Segmentation and characterization of the aorta and supra-aortic trunks for neuroradiology procedure planning

Mounir Lahlouh, Yasmina Chenoune, Raphaël Blanc, Michel P. Piotin, Simon Escalard, Robert Fahed, Jérome Szewczyk, Nicolas Passat

To cite this version:

Mounir Lahlouh, Yasmina Chenoune, Raphaël Blanc, Michel P. Piotin, Simon Escalard, et al.. Segmentation and characterization of the aorta and supra-aortic trunks for neuroradiology procedure planning. Colloque Français d’Intelligence Artificielle en Imagerie Biomédicale (IABM), Mar 2023, Paris, France. hal-03932761

HAL Id: hal-03932761
https://hal.science/hal-03932761
Submitted on 4 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
SEGMENTATION AND CHARACTERIZATION OF THE AORTA AND SUPRA-AORTIC TRUNKS FOR NEURORADIOLOGY PROCEDURE PLANNING

Mounir Lahlou1,2,3, Yasmina Chenoune2,4, Raphaël Blanc5,6, Michel Piotin3, Simon Escalier3, Robert Fahed3,4, Jérôme Szewczyk3,6, Nicolas Passat1

1 CReSTIC, Université de Reims Champagne-Ardenne, Reims, France
2 ESME Research Lab, Paris, France
3 Basecamp Vascular, Paris, France
4 LISSI, Université Paris-Est, Vitry-sur-Seine, France
5 Fondation Ophtalmologique de Rothschild, Interventional Neuroradiology Department, Paris, France
6 Department of Medicine, Division of Neuroradiology, The Ottawa Hospital, Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
7 ISIR, Sorbonne Université, Paris, France

1. Clinical background

- Obstacles: aortic arch and carotid arteries
- Complex tortuositities and angulations
- Difficulty in accessing the supra-aortic trunks

2. Technical background

- Task: Studies

 SEGMENTATION
 - Studies are oriented towards the use of CTA volumes.
 - U-Net variants are the most used architectures.
 - Approaches like multi-view 2D CNNs [2] and multi-stage pipelines were used [3].
 - Segmentation is often pathology oriented e.g. segmentation of type B aortic dissection [3].

 CHARACTERIZATION
 - Generic frameworks with sets of functions for geometric quantification of anatomical features and vessel characterization [4, 5]. These frameworks are suitable for engineers for research but not relevant for clinicians to use in a medical setting.

3. Data

- Acquisition parameters: coronal plane covering: 250 slices; active TR/TE = 5.5/0.2 ms; flip angle = 27°; number of excitations = 1; acquisition bandwidth = 476.7 Hz; FOV = 380 x 321; voxel size = 0.5 x 0.5 x 1.0 mm; imaging time = 69 sec; Bolus track injection technique.

- Data labeling

 - Aortic arch + supra-aortic trunks
 - 3D linear
 - Aortic arches only
 - Semi-automatic segmentation

- Validation and correction

- Semi-automatic measurements:
 - Artery lengths
 - Vessel tortuositities
 - Angulations

4. Segmentation and characterization pipeline

- Segmentation module
 - Volume refocusing
 - Localization CNN
 - Resampling
 - Normalization
 - Arch type (I, II or III)
 - MRA Volumes
 - Geometric characterization module
 - Centerlines
 - Radii, take-off angles and reverse curves
 - Vertical distance to first major curvature
 - 3D reconstruction

5. Results

- Dice score = 88.07%
- Precision = 84.10%
- Recall = 93.80%

- Artery
- Length
- Tortuosity

<table>
<thead>
<tr>
<th>Artery</th>
<th>Pearson</th>
<th>RMSE</th>
<th>MAPE</th>
<th>Pearson</th>
<th>RMSE</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCCA</td>
<td>0.97</td>
<td>5.97</td>
<td>1.75</td>
<td>0.93</td>
<td>0.06</td>
<td>3.32</td>
</tr>
<tr>
<td>LCCA</td>
<td>0.92</td>
<td>6.80</td>
<td>1.14</td>
<td>0.95</td>
<td>0.04</td>
<td>2.30</td>
</tr>
</tbody>
</table>

6. Conclusion and perspectives

- Complete analysis pipeline, from MRA images to high-level features: arch type, tortuositities, reverse curves, take-off angles and access difficulty after engaging an arching.
- Quantitative and qualitative validation by comparison to the medical reference (manual measurements and segmentations).
- Clinical validation of our features on a diversified dataset in terms of demographic, pathological and imaging data of different modalities.
- 3D extension of our CNN pipeline to better capture vessels of different diameters.