

Study of Buried Interfaces in Fe/Si Multilayer by Hard X-ray emission spectroscopy

Hina Verma^{*}, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff¹, Yunlin Jacques Zheng², Philippe Jonnard

*Sorbonne Université, Faculté des sciences et Ingénierie, UMR CNRS, Laboratoire de Chimie Physique – Matière et Rayonnement, 4 Place Jussieu, F-75252 Paris Cedex 05, France.

Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, St Aubin, 91192 Gif sur Yvette, France.
Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris (INSP), F-75005 Paris, France

Introduction

Absorbing material (high Z element e.g. Fe, Cu etc.) Spacer material (low Z element e.g. Si, C etc.)

Bragg's Law, $2d Sin\theta = n\lambda$

(m)

Soft X-ray Telescopes for Solar Imaging

Microscopy in Water Window Range

Extreme Ultra Violet Applications

State of the Art & Motivation

 \blacktriangleright Multilayers studied by X-ray emission in the soft X-ray range (E $\leq 2 keV$)

the [Fe/Si(t)] multilayer.

*J. A. Carlisle et al 1996 Phys. Rev. B 53, R8824(R),**Takashi Imazono et al 2004 Jpn. J. Appl. Phys. 43 4327

Samples Studied

Figure 2 - Magnetron Sputtering Chamber at LCPMR

Fe ref. – Thin Film of 20nm Fe on Si Substrate

 $FeSi_2$ ref. – [Fe(3.6nm)/Si(4.5nm)]_{x13} multilayer sample annealed at 675°C for 2 hours in vacuum

 $[Fe(2.5nm)/Si(2.5nm)]_{x40}$ Multilayer

Spectrometer

RIXS (resonant inelastic x-ray spectrometer) multi analyser spectrometer was used to obtain the emission spectra of Fe at GALAXIES beamline installed at synchrotron SOLEIL, Paris.

X-ray emission spectra

X-Ray Diffraction Analysis

Peak Width --- Vertical Coherence Length – 3.8nm in Fe/Si Multilayer

- Presence of FeSi₂ at the interface between Fe and Si layers in the [Fe/Si]_{x40} multilayer
- FeSi₂ grains in the multilayer are too large & distort the structure of the multilayer

Figure 6 - X-ray diffraction patterns of the Fe/Si multilayer and the FeSi₂ reference

Calculation of Interface Thickness – Weighted Fit

Figure 7 - *Fit of Fe K-beta5 emission band of the multilayer with a weighted sum of Fe ref and FeSi*₂ *ref spectra.*

(m)

Calculation of Interphase Thickness

 $I_{ML} = xI_{Fe} + yI_{FeSi_2}$

8

*Reflectivity Measurements for [Fe/Si]*_{x40}*multilayer*

Figure 8 - *Reflectivity Fit of* [*Fe/Si*]_{x40} *Multilayer.*

Layer	Thickness (in nm)	Roughness/Difussenes s (in nm)	Density (g/cm3)
Fe	1.75	0.72	7.87 (Bulk)
FeSi ₂	1.04	0.22	7.18
Si	1.43	0.27	2.33 (Bulk)
FeSi ₂	0.85	0.23	6.59

> Total FeSi₂ Thickness - (2.8 nm) Weighted Fit > (1.9 nm) XRR

Considering mean density of FeSi₂ (6.9 g/cm³) – XRR

Thickness (Miyata model) = 1.2 ± 0.2 nm at each interface with a total of 2.4nm in one period

The total interfacial thicknesses deduced by XRR and XES can be considered as similar when taking into account the uncertainties

Conclusion & Future Prospects

- \succ XES can be used to study the multilayer systems in the hard x-ray range to get information about the multilayer, qualitatively and quantitatively.
- The interface thickness obtained with XES in hard x-ray range is comparable to that obtained with soft x-rays in Fe/Si Multilayer.
- ➤ More precise information could be obtained by coupling X-ray Standing technique (XSW) with high resolution x-ray fluorescence (XRF) at high spectral resolution.

(XSW) Depth-dependent information + Chemical Sensitivity (XES)

Thank you