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We study the Γ-convergence of a family of non-local, non-convex functionals in L p (I) for p ≥ 1, where I is an open interval. We show that the limit is a multiple of the W 1,p (I) semi-norm to the power p when p > 1 (resp. the BV (I) semi-norm when p = 1). In dimension one, this extends earlier results which required a monotonicity condition.

Introduction and statement of the main results

Assume that ϕ : [0, +∞) → [0, +∞) is defined at every point of [0, +∞), ϕ is continuous on [0, +∞) except at a finite number of points in (0, +∞) where it admits a limit from the left and from the right, and ϕ(0) = 0. Let I denote an open interval of R. Fix p ≥ 1. Given a measurable function u on I, and a parameter δ > 0, we define, as in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF], the following non-local functionals Throughout the paper, we make the following three assumptions on ϕ:

(1.2) ϕ(t) ≤ αt p+1 on [0, 1] for some positive constant α,

(1.3) ϕ(t) ≤ β on [0, +∞) for some positive constant β, and

(1.4) ˆ∞ 0 ϕ(t)t -(p+1) dt = 1/2.
Our main result is the following for some constant κ, depending on ϕ but independent of I, such that

(1.6) 0 ≤ κ ≤ 1.
Some comments on Theorem 1.1 are in order.

• On the precise definition of Λ 0 . If κ = 0, by convention, Λ 0 (u, I) = 0 for all u ∈ L p (I). In other words, the conclusion of Theorem 1.1 asserts that either Λ δ (•, I) Γ-converges to 0 in L p (I) or there exists a constant 0 < κ ≤ 1 such that Λ δ (•, I) Γ-converges to Λ 0 (•, I) defined by (1.5) with the usual convention: Λ 0 (u, I) = +∞ if u ∈ BV (I) for p = 1, or if u ∈ W 1,p (I) for p > 1. The first part of the alternative, i.e., κ = 0, occurs e.g. when ϕ has a compact support in [0, +∞) (see [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF]Remark 3]; only the case p = 1 was considered in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF], however, the same conclusion holds for p > 1 with the same proof). The second part of the alternative, i.e., κ > 0, happens e.g. when ϕ is non-decreasing (see [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF][START_REF]Non-local, non-convex functionals converging to Sobolev norms[END_REF] with roots in [START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF]); more generally, κ > 0 when lim inf t→+∞ ϕ(t) > 0. It would be very interesting to find a natural weaker sufficient condition on ϕ at infinity such that κ > 0.

• On the condition (1.4). This is just a normalization condition. Without this assumption, the conclusion of Theorem 1.1 holds with (1.6) replaced by

0 ≤ κ ≤ 2 ˆ∞ 0 ϕ(t)t -(p+1) dt.
This suggests that assumptions (1.2)-(1.3) might be substituted by the weaker condition ˆ∞ 0 ϕ(t)t -(p+1) dt < +∞.

It is worth noting that the following pointwise convergence property holds for Λ δ :

Proposition 1.1. Let p ≥ 1 and let ϕ satisfy (1.2)- (1.4). Then, i) for p > 1 and for u ∈ W 1,p (I), or ii) for p = 1 and for u ∈ C 1 ( Ī) if I is bounded (resp. u ∈ C 1 c ( Ī) if I is unbounded), we have The conclusion of Proposition 1.1 under the assumption i) follows from [6, Theorem 1] (the only remaining case to be considered is the case I = (0, +∞) which can be deduced from the cases I bounded and I = R by standard arguments). The proof of Proposition 1.1 under the assumption ii) appeared in [5, proof of Proposition 1] under the additional assumption (1.8) ϕ is non-decreasing; however, this assumption can be easily removed from the proof. The conclusion of Proposition 1.1 contrasts with the conclusion of Theorem 1.1 since it may happen, for some functions ϕ e.g. ϕ = ϕ 1 := p 2 1 (1,+∞) , that κ is strictly less than 1 (see [START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF]); an explicit value of κ for ϕ 1 is given in [START_REF] Antonucci | Optimal constants for a non-local approximation of Sobolev norms and total variation[END_REF]. As established in [START_REF] Antonucci | On the gap between gamma-limit and pointwise limit for a non-local approximation of the total variation[END_REF], it may happen that κ(ϕ) = 1 for some ϕ.

This work is a follow-up of our previous papers [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF][START_REF]Non-local, non-convex functionals converging to Sobolev norms[END_REF] where we investigated a similar problem in any dimension d ≥ 1. More precisely, I is replaced by a domain Ω ⊂ R d and the RHS in (1.1) is replaced by

ˆΩ ˆΩ ϕ(|u(x) -u(y)|)
|x -y| p+d dx dy.

Assuming (1.2), (1.3), and the additional condition (1.8), we established in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF][START_REF]Non-local, non-convex functionals converging to Sobolev norms[END_REF] the Γconvergence of Λ δ to a multiple of ´Ω |∇u| p dx. In these works, the monotonicity assumption (1.8) played a crucial role at almost every level of the proofs. The proof of Theorem 1.1 has its roots in [START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF][START_REF]Γ-convergence, Sobolev norms, and BV functions[END_REF][START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF][START_REF]Non-local, non-convex functionals converging to Sobolev norms[END_REF]. However, many new ideas are required to overcome the lack of assumption (1.8). We do not know whether (1.8) can be removed when d > 1.

Proof of the main result

We first recall the meaning of Γ-convergence. One says that Λ δ (•, I) Γ → Λ 0 (•, I) in L p (I) for p ≥ 1 as δ → 0 if the following two properties holds (G1) For each g ∈ L p (I) and for every family (g δ ) ⊂ L p (I) such that g δ converges to g in L p (I) as δ → 0, one has lim inf δ→0 Λ δ (g δ , I) ≥ Λ 0 (g, I).

(G2) For each g ∈ L p (I), there exists a family (g δ ) ⊂ L p (I) such that g δ converges to g in L p (I) as δ → 0, and lim sup δ→0 Λ δ (g δ , I) ≤ Λ 0 (g, I).

In this section, we establish properties (G1) and (G2) with Λ 0 defined by (1.5) and κ defined by

(2.1) κ := inf lim inf δ→0 Λ δ (v δ , (0, 1)),
where the infimum is taken over all families (v δ ) ⊂ L p (0, 1) such that v δ → U in L p (0, 1) as δ → 0, where U (x) := x for x ∈ (0, 1). Choosing I = (0, 1) and u = U in Proposition 1.1, we see that the constant κ given by (2.1) satisfies 0 ≤ κ ≤ 1.

