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In this paper we show that any displacement of a straight rod is the sum of a Bernoulli-Navier displacement and two terms, one for shear and one for warping. Then, we load a straight rod in order to obtain that the bending and the shearing contribute with the same order of magnitude to the rotations of the cross-sections.

Introduction

To calculate the bending, stretching and stresses of a straight rod, engineers and mechanicians use Bernoulli-Euler hypothesis (they assume that the cross-sections of the rod remain plane and perpendicular to the centerline of the rod) and they also assume that some components of the stress tensor can be neglected (see e.g. [START_REF] Washizu | Variational Method in Elasticity and Plasticity[END_REF]). From the 3D variational formulation of the elasticity problem for a rod, it has been proven that the limit displacement is of Bernoulli-Navier type. The limit of all the components of the stress tensor has been also obtained (see e.g. [START_REF] Dret | Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero[END_REF][START_REF] Trabucho | Mathematical Modeling of Rods, Hand-book of Numerical Analysis[END_REF][START_REF] Percivale | Thin elastic rods: the variational approach to St. Venant's problem[END_REF]). This justifies the hypothesis and assumptions usually made. For thicker rod, Timoshenko's model was developed to take shearing into account. A simplification of the 3D elasticity system for a rod where shearing occurs has been developed in [START_REF] Griso | Décomposition des déplacements d'une poutre: simplification d'un problème d'élasticité[END_REF]. The aim of this paper is to give an a priori decomposition of the displacement of a rod via a Bernoulli-Navier displacement plus one term for shear and one last for warping. We consider a straight rod P δ of length L and as cross-section a domain ω δ of thickness of order δ. We show that every displacement u ∈ W1,p (P δ ) 3 , 1 < p < ∞, is decomposed as

u(x)=    U 1 (x 1 ) -x 2 dU 2 dx 1 (x 1 ) -x 3 dU 3 dx 1 (x 1 ) U 2 (x 1 ) -x 3 Θ(x 1 ) U 3 (x 1 ) + x 2 Θ(x 1 )    Bernoulli-Navier displacement +   x 2 r 2 (x 1 ) + x 3 r 3 (x 1 ) 0 0   shearing + u(x)
warping for a.e. x in P δ . (1.1)

Here, U 1 represents the stretching/compression of the rod and U 2 e 2 + U 3 e 3 is the bending. The map X ∈ R 3 -→ R(x 1 )∧X with R(x 1 ) . = Θ(x 1 )e 1 -dU 3 dx 1 (x 1 )e 2 + dU 2 dx 1 (x 1 )e 3 1 stands for a small rotation of the cross-section {x 1 } × ω δ with axis directed by R(x 1 ) and angle approximately equal to the euclidian norm of this vector. Since we are in the framework of small displacements, the symmetric part of the rotation is negligible. After this rotation, the cross-section remains perpendicular to the rod centerline.

In the above writing, the second term x 2 r 2 (x 1 ) + x 3 r 3 (x 1 ) e 1 represents the shear, that is two small rotations of the cross-section {x 1 }×ω δ with axis e 2 and angle -r 3 (x 1 ) for the first and axis e 3 and angle -r 2 (x 1 ) for the second. The last displacement is the warping, it gives informations on the deformations of the cross-sections, they do not remain plane. Even though warping is very small compared to stretching or bending, we can not neglect it. E.g. if the rod is made up of a homogeneous and isotropic material with Lamé's constants λ and µ, at the limit in the bending or stretching equations these constants are replaced by the Young modulus E, this is due to the limit warping (see e.g. [START_REF] Griso | Asymptotic behavior of structures made of curved rods[END_REF][START_REF] Griso | Straight rod with different order of thickness[END_REF] or the proof of Theorem 6.3). The warping satisfies the following simple conditions:

ω δ u 1 (x 1 , x 2 , x 3 )dx 2 dx 3 = ω δ u 1 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 = ω δ u 1 (x 1 , x 2 , x 3 )x 3 dx 2 dx 3 = 0 ω δ u 2 (x 1 , x 2 , x 3 )x 3 -u 3 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 = 0 for a.e. x 1 ∈ (0, L). (1.2)
Such a decomposition is of interest only if we can give an order of magnitude of the different terms that compose it. For a loading of the rod whose elastic strain energy (the square of the L 2 norm of the strain tensor) of order δ 6 , usually the stretching/compression is of order δ 2 , the bending is of order δ, the rotations of the cross-sections are of order δ 2 , r 2 and r 3 are of order δ 2 and so the shearing is of order δ 3 (all the estimates in Theorem 4.1). For strongly oscillating rods, a similar decomposition to that of (1.1) has been introduced in [START_REF] Falconi | Asymptotic behavior for textiles with loose contact[END_REF] to study a textile structure.

The new decomposition (1.1) complements the one introduced in [START_REF] Griso | Asymptotic behavior of rods by the unfolding method[END_REF][START_REF] Griso | Decomposition of displacements of thin structures[END_REF][START_REF] Griso | Straight rod with different order of thickness[END_REF]. In these papers, it was proven that any displacement of the rod is the sum of an elementary displacement and a warping (see also (2.1)). Several papers using this decomposition technique have been written to study junction problems or structures made up of a large number of rods with or without homogenization (see e.g. [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate. Part I[END_REF][START_REF] Blanchard | Junction of a periodic family of elastic rods with a thin plate[END_REF][START_REF] Blanchard | Microscopic effects in the homogenization of the junction of rods and a thin plate[END_REF][START_REF] Blanchard | Decomposition of deformations of thin rods. Application to nonlinear elasticity[END_REF][START_REF] Griso | Asymptotic behavior of structures made of curved rods[END_REF][START_REF] Griso | Asymptotic Behavior for Textiles[END_REF][START_REF] Griso | Asymptotic behavior of stable structures made of beams[END_REF][START_REF] Griso | Asymptotic behavior of unstable structures made of beams[END_REF][START_REF] Griso | Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams[END_REF]). Another decomposition different to (1.1) and (2.1) is obtained in [START_REF] Casado-Diaz | A Decomposition result for the pressure of a fluid in a thin domain and extensions to elasticity problems[END_REF].

As a general reference on elasticity, we refer the reader to [START_REF] Ciarlet | Mathematical Elasticity[END_REF]. For mathematical modeling of rods we refer to [START_REF] Antman | The theory of rods[END_REF][START_REF] Dret | Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero[END_REF][START_REF] Murat | Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces[END_REF][START_REF] Trabucho | Mathematical Modeling of Rods, Hand-book of Numerical Analysis[END_REF][START_REF] Percivale | Thin elastic rods: the variational approach to St. Venant's problem[END_REF].

The paper is organized as follows:

• In Section 2 we introduce the main notations and we recall the first result on the decomposition of a rod displacement.

