictions. This is due to the
retardation effects which are not considered by the CT approach [72]. However, the magnitude and line shape of resonances are
nicely predicted for structure dimension up to 200 nm. Fig.17(a) shows that radiative damping broadens the line width ofeach
resonance and leads to the saturation of the extinction cross-section at the level of the physical cross-section.

FIG. 17: Extinction cross-sectionσext (a) and scattering cross-sectionσs (b), normalized by the physical cross-section2D, plotted as a
function of frequency for nanowire dimers of different size withρ′ = 0.01. The theoretical predictions (continuous lines, Eqs.40-41) are
compared to the results of numerical simulations (dots). (c)Imaginary part ofE′

x′/E′

0 along the surface of the nanowire at the first resonant
frequencyω = 0.8ωsp, for ρ′ = 0.01. The theoretical predictions (continuous lines, Eq.42) and numerical results (dots) are compared for
different nanowire diameterD: 10 nm (blue), 25 nm (red), 50 nm (green). For all panels, the metal isassumed to be silver [92].

An expression of the scattering cross-sectionσs can also be derived by computing the power dissipated by the fictive absorber
in the slab frame,

σs =
32π2 ω3

c3 ρ
′2(1 + ρ′)2D4 |χ|2

∣

∣1− i2πρ′(1 + ρ′)D2 ω2

c2 χ
∣

∣

2 (41)

The radiative spectrum depends on|χ|2. Hence, the resonances defined by Eq.25 also occur in the scattering spectrum. This is
confirmed by Fig.17(b) which displaysσs/(2D) as a function of frequency for different size of dimers at a fixed ratioρ′ = 0.01.
There is a perfect agreement between our theoretical prediction and the numerical result in the quasi-static limit (D = 10 nm).
The resonances displayed by Fig.17(b) clearly display an asymmetric line shape. We stress on the fact that these are not Fano
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resonances which appear usually in the extinction spectrumand correspond to the coupling between bright and dark modes
[107–110]. The sharp dips observed in Fig.17(b) originate from the destructive interference between each successive bright
mode. Typically, the sharp dip observed atω = 0.85ωsp results from the destructive interference between the modesn = 1 and
n = 2 which resonate on each side of the dip [74]. This feature can be promising in perspective of sensing applications, since
the ratio between the absorption and scattering cross-sections can reach for instance a value of 150 in the conditions considered
in Fig.17(b). At these invisibility frequencies, the nanowire dimer can harvest light efficiently from the far-field andfocus its
energy at the nanoscale, without any scattering in the surrounding area. The dimer acts then as an invisible/non-invasive sensor.
This idea is in relation with the concept of sensor cloaking proposed by Aĺu and Engheta [111]. Note that the dimer is invisible
in all the directions except in the forward scattering one where the absorption of light will induce an attenuation of theincident
beam.

As for the extinction cross-section, radiation damping leads to a renormalization of the scattering cross-section forlarge
structure dimensions (see the denominator in Eq.41) which makesσs saturate at the level of the physical cross-section (see
Fig.17(b)). A satisfying agreement is found between numerical and analytical results in Fig.17(b), except for the slight red shift
explained by retardation effects. The Q-factor of the invisibility dips decreases for large structure dimensions and the nanowire
dimer may keep its invisible feature only for nanowire diameter inferior to50 nm.

In the quasi-static limit, the near-field enhancement does not depend on the size of the device. However, radiative damping
breaks this property and limits the nanofocusing properties of the dimer. Radiative reaction requires the renormalization of the
electric field by a factorζ [74]

ζ = 1− 2iπρ′(1 + ρ′)D2ω
2

c2
χ (42)

The effect of the radiative losses on the field enhancement isshown in Fig.17(c). The imaginary part ofE′
x′/E′

0 along the
surface of the nanowire is displayed at the first resonant frequencyω = 0.8ωsp, for ρ′ = 0.01. The theoretical and numerical
results are compared for different dimensionsD = 10, 25, 50 nm and a good agreement is found. The radiation losses lead to
a renormalization of the electric field by the factorζ which increases with the structure dimension (Eq.42). ForD = 50 nm, a
slight disagreement starts to appear between theory and numerical simulations, due to the retardation effects which are not taken
into account by our model [72].

Note that the same strategy can be applied to determine the radiative losses in all the structures that can be derivedviaconformal
mapping. For instance, the effect of radiative damping has been studied analytically for kissing nanowires as well [72].

