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We study the pointwise convergence and the Γ-convergence of a family of non-local, non-convex functionals Λ δ in L p (Ω) for p > 1. We show that the limits are multiples of ´Ω |∇u| p . This is a continuation of our previous work where the case p = 1 was considered.

Introduction and statement of the main results

Assume that ϕ : [0, +∞) → [0, +∞) is defined at every point of [0, +∞), ϕ is continuous on [0, +∞) except at a finite number of points in (0, +∞) where it admits a limit from the left and from the right, and ϕ(0) = 0. Let Ω ⊂ R d (d ≥ 1) denote a domain which is either bounded and smooth, or Ω = R d . Given a measurable function u on Ω, and a parameter δ > 0, we define the following non-local functionals, for p > 1, Λ(u, Ω) := ˆΩ ˆΩ ϕ(|u(x)u(y)|) |x -y| p+d dx dy and Λ δ (u, Ω) := δ p Λ(u/δ, Ω).

(1.1)

To simplify the notation, we will often delete Ω and write Λ δ (u) instead of Λ δ (u, Ω).

As in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF], we consider the following four assumptions on ϕ: ϕ(t) ≤ at p+1 in [0, 1] for some positive constant a, (1.2)

ϕ(t) ≤ b in R + for some positive constant b, (1.3) 
ϕ is non-decreasing, (1.4) Email addresses: brezis@math.rutgers.edu (HA ÏM BREZIS), hoai-minh.nguyen@epfl.ch (HOAI-MINH NGUYEN) Preprint submitted to Elsevier September 6, 2019 and γ d,p ˆ∞ 0 ϕ(t)t -(p+1) dt = 1, where γ d,p := ˆSd-1 |σ • e| p dσ for some e ∈ S d-1 . (1.5)

In this paper, we study the pointwise and the Γ-convergence of Λ δ as δ → 0 for p > 1. This is a continuation of our previous work [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF] where the case p = 1 was investigated in great details. Concerning the pointwise convergence of Λ δ , our main result is (1.3), and (1.5) (the monotonicity assumption (1.4) is not required here). We have i) There exists a positive constant C p,Ω such that

Theorem 1. Let d ≥ 1 and p > 1. Assume (1.2),
Λ δ (u, Ω) ≤ C p,Ω ˆΩ |∇u| p dx ∀ u ∈ W 1,p (Ω), ∀ δ > 0; (1.6) moreover, lim δ→0 Λ δ (u, Ω) = ˆΩ |∇u| p dx ∀ u ∈ W 1,p (Ω). (1.7) 
ii) Assume in addition that ϕ satisfies (1.4). Let u ∈ L p (Ω) be such that

lim inf δ→0 Λ δ (u, Ω) < +∞, (1.8) 
then u ∈ W 1,p (Ω).

Remark 1. Theorem 1 provides a characterization of the Sobolev space W 1,p (Ω) for p > 1:

W 1,p (Ω) = u ∈ L p (Ω); lim inf δ→0 Λ δ (u) < +∞ .
This fact is originally due to Bourgain and Nguyen [START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF][START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF] when ϕ = φ1 := c1 (1,+∞) for an appropriate constant c.

There are some similarities but also striking differences between the cases p > 1 and p = 1. a) First note a similarity. Let p = 1 and ϕ satisfy (1.2)-(1.4), and assume that u ∈ Pathology 1]. In particular, (1.6) and (1.7) do not hold for p = 1. An example in the same spirit was originally constructed by Ponce and is presented in [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF]. Other pathologies occurring in the case p = 1 can be found in [1, Section 2.2]. As we will see later, the proof of (1.6) involves the theory of maximal functions. The use of this theory was suggested independently by Nguyen [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF] and Ponce and van Schaftingen (unpublished communication to the authors). The proof of (1.6) uses the same strategy as in [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF].

L 1 (Ω) verifies lim inf δ→0 Λ δ (u, Ω) < +∞, then u ∈ BV (Ω) (see [2, 1]). b) Next is a major difference. Let p = 1. There exists u ∈ W 1,1 (Ω) such that, for all ϕ satisfying (1.2)-(1.4), one has lim δ→0 Λ δ (u, Ω) = +∞ [1,
We point out that assertion ii) fails without the monotonicity condition (1.4) on ϕ. Here is an example e.g. with Ω = R. Let ϕ = c1 (1,2) for an appropriate, positive constant c. Let u = 1 (0,1) . One can easily check that Λ δ (u) = 0 for δ ∈ (0, 1/2) and it is clear that u ∈ W 1,p (R) for p > 1.