• In Section 3 we give a preliminary result.

• In Section 4 the new decomposition (see (1.1)) of a rod displacement is introduced. Theorem 4.1 give all the estimates of the terms of this decomposition with respect to δ and the L p norm of the strain tensor. Then, if the rod is fixed at one or both of its extremities, Korn-type inequalities are given.

• In Section 5, we choose a sequence of displacements of the clamped rod P δ whose strain tensor has a L p norm of order δ 2+2/p . In Theorem 5.2, besides the limits of the terms of the decomposition, we give the asymptotic behavior of the strain tensor using the limits of the terms of the decomposition.

• In Section 6 we give an application of our decomposition, we load a straight rod in order to obtain that the bending and the shearing contribute with the same order of magnitude to the rotations of the cross-sections.

• In Section 7 we conclude this study by giving a shorter decomposition for thin beam displacements (see (7.1)).

• Appendix (Section 8) is concerned with an extension result of the displacements of a straight rod.

In this work, the constants appearing in the estimates will always be independent from δ. As a rule the Latin indices i, j, k and l take values in {1, 2, 3}. We also use the Einstein convention of summation over repeated indices.

Notations and recalls

We denote by | • | the euclidian norm of R 3 and by • the associated scalar product. In the sequel, ω denotes a bounded domain in R 2 with Lipschitz boundary. We choose the origin O of coordinates at the center of mass of ω and as coordinates axes (O; e 2 ) and (O; e 3 ) the principal axes of inertia of ω. So we have

|e 2 | = |e 3 | = 1, e 2 • e 3 = 0.
We set e 1 = e 2 ∧e 3 . From now on, the space R 3 will be referred to the orthonormal frame O; e 1 , e 2 , e 3 .

The rod P δ of length L ≥ δ, where δ > 0, is defined as follows:

P δ . = (0, L) × ω δ , ω δ . = δω.
One points out below the definition of an elementary displacement of the rod Definition 2.1. An elementary displacement of the rod P δ is a displacement v ∈ L 1 (P δ ) 3 written in the form v(x) = V(x 1 ) + A(x 1 ) ∧ x 2 e 2 + x 3 e 3 for a.e. x = (x 1 , x 2 , x 3 ) ∈ P δ .

The two components V and A belong to L 1 (0, L) 3 .

Here, V gives the center line displacement of the rod while the map

X ∈ R 3 -→ X + A(x 1 ) ∧ X
represents a "small rotation" of the cross-section {x 1 } × ω δ whose axis is directed by A(x 1 ) and whose angle is close to |A(x 1 )|.

To any displacement u ∈ L 1 (P δ ) 3 we associate a unique elementary displacement U * e ∈ L 1 (P δ ) 3 and a residual displacement

u * ∈ L 1 (P δ ) 3 u(x) = U * e (x) + u * (x) U * e (x) = U * (x 1 ) + R * (x 1 ) ∧ x 2 e 2 + x 3 e 3
for a.e. x = (x 1 , x 2 , x 3 ) ∈ P δ (2.1) such as

ω δ u * (x 1 , x 2 , x 3 )dx 2 dx 3 = 0, ω δ u * 2 (x 1 , x 2 , x 3 )x 3 -u * 3 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 = 0, ω δ u * 1 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 = ω δ u * 1 (x 1 , x 2 , x 3 )x 3 dx 2 dx 3 = 0 for a.e. x 1 ∈ (0, L).
(2.2)

The above six conditions determine U * (x 1 ) and R * (x 1 ) in terms of u and integrals over the cross-section {x 1 } × ω δ (see [START_REF] Griso | Decomposition of displacements of thin structures[END_REF]). We have

U * (x 1 ) = 1 δ 2 |ω| ω δ u(x 1 , x 2 , x 3 )dx 2 dx 3 , R * 1 (x 1 ) = 1 δ 4 (I 2 + I 3 ) ω δ u 2 (x 1 , x 2 , x 3 )x 3 -u 3 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 , R * 2 (x 1 ) = 1 δ 4 I 3 ω δ u 1 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 , R * 3 (x 1 ) = - 1 δ 4 I 2 ω δ u 1 (x 1 , x 2 , x 3 )x 3 dx 2 dx 3 for a.e. x 1 ∈ (0, L)
where |ω| is the measure of the set ω and

I 2 = ω x 2 2 dx 2 dx 3 , I 3 = ω x 2 3 dx 2 dx 3 . Denote (1 ≤ p ≤ ∞) e(v) = 1 2 (∇v) T + ∇v , e ij (v) = 1 2 
∂v i ∂x j + ∂v j ∂x i , ∀v ∈ W 1,p (P δ ) 3 , e(v)
is the 3 × 3 symmetric matrix whose entries are the e ij (v)'s. We have Theorem 2.2 (Theorem 3.1 in [START_REF] Griso | Decomposition of displacements of thin structures[END_REF]). Let u be a displacement belonging to W 

+ dU * dx 1 -R * ∧ e 1 L p (0,L) ≤ C δ 2/p e(u) L p (P δ ) .
(2.3)

The constant does not depend on δ and L.

Since the fields U * and R * are defined via integrals over the cross-sections of the rod, if the rod is clamped on one extremity e.g. {0} × ω δ , (resp. on both extremities) then we have

U * (0) = R * (0) = 0, u * = 0 a.e. on {0} × ω δ , (resp. U * (0) = U * (L) = R * (0) = R * (L) = 0, u * = 0 a.e. on {0, L} × ω δ ).
(2.4)

A preliminary result

For simplicity we assume that L δ ∈ IN and we set

N δ = L δ . Remark 3.1. If L/δ does not belong to IN, one can set δ 1 = L/[L/δ] 2
and in the definition below of φ A,B , replace δ by δ 1 . In this case, note that δ ≤ δ 1 ≤ 3/2δ. Another way is to extend the displacement in the rod ω δ × (L, 2L) (see Appendix, Section 8) and then to cup the rod into pieces isomorphic to ω δ × (0, δ) and process with a rod whose length is between L and L + δ.

Let A = (A 0 , A 1 , . . . , A N δ ) and B = (B 0 , B 1 , . . . , B N δ ) be two vectors in R N δ +1 . We define the function φ A,B ∈ W 2,∞ (0, L) by φ A,B (t) =A k 2t -(2k -1)δ δ t -(k + 1)δ δ 2 + A k+1 (3 + 2k)δ -2t δ t -kδ δ 2 + (t -kδ)(t -(k + 1)δ) δ 2 B k+1 (t -kδ) + B k (t -(k + 1)δ) , ∀t ∈ [kδ, (k + 1)δ], ∀k ∈ {0, . . . , N δ -1}.
By construction, we have

φ A,B (kδ) = A k , dφ A,B dt (kδ) = B k , ∀k ∈ {0, . . . , N δ }. Lemma 3.2. The function φ A,B satisfies (1 ≤ p < ∞) φ A,B p L p (0,L) ≤ Cδ N δ k=0 A p k + δ p B p k + δ p N δ -1 k=0 A k+1 -A k δ - B k+1 + B k 2 p , dφ A,B dt p L p (0,L) ≤ Cδ N δ k=0 B p k + N δ -1 k=0 A k+1 -A k δ - B k+1 + B k 2 p , d 2 φ A,B dt 2 p L p (0,L) ≤ C δ p-1 N δ -1 k=0 |B k+1 -B k | p + A k+1 -A k δ - B k+1 + B k 2 p . (3.1) 
The constant C only depends on p.