Remark 2.1. As a direct consequence of the definition of κ in (2.1), the following property holds lim inf

k→+∞ Λ δ k (g k , (0, 1)) ≥ κ,
for every (δ k ) ⊂ R + and (g k ) ⊂ L p (0, 1) such that δ k → 0 and g k → U in L p (0, 1) as k → +∞.

We will only consider the case I = R. The other cases can be handled as in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF] and are left to the reader. The rest of this paper is organized as follows. Section 2.1 is devoted to the proof of Property (G2). The proofs of Property (G1) for p = 1 and p > 1 are given in Sections 2.2.1 and 2.2.2, respectively.

For p ≥ 1 and δ > 0, we will denote ϕ δ (t) := δ p ϕ(t/δ) for t ≥ 0.

2.1. Proof of Property (G2). The proof of Property (G2) is based on the following three lemmas which are valid for κ defined by (2.1), possibly equal to 0. We begin with Lemma 2.1. Let p ≥ 1 and let ϕ satisfy (1.2)-(1.4). There exists a family (v δ ) ⊂ L p (0, 1) converging to U in L p (0, 1), as δ → 0, such that

(2.2) lim δ→0 Λ δ (v δ , (0, 1)) = κ.
Proof. From the definition of κ in (2.1), there exist a sequence (δ k ) ⊂ R + converging to 0 and a sequence (u k ) ⊂ L p (0, 1) converging to U in L p (0, 1) such that

(2.3) lim k→+∞ Λ δ k (u k , (0, 1)) = κ.
Let (c k ) be a sequence of positive numbers converging to 0 such that, for large k,

(2.4) c k ≥ δ 1/2 k , (2.5) ˆ1 0 |u k -U | p dx ≤ c p+1 k , (2.6) Λ δ k (u k , (0, 1)) ≤ κ + c k , (2.7) Λ δ k (u k , (c k , 1 -c k )) ≥ κ(1 -2c k ) -c k .
Such a sequence (c k ) exists; indeed, from the definition of κ, by a change of variables, we have lim inf

k→+∞ Λ δ k (u k , (c, 1 -c)) ≥ κ(1 -2c),
for every c ∈ (0, 1/2). Hereafter, we only consider large k so that (2.4)-(2.7) hold.

In what follows in this proof, C denotes positive constants which depend only on α, β, and p and can vary from one place to another. From (2.6) and (2.7) and the fact that κ ≤ 1, we obtain (2.8)

ˆck c k /2 ˆ1 0 ϕ δ k (|u k (x) -u k (y)|) |x -y| p+1 dx dy ≤ Cc k .
By (2.5) and (2.8), there exists (2.9)

x 1,k ∈ (c k /2, c k ) such that (2.10) |u k (x 1,k ) -x 1,k | ≤ Cc k and (2.11) ˆ1 0 ϕ δ k (|u k (x 1,k ) -u k (y)|) |x 1,k -y| p+1 dy ≤ C.
Similarly, there exists (2.12)

x 2,k ∈ (1 -c k , 1 -c k /2) such that (2.13) |u k (x 2,k ) -x 2,k | ≤ Cc k and (2.14) ˆ1 0 ϕ δ k (|u k (x 2,k ) -u k (y)|) |x 2,k -y| p+1 dy ≤ C.
We now modify u k to obtain a new sequence (û k ) such that ûk → U in L p (0, 1), (2.3) is preserved for ûk , i.e., (2.15) lim

k→+∞ Λ δ k (û k , (0, 1)) = κ,
and in addition ûk = U in suitable neighborhoods of 0 and 1. Define ûk : (0, 1) → R as follows ûk (x) :=

                   x if 0 < x < x 1,k 3 , u k (x 1,k ) if 2x 1,k 3 < x < x 1,k , u k (x) if x 1,k ≤ x ≤ x 2,k , u k (x 2,k ) if x 2,k < x < 1+2x 2,k 3 , x if 2+x 2,k 3 < x < 1,
and ûk is chosen in [

x 1,k 3 , 2x 1,k 3 ] ∪ [ 1+2x 2,k 3 , 2+x 2,k 3 
] in such a way that it is affine there and ûk is continuous at the end points.

We claim that (2.16) Λ δ k (û k , (0, 1)) ≤ κ + Cc k .

For this purpose, we estimate Λ δ k (û k , (0, 1)) writing

Λ δ k (û k , (0, 1)) ≤Λ δ k (û k , (0, x 1,k )) + 2 ˆx1,k 2x 1,k /3 dx ˆx2,k x 1,k ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dy (2.17) + Λ δ k (û k , (x 2,k , 1)) + 2 ˆ(1+2x 2,k )/3 x 2,k ˆx2,k x 1,k ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dy dx + Λ δ k (û k , (x 1,k , x 2,k )) + ˆ1 0 ˆ1 0 |x-y|>min{x 1,k /3,(1-x 2,k )/3} ϕ δ k (|û k (x) -ûk (y)|)
|x -y| p+1 dy dx.

:= I + II + III + IV + V + V I.
We begin with I. We have, by (1.2) and (1.3)

I = Λ δ k (û k , (0, x 1,k )) = ˆx1,k 0 ˆx1,k 0 ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dx dy ≤ C ˆx1,k 0 ˆx1,k 0 |x-y|≤δ k δ p k |û k (x) -ûk (y)| p+1 δ p+1 k 1 |x -y| p+1 dx dy + C ˆx1,k 0 ˆx1,k 0 |x-y|>δ k δ p k |x -y| p+1 dx dy.
Since |û k (x) -ûk (y)| ≤ C|x -y| for x, y ∈ (0, x 1,k ), we obtain

I ≤ C ˆx1,k 0 ˆx1,k 0 |x-y|≤δ k δ -1 k dx dy + C ˆx1,k 0 ˆx1,k 0 |x-y|>δ k δ p k |x -y| p+1 dx dy.
It follows from straightforward integral estimates that (2.18)

I ≤ Cx 1,k (2.9) 
≤ Cc k .