C. Fluorescence enhancement

We now apply the CT strategy beyond the quasi-static limit topredict analytically the fluorescence enhancement for molecules
placed in the vicinity of metallic nanostructures. We first briefly recall the main point of the spontaneous emission by a molecule
in the near-field of a nanoantenna. Then we will show how the CTapproach can be used to predict analytically the fluorescence
enhancement of molecules placed in the vicinity of metallicnanostructures. As the absorption and emission process occur at
different frequencies, a perfect knowledge of the spectraland spatial properties of the field enhancement might be decisive for
the implementation of new types of biosensors.

1. Fluorescence enhancement in the near-field of nano-antenna

A plasmonic device can strongly influence the fluorescence ofa molecule placed in its near-field [44, 112–116]. On the one
hand, LSPs can induce intense fields at the nano-scale that are likely to increase the number of photons absorbed by a molecule
at its excitation frequency. On the other hand, at the emission frequency, the radiative and non-radiative properties of the emitter
strongly depend on its environment. This is the so-called Purcell effect [117]. The interplay between local-field enhancements,
radiative and nonradiative decay channels can lead to an enhancement of the fluorescence signal or to quenching.

The fluorescence emission by a molecule is governed by an important parameter, the decay rateγ, which describes the
amplitude decay suffered by the transition dipole of the molecule in time. Two contributions to this overall decay can be
identified:γR is the radiative decay rate that gives rise to the emission ofa photon in the far field,γNR

int is an intrinsic nonradiative
decay rate that accounts for internal losses. The emission efficiency of a fluorophore is then quantified by the intrinsic quantum
yield:

η0 =
γo
R

γo
=

γo
R

γo
R + γo

NR

(43)
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The quantum yield represents the probability that an excited fluorescent molecule emits one photon. The presence of a nanoparticle
in the vicinity of the emitter can modify the quantum yield ofthe molecule, such that

η =
γR
γ

=
γR

γR + γNR + γo
NR

(44)

We can identify three different decay channels in the systemnow: the radiative rate,γR, the external nonradiative decay rate
induced by dissipation in the metal,γNR, and the nonradiative decay rate intrinsic to the emitter,γo

NR. A metallic nanostructure
sustains highly confined modes and induces strong radiativelosses. Hence, it may give rise to a large enhancement of the
radiative decay rate experienced by any emitter placed in its vicinity. The ratioγR/γo

R is usually termed as the Purcell factor.
The fluorescence of a molecule is given by the product of two different factors: the emitter quantum yield,η, which measures

its ability to re-radiate once excited, and the EM energy that it is able to absorb from the incident electric field in the excitation
process, which is proportional to|p′.E′|2 (wherep′ is the transition dipole moment, andE′ is the electric field evaluated at the
emitter position). The fluorescence enhancement then reads

S/S0 =
(

η |p′.E′|2
)

/
(

η0 |p′.E′
0|

2
)

(45)

The radiative decay rateγR is proportional to the power radiated in the far field, while the nonradiative decay rateγNR is
proportional to the power absorbed by the metallic nanostructures.

2. The CT approach

As an example, we consider the interaction of a fluorophore with a dimer of nanowires as already described in Fig.16. To
solve this problem, this configuration is mapped onto a much simpler one consisting of a dipole sandwiched between two
semi-infinite metal slabs (Fig.16(b)). The solution in the latter geometry allows to derive analytically different quantities such
that the fluorescence enhancement as well as the quantum efficiency in presence of the metallic nanostructure. Note that previous
works have investigated theoretically similar problems [44, 118, 119] but none of them have led to a full analytical solution.

The radiative decay rate is proportional to the power radiated by the nanostructure. In the slab frame(Fig.16(a)), it consists
in calculating the power dissipated by the small absorber accounting for radiative losses. Normalizing it by the power radiated
by the molecule in free space leads to the Purcell factorγR/γ

o
R. The wave-length dependence of the Purcell factor is displayed

in Fig.18(a) for a transition dipole momentp′ aligned alongx′ and located at the center of the gap. The Purcell factor displays
dramatic peaks (> 107) at the LSPs resonances (Eq.25). Fig.18(b) and (c) show the spatial dependence of the Purcell factor for
a transition dipole momentp′ aligned alongx′ andy′, respectively. These graphs are shown at the first LSP resonance(n = 1)
for a gapδ = D/50 between the two nanowires. The Purcell factor displays strong spatial variations in the near-field of the
nanowire with the highest values within the gap. These results show the extreme tunability of the Purcell factor according to the
dipole position and the wave-length.