Proof. A straightforward calculation gives the derivatives of φ

A,B dφ A,B dt (t) = B p+1 t -pδ δ + B p (p + 1)δ -t δ + 6 (t -pδ)((p + 1)δ -t) δ 2 A p+1 -A p δ - B p+1 + B p 2 , d 2 φ A,B dt 2 (t) = B p+1 -B p δ + 6 (2p + 1)δ -2t δ 2 A p+1 -A p δ - B p+1 + B p 2 , d 3 φ A,B dt 3 (t) = - 12 δ 2 A p+1 -A p δ - B p+1 + B p 2 , ∀t ∈ [pδ, (p + 1)δ], ∀p ∈ {0, . . . , N δ -1}.
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δ 0 |θ(t)| p dt ≤ C δ|θ(0)| p + δ p δ 0 dθ dt (t) 
In this section we decompose every displacement as a sum of a Bernoulli-Navier displacement and a residual one (shearing plus warping). This decomposition suits our purpose better and simplifies the way to obtain estimates and later the asymptotic behaviors of sequences of displacements. Let u be a displacement in W 1,p (P δ ) 3 decomposed as (2.1) and let U * , R * and u * be the fields given by this decomposition. We first define U .

= U 1 e 1 + U 2 e 2 + U 3 e 3 and R . = R 1 e 1 + R 2 e 2 + R 3 e 3 by U 1 = U * 1 , R 1 . = Θ = R * 1 a.e. in (0, L) (4.1)
and for all x 1 ∈ [0, L],

U 2 (x 1 ) =φ A,B (x 1 ) with A = U * 2 (0), U * 2 (δ), . . . , U * 2 (N δ δ) , B = R * 3 (0), R * 3 (δ), . . . , R * 3 (N δ δ) , U 3 (x 1 ) =φ A,B (x 1 ) with A = U * 3 (0), U * 3 (δ), . . . , U * 3 (N δ δ) , B = -R * 2 (0), R * 2 (δ), . . . , R * 2 (N δ δ) .
Then, we set

R 2 = - ∂U 3 ∂x 1 , R 3 = ∂U 2 ∂x 1 a.e. in (0, L) so R . = Θe 1 - dU 3 dx 1 e 2 + dU 2 dx 1 e 3 .
We denote

U BN (x) . = U(x 1 ) + R(x 1 ) ∧ x 2 e 2 + x 3 e 3 =    U 1 (x 1 ) -x 2 dU 2 dx 1 (x 1 ) -x 3 dU 3 dx 1 (x 1 ) U 2 (x 1 ) -x 3 Θ(x 1 ) U 3 (x 1 ) + x 2 Θ(x 1 )    for a.e. x in P δ .
U BN is a Bernoulli-Navier displacement. So, we have

u(x) = U BN (x) + x 2 r 2 (x 1 ) + x 3 r 3 (x 1 ) e 1 + u(x), for a.e. x in P δ . (4.2)
The above equality (4.2) defines r = (r 2 , r 3 ) and u by

r 2 = dU 2 dx 1 -R * 3 , r 3 = dU 3 dx 1 + R * 2 and u = u * + U * 2 -U 2 e 2 + U * 3 -U 3 e 3 . (4.3) 
The warping u satisfies the 4 conditions (1.2).

Theorem 4.1. The fields U, r, Θ and u verify

U 1 , Θ, r 2 , r 3 ∈ W 1,p (0, L), U 2 , U 3 ∈ W 2,p (0, L), u ∈ W 1,p (P δ ) 3
and the following estimates:

dU 1 dx 1 L p (0,L) + δ dΘ dx 1 L p (0,L) ≤ C δ 2/p e(u) L p (P δ ) , d 2 U 2 dx 2 1 L p (0,L) + d 2 U 3 dx 2 1 L p (0,L) ≤ C δ 1+2/p e(u) L p (P δ ) , r L p (0,L) + δ dr dx 1 L p (0,L) ≤ C δ 2/p e(u) L p (P δ ) , u L p (P δ ) + δ ∇u L p (P δ ) ≤ Cδ e(u) L p (P δ ) . (4.4)
The constants do not depend on L and δ.

Proof. First, the estimates (4.4) 1 are the consequences of (4.1) and (2.3).

Step 1. Preliminary reminder.

To every φ ∈ W 1,p (0, δ), we associate the function

φ(t) = φ(0) δ -t δ + φ(δ) t δ , t ∈ [0, δ]. One has d φ dt L p (0,δ) ≤ dφ dt L p (0,δ) , dφ dt - d φ dt L p (0,δ) ≤ 2 dφ dt L p (0,δ) , φ -φ L p (0,δ) ≤ 2δ dφ dt L p (0,δ) . (4.5)
Step 2. We prove the estimates (4.4) 2 .

Integrating dU * dx 1 -R * ∧ e 1 over [kδ, (k + 1)δ] and then using the Hölder inequality yield

N δ -1 k=0 δ U * (k + 1)δ -U * (kδ) δ - 1 δ (k+1)δ kδ R * (t)dt ∧ e 1 p ≤ dU * dx 1 -R * ∧ e 1 p L p (0,L)
. Now, due to (4.5) 3 with φ = R * 2 (resp. R * 3 ), after integration we obtain

N δ -1 k=0 δ 1 δ (k+1)δ kδ R * (t)dt - R * (k + 1)δ + R * (kδ) 2 p ≤ 2 p δ p dR * dx 1 p L p (0,L)
So, combining the above inequalities give

N δ -1 k=0 δ U * (k + 1)δ -U * (kδ) δ - R * (k + 1)δ + R * (kδ) 2 ∧ e 1 p ≤ C dU * dx 1 -R * ∧ e 1 p L p (0,L) + δ p dR * dx 1 p L p (0,L) . (4.6)
The constant only depends on p.

Besides, (4.5) Step 3. We prove the estimates (4.4) 3 .