Concerning the Γ-convergence of Λ δ , our main result is

Theorem 2. Let d ≥ 1 and p > 1. Assume (1.2)-(1.5). Then Λ δ (•, Ω) Γ-converges in L p (Ω) to Λ 0 (•, Ω) := κ ˆΩ |∇ • | p dx,
as δ → 0, for some constant κ which depends only on p and ϕ, and verifies

0 < κ ≤ 1.
(1.9) Theorem 2 was known earlier when ϕ = φ1 [START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF][START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF].

The paper is organized as follows. Theorem 1 is proved in Section 2 and the proof of Theorem 2 is given in Section 3. Throughout the paper, we denote ϕ δ (t) := δ p ϕ(t/δ) for p > 1, δ > 0, t ≥ 0.

Proof of Theorem 1

In view of the fact that lim inf t→+∞ ϕ(t) > 0, assertion (1.8) is a direct consequence of [2, Theorem 1]; note that [2, Theorem 1] is stated for Ω = R d but the proof can be easily adapted to the case where Ω is bounded. It could also be deduced from Theorem 2.

We now establish assertions (1.6) and (1.7). The proof consists of two steps.

Step 1: Proof of (1.6) and (1.7) when Ω = R d and u ∈ W 1,p (R d ). Replacing y by x + z and using polar coordinates in the z variable, we find

ˆRd dx ˆRd ϕ δ (|u(x) -u(y)|) |x -y| p+d dy = ˆRd dx ˆ+∞ 0 dh ˆSd-1 ϕ δ (|u(x + hσ) -u(x)|) h p+1 dσ.
(2.1)

We have

ˆRd dx ˆ+∞ 0 dh ˆSd-1 ϕ δ (|u(x + hσ) -u(x)|) h p+1 dσ = ˆRd dx ˆ+∞ 0 dh ˆSd-1 δ p ϕ |u(x + hσ) -u(x)| δ h p+1 dσ. (2.2)
Rescaling the variable h gives

ˆRd dx ˆ+∞ 0 dh ˆSd-1 δ p ϕ |u(x + hσ) -u(x)| δ h p+1 dσ = ˆRd dx ˆ+∞ 0 dh ˆSd-1 ϕ |u(x + δhσ) -u(x)| δ h p+1 dσ. (2.3) Combining (2.1), (2.
2), and (2.3) yields

ˆRd dx ˆRd ϕ δ (|u(x) -u(y)|) |x -y| d+p dy = ˆRd dx ˆ+∞ 0 dh ˆSd-1 ϕ |u(x + δhσ) -u(x)| δ h p+1 dσ. (2.4) Note that lim δ→0 |u(x + δhσ) -u(x)| δ = | ∇u(x), σ |h for a.e. (x, h, σ) ∈ R d × [0, +∞) × S d-1 .
(2.5) Here and in what follows, ., . denotes the usual scalar product in R d . Since ϕ is continuous at 0 and on (0, +∞) except at a finite number of points, it follows that

lim δ→0 1 h p+1 ϕ |u(x + δhσ) -u(x)| δ = 1 h p+1 ϕ | ∇u(x), σ |h for a.e. (x, h, σ) ∈ R d × (0, +∞) × S d-1 . (2.6)
Rescaling once more the variable h gives

ˆ∞ 0 dh ˆSd-1 1 h p+1 ϕ | ∇u(x), σ |h dσ = |∇u(x)| p ˆ∞ 0 ϕ(t)t -(p+1) dt ˆSd-1 | σ, e | p dσ;
(2.7) here we have also used the obvious fact that, for every V ∈ R d , and for any fixed

e ∈ S d-1 , ˆSd-1 | V, σ | p dσ = |V | p ˆSd-1 | e, σ | p dσ.
Thus, by the normalization condition (1.5), we obtain

ˆRd dx ˆ∞ 0 dh ˆSd-1 1 h p+1 ϕ | ∇u(x), σ |h dσ = ˆRd |∇u| p dx. (2.8) Set ϕ(t) = at p+1 for t ∈ [0, 1), b for t ∈ [1, +∞).
Then ϕ is non-decreasing and ϕ ≤ ϕ.