FIG. 18: Purcell factor for a dimer of silver nanowires (withD = 20 nm, permittivity taken from Ref.[92]). (a) Wavelength-dependence of
the Purcell factor as a function of the distance between the two nanowires for a fluorophore placed exactly at the the center of the gap and a
transition dipole moment aligned alongx′. (b) and (c) Spatial dependence of the Purcell factor at the first resonance frequency (n = 1) for a
transition dipole moment aligned alongx′ andy′, respectively. The dimer size is 20 nm and the gapδ isD/50.

The quantum yield is an important parameter for future experiments. It can be computed through the CT approach by
calculating the ratio between the power dissipated by the small absorber accounting for radiative damping (proportional to the
radiative decay rate) and the total power dissipated by the array of dipolesp in the slab frame (proportional to the total decay
rate). This is valid under the assumption that the nonradiative decay rate intrinsic to the emitter,γo

NR, is negligible compared to
the nonradiative decay rate due to the dissipation losses inthe metal,γo

NR. Fig.19(a) and (b) show the spatial dependence of the
quantum yieldη (Eq.44) for a transition dipole momentp′ aligned alongx′ andy′, respectively. These graphs are shown at the
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first LSP resonance(n = 1) for a gapδ = D/50 between the two nanowires. Similarly to the Purcell factor,the quantum yield
displays strong variations in the near-field of the dimer. For a transition dipole moment oriented alongx′, the quantum yield is
maximum at the exact center of the gap but strongly decrease when the molecule move along the axis of symmetry of the dimer.
The lines defined byy′ = ±x′ correspond to the area outside of the gap where a molecule, whose dipole moment is oriented
along thex′-axis, is quenched. For a dipole moment oriented along they′−axis, the molecule is quenched if it is placed along
the axis of the dimer, hence in the gap as well.

FIG. 19: Fluorescent properties of a molecule placed in the vicinity of a dimer of silver nanowires at the first resonancen = 1 (withD = 20nm,
δ = D/50, permittivity taken from Ref.[92]). (a),(c) Spatial variations of the quantum yield for a dipole oriented alongx′ andy′, respectively.
(b),(d) Spatial variations of the fluorescence enhancement for a dipole oriented alongx′ andy′, respectively. The intrinsic quantum yieldη0
has been fixed to 0.66.

Fig.19(c) and (d) show the fluorescence enhancement (Eq.45)in the same conditions as for the quantum yield (Fig.19(a) and
(b)), assuming that the absorption and emission process occur at the first resonance frequency of the dimer. Of course, this is
a strong hypothesis but, note that, in practice, different absorption and emission frequencies can be incorporated in the model
according to the fluorophore used in the experiment. The intrinsic quantum yieldη0 has been arbitrarily fixed to 0.66. Again,
the fluorescence enhancement highly depends on the positionof the fluorophore and on the orientation of its dipole moment.
Maximal values for the fluorescence enhancement (up to105) occur in the gap for a dipole oriented alongx′. Hence, plasmon
hybridization offers spectral and spatial degrees of freedom that can be used to tune the fluorescence and the apparent quantum
yield with high sensitivity.

To conclude, note that the CT strategy is really powerful since it provides a fully analytical solution to describe the physics
of the interaction between a fluorophore and a plasmonic nanostructure. Unlike a numerical approach, an efficient and rapid
optimization of the nanostructures can be performed. Our analytical model predicts quantitatively the quantum yield and the
fluorescence enhancement induced by these metallic structures for nanowire diameters below 100 nm. As the absorption and
emission process occur at different frequencies, a perfectknowledge of the spectral and spatial properties of the fieldenhancement
might be decisive for the implementation of an experimentalsetup aiming at single molecule detection. The main perspective of
this work is to extend this study to a 3D configuration and in particular to consider a 3D dipole rather than a 2D dipole, which has
not physical existence. We believe our 2D model provides a qualitative knowledge for the spatial and wavelength dependence
of the Purcell factor, the quantum yield and the fluorescenceenhancement. However, note that the values provided here are not
quantitative predictions of what would happen for a 3D transition dipole moment like in a real experiment.