1 with φ = R * 2 (resp. R * 3 ), yields N δ -1 k=0 δ R * (k + 1)δ -R * (kδ) δ p ≤ dR * dx 1 p L p (0,L) . ( 4 
We recall that

r 2 = dU 2 dx 1 -R * 3 , r 3 = dU 3 dx 1 + R * 2 .
First, the estimate of the derivative of r comes from (4.4) 2 and (2.3) 3 . Then, observe that by construction of R 2 and R 3 we have r 2 (kδ) = r 3 (kδ) = 0, for all k ∈ {0, . . . , N δ }. Thus, the Poincaré inequality yields

r α L p (0,L) ≤ δ dr α dx 1 L p (0,L) ≤ C δ 2/p e(u) L p (P δ ) .
So, (4.4) 3 is proved.

Step 4. We prove the estimates (4.4) 4 . First, observe that

dU * 2 dx 1 -R * 3 = d(U * 2 -U 2 ) dx 1 + r 2 , dU * 3 dx 1 + R * 2 = d(U * 3 -U 3 ) dx 1 + r 3 .
Then, (4.4) 3 and (2.3) 3 imply (i ∈ {2, 3})

d(U * i -U i ) dx 1 L p (0,L) ≤ C δ 2/p e(u) L p (P δ ) . (4.8) 
Since by construction (U * i -U i )(kδ) = 0 for all k ∈ {0, . . . , N δ } we obtain

U * i -U i L p (0,L) ≤ Cδ 1-2/p e(u) L p (P δ ) . (4.9) 
The above estimates, (2.3) 1,2 and equality (4.3) 3 yield (4.4) 4 .

Corollary 4.2. We have

u -U BN L p (P δ ) ≤ Cδ e(u) L p (P δ ) , ∇(u -U BN ) L p (P δ ) ≤ Cδ e(u) L p (P δ ) .
The constants do not depend on L and δ.

If the rod is clamped on one extremity e.g. {0} × ω δ , (resp. on both extremities) then we have

U(0) = R(0) = 0, u = 0 a.e. on {0} × ω δ , (resp. U(0) = U(L) = R(0) = R(L) = 0, u = 0 a.e. on {0, L} × ω δ ). (4.10)
Proposition 4.3 (Korn type inequalities). Let u be a displacement in W 1,p (P δ ), 1 < p < ∞ decomposed as (4.2). Assume the rod clamped on at least one of its extremity. We have

u 1 L p (P δ ) ≤ CL e(u) L p (P δ ) , u 2 L p (P δ ) + u 3 L p (P δ ) ≤ CL 2 δ e(u) L p (P δ ) , 3 
i=1 ∂u i ∂x i L p (P δ ) ≤ C e(u) L p (P δ ) , 3 i, j=1,i =j ∂u i ∂x j L p (P δ ) ≤ CL δ e(u) L p (P δ ) .
The constant does not depend on L and δ.

Proof. The estimates of this proposition are the consequences of those in (4.4). Indeed, the Poincaré inequality and (4.4) 1,2 give

U 1 L p (P δ ) ≤ CL δ 2/p e(u) L p (P δ ) , Θ L 2 (P δ ) ≤ CL δ 1+2/p e(u) L 2 (P δ ) , dU 2 dx 1 L p (0,L) + dU 3 dx 1 L p (0,L) ≤ CL δ 1+2/p e(u) L p (P δ ) , =⇒ U 2 L p (0,L) + U 3 L p (0,L) ≤ CL 2 δ 1+2/p e(u) L p (P δ ) .
The constants do not depend on L and δ. The above inequalities together with (4.4) 2,3,4 lead to those of the proposition.

Suppose the rod is clamped on at least one of its extremity. The map u -→ U, Θ, r, u ∈ W 1,p (0, L) × W 2,p (0, L) 2 × W 1,p (0, L) × W 1,p (0, L) 2 × W 1,p (P δ ) 3 is linear and continuous, the space of the admissible displacement is equipped with the norm e(•) L p (P δ ) (which is equivalent to the norm of W 1,p (P δ ) 3 thanks to Proposition 4.3) while the product space is equipped with its product norm.

Asymptotic behavior of a sequence of displacements

First, we recall the definition of the dimension reduction operator. Definition 5.1. For φ measurable function on P δ , the dimension reduction operator Π δ is defined as follows:

Π δ (φ)(x 1 , X 2 , X 3 ) = φ(x 1 , δX 2 , δX 3 ) for a.e. (x 1 , X 2 , X 3 ) in P. Π δ (φ) is a measurable function on P . = (0, L) × ω.
We easily check that

1. for any φ ∈ L p (P δ ), 1 ≤ p ≤ ∞ Π δ (φ) L p (P) = 1 δ 2/p φ L p (P δ ) , (5.1) 

for any

φ ∈ W 1,p (P δ ), 1 ≤ p ≤ ∞ ∂Π δ (φ) ∂x 1 = Π δ ∂φ ∂x 1 , ∂Π δ (φ) ∂X 2 = δΠ δ ∂φ ∂x 2 , ∂Π δ (φ) ∂X 3 = δΠ δ ∂φ ∂x 3 . (5.2)
Let u be a displacement belonging to W 1,p (P δ ) 3 , decomposed as (4.2). The strain tensor of u is given by the following symmetric matrix: 3 we denote

e(u) =         dU 1 dx 1 -x 2 d 2 U 2 dx 2 1 -x 3 d 2 U 3 dx 2 
For every Φ, Ψ, ψ, Φ ∈ W 1,p (0, L) × W 2,p (0, L) 2 × W 1,p (0, L) × W 1,p (0, L) 2 × L p (0, L; W 1,p (ω))
E Φ, Ψ, ψ, Φ . =          dΦ 1 dx 1 -X 2 d 2 Φ 2 dx 2 1 -X 3 d 2 Φ 3 dx 2 1 * * 1 2 ψ 2 -X 3 dΨ dx 1 + 1 2 ∂Φ 1 ∂X 2 ∂Φ 2 ∂X 2 * 1 2 ψ 3 + X 2 dΨ dx 1 + 1 2 ∂Φ 1 ∂X 2 1 2 ∂Φ 3 ∂X 2 + ∂Φ 2 ∂X 3 ∂Φ 3 ∂X 3         
(5.4) the 3 × 3 symmetric matrix.

Theorem 5.2. Let {u δ } δ be a sequence of displacements belonging to W 1,p (P δ ) 3 , 1 < p < ∞, decomposed as (4.2). Suppose the rod clamped on at least one of its extremity and

e(u δ ) L 2 (P δ ) ≤ Cδ 2+2/p
where the constant does not depend on δ.