We next consider II. It is clear from the definition of ûk that

II = 2 ˆx1,k 2x 1,k /3 dx ˆx2,k x 1,k ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dy ≤ 2x 1,k 3 ˆx2,k x 1,k ϕ δ k (|u k (x 1,k ) -u k (y)|) |x 1,k -y| p+1 dy,
which implies, by (2.9) and (2.11),

(2.19) II ≤ Cc k .
Similarly, using (2.13) and (2.14), one has

(2.20) III = Λ δ k (û k , (x 1,k , x 2,k )) ≤ Cc k and (2.21) IV = 2 ˆ(1+2x 2,k )/3 x 2,k ˆx2,k x 1,k ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dy dx ≤ Cc k . It is clear from (2.6) that (2.22) V = Λ δ k (û k , (x 1,k , x 2,k )) ≤ Λ δ k (u k , (0, 1)) ≤ κ + c k .
We now consider V I. We have, for every c > 0,

ˆ1 0 ˆ1 0 |x-y|>c ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dy dx (1.3) ≤ Cδ p k /c p ,
which yields

V I = ˆ1 0 ˆ1 0 |x-y|>min{x 1,k /3,(1-x 2,k )/3} ϕ δ k (|û k (x) -ûk (y)|) |x -y| p+1 dy dx ≤ Cδ p k min{x 1,k /3, (1 -x 2,k )/3} p .
From (2.9) and (2.12), we derive that

(2.23) V I ≤ Cδ p k /c p k (2.4) ≤ Cc k . Combining (2.17)-(2.23) yields Λ δ k (û k , (0, 1)) ≤ κ + Cc k .
The proof of Claim (2.16) is complete. In view of the definition of κ, we obtain (2.15) from (2.16).

As a consequence of (2.16), we have

(2.24) lim sup k→+∞ Λ δ k (û k , (0, 1)) ≤ lim sup k→+∞ Λ δ k (u k , (0, 1)). 
From (û k ), we now construct a family

(v δ ) ⊂ L p (0, 1) such that v δ → U in L p (0, 1) and lim δ→0 Λ δ (v δ , (0, 1)) = κ.
Let (τ k ) ⊂ (0, 1) be a decreasing sequence converging to 0 such that (2.25)

τ k ≤ δ k c k .
For each δ ∈ (0, 1) small, let k = k(δ) be such that

τ k(δ)+1 < δ ≤ τ k(δ) . Define m = m(δ) = δ k(δ) /δ and set m = m(δ) = [ m(δ)],
the largest integer less than or equal to m(δ). Then, by

(2.25), m(δ) ≥ δ k(δ) /τ k(δ) ≥ 1/c k(δ) . This implies (2.26) m(δ)/m(δ) → 1 as δ → 0.
In what follows, for notational ease, we delete the dependence on δ in k(δ), m(δ) and m(δ). Consider v δ : (0, 1) → R defined as follows

v δ (x) := 1 m vδ (mx), where vδ : (0, m) → R is given by, for τ k+1 < δ ≤ τ k , (2.27) vδ (x) := [x] + ûk (x -[x]). Then (2.28) Λ δ (v δ , (0, 1)) = m p-1 mp Λ δ k (v δ , (0, m)). We have (2.29) Λ δ k (v δ , (0, m)) = m-1 i=0 Λ δ k (v δ , (i, i + 1)) + m-1 i=0 ˆi+1 i dx (0,m)\(i,i+1) ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy.
It is clear from the definition of v δ that, for 0

≤ i ≤ m -1, (2.30) Λ δ k (v δ , (i, i + 1)) = Λ δ k (û k , (0, 1))
and, that, with

s k = min{x 1,k , 1 -x 2,k }/3, (2.31) ˆi+1 i dx (0,m)\(i,i+1) ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy = ˆi+1 i dx (0,m)\(i,i+1) |y-x|≤s k ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy + ˆi+1 i dx (0,m)\(i,i+1) |y-x|≥s k ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy.
Note that, by (2.9) and (2.12), s k ∼ c k . By the same method used to establish (2.23), we have (2.32)

ˆi+1 i dx (0,m)\(i,i+1) |y-x|≥s k ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy ≤ Cc k .
Note, from the definition of vδ , that |v δ (x) -vδ (y)| = |x -y| for x ∈ (i, i + 1) and y ∈ (0, m) \ (i, i + 1) with |y -x| ≤ s k . By the same method used to establish (2.18), we have (2.33)

ˆi+1 i dx (0,m)\(i,i+1) |y-x|≤s k ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy ≤ Cc k .
We derive from (2.31)-(2.33) that (2.34)

ˆi+1 i dx (0,m)\(i,i+1) ϕ δ k (|v δ (x) -vδ (y)|) |x -y| p+1 dy ≤ Cc k .
Combining (2.28)-(2.34) and using (2.4) and (2.16), we have

(2.35) Λ δ k (v δ , (0, m)) ≤ m(κ + Cc k ).
We 

(u δ ) ⊂ L p (a, b) such that u δ → u in L p (a, b), as δ → 0, lim sup δ→0 Λ δ (u δ , (a, b)) ≤ κ ˆb a |u | p dx,
and, for small δ,

u δ = u on (a, a + δ 1/2 /6) ∪ (b -δ 1/2 /6, b).
Proof. By Lemma 2.1, after a change of variables, there exists a family (v δ ) ⊂ L p (a, b) converging to u in L p (a, b) as δ → 0, and

(2.38) lim δ→0 Λ δ (v δ , (a, b)) = κ ˆb a |u | p dx.
As in the proof of Lemma 2.1, there exist (c δ ), (x 1,δ ), (x 2,δ ) such that

lim δ→0 c δ = 0, c δ ≥ δ 1/2 , Λ δ (v δ , (a, b)) ≤ κ ˆb a |u | p dx + c δ , x 1,δ ∈ (a + c δ /2, a + c δ ), x 2,δ ∈ (b -c δ , b -c δ /2), |v δ (x 1,δ ) -u(x 1δ )| ≤ c δ , |v δ (x 2,δ ) -u(x 2,δ )| ≤ c δ , ˆb a ϕ δ (|v δ (x 1,δ ) -v δ (y)|) |x 1,δ -y| p+1 dy ≤ C, ˆb a ϕ δ (|v δ (x 2,δ ) -v δ (y)|) |x 2,δ -y| p+1 dy ≤ C,
for small δ and for some positive constant C independent of δ. Here we used the fact, for c ∈ (0, (b -a)/2),

lim inf δ→0 Λ δ (v δ , (a + c, b -c)) ≥ κ ˆb-c a+c |u | p dx. Define vδ : (a, b) → R as follows vδ (x) :=                      u(x) if a < x < 2a+x 1,δ 3 , v δ (x 1,δ ) if a+2x 1,δ 3 < x < x 1,δ , v δ (x) if x 1,δ ≤ x ≤ x 2,δ , v δ (x 2,δ ) if x 2,δ < x < b+2x 2,δ 3 , u(x) if 2b+x 2,δ 3 < x < b,
and vδ is chosen in [

2a+x 1,δ 3 , a+2x 1,δ 3 ] ∪ [ b+2x 2,δ 3 , 2b+x 2,δ 3 
] in such a way that it is affine there and ûδ is continuous at the end points. It is clear that vδ → u in L p (a, b).