VII. NON-LOCAL EFFECTS

Conformal mapping designs a path towards the plasmonicsgraal, i.e a broadband light harvesting accompanied with a
drastic focusing of light at the nanoscale (see Sec.III-IV). However, the nanostructures derived by conformal mappingdisplay
geometrical singularities in which the spatial extent of the EM fields is comparable to the Coulomb screening length in noble
metals (δc =0.1 nm for silver [120]). From a theoretical perspective, the study of SPs in the vicinity of such singularities
requires the implementation of non-local, spatially dispersive permittivities that take into account the effect of electron-electron
interactions in the dielectric response of the metal. In a recent study, A. Ferńandez-Doḿınguezet al. have adapted the CT
approach to investigate the impact of non-locality on the optical properties of singular plasmonic nanostructures [69]. This
section is dedicated to the review of this theoretical breakthrough.
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A. Conformal mapping of non-locality

A. Ferńandez-Doḿınguezet al. have shown in particular how the spatially dispersive character of the metal permittivity can be
considered in the CT leading to kissing nanowires (see Sec.II B) [69]. Fig.20(b) depicts the system under study, a pair oftouching

FIG. 20: Figure courtesy of A. Fernández-Doḿınguez [69]. Conformal map transforming a MIM structure (a) into kissing nanowires (b) with
a non-local description of the interaction of light with the nanostructure. The shaded areas in both panels represent the decay length of the
longitudinal plasmons excited in the system. Blue solid lines show artistic plots ofthe electrostatic potential describing propagating SPPs in
both frames.

nanowires illuminated by a plane wave polarized along the dimer axis, as already investigated under the local approximation
in Sec.III. Now, the metal permittivity is modeled using theso-called hydrodynamical Drude model [121], which yields the
following dielectric functionsǫ′T andǫ′M for transverse and longitudinal EM fields, respectively

ǫ′T (ω) = ǫ∞

[

1− ω2
P

ω(ω + iγ)

]

, ǫ′L(ω,k) = ǫ∞

[

1− ω2
P

ω(ω + iγ)− ξ′2|k|2
]

(46)

The usual Drude constants are obtained from the fitting to experimental data for silver [102], whereasξ′, which measures the
degree of non-locality, is set as a free parameter for the moment. The dark ring in Fig.20(b) accounts for the decay lengthof
the longitudinal plasmons into the metal,δ′ ∼ ξ′

ωp

(ω << ωp). δ′ represents the extension of the surface charges induced in the
nanowires by the incident light.

Through the conformal inversion (Eq.5), the problem consisting in an incident field illuminating the touching nanowires
(Fig.20(b)) map onto a dipole sandwiched between two semi-infinite metallic slabs (Fig.20(a)). Whereasǫ′T (ω) is preserved
under the transformation, thek′−dependence ofǫ′L(ω,k

′) makes it sensitive to the inversion. Assuming that the non-local
length scale is much smaller than the spatial range in whichdz/dz′ varies significantly, the general relation between the original
longitudinal permittivity and its transformed counterpart reads [69]

ǫl(k, ω) = ǫ′l

(∣

∣

∣

∣

dz

dz′

∣

∣

∣

∣

k, ω

)

(47)

Hence, conformal mapping leads to a wave-vector stretchingweighted by|dz/dz′| and to a longitudinal permittivity characterized
by a degree of non-localityξ(z) = ξ′|z|2/g2. The surface charge thicknessδ in the slab frame now exhibits ay′−dependence
(Fig.20(b)). The problem in the slab frame is solved under the so-called eikonal (WKB) approximation [69]. This assumption
relies on the fact thatδ(y) varies in space much more slowly than the oscillating EM fields. Note that this approach omits electron
tunnelling effects, which could have some influence in the plasmonic response of nanoparticle dimers as well [101].