Then, there exist a subsequence of {δ}, still denoted {δ} and U 1 , Θ ∈ W 1,p (0, L), U 2 , U 3 ∈ W 2,p (0, L) and U ∈ L p (0, L; W 1,p (ω)) 3 such that (i ∈ {2, 3})

1 δ 2 U δ,1 U 1 weakly in W 1,p (0, L), 1 δ U δ,i U i weakly in W 2,p (0, L), 1 δ Θ δ Θ weakly in W 1,p (0, L) (5.5) 
Moreover, we have

U(0) = 0, R(0) = 0 if the rod is clamped on {0} × ω δ , U(0) = U(L) = 0, R(0) = R(L) = 0 if the rod is clamped on {0, L} × ω δ . Furthermore 1 δ 3 Π δ (u δ ) U weakly in L p (0, L; W 1,p (ω)) 3 , 1 δ 2 Π δ ∂u δ ∂x 1 0 weakly in L p (P) 3 .
(

5.6)

There also exist r 2 , r 3 ∈ L p (0, L), such that 1 δ 2 r δ,i r i weakly in L p (0, L), 1 δ dr δ,i dx 1 0 weakly in L p (0, L).

(5.7)

We have

1 δ 2 Π δ (u δ,1 ) -→ U 1 -X 2 dU 2 dx 1 -X 3 dU 3 dx 1 strongly in L p (0, L; W 1,p (ω)), 1 δ Π δ (u δ,i ) -→ U i strongly in L p (0, L; W 1,p (ω))
(5.8) and 1 δ 2 Π δ e(u δ ) E U, Θ, r, U weakly in L p (P) 6 .

(5.9)

Proof. Convergences (5.5)-(5.6)(5.7)-(5.9) are the immediate consequences of the estimates (4.4) and the properties (5.1)-(5.2) of the operator Π δ . Convergences (5.8) come from those in (5.5)-(5.6) and the properties of the operator Π δ .

Denote W p the following subspace of L p (0, L; W 1,p (ω)) 3 :

W p . = V ∈ L p (0, L; W 1,p (ω)) 3 | ω V 1 (•, X 2 , X 3 )X 2 dX 2 dX 3 = ω V 1 (•, X 2 , X 3 )X 3 dX 2 dX 3 = 0, ω V 2 (•, X 2 , X 3 )X 3 -V 3 (•, X 2 , X 3 )X 2 dX 2 dX 3 = 0, ω V 1 (•, X 2 , X 3 )dX 2 dX 3 = 0 a.e. in (0, L) .
We have U ∈ W p .

A particular loading of the rod

For simplicity we assume that the rod is made of a homogeneous and isotropic material whose Lamé constants are λ and µ. We also assume that the cross-sections are square and that the rod is clamped on both extremities. In this subsection we want to investigate a rod loaded with applied forces, these forces are chosen so that they do not see the Bernoulli-Navier displacements. So, from now in this section

ω = (-1/2, 1/2) 2 , ω δ = (-δ/2, δ/2) 2 .
We denote

H 1 Γ δ (P δ ) . = φ ∈ H 1 (P δ ) | φ = 0 a.e. on {0, L} × ω δ , a ijkl . = λδ ij δ kl + µ δ ik δ jl + δ il δ jk , {i, j, k, l} ∈ {1, 2, 3} 4
where δ ij is the Kronecker symbol. We recall that there exists a strictly positive constant C such that

C|||ζ||| 2 ≤ a ijkl ζ ij ζ kl for all 3 × 3 symmetric matrix ζ (6.1)
where ||| • ||| is the Frobenius norm. We denote

σ ij (v) = a ijkl e kl (v) ∀v ∈ H 1 (P δ ).
The 3 × 3 symmetric matrix σ whose entries are the σ ij (v) is the stress tensor of v.

We consider the following elasticity problem given in the variational form:

     Find u δ ∈ H 1 Γ δ (P δ ) 3 such that ∀v ∈ H 1 Γ δ (P δ ) 3 , P δ σ ij (u δ )e ij (v) dx = P δ F δ • v dx + ∂P δ G δ v 1 dx (6.2)
where F δ belongs to L 2 (P δ ) 3 and G δ to L 2 (∂P δ ). Due to (6.1), the existence and uniqueness of the solution to problem (6.2) is a classical result. Now, we suppose that the applied body and surface forces are given by

F δ (x) = f δ (x 1 ) for a.e. x ∈ P δ , f δ ∈ L 2 (0, L) 3 , G δ (x) =         
g δ,2 (x 1 ) for a.e. x ∈ (0, L) × {δ/2} × (-δ/2, δ/2), -g δ,2 (x 1 ) for a.e. x ∈ (0, L) × {-δ/2} × (-δ/2, δ/2), g δ,3 (x 1 ) for a.e. x ∈ (0, L) × (-δ/2, δ/2) × {δ/2}, -g δ,3 (x 1 ) for a.e. x ∈ (0, L) × (-δ/2, δ/2) × {-δ/2}, g δ,2 , g δ,3 ∈ L 2 (0, L).

We further assume that these applied forces satisfy

P δ F δ • V BN dx = 0, V BN (•, x 2 , x 3 ) =    V 1 -x 2 dV 2 dx 1 -x 3 dV 3 dx 1 V 2 -x 3 A V 3 + x 2 A   
for every Bernoulli-Navier displacement V BN belonging to H 1 Γ δ (P δ ) 3 . This first leads to f δ,1 = 0 and then

δ 2 L 0 f δ,2 (x 1 )V 2 (x 1 ) + f δ,3 (x 1 )V 3 (x 1 ) dx 1 -δ 2 L 0 g δ,2 (x 1 ) dV 2 dx 1 (x 1 ) + g δ,3 (x 1 ) dV 3 dx 1 (x 1 ) dx 1 = 0. Hence L 0 f δ,2 V 2 dx 1 - L 0 g δ,2 dV 2 dx 1 = 0, L 0 f δ,3 V 3 dx 1 - L 0 g δ,3 dV 3 dx 1 = 0 Therefore g δ,2 , g δ,3 belong to H 1 (0, L) and (since V i (0) = V i (L) = 0, i ∈ {2, 3}), we have f δ,2 + dg δ,2 dx 1 = 0, f δ,3 + dg δ,3 dx 1 = 0.
Let g 2 , g 3 be two functions in H 1 (0, L). We set f 1 = g 1 = 0 and

f δ,2 = δ 2 f 2 , g δ,2 = δ 2 g 2 , f δ,3 = d 2 f 3 , g δ,3 = δ 2 g 3 , f 2 = - dg 2 dx 1 , f 3 = - dg 3 dx 1 .
So, for every admissible displacement u ∈ H 1 Γ δ (P δ ) 3 decomposed as (4.2), we have

P δ F δ • u dx + ∂P δ G δ u 1 dx =δ 4 L 0 g i r i dx 1 + δ 2 P δ g i ∂u 1 ∂x i dx + δ 2 P δ f i u i dx =2δ 2 L 0 g i e 1i (u)dx. (6.3) 
As a consequence of the above equality and (4.4) 4,5 the solution u δ to problem (6.2) satisfies

e(u δ ) L 2 (P δ ) ≤ Cδ 3 g 2 L 2 (0,L) + g 3 L 2 (0,L)
where the constant C does not depend on δ.