(2.9)

Note that, for a.e. (x, h, σ

) ∈ R d × (0, +∞) × S d-1 , |u(x + δhσ) -u(x)| δ ≤ 1 δ ˆhδ 0 | ∇u(x + sσ), σ | ds ≤ hM(∇u, σ)(x), (2.10) 
where

M(∇u, σ)(x) := sup t>0 1 t ˆt 0 | ∇u(x + sσ), σ | ds.
Combining (2.4) and (2.10), we derive from (2.9) that

Λ δ (u) ≤ ˆSd-1 ˆRd ˆ∞ 0 ϕ(h|M(∇u, σ)(x)|) h p+1 dh dx dσ = ˆ+∞ 0 ϕ(t)t -(p+1) dt ˆSd-1 ˆRd |M(∇u, σ)(x)| p dx dσ. (2.11) We claim that, for σ ∈ S d-1 , ˆRd |M(∇u, σ)(x)| p dx ≤ C p ˆRd |∇u(x)| p dx.
(2.12)

For notational ease, we will only consider the case σ = e 1 . By the theory of maximal functions (see e.g. [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]), one has, for g ∈ L p (R),

ˆR sup t>0 ξ+t ξ-t |g(s)| ds p dξ ≤ C p ˆR |g(ξ)| p dξ.
Using this inequality with g(x

1 ) = ∂ x 1 u(x 1 , x ′ ) for x ′ ∈ R d-1 , we obtain ˆR |M(∇u, e 1 )(x 1 , x ′ )| p dx 1 ≤ C p ˆR |∂ x 1 u(x 1 , x ′ )| p dx 1 .
Integrating with respect to x ′ yields This completes Step 1.

ˆRd |M(∇u, e 1 )(x)| p dx ≤ C p ˆRd-1 ˆR |∂ x 1 u(x 1 , x ′ )| p dx 1 dx ′ ≤ C p ˆRd |∇u(x)| p dx
Step 2: Proof of (1.6) and (1.7) when Ω is bounded and u ∈ W 1,p (Ω). We first claim that lim 

δ→0 Λ δ (u) = ˆΩ |∇u| p for u ∈ W 1,p (Ω). ( 2 
δ (u, Ω) ≤ Λ δ (U, R d ) ≤ C p,d

Proof of Theorem 2

We first recall the meaning of Γ-convergence. One says that Λ δ (•, Ω)

Γ → Λ 0 (•, Ω) in L p (Ω) as δ → 0 if (G1)
For each g ∈ L p (Ω) and for every family (g δ ) ⊂ L p (Ω) such that (g δ ) converges to g in L p (Ω) as δ → 0, one has

lim inf δ→0 Λ δ (g δ , Ω) ≥ Λ 0 (g, Ω).
(G2) For each g ∈ L p (Ω), there exists a family (g δ ) ⊂ L p (Ω) such that (g δ ) converges to g in L p (Ω) as δ → 0, and

lim sup δ→0 Λ δ (g δ , Ω) ≤ Λ 0 (g, Ω).
Denote Q the unit open cube, i.e., Q = (0, 1) d and set

U(x) = d -1/2 d j=1 x j in Q, so that |∇U| = 1 in Q.
In the following two subsections, we establish properties (G1) and (G2) where κ is the constant defined by

κ = inf lim inf δ→0 Λ δ (v δ , Q). (3.1)
Here the infimum is taken over all families of functions (v δ ) ⊂ L p (Q) such that v δ → U in L p (Q) as δ → 0.

Proof of Property (G1)

We begin with

Lemma 1. Let d ≥ 1, p > 1,
S be an open bounded subset of R d with Lipschitz boundary, and let g be an affine function. Then

inf lim inf δ→0 Λ δ (g δ , S) = κ|∇g| p |S|, (3.2) 
where the infimum is taken over all families (g δ ) ⊂ L p (S) such that g δ → g in L p (S) as δ → 0.

Proof. The proof of Lemma 1 is based on the definition of κ in (3.1) and a covering argument. It is identical to the one of the first part of [1, Lemma 6]. The details are omitted.

The proof of Property (G1) for p > 1 relies on the following lemma with roots in [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF].

Lemma 2. Let d ≥ 1, p > 1, and ε > 0. There exists two positive constants δ1 , δ2 such that for every open cube Q which is an image of Q by a dilation, for every a ∈ R d , every b ∈ R, and every h ∈ L p ( Q) satisfying

Q |h(x) -( a, x + b)| p dx ≤ δ1 |a| p | Q| p/d , (3.3) one has Λ δ (h, Q) ≥ (κ -ε)|a| p | Q| for δ ∈ (0, δ2 |a|| Q| 1/d ). (3.4)
Hereafter, as usual, we denote ffl A f = 1 |A| ´A f . Proof. By a change of variables, without loss of generality, it suffices to prove Lemma 2 in the case Q = Q, |a| = 1, and b = 0. We prove this by contradiction. Suppose that this is not true. There exist ε 0 > 0, a sequence of measurable functions

(h n ) ⊂ L p (Q), a sequence (a n ) ⊂ R d , and a sequence (δ n ) converging to 0 such that |a n | = 1, ˆQ |h n (x) -a n , x | p ≤ 1 n , and Λ δn (h n , Q) < κ -ε 0 .
Without loss of generality, we may assume that (a n ) converges to a for some a ∈ R d with |a| = 1. It follows that (h n ) converges to a, . in L p (Q). Applying Lemma 1 with S = Q and g = a, • , we obtain a contradiction. The conclusion follows.