As in the proof of (2.24), we have

lim sup δ→0 Λ δ (v δ , (a, b)) ≤ lim sup δ→0 Λ δ (v δ , (a, b)).
By (2.38), the conclusion now holds for (u δ ) with u δ := vδ .

Using Lemma 2.2, we can establish the following key ingredient in the proof of (G2).

Lemma 2.3. Let p ≥ 1 and let ϕ satisfy (1.2)-(1.4). Let u be a continuous piecewise linear function defined on R with compact support. There exists a family

(u δ ) ⊂ L p (R) such that u δ → u in L p (R), as δ → 0, and 
lim sup δ→0 Λ δ (u δ , R) ≤ κ ˆR |u | p dx.
Proof. Since u is a continuous piecewise linear function defined on R with compact support, there exist

a 1 < a 2 < • • • < a m such that u is affine on (a i , a i+1 ), 1 ≤ i < m -1, u(x) = 0 if x < a 1 or x > a m , and u is continuous at a i for 1 ≤ i ≤ m.
In what follows, we denote a 0 = -∞ and a m+1 = +∞. For 1 ≤ i ≤ m -1, by Lemma 2.2, there exist a family

(v i,δ ) ⊂ L p (a i , a i+1 ) such that (2.39) v i,δ → u in L p (a i , a i+1 ) as δ → 0, (2.40) lim sup δ→0 Λ δ (v i,δ , (a i , a i+1 )) ≤ κ ˆai+1 a i |u | p dx,
and, for small δ,

(2.41) v i,δ = u on (a i , a i + δ 1/2 /6) ∪ (a i+1 -δ 1/2 /6, a i+1 ).

Set

(2.42) v 0,δ = 0 in (a 0 , a 1 ) and v m,δ = 0 in (a m , a m+1 ).

Then

(2.43) Λ δ (v 0,δ , (a 0 , a 1 )) = Λ δ (v m,δ , (a m , a m+1 )) = 0.

Define u δ : R → R as follows

(2.44) u δ (x) = v i,δ (x) for x ∈ (a i , a i+1 ) and 0 ≤ i ≤ m.
As in (2.35), we have

(2.45) Λ δ (u δ , R) ≤ m-1 i=1 Λ δ (u δ , (a i , a i+1 )) + Cmδ 1/2 ,
for some positive constant C independent of δ (but C depends on the slope of u on each interval (a i , a i+1 ) for small δ). 

u δ → u in L p (R) as δ → 0.
The conclusion now follows from (2.46) and (2.47).

We are ready to complete the Proof of Property (G2). We distinguish two cases.

Case 1: κ > 0. In this case, for any function g ∈ W 1,p (R) with p > 1 (resp. g ∈ BV (R) with p = 1), we will construct a family (g δ ) ⊂ L p (R) such that g δ → g in L p (R), as δ → 0, and lim sup

δ→0 Λ δ (g δ , R) ≤ κ ˆR |g | p dx.
Case 2: κ = 0. In this case, for any function g ∈ L p (R) with p ≥ 1, we will construct a family (g δ ) ⊂ L p (R) such that g δ → g in L p (R), as δ → 0, and

lim δ→0 Λ δ (g δ , R) = 0.
Proof in Case 1: Let (g n ) ⊂ L p (R) be a sequence of continuous piecewise linear functions with compact support such that g n → g in L p (R), as n → +∞, and

lim n→+∞ ˆR |g n | p dx = ˆR |g | p dx.
For each n ∈ N, by Lemma 2.3, there exists a family (g n,δ ) ⊂ L p (R) such that g n,δ → g n in L p (R), as δ → 0, and

lim sup δ→0 Λ δ (g n,δ , R) ≤ κ ˆR |g n | p dx.
The conclusion now follows from a standard selection process.

Proof in Case 2: Let (g n ) ⊂ L p (R) be a sequence of continuous piecewise linear functions with compact support such that g n → g in L p (R) as n → ∞. For each n ∈ N, by Lemma 2.3, there exists a family (g n,δ ) ⊂ L p (R) such that g n,δ → g n in L p (R), as δ → 0, and

lim δ→0 Λ δ (g n,δ , R) = 0.
The conclusion now follows from a standard selection process.

Proof of Property (G1

). This section containing two subsections is devoted to the proof of Property (G1). In the first subsection, we consider the case p = 1. The case p > 1 is studied in the second subsection.

2.2.1. Proof of Property (G1) for p = 1. In this section, we consider p = 1 and assume κ > 0 since there is nothing to prove otherwise. Define (2.48)

γ := inf lim inf δ→0 Λ δ (v δ , (0, 1)),
where the infimum is taken over all families (v δ ) ⊂ L 1 (0, 1) such that 

v δ → H 1/2 in L 1 (0,
(u δ ) ⊂ L 1 (t 1 , t 2 ) such that u δ → u in L 1 (
Λ δ (u δ , R) ≥ γ ˆR |u | dx.
The proof of Lemma 2.4 relies on the two lemmas below. The first one is Lemma 2.6. Let p = 1 and let ϕ satisfy (1.2)-(1.4). There exist a sequence (h k ) ⊂ L 1 (0, 1) and a sequence (δ k ) ⊂ R + converging to 0 such that Proof. Let (δ k ) ⊂ R + and (g k ) ⊂ L 1 (0, 1) be such that

lim k→+∞ h k = H 1/2 in L 1 (0, 1), h k (x) = 0 for x < 1/16, h k (x) = 1 for x > 1 -1/16,
lim k→+∞ δ k = 0, lim k→+∞ g k = H 1/2 in L 1 (0, 1), and lim k→+∞ Λ δ k (g k , (0, 1)) = γ.
Let (c k ) ⊂ R + be such that, for large k,