Proposition 6.1. Let u δ be the solution to problem (6.2). We decompose u δ as (4.2). Then, we first have

(i ∈ {2, 3}) 1 δ 2 U δ,1 -→ 0 strongly in H 1 (0, L), 1 δ U δ,i -→ 0 strongly in H 2 (0, L), 1 δ 3 Π δ (u δ,i ) -→ 0 strongly in L 2 (0, L; H 1 (ω))/L 2 (0, L). Moreover 1 δ Θ δ 0 weakly in H 1 (0, L), 1 δ 2 r δ,i r i = g i µ weakly in L 2 (0, L), 1 δ 3 Π δ (u δ,1 ) 0 weakly in L 2 (0, L; H 1 (ω)).
Furthermore, we have

1 δ 2 Π δ e(u δ ) -→ 1 2   0 * * r 2 0 0 r 3 0 0   strongly in L 2 (P) 6 , (6.4) 
Proof. We decompose u δ as (4.2), we write

u δ (x) = U BN,δ (x) + x 2 r δ,2 (x 1 ) + x 3 r δ,3 (x 1 ) e 1 + u δ (x)
, for a. e. x ∈ P δ .

Theorem 5.2 give a subsequence of {δ}, still denoted {δ} and U 1 , Θ ∈ H 1 0 (0, L), U 2 , U 3 ∈ H 2 0 (0, L), U ∈ W 2 and r 2 , r 3 ∈ L 2 (0, L) such that convergences (5.5)-(5.6)-(5.7)-(5.8) and (5.9) hold.

We choose Φ 1 , Ψ ∈ H 1 0 (0, L), Φ 2 , Φ 3 ∈ H 2 0 (0, L), Φ ∈ W 2 ∩ H 1 Γ (P) 3 and ψ 2 , ψ 3 ∈ H 1 0 (0, L)
where

H 1 Γ (P) . = V ∈ H 1 (P) | V (0, •) = V (L, •) = 0 a.e. on ω .
We define the test displacement φ δ by

φ δ (•, x 2 , x 3 ) =       δ 2 Φ 1 -x 2 δ dΦ 2 dx 1 -x 3 δ dΦ 3 dx 1 + x 2 δ 2 ψ 2 + x 3 δ 2 ψ 3 + δ 3 Φ 1 •, x 2 δ , x 3 δ δΦ 2 -x 3 δΨ + δ 3 Φ 2 •, x 2 δ , x 3 δ δΦ 3 + x 2 δΨ + δ 3 Φ 3 •, x 2 δ , x 3 δ       .
We have (see (5.3) for the strain tensor)

1 δ 2 Π δ e(φ δ ) -→ E Φ, Ψ, ψ, Φ strongly in L p (P) 6 .
Now, in (6.2) we choose this test displacement, we transform the left and right hand sides using Π δ , divide by δ 4 and pass to the limit. We obtain

P a ijkl E ij U, Θ, r, U E kl Φ, Ψ, ψ, Φ dx 1 dX 2 dX 3 = P g 2 ψ 2 + ∂Φ 1 ∂X 2 dx 1 dX 2 dX 3 + P g 3 ψ 3 + ∂Φ 1 ∂X 3 dx 1 dX 2 dX 3 .
This yields

P a iijj E ii U, Θ, r, U E jj Φ, Ψ, ψ, Φ + µ ∂U 3 ∂X 2 + ∂U 2 ∂X 3 ∂Φ 3 ∂X 2 + ∂Φ 2 ∂X 3 dx 1 dX 2 dX 3 = 0 (6.5)
and

µ P r 2 - g 2 µ -X 3 dΘ dx 1 + ∂U 1 ∂X 2 ψ 2 -X 3 dΨ dx 1 + ∂Φ 1 ∂X 2 + r 3 - g 3 µ + X 2 dΘ dx 1 + ∂U 1 ∂X 3 ψ 3 + X 2 dΨ dx 1 + ∂Φ 1 ∂X 3 dx 1 dX 2 dX 3 = 0. (6.6) 
By density of W 2 ∩ H 1 Γ (P)3 in W 2 and H 1 0 (0, L) in L 2 (0, L), the above equalities are still satisfied for every Φ ∈ W 2 and ψ 2 , ψ 3 ∈ L 2 (0, L). So, from (6.1) and (6.5) we get U 1 = U 2 = U 3 = 0 and U 2 = U 3 = 0 (up to functions belonging to L 2 (0, L)) since (6.1) and (6.5) imply

dU 1 dx 1 2 L 2 (P) + d 2 U 2 dx 2 1 2 L 2 (P) + d 2 U 3 dx 2 1 2 L 2 (P) + ∂U 2 ∂X 2 2 L 2 (P) + ∂U 3 ∂X 2 2 L 2 (P) + ∂U 2 ∂X 3 2 L 2 (P) + ∂U 3 ∂X 3 2 L 2 (P) ≤ C dU 1 dx 1 -X 2 d 2 U 2 dx 2 1 -X 3 d 2 U 3 dx 2 1 2 L 2 (P) + ∂U 2 ∂X 2 2 L 2 (P) + ∂U 3 ∂X 2 + ∂U 2 ∂X 3 2 L 2 (P) + ∂U 3 ∂X 3 2 L 2 (P) ≤ 0.
Now, in (6.6), we choose

ψ 2 = r 2 - g 2 µ , ψ 3 = r 3 - g 3 µ , Ψ = Θ and Φ 1 = U 1 this gives r 2 = g 2 µ , r 3 = g 3 µ , Θ = 0 U 1 = 0 because ψ 2 2 L 2 (0,L) + ψ 3 2 L 2 (0,L) + dΨ dx 1 2 L 2 (0,L) + ∂Φ 1 ∂X 2 2 L 2 (P) + ∂Φ 1 ∂X 3 2 L 2 (P) ≤ C P ψ 2 -X 3 dΨ dx 1 + ∂Φ 1 ∂X 2 2 + ψ 3 + X 2 dΨ dx 1 + ∂Φ 1 ∂X 3 2 dx 1 dX 2 dX 3 .
Since the limit problem admits a unique solution, the whole sequences of the different fields converge towards their limit. As usual we prove the strong convergence of the strain tensor which in turn gives the strong convergences in the proposition.

The displacement u ap δ (x) = δ 2 x 2 r 2 (x 1 ) + x 3 r 3 (x 1 ) e 1 for a.e. x ∈ P δ is an approximation of the solution u δ to problem (6.2). Below, we give an error estimate.

Lemma 6.2. Assume g 2 and g 3 ∈ H 1 0 (0, L) 3 , then we have e(u δ -u ap δ ) ≤ Cδ 4 ( g 2 H 1 (0,L) + g 3 H 1 (0,L) ). (6.7)

The constant is independent of δ.