B. Towards the physics of local dimers

Solving the problem in the slab frame leads to an analytical solution for the non-local kissing nanowires problem. The
analytical expressions of the absorption cross-section and the field enhancement can be found in the original article [69]. Here
we will present the main results and insist on the physics hidden behind them. The plasmonic behavior of non-local touching
nanowires is qualitatively different from the local prediction. In the local approximation there is a continuous spectrum of modes
that propagate towards the touching point but can never reach it. In the non-local description, the modes can sneak past the
touching point and circulate round and round the structure.Hence the spectrum is now discrete and the physics is closelyrelated
to the case of non-touching local nanowires (see Sec.V).
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Fig.21(a) displays the absorption spectra for aR = 10 nm nanowire dimer. Analytical results are compared to numerical
ones obtained with COMSOL. For comparison,σa is also displayed for a local dimer (grey), local (solid black) and non-local
(δ = 10−2λp, dashed line) single nanowires. Whereas non-locality only blueshifts the dipolar resonance of isolated nanowires,
it gives rise to a set of absorption peaks for kissing nanowires. These non-local resonances shift to higher frequencieswhenξ
increases, in a similar manner as the dipolar peak of a singlenanowire. Importantly, Fig.21(a) shows that the broadbandresponse
of touching dimers is lost at frequencies below the lowest non-local resonance. Fig.21(b) plots the field enhancement along the
nanowire surface evaluated at the three first resonances fora value ofδ′ = 10−3λp (green line in Fig.21(a)). In analogy with
non-touching local nanowires (Sec.V), the rankn of the modes can be related to the number of nodes that the SPP fields present
near the singularity. Note that the non-local effects drastically reduce the maximum field enhancement that can be reached
(typically 2 × 102 instead of2 × 104 under the local approximation). The electric field now spreads over a larger range of
angles than under the local approximation. The good point isthat the area of field amplification will be much more accessible to
molecules in surface enhanced Raman-scattering and fluorescence enhancement experiments.

FIG. 21: Figures courtesy of A. Fernández-Doḿınguez [69]. (a): Theoretical (solid lines) and numerical (dots) absorption spectra for 10
nm radii non-local nanowires compared with the cross section obtained within the local approximation (grey dashed line).σa for a local
(non-local,δ = 10

−2λp) single nanowire is also plotted in solid (dashed) black line. (b) Field enhancement close to the touching point at the
three lowest non-local resonances forδ = 10

−3λp (value appropriate for silver). (c) Absorption cross section normalized to the structure area
for Ag (β = 3.6× 10

−3c) for nanowires of different radii. Color solid lines plot the non-local results and dashed black line corresponds to the
electrostatic local result for allR. The inset shows the absorption efficiency versus the incident frequency and nanowires radius.

Fig.21(c) shows the absorption spectra normalized toR2 for various nanowire sizes (color solid lines). Within the electrostatic
local approximation (Eq.28) [45],σa scales asR2, hence plottingσa/R

2 allows to investigate simultaneously non-local and
radiative effects on the optical properties of the system. Radiation damping is taken into account incorporating a fictive absorber
in the slab frame (see Sec.VI). The comparison between the non-local results and the electrostatic local prediction clarifies how
non-locality and radiation losses modify the optical properties of the system. For small sizes (R = 2 nm), radiation is negligible,
but the weight of spatial dispersion,δ′/R, is high. The absorption spectrum shows a single peak with a narrow line width like a
single nanowire (see Fig.21(a)). For larger sizes, the absorption cross-section decreases compared to the electrostatic prediction
due to radiative reaction, while the impact of non-localityis diminished. Thus, the dimers interact less efficiently with the
incoming light, but over a larger bandwidth. In the inset, the absorption efficiencyσa/R is shown as a function ofω/ωsp and
the nanowire radiusR. The light collection performance of the structure is optimized for nanowire radii between 5 and 50 nm,
where the balance between radiative and non-local effects is the most convenient.

Note that the study of non-locality with conformal mapping is not restricted to the case of kissing nanowires but can be
extended to all the singular structures mentioned earlier in the review and displayed in Figs.2 and 5.

VIII. SUMMARY AND OUTLOOK

To briefly conclude, this review shows how CT provides an elegant tool to design plasmonic structures capable of an efficient
harvesting of light over the whole visible spectrum. SP modes are shown to propagate toward the structure singularity where
their velocity vanishes and energy accumulates. Strong field enhancement (> 103) and confinement at the nano-scale have
been predicted within the classical approach. Subsequent refinements of the CT theory has allowed to take into account the
bluntness of the nanostructure that will be inevitable in practice, as well as radiative losses and non-locality. The consideration
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of these limits makes the CT approach really powerful, capable of predicting analytically the optical properties of a large variety
of nanostructures and designing a path towards a broadband nanofocusing of light. Experiments are currently performedto
confirm the theoretical predictions [42, 122, 123]. The proposed plasmonic nanostructures may find great potential applications
in solar cells [124–126], surface-enhanced Raman scattering [91, 127], single molecule detection [128, 129], plasmon-controlled
fluorescence [44, 112–116], high-harmonic generation [26], and SPASERS [85, 130].
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