The second key ingredient in the proof of Property (G1) is the following useful property of functions in W 1,p (R d ).

Lemma 3. Let d ≥ 1, p > 1, and u ∈ W 1,p (R d ). Given ε 1 > 0, there exist a subset B = B(ε 1 ) of Lebesgue points of u and ∇u, and an integer ℓ = ℓ(ε 1 ) ≥ 1 such that

ˆRd \B |∇u| p dx ≤ ε 1 ˆRd |∇u| p dx, (3.5) 
and, for every open cube

Q ′ with |Q ′ | 1/d ≤ 1/ℓ and Q ′ ∩B = ∅, and for every x ∈ Q ′ ∩B, 1 |Q ′ | p Q ′ u(y) -u(x) -∇u(x), y -x p dy ≤ ε 1 (3.6) and |∇u(x)| p ≥ (1 -ε 1 ) Q ′ |∇u(y)| p dy. (3.7) 
Proof. We first recall the following property of W 

u(y) -u(x) -∇u(x), y -x p dy = 0, (3.8) 
where Q(x, r) := x + (-r, r) d for x ∈ R d and r > 0.

Given n ∈ N, define, for a.e. x ∈ R d ,

ρ n (x) = sup      1 r p Q(x,r) u(y) -u(x) -∇u(x), y -x p dy; r ∈ (0, 1/n)      (3.9) 
and

τ n (x) = sup      Q(x,r) |∇u(y) -∇u(x)| p dy; r ∈ (0, 1/n)      . (3.10) 
Note that, by (3.8), ρ n (x) → 0 for a.e. x ∈ R d as n → +∞. We also have, τ n (x) → 0 for a.e. x ∈ R d as n → +∞ (and in fact at every Lebesgue point of ∇u). For m ≥ 1, set We are ready to give the Proof of Property (G1). We only consider the case Ω = R d . The other case can be handled as in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF] and is left to the reader. We follow the same strategy as in [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF].

D m = x ∈ (-m, m) d ; x
∈ Q ′ ∩ B), Q ′ |∇u(y)| p dy 1/p ≤ Q ′ |∇u(y) -∇u(x)| p dy 1/p + |∇u(x)| ≤ |∇u(x)| (1 -ε 1 ) 1/p , (3.13) 
In order to establish Property (G1), it suffices to prove that

lim inf k→+∞ Λ δ k (g k , R d ) ≥ κ ˆRd |∇g| p dx (3.14) for every g ∈ L p (R d ), (δ k ) ⊂ R + and (g k ) ⊂ L p (R d ) such that δ k → 0 and g k → g in L p (R d ).
Without loss of generality, we may assume that lim inf k→+∞ Λ δ k (g k , R d ) < +∞. It follows from [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF] that g ∈ W 1,p (R d ). Fix ε > 0 (arbitrary) and let δ1 be the positive constant in Lemma 2. Set, for m ≥ 1, 

A m = x ∈ R d ; x
∈ Q ′ ∩B, 1 |Q ′ | p/d Q ′ g(y) -g(x) -∇g(x), y -x p dy ≤ ε 1 ≤ δ1 /(2m) p (3.17) and |∇g(x)| p |Q ′ | ≥ (1 -ε 1 ) ˆQ′ |∇g| p dy ≥ (1 -ε) ˆQ′ |∇g| p dy. (3.18)
Fix such a set B and such an integer ℓ. Set 

B m := B \ A m . Since R d \ (B \ A m ) ⊂ (R d \ B) ∪ A m , it
J ℓ = Q ′ ∈ Ω ℓ ; Q ′ ∩ B m = ∅ .
Take Q ′ ∈ J ℓ and x ∈ Q ′ ∩ B m . Since g k → g in L p (Q ′ ), from (3.17), we obtain, for large k, The proof is complete.