Proof. First observe that under the assumption of the lemma u ap δ is an admissible displacement of the rod. We first have 

e 11 (u ap δ ) L 2 (P δ ) ≤ Cδ 4 ( g 2 H 1 (0,L) + g 3 H 1 (0,L) ) ( 6 
1 δ 3 Π δ (u δ,1 ) -→ -X 2 dU ♦ 2 dx 1 -X 3 dU ♦ 3 dx 1 + X 2 r 2 + X 3 r 3 = 6x 2 1 (x 1 -L) L 2 1 µ X 2 L L 0 g 2 (t)dt + X 3 L L 0 g 3 (t)dt strongly in L 2 (0, L; H 1 (ω)), 1 δ 2 Π δ (u δ,i ) -→ U ♦ i strongly in L 2 (0, L; H 1 (ω))
where U ♦ 2 , U ♦ 3 are given by

U ♦ i (x 1 ) = 1 µ x1 0 g i (t)dt - x 2 1 (3L -2x 1 ) L 3 L 0 g i (t)dt . Moreover 1 δ 3 Π δ e(u δ -u ap δ ) -→   E 11 0 0 0 -νE 11 0 0 0 -νE 11   strongly in L 2 (P) 6 (6.10) 
where

E 11 = 6(2x 1 -L) L 2 1 µ X 2 L L 0 g 2 (t)dt + X 3 L L 0 g 3 (t)dt .
Proof. We decompose u δ -u ap δ as (4.2), we write

u δ (x) = U ♦ BN,δ (x) + x 2 r ♦ δ,2 (x 1 ) + x 3 r ♦ δ,3 (x 1 ) e 1 + u ♦ δ (x)
, for a. e. x ∈ P δ .

Theorem 5.2 give a subsequence of {δ}, still denoted {δ} and U

♦ 1 , Θ ♦ ∈ H 1 0 (0, L), U ♦ 2 , U ♦ 3 ∈ H 2 0 (0, L), U ♦ ∈ W 2 and r ♦ 2 , r ♦ 3 ∈ L 2 (0, L) such that (i ∈ {2, 3}) 1 δ 3 U ♦ δ,1 U ♦ 1 weakly in H 1 0 (0, L), 1 δ 2 U ♦ δ,i U ♦ i weakly in H 2 0 (0, L), 1 δ 2 Θ ♦ δ Θ ♦ weakly in H 1 0 (0, L), 1 δ 4 Π δ (u ♦ δ ) U ♦ weakly in L 2 (0, L; H 1 (ω)) 3 , 1 δ 3 Π δ ∂u ♦ δ ∂x 1 0 weakly in L 2 (P) 3 , 1 δ 3 r ♦ δ,i r ♦ i weakly in L 2 (0, L), 1 δ 2 dr ♦ δ,i dx 1 0 weakly in L 2 (0, L) and 1 δ 3 Π δ e(u δ -u ap δ ) E U ♦ , Θ ♦ , r ♦ , U ♦ weakly in L p (P) 6 . (6.11)
Now, in (6.9) we choose the test displacement introduced in the proof of Lemma 6.3, we transform the left and right hand sides using Π δ , divide by δ 5 and pass to the limit. We obtain

P a ijkl E ij U ♦ , Θ ♦ , r ♦ , U ♦ E kl Φ, Ψ, ψ, Φ dx 1 dX 2 dX 3 = - P a 11kk X 2 dr 2 dx 1 + X 3 dr 3 dx 1 E kk Φ, Ψ, ψ, Φ dx 1 dX 2 dX 3 .
(6.12)

By density of W 2 ∩ H 1 Γ (P) 3 in W 2 and H 1 0 (0, L) in L 2 (0, L), the above equality is still satisfied for every Φ ∈ W 2 and ψ 2 , ψ 3 ∈ L 2 (0, L). The above equality (6.12) first yields

µ P r ♦ 2 -X 3 dΘ ♦ dx 1 + ∂U ♦ 1 ∂X 2 ψ 2 -X 3 dΨ dx 1 + ∂Φ 1 ∂X 2 + r ♦ 3 + X 2 dΘ ♦ dx 1 + ∂U ♦ 1 ∂X 3 ψ 3 + X 2 dΨ dx 1 + ∂Φ 1 ∂X 3 dx 1 dX 2 dX 3 = 0.
Hence r ♦ 2 = r ♦ 3 = 0, Θ ♦ = 0 and U ♦ 1 = 0. Then, equation (6.12) also gives

P (λ + 2µ) dU ♦ 1 dx 1 -X 2 d 2 U ♦ 2 dx 2 1 - dr 2 dx 1 -X 3 d 2 U ♦ 3 dx 2 1 - dr 3 dx 1 + λ ∂U ♦ 2 ∂X 2 + ∂U ♦ 3 ∂X 3 dΦ 1 dx 1 -X 2 d 2 Φ 2 dx 2 1 -X 3 d 2 Φ 3 dx 2 1 + λ dU ♦ 1 dx 1 -X 2 d 2 U ♦ 2 dx 2 1 - dr 2 dx 1 -X 3 d 2 U ♦ 3 dx 2 1 - dr 3 dx 1 + (λ + 2µ) ∂U 2 ∂X 2 + λ ∂U ♦ 3 ∂X 3 ∂Φ 2 ∂X 2 + λ dU ♦ 1 dx 1 -X 2 d 2 U ♦ 2 dx 2 1 - dr 2 dx 1 -X 3 d 2 U ♦ 3 dx 2 1 - dr 3 dx 1 + λ ∂U ♦ 2 ∂X 2 + (λ + 2µ) ∂U ♦ 3 ∂X 3 ∂Φ 3 ∂X 3 +µ ∂U ♦ 3 ∂X 2 + ∂U ♦ 2 ∂X 3 ∂Φ 3 ∂X 2 + ∂Φ 2 ∂X 3 dx 1 dX 2 dX 3 = 0. (6.13) 
In (6.13) we choose Φ = 0, hence for a.e. x 1 ∈ (0, L), the displacement U That gives U ♦ 1 = 0 and the equations satisfied by U ♦ 2 and U ♦ 3 . We obtain (i ∈ {2, 3})

U ♦ 2 (•, X 2 , X 3 ) = ν -X 2 dU ♦ 1 dx 1 + X 2 2 -X 2 3 2 d 2 U ♦ 2 dx 2 1 - dr 2 dx 1 + X 2 X 3 d 2 U ♦ 3 dx 2 1 - dr 3 dx 1 + u 2 , U ♦ 3 (•, X 2 , X 3 ) = ν -X 3 dU ♦ 1 dx 1 + X 2 X 3 d 2 U ♦ 2 dx 2 1 - dr 2 dx 1 + X 2 3 -X 2
U ♦ i (x 1 ) = x1 0 r i (t)dt - x 2 1 (3L -2x 1 ) L 3 L 0 r i (t)dt.
Since the limit problem admits a unique solution, the whole sequences of the different fields converge towards their limit. As usual we prove the strong convergence of the strain tensor which in turn gives the strong convergences in the lemma.