(2.51) lim k→+∞ c k = 0, c k ≥ δ 1/2 k , (2.52) Λ δ k (g k , (0, 1)) ≤ γ + c k , (2.53) ˆ1 0 |g k -H 1/2 | dx ≤ c 2 k ,
In what follows in this proof, C denotes a positive constant depending only on α and β. From (2.51)-(2.53), we derive that, for some τ k ∈ (1/8, 1/5) and with τk = τ k + 1/2, (2.54) 

ˆτk +c k τ k |g k -H 1/2 | dx + ˆτ k +c k τk |g k -H 1/2 | dx ≤ Cc k and (2.55) (τ k ,τ k +c k )×(0,1) ϕ δ k (|g k (x) -g k (y)|) |x -y| 2 dx dy + (τ k ,τ k +c k )×(0,1) ϕ δ k (|g k (x) -g k (y)|) |x -
ˆ1 0 ϕ δ k (|g k (b k ) -g k (y)|) |b k -y| 2 dy + ˆ1 0 ϕ δ k (|g k ( bk ) -g k (y)|) | bk -y| 2 dy ≤ C.
Define h k : (0, 1) → R as follows

h k (x) =                    0 for 0 < x < b k -2c k , g k (b k ) for b k -c k < x < b k , g k (x) for b k ≤ x ≤ bk , g k ( bk ) for bk < x < bk + c k , 1 for bk + 2c k < x < 1,
and

h k is chosen in [b k -2c k , b k -c k ] ∪ [ bk + c k , bk + 2c k ]
in such a way that it is affine there and h k is continuous at the end points. As in the proof of (2.16) in Lemma 2.1, one can check that

(2.58) Λ δ k (h k , (0, 1)) ≤ γ + Cc k .
Therefore, the conclusion holds for h k .

The second lemma used in the proof of Lemma 2.4 is Lemma 2.7. Let p = 1 and let ϕ satisfy (1.2)-(1.4). There exist a sequence (u k ) ⊂ L 1 (0, 1) and a sequence (µ k ) ⊂ R + such that

lim k→+∞ µ k = 0, lim k→+∞ u k = U in L 1 (0, 1),
and lim sup k→+∞ Λ µ k (u k , (0, 1)) ≤ γ.
Proof. Let (δ k ) and (h k ) ⊂ L 1 (0, 1) be the sequences satisfying the conclusion of Lemma 2.6.

Given n ∈ N, set I j = (j/n, (j + 1)/n) for 0 ≤ j ≤ n -1, and define

(2.59) f k,n (x) = 1 n h k n(x -j/n) + j n for x ∈ I j .
By a change of variables, we obtain

(2.60) ˆ1 0 |f k,n (x) -x| dx = 1 n ˆ1 0 |h k (x) -x| dx.
We next estimate Λ δ k /n (f k,n , (0, 1)).

It is clear that (2.61)

Λ δ k /n (f k,n , (0, 1)) ≤ n-1 j=0 Λ δ k /n (f k,n , I j ) + n-1 j=0 Ïj ×((0,1)\I j ) ϕ δ k /n (|f k,n (x) -f k,n (y)|) |x -y| 2 dx dy.
We have, by a change of variables,

(2.62) Λ δ k /n (f k,n , I j ) = 1 n Λ δ k (h k , (0, 1)).
It is clear that

(2.63) Ïj ×((0,1)\I j ) ϕ δ k /n (|f k,n (x) -f k,n (y)|) |x -y| 2 dx dy = Ïj ×((0,1)\I j ) |x-y|<1/(16n) ϕ δ k /n (|f k,n (x) -f k,n (y)|) |x -y| 2 dx dy + Ïj ×((0,1)\I j ) |x-y|>1/(16n) ϕ δ k /n (|f k,n (x) -f k,n (y)|) |x -y| 2 dx dy.
Since the first term on the RHS of the above identity is 0, by straightforward integral estimates, we obtain (2.64)

Ïj ×((0,1)\I j ) ϕ δ k /n (|f k,n (x) -f k,n (y)|) |x -y| 2 dx dy ≤ C δ k n ln n. Set n k = [ln δ -1 k ]
(the integer part of ln δ -1 k ) and µ k = δ k /n k , so that n k → +∞ and µ k → 0 as k → +∞. Combining (2.61), (2.62), and (2.64) yields, with 

u k = f k,n k , (2.65) Λ µ k (u k , (0, 1)) ≤ Λ δ k (h k , (
|u k -U | dx = 0.
The conclusion follows from (2.66) and (2.67).

We are ready to give the Proof of Lemma 2.4. By Property (G2) applied with g = H 1/2 and I = (0, 1), there exists a family (g δ ) ⊂ L 1 (0, 1) such that g δ → H 1/2 in L 1 (0, 1) and lim sup δ→0 Λ δ (g δ , (0, 1)) ≤ κ.

This implies, by the definition of γ in (2.48), that γ ≤ κ. By Lemma 2.7 and Remark 2.1, one obtains κ ≤ γ. The conclusion follows.

We now give the Proof of Lemma 2.5. We begin with the following Claim 1: For any ε > 0, there exist two positive numbers δ1 , δ2 such that for any a 1 , b 1 , c ∈ R with a 1 < b 1 , and for any u ∈ L 1 (a 1 , b 1 ) satisfying

u -cH a 1 + 1 2 (b 1 -a 1 ) L 1 (a 1 ,b 1 ) ≤ |c|(b 1 -a 1 ) δ1 , one has Λ δ (u, (a 1 , b 1 
)) ≥ |c|(γ -ε) for all δ ∈ (0, |c| δ2 ). To establish the claim, we first consider the case (a 1 , b 1 ) = (0, 1) and c = 1. The existence of δ1 and δ2 in this case is a direct consequence of the definition of γ by a contradiction argument. The general case follows from this case by a change of variables.