Proof of Property (G2)

The proof of Property (G2) for p > 1 is the same as the one for p = 1 given in [START_REF] Brezis | Non-local functionals related to the total variation and applications in Image Processing[END_REF]. The details are omitted.

  ε 1 ) 1/p -1 1/m and |∇u(x)| ≥ 1/m. Since (ρ n ) and (τ n ) converge to 0 uniformly on B and |∇u(x)| ≥ 1/m for x ∈ B, it follows from (3.13) that there exists an ℓ ≥ 1 such that (3.6) and (3.7) hold when |Q ′ | 1/d ≤ 1/ℓ and Q ′ ∩ B = ∅, and x ∈ Q ′ ∩ B. The proof is complete.

1Λ

  |Q ′ | p/d Q ′ g k (y)g(x) -∇g(x), yx p dy < δ1 /m p ≤ δ1 |∇g(x)| p , since |∇g(x)| ≥ 1/m for x ∈ B m ⊂ R d \ A m . Next, we apply Lemma 2 with Q = Q ′ , h = g k , a = ∇g(x), b = g(x), and large k; we haveΛ δ (g k , Q ′ ) ≥ (κε)|∇g(x)| p |Q ′ | for δ ∈ (0, δ2 |∇g(x)| p |Q ′ | 1/d ),which implies, by (3.18),lim inf k→+∞ Λ δ k (g k , Q ′ ) ≥ (κε)(1ε) δ k (g k , R d ) ≥ Q ′ ∈J ℓ lim inf k→+∞ Λ δ (g k , Q ′ ), it follows from (3.20) that lim inf k→+∞ Λ δ k (g k , R d ) ≥ (κε)(1ε) Q ′ ∈J ℓ ˆQ′ |∇g| p dx ≥ (κε)(1ε) ˆBm |∇g| p dx (3.19) ≥ (κε)(1ε) 2 ˆRd |∇g| p dx;in the second inequality, we have used the factB m is contained in Q ′ ∈J ℓ Q ′ upto a null set. Since ε > 0 is arbitrary, one has lim inf k→+∞ Λ δ k (g k , R d ) ≥ κ ˆRd |∇g| p dx.

  1,p (R d ) functions (see e.g., [8, Theorem 3.4.2]): for a.e. x ∈ R d ,

	lim r→0	1 r p
		Q(x,r)

  is a Lebesgue point of u and ∇u, and |∇u(x)| ≥ 1/m .

	Since	lim m→+∞ ˆRd \Dm	|∇u| p dx = 0,
	there exists m ≥ 1 such that				
	ˆRd \Dm	|∇u| p dx ≤	ε 1 2 ˆRd	|∇u| p dx.	(3.11)
	Fix such an m. By Egorov's theorem, there exists a subset B ⊂ D m such that (ρ n )
	and (τ n ) converge to 0 uniformly on B, and	
	ˆDm\B	|∇u| p dx ≤	ε 1 2 ˆRd	|∇u| p dx.	(3.12)
	Combining (3.11) and (3.12) yields (3.5).		
	By the triangle inequality, we have, for every non-empty, open cube Q ′ and a.e.
	x ∈ R d (in particular for x				

  is a Lebesgue point of g and ∇g, and |∇g(x)| ≤ 1/m . Fix such an integer m. By Lemma 3 applied to u = g and ε 1 = min{ε/2, δ 1 /(2m) p }, there exist a subset B of Lebesgue points of g and ∇g, and a positive integer ℓ such that ˆRd \B |∇g| p dx ≤ ε 1 ′ with |Q ′ | 1/d ≤ 1/ℓ and Q ′ ∩B = ∅, and, for every x

	Since	lim m→+∞ ˆAm	|∇g| p dx = 0,
	there exists m ≥ 1 such that				
	ˆAm	|∇g| p dx ≤	ε 2 ˆRd	|∇g| p dx.	(3.15)
			ˆRd	|∇g| p dx ≤	ε 2 ˆRd	|∇g| p dx,	(3.16)
	and for every open cube Q				

  Set P ℓ = 1 ℓ Z d .Let Ω ℓ be the collection of all open cubes with side length 1/ℓ whose vertices belong to P ℓ and denote

					follows that
	ˆRd \Bm	|∇g| p dx =	ˆRd \(B\Am)	|∇g| p dx ≤	ˆRd \B	|∇g| p dx +	ˆAm	|∇g| p dx.
	We deduce from (3.15) and (3.16) that			
			ˆRd \Bm	|∇g| p dx ≤ ε	ˆRd	|∇g| p dx.	(3.19)

ˆRd|∇U| p dx, we get (2.16). The proof is complete.
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