As a consequence of (6.4) and (6.10), regarding the stress tensors, of u δ and u δ -u ap δ we have where E = µ(3λ + 2µ) λ + µ is the Young modulus, E 11 is given in Theorem 6.3.

Note, that under the assumption of Lemma 6.2, if we also assume where U ♦ 2 , U ♦ 3 are given by (i ∈ {2, 3})

U ♦ i (x 1 ) = 1 µ x1 0 g i (t)dt.
In this case the cross-sections remain orthogonal to e 1 . They all remain parallel to each other.

Conclusion

If we are dealing with a very thin beam, it will be better to replace the decomposition (1.1) with a shorter one. So, any displacement u ∈ W 1,p (P δ ) 3 , 1 < p < ∞, is also decomposed as The residual displacement is u(x) = x 2 r 2 (x 1 ) + x 3 r 3 (x 1 ) e 1 + u(x) for a.e. x in P δ .

It satisfies the following two conditions: The constants do not depend on L and δ.

  The constant only depends on p. Now, applying the above inequality with θ = d 2 φ A,B dt 2 leads to (3.1) 3 . Then, we continue choosing θ = dφ A,B dt and finally θ = φ A,B .

♦ 2 e 2 + U ♦ 3 e 3

 33 satisfies a 2D linear elasticity problem. A straightforward calculation gives

  µ) is the Poisson coefficient and u 2 , u 3 are functions belonging to L 2 (0, L).Replacing these values of U

1 δ 2 Π

 2 δ σ(u δ ) strongly in L 2 (P) 6 , 1 δ 3 Π δ σ(u δ -u ap δ ) strongly in L 2 (P)6 

3

 3 Π δ (u δ,1 ) -→0 strongly in L 2 (0, L; H 1 (ω)), 1 δ 2 Π δ (u δ,i ) -→ U ♦ i strongly in L 2 (0, L; H 1 (ω)), 1 δ 3 Π δ e(u δ -u ap δ ) -→0 strongly in L 2 (P) 6

U 1 (x 1 ) -x 2 dU 2 dx 1 (x 1 ) -x 3 dU 3 dx 1 (x 1 )U 2 (x 1 ) -x 3 Θ(x 1 ) U 3 (x 1 ) + x 2 Θ(x 1 )

 11111121313121 e. x in P δ .(7.1) 

ω δ u 1 (x 1 , x 2 , x 3 )dx 2 dx 3 = ω δ u 2 (x 1 , x 2 , x 3 )x 3 - 7 . 1 . 2 1+ d 2 U 3 dx 2 1

 1123212337122 u 3 (x 1 , x 2 , x 3 )x 2 dx 2 dx 3 = 0 for a.e. x 1 ∈ (0, L).As immediate consequence of Theorem 4.1 (see also Corollary 4.2) we haveTheorem The fields U, Θ and u satisfyU 1 , Θ ∈ W 1,p (0, L), U 2 , U 3 ∈ W 2,p (0, L), u ∈ W 1,p (P δ ) 3and the following estimates:dU 1 dx 1 L p (0,L) + δ dΘ dx 1 L p (0,L) ≤ C δ 2/p e(u) L p (P δ ) , d 2 U 2 dx L p (0,L) L p (0,L) ≤ C δ 1+2/pe(u) L p (P δ ) , u L p (P δ ) + δ ∇ u L p (P δ ) ≤ Cδ e(u) L p (P δ ) .

  1,p (P δ ) 3 , p ∈ (1, ∞), decomposed as (2.1). The terms U * , R * and u * of the decomposition (2.1) satisfy

		u *	L p (P δ ) ≤ Cδ e(u) L p (P δ ) ,	∇u *	L p (Ω δ ) ≤ C e(u) L p (P δ ) ,
	δ	dR * dx 1 L p (0,L)	

  ijkl e ij (u δ -u ap δ )e kl (φ) dx = -

	So, we obtain					
			P δ			P δ	a 11kk e 11 (u ap δ )e kk (φ) dx	(6.9)
	which in turn due to estimate (6.8) give (6.7).		
	Theorem 6.3. Under the assumption of Lemma 6.2, we have (i ∈ {2, 3})
								.8)
	and	e 22 (u ap δ ) = e 33 (u ap δ ) = e 23 (u ap δ ) = 0,	e 12 (u ap δ ) =	δ 2 2	r 2 , e 13 (u ap δ ) =	δ 2 2	r 3 .
	Now, let φ be a displacement in H 1 Γ δ (P δ ) 3 , we have		
				3			
			4µ	i=2 P δ	e 1i (u ap δ )e 1i (φ) dx = 2δ 2	P δ	g i e 1i (φ)dx.
	Besides from (6.3) and then (6.2), we get		
		2δ 2	g i e 1i (φ)dx =	F δ • φ dx +	G δ φ 1 dx =
		P δ		P δ	∂P δ		

P δ

a ijkl e ij (u δ )e kl (φ) dx. a

The map X ∈ R 3 -→ Θ(x 1 )e 1 ∧ X represents a small rotation of the cross-section {x 1 } × ω δ with axis directed by e 1 and angle approximately equal to Θ(x 1 ) (Θ(x 1 ) is the torsion angle).

[t] is the integer part of t ∈ R

If we only assume g 2 and g 3 ∈ H 1 (0, L) we can prove that e(u δ -u ap δ ) ≤ Cδ 7/2 ( g 2 H 1 (0,L) + g 3 H 1 (0,L) ).

If the rod is clamped on one extremity e.g. {0} × ω δ , (resp. on both extremities) then we have U(0) = R(0) = 0, u = 0 a.e. on {0} × ω δ ,

Of course, Proposition 4.3 is still valid. Proceeding as in [START_REF] Griso | Asymptotic behavior of structures made of curved rods[END_REF][START_REF] Griso | Asymptotic behavior of stable structures made of beams[END_REF][START_REF] Griso | Asymptotic behavior of unstable structures made of beams[END_REF] the above decomposition (7.1) can easily be extended to structures made up of a large number of beams.

Appendix: Extension of a rod displacement

Let u be a displacement belonging to W 1,p (P δ ) 3 , p ∈ (1, ∞), decomposed as (2.1). The terms U * , R * and U * of this decomposition satisfy (2.3).

Set

Now, we define the extension of u denoted u * * by

So, we have

Moreover, due to the above definition of u * * and the terms of its decomposition, using the estimates (2. The constants do not depend on δ and L.