We now prove (2.49). Without loss of generality, one may assume that t 1 = 0, t 2 = 1, u(t 1 ) = 0, and u(t 2 ) = 1. It suffices to prove that

(2.68) lim inf k→+∞ Λ δ k (u k , (0, 1)) ≥ γ,
for every (δ k ) ⊂ R + converging to 0, and for every (

u k ) ⊂ L 1 (0, 1) such that u k → u in L 1 (0, 1) and sup k Λ δ k (u k , (0, 1)) < +∞. Set T = sup k Λ δ k (u k , (0, 1)) < +∞.
Fix ε > 0 (arbitrary). Let δ1 be the constant in the Claim corresponding to ε. Without loss of generality, one may assume that δ1 < 1. Let c be a small positive number such that

ˆc 0 |u(x)| dx + ˆ1 1-c |u(x) -1| dx ≤ c δ2 1 /64.
Since 0 and 1 are Lebesgue points, such a c exists. Since u k → u in L 1 (0, 1), it follows that, for large k,

ˆc 0 |u k (x)| dx + ˆ1 1-c |u k (x) -1| dx ≤ c δ2 1 /32.
This implies, for large k,

|A k | ≥ c/2, where A k = {x ∈ (0, c); |u k (x)| ≤ δ 2 1 /16}. There exists x 1,k ∈ A k such that (2.69) ˆ1 0 ϕ δ k (|u k (x 1,k ) -u k (y)|) |x 1,k -y| 2 dy ≤ 1 |A k | ˆAk dx ˆ1 0 ϕ δ k (|u k (x) -u k (y)|) |x -y| 2 dy ≤ 2T /c.
Similarly, there exists

x 2,k ∈ {x ∈ (1 -c, 1); |u k (x) -1| ≤ δ 2 1 /16} such that (2.70) ˆ1 0 ϕ δ k (|u k (x 2,k ) -u k (y)|) |x 2,k -y| 2 dy ≤ 2T /c. It is then clear that (2.71) |u k (x 1,k )| + |u k (x 2,k ) -1| ≤ δ2 1 /8, for large k. For each (fixed) n > 0 (large), define v k : (-n, n) → R as follows v k (x) =        u k (x 1,k ) if -n < x < x 1,k , u k (x) if x 1,k ≤ x ≤ x 2,k , u k (x 2,k ) if x 2,k < x < n.
We have, since v k is constant on (-n, x 1,k ) and on (x 2,k , n),

(2.72) Λ δ k (v k , (-n, n)) ≤ Λ δ k (v k , (x 1,k , x 2,k )) + 2 ˆx1,k x 1,k -δ k ˆx2,k x 1,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx + 2 ˆx2,k x 1,k ˆx2,k +δ k x 2,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx + 2 ˆx1,k -δ k -n ˆx2,k x 1,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx + 2 ˆx2,k x 1,k ˆn x 2,k +δ k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx + ˆn -n ˆn -n |x-y|>x 2,k -x 1,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx.
By straightforward integral estimates, we have ˆx1,k

x 1,k -δ k ˆx2,k x 1,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx + ˆx2,k x 1,k ˆx2,k +δ k x 2,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx (2.69)-(2.70) ≤ Cδ k , ˆx1,k -δ k -n ˆx2,k x 1,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx + ˆx2,k x 1,k ˆn x 2,k +δ k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx (1.3) 
≤ Cδ k ln n + δ k | ln δ k |, ˆn -n ˆn -n |x-y|>x 2,k -x 1,k ϕ δ k (|v k (x) -v k (y)|) |x -y| 2 dy dx (1.3) ≤ Cδ k ln n,
for some positive constant C independent of k and n. It follows from (2.72) that

Λ δ k (v k , (-n, n)) ≤ Λ δ k (u k , (0, 1)) + Cδ k ln n + Cδ k | ln δ k |.
This implies, for every n,

(2.73) lim inf k→+∞ Λ δ k (u k , (0, 1)) ≥ lim inf k→+∞ Λ δ k (v k , (-n, n)).
We have, by (2.71),

(2.74)

v k (x) -H 0 (x) L 1 (-n,n) ≤ δ2 1 n/2 + C, since ( u k L 1 (0,1)
) is bounded. We now fix n ≥ 2C/ δ1 so that the RHS of (2.74) is less than n δ1 since δ1 < 1. Applying the Claim with c = 1 and (a 1 , b 1 ) = (-n, n), we have, for large k,

(2.75) Λ δ k (v k , (-n, n)) ≥ γ -ε.
Combining (2.73) and (2.75) yields

lim inf k→+∞ Λ δ k (u k , (0, 1)) ≥ γ -ε.
Since ε > 0 is arbitrary, (2.68) follows.

The proof of Property (G1) for p = 1 is complete. Proof. Without loss of generality, one may assume that t 1 = 0, t 2 = 1, u(t 1 ) = 0, and u(t 2 ) = 1. Let (δ k ) and (u k ) be arbitrary such that δ k → 0, u k → u in L p (0, 1), and lim k→+∞ Λ δ k (u k , (0, 1)) exists and is finite.

Denote τ the limit of Λ δ k (u k , (0, 1)). In order to establish (2.76), it suffices to prove (2.77) κ ≤ Cτ.

Here and in what follows, C denotes a positive constant depending only on α, β, and p.

Let (c k ) ⊂ R + be such that (2.78) lim k→+∞ c k = 0, c k ≥ δ 1/2 k , (2.79) 
Λ δ k (u k , (0, 1)) ≤ τ + c k , (2.80) ˆ1 0 ϕ δ k (|u k (c k ) -u k (y)|) |c k -y| p+1 dy ≤ Cc -1 k (τ + c k ), (2.81) ˆ1 0 ϕ δ k (|u k (1 -c k ) -u k (y)|) |1 -c k -y| p+1 dy ≤ Cc -1 k (τ + c k ).
(2.82)

|u k (c k )| + |u k (1 -c k ) -1| → 0,
for large k.

For simplicity of presentation, we will assume that u k (c k ) = 0 and u k (1 -c k ) = 1. Define ûk : (0, 1) → R as follows

ûk (x) =        0 if 0 < x < c k , u k (x) if c k ≤ x ≤ 1 -c k , 1 if 1 -c k < x < 1. For n ∈ N, set f k,n (x) = ûk (x -[x]) + [x] for x ∈ (0, n) and g k,n (x) = 1 n f k,n (nx) for x ∈ (0, 1).
We have, by a change of variables,

Λ δ k /n (g k,n , (0, 1)) = 1 n Λ δ k (f k,n , (0, n)).
Using (2.29), one can check, by straightforward integral estimates, that

Λ δ k (f k,n , (0, n)) ≤ Cn(τ + c k ) + Cnδ p k /c p k .
This implies, by (2.78) and (2.79),

(2.83) Λ δ k /n (g k,n , (0, 1)) ≤ Cτ + Cc k .

On the other hand, we have 

(2.84) ˆ1 0 |g k,n (x) -x| p dx = 1 n p ˆn 0 |f k,n (nx) -nx| p dx = 1 n p-1 ˆ1 0 |û k (x) -x| p dx. Taking n = n k = [ln δ -1 k ],
(u δ ) ⊂ L p (R) converging to u in L p (R), lim inf δ→0 Λ δ (u δ , R) < +∞. Then u ∈ W 1,p (R).
Proof. As a consequence of Lemma 2.8, one has, for every -∞ < a < b < +∞, u| p , for some constant σ > 0, independent of a and b. Set, for h ∈ (0, 1),

τ h (u)(x) = 1 h u(x + h) -u(x) for x ∈ R.
For each m ≥ 2 and h ∈ (0, 1), fix K > 0 such that Kh ≥ m. Then 

(2.87) ˆm -m |τ h (u)| p dx ≤ K k=-K ˆ(k+1)h kh |τ h (u)| p dx.
Λ δ (u δ , R).
Since m ≥ 2 is arbitrary, we obtain, for all h ∈ (0, 1),

(2.88) ˆR |τ h (u)| p dx ≤ 2 p σκ lim inf δ→0 Λ δ (u δ , R).
It follows that u ∈ W 1,p (R) (see e.g. [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Chapter 8]).

The second key ingredient in the proof of Property (G1) is the following useful property of functions in W 1,p (R).

Lemma 2.10. Let p > 1 and u ∈ W 1,p (R) (so that u admits a continuous representative still denoted by u). Given ε 1 > 0, there exist a subset B of Lebesgue points of u and ≥ 1 such that Note that, by (2.92), ρ n (x) → 0 for a.e. x ∈ R as n → +∞. We also have, τ n (x) → 0 for a.e.

x ∈ R as n → +∞ (and in fact at every Lebesgue points of u ). For m ≥ 1, set We are ready to give the Proof of Property (G1). We begin with Claim 2: For ε > 0, there exist two positive constants δ1 , δ2 such that for every c, d ∈ R, for every open bounded interval I of R, and for every f ∈ L p (I ) satisfying This claim is a consequence of the definition of κ and its proof is omitted (it is similar to the one of Claim 1 in the proof of Lemma 2.5).

D m = x ∈ (-m, m); x
In order to establish Property (G1), it suffices to prove that (2.98) lim inf

k→+∞ Λ δ k (g k , R) ≥ κ ˆR |g | p dx
for every (δ k ) ⊂ R + and (g k ) ⊂ L p (R) such that δ k → 0 and g k → g in L p (R). Without loss of generality, one may assume that lim inf k→+∞ Λ δ k (g k , R) < +∞. It follows from Lemma 2.9 that g ∈ W 1,p (R). Fix ε > 0 (arbitrary) and let δ1 be the positive constant corresponding to ε in Claim 2. Set The proof is complete. 

  |u(x) -u(y)|) |x -y| p+1 dx dy ≤ +∞ and Λ δ (u, I) := δ p Λ(u/δ, I).
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 11 Let p ≥ 1 and let ϕ satisfy (1.2)-(1.4). Then, as δ → 0, Λ δ (•, I) Γ-converges in L p (I) to Λ 0 (•, I), where (1.5) Λ 0 (u, I) = κ ˆI |u | p dx in L p (I),

Λ

  δ (u, I) = ˆI |u | p dx.

Lemma 2 . 4 .

 24 1) as δ → 0. Here and in what follows H c (x) := H(x -c) for any c ∈ R, where H is the function defined on R by Let p = 1 and let ϕ satisfy (1.2)-(1.4). We have γ = κ, where κ is the constant defined in (2.1). Lemma 2.5. Let p = 1 and let ϕ satisfy (1.2)-(1.4). Let u ∈ L 1 (a, b) and let a < t 1 < t 2 < b be two Lebesgue points of u. Let

Λ

  δ k (h k , (0, 1)) ≤ γ.

Λ

  δ (u δ , (a, b)) ≥ σκ(b -a) 1-p | ess sup x∈(a,b) u -ess inf x∈(a,b)

( 2 .f

 2 89) ˆR\B |u | p dx ≤ ε 1 ˆR |u | p dx, and, for every open interval I with |I | ≤ 1/ and I ∩ B = ∅, and for every x ∈ I ∩ B,(2.90) 1 |I | p I |u(y) -u(x) -u (x)(y -x)| p dy ≤ ε 1 and (2.91) |u (x)| p ≥ (1 -ε 1 ) I |u (y)| p dy.Proof. We first recall the following property of W 1,p (R) functions (see e.g., [10, Theorem 3.4.2]): Let f ∈ W 1,p (R). Then, for a.e. x ∈ R, (y) -f (x) -f (x)(y -x) p dy = 0. Given n ∈ N, define, for a.e. x ∈ R, ) -u(x) -u (x)(y -x) p dy; r ∈ (0, 1/n) and (2.94) τ n (x) = sup x+r x-r |u (y) -u (x)| p dy; r ∈ (0, 1/n) .

I

  |f (y) -(cy + d)| p dy < δ1 |c| p |I | p , one has Λ δ (f, I ) ≥ (κ -ε)|c| p |I | for all δ ∈ (0, δ2 |c||I |).

A

  m = {x ∈ R; x is a Lebesgue points of g and |g (x)| ≤ 1/m} for m ≥ 1. Since lim m→+∞ ˆAm |g | p dx = 0, there exists m ≥ 1 such that (2.99)ˆAm |g | p dx ≤ ε 2 ˆR |g | p dx.Fix such an m. By Lemma 2.10 applied to u = g and ε 1 = min{ε/2, δ1 /(2m) p }, there exist a subset B of Lebesgue points of g and a positive integer such that (2.100)ˆR\B |g | p dx ≤ ε 2 ˆR |g | p dx,and for every open interval I with |I | ≤ 1/ and I ∩ B = ∅, and, for everyx ∈ I ∩ B, ) -g(x) -g (x)(y -x) p dy ≤ δ1 /(2m) p and (2.102) |g (x)| p |I | ≥ (1 -ε) ˆI |g | p dy. Fix such an . Set B m = (B \ A m )and denoteΩ = (i/ , (i + 1)/ ); i ∈ Z and J = J ∈ Ω ; J ∩ B m = ∅ . Since R \ (B \ A m ) ⊂ (R \ B) ∪ A m ,it follows from (2.99) and (2.100) that (2.103)ˆR\Bm |g | p dx = ˆR\(B\Am) |g | p dx ≤ ε ˆR |g | p dx.Take J ∈ J and x ∈ J ∩ B m . Since g k → g in L p (J), we derive from (2.101) (applied withI = J which is admissible since B m ⊂ B) that lim k→+∞ 1 |J| p J g k (y) -g(x) -g (x)(y -x) p dy ≤ δ1 /(2m) p .Applying Claim 2 with I = J, f = g k for large k, c = g (x), and d = g(x), we havelim inf k→+∞ Λ δ k (g k , J) ≥ (κ -ε)|g (x)| p |J|, which implies, by (2.102), (2.104) lim inf k→+∞ Λ δ k (g k , J) ≥ (κ -ε)(1 -ε) ˆJ |g | p dy. Since lim inf k→+∞ Λ δ k (g k , R) ≥ J∈J lim inf k→+∞ Λ δ k (g k , J), it follows from (2.104) that lim inf k→+∞ Λ δ k (g k , R) ≥ (κ -ε)(1 -ε) J∈J ˆJ |g | p dx ≥ (κ -ε)(1 -ε) ˆBm |g | p dx (2.103) ≥ (κ -ε)(1 -ε) 2 ˆR |g | p dx;here in the second inequality, we have used the fact B m is contained in J∈J J up to a null set. Since ε > 0 is arbitrary, one has lim inf k→+∞ Λ δ k (g k , R) ≥ κ ˆR |g | p dx.

  Let p ≥ 1 and let ϕ satisfy (1.2)-(1.4). Let a < b and let u be an affine function on (a, b). There exists a family

	deduce from (2.26), (2.28), and (2.35) that (2.36) lim sup δ→0 Λ δ (v δ , (0, 1)) ≤ κ. It is clear from (2.26) that lim δ→0 ˆ1 0 |v δ→0 1 m p ˆ1 0 ˆm 0 |v δ (x) -x| p dx = m-1 j=0 ˆj+1 j |v δ (x) -x| p dx, it follows from (2.5) and (2.27) that (2.37) lim δ→0 ˆ1 0 |v δ -U | p dx = 0. Combining (2.36) and (2.37), and using the definition of κ, we obtain (2.2). The proof is complete. We next establish |v Since Lemma 2.2.

δ -U | p dx = lim δ (mx) -mx| p dx, which yields, by a change of variables, lim δ→0 ˆ1 0 |v δ -U | p dx = lim δ→0 1 m p+1 ˆm 0 |v δ (x) -x| p dx.

  t 1 , t 2 ). We have Proof of Property (G1) for p = 1. Since γ = κ by Lemma 2.4, Property (G1) is now a direct consequence of Lemma 2.5 and the fact that for u ∈ L 1 (R), then

	Assuming Lemmas 2.4 and 2.5, we give the
	(2.50)			ˆR |u | dx = sup	 	m	|u(t j+1 ) -u(t j )|	 	,
							j=1	
	where the supremum is taken over all finite set t j ; 1 ≤ j ≤ m + 1 such that t 1 < • • • < t m+1
	and each t j is a Lebesgue point of u, see, e.g., [7, Theorem 1 on page 217]. Indeed, we have
			m					m
	lim inf δ→0	Λ δ (u δ , R) ≥	j=1	lim inf δ→0	Λ δ (u δ , (t j , t j+1 )) ≥	j=1	γ|u(t j+1 ) -u(t j )| by Lemma 2.5,
	which implies, by (2.50),				
				lim inf δ→0		
	(2.49)			lim inf			

δ→0 Λ δ (u δ , (t 1 , t 2 )) ≥ γ|u(t 2 ) -u(t 1 )|.

  y| 2 dx dy ≤ Cc k .

	It follows from (2.54) and (2.55) that, for some b k ∈ [1/8, 1/4], with bk = b k + 1/2,
	(2.56)	|g k (b k )| + |g k ( bk ) -1| ≤ Cc k
	and	
	(2.57)	

  2.2.2. Proof of Property (G1) for p > 1. Throughout this section, we assume that κ > 0 since there is nothing to prove otherwise. The first key ingredient of the proof is Lemma 2.8. Let p > 1 and let ϕ satisfy (1.2)-(1.4). Let a < b, and u ∈ L p (a, b) and let t 1 , t 2 ∈ (a, b) be two Lebesgue points of u. Then, for some positive constant σ depending only on α, β, and p, (u δ , (t 1 , t 2 )) ≥ σκ(t 2 -t 1 ) 1-p |u(t 2 ) -u(t 1 )| p , for any family (u δ ) ⊂ L p (t 1 , t 2 ) such that u δ → u in L p (t 1 , t 2 ), as δ → 0.

	(2.76)	lim inf δ→0	Λ δ

  Lemma 2.9. Let p > 1 and let ϕ satisfy (1.2)-(1.4). Let u ∈ L p (R) and assume that, for some

	we derive from (2.84) that
		lim k→+∞ ˆ1 0	|g k,n k (x) -U | p dx = 0,
	since p > 1 and ( ûk L p (0,1) ) is bounded. By noting that δ k /n k → 0 as k → +∞, we derive
	from the definition of κ that		
	(2.85)	κ ≤ lim inf k→+∞	Λ δ k /n k (g k,n k , (0, 1)).
	Combining (2.83) and (2.85) yields	
				κ ≤ Cτ,
	which is (2.77).		
	From Lemma 2.8, we now derive	

  is a Lebesgue point of u and |u (x)| ≥ 1/m .Since (ρ n ) and (τ n ) converge to 0 uniformly on B and |u (x)| ≥ 1/m for x ∈ B, it follows from (2.97) that there exists an ≥ 1 such that (2.90) and (2.91) holds. The proof is complete.

	Then there exists m ≥ 1 such that (2.95) ˆR\Dm	|u | p dx ≤	ε 1 2	ˆR |u | p dx.
	Fix such an m. By Egorov's theorem, there exist a subset B of D m such that (ρ n ) and (τ n )
	converge to 0 uniformly on B, and (2.96) ˆDm\B	|u | p dx ≤	ε 1 2	ˆR |u | p dx.

Combining (2.95) and (2.96) yields (2.89).

We have, for every non-empty, open interval I and x ∈ R (in particular for x ∈ I ∩ B), (2.97) I |u (y)| p dy 1/p ≤ I |u (y) -u (x)| p dy 1/p + |u (x)|,
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