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In this paper, we establish approximate cloaking for the heat equation via transformation optics. We show that the degree of visibility is of the order ε in three dimensions and | ln ε| -1 in two dimensions, where ε is the regularization parameter. To this end, we first transform the problem in time domain into a family of problems in frequency domain by taking the Fourier transform with respect to time, and then derive appropriate estimates in the frequency domain.

Introduction and statement of the results

Cloaking using transformation optics (changes of variables) was introduced by Pendry, Schurig, and Smith [START_REF] Pendry | Controlling electromagnetic fields[END_REF] for the Maxwell system and by Leonhardt [16] in the geometric optics setting. These authors used a singular change of variables, which blows up a point into a cloaked region. The same transformation had been used to establish (singular) non-uniqueness in Calderon's problem in [START_REF] Greenleaf | On nonuniqueness for Calderon's inverse problem[END_REF]. To avoid using the singular structure, various regularized schemes have been proposed. One of them was suggested by Kohn, Shen, Vogelius, and Weinstein [START_REF] Kohn | Cloaking via change of variables in electric impedance tomography[END_REF], where instead of a point, a small ball of radius ε is blown up to the cloaked region. Approximate cloaking for acoustic waves has been studied in the quasistatic regime [START_REF] Kohn | Cloaking via change of variables in electric impedance tomography[END_REF][START_REF] Nguyen | A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity[END_REF], the time harmonic regime [START_REF] Kohn | Cloaking via change of variables for the Helmholtz equation[END_REF][START_REF] Nguyen | Cloaking via change of variables for the Helmholtz equation in the whole space[END_REF][START_REF] Nguyen | Full range scattering estimates and their application to cloaking[END_REF][START_REF] Nguyen | Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking[END_REF], and the time regime [START_REF] Nguyen | Approximate cloaking for the wave equation via change of variables[END_REF][START_REF] Nguyen | Approximate cloaking for the full wave equation via change of variables: the Drude-Lorentz model[END_REF], and approximate cloaking for electromagnetic waves has been studied in the time harmonic regime [START_REF] Ammari | Enhancement of Near Cloaking for the Full Maxwell Equations[END_REF][START_REF] Lassas | The blow-up of electromagnetic fields in 3-dimensional invisibility cloaking for Maxwell's equations[END_REF][START_REF] Nguyen | Approximate cloaking for electromagnetic waves via transformation optics: cloaking vs infinite energy[END_REF], see also the references therein. Finite energy solutions for the singular scheme have been studied extensively [START_REF] Greenleaf | Full-wave invisibility of active devices at all frequencies[END_REF][START_REF] Weder | A rigorous analysis of high-order electromagnetic invisibility cloaks[END_REF][START_REF] Weder | The boundary conditions for point transformed electromagnetic invisibility cloaks[END_REF]. There are also other ways to achieve cloaking effects, such as the use of plasmonic coating [START_REF] Alu | Achieving transparency with plasmonic and metamaterial coatings[END_REF], active exterior sources [START_REF] Vasquez | Active exterior cloaking for the 2D Laplace and Helmholtz equations[END_REF], complementary media [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF], or via localized resonance [START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF] (see also [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF]).

The goal of this paper is to investigate approximate cloaking for the the heat equation using transformation optics. Thermal cloaking via transformation optics was initiated by Guenneau, Amra, and Venante [START_REF] Guenneau | Transformation thermodynamics: cloaking and concentrating heat flux[END_REF]. Craster, Guenneau, Hutridurga, and Pavliotis [START_REF] Craster | Cloaking via Mapping for the Heat Equation[END_REF] investigate the approximate cloaking for the heat equation using the approximate scheme in the spirit of [START_REF] Kohn | Cloaking via change of variables in electric impedance tomography[END_REF]. They show that for the time large enough, the largeness depends on ε, the degree of visibility is of the order ε d (d = 2, 3) for sources that are independent of time. Their analysis is first based on the fact that as time goes to infinity, the solutions converge to the stationary states and then uses known results on approximate cloaking in the quasistatic regime [START_REF] Kohn | Cloaking via change of variables in electric impedance tomography[END_REF][START_REF] Nguyen | A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity[END_REF].

In this paper, we show that approximate cloaking is achieved at any positive time and established the degree of invisibility of order ε in three dimensions and | ln ε| -1 in two dimensions. Our results hold for a general source that depends on both time and space variables, and our estimates depend only on the range of the materials inside the cloaked region. The degree of visibility obtained herein is optimal due to the fact that a finite time interval is considered (compare with [START_REF] Craster | Cloaking via Mapping for the Heat Equation[END_REF]). The analysis in this paper is of frequency type via Fourier transform with respect to time. This approach is robust and can be used in different context. A technical issue is on the blow up of the fundamental solution of the Helmholtz type equations in two dimensions in the low frequency regime. We emphasize that even though our setting is in a bounded domain, we employs Fourier transform in time instead of eigenmodes decomposition. This has the advantage that one can put the non-perturbed system and the cloaking system in the same context.

We next describe the problem in more detail and state the main result. Our starting point is the regularization scheme [START_REF] Kohn | Cloaking via change of variables in electric impedance tomography[END_REF] in which a transformation blows up a small ball B ε (0

< ε < 1/2) instead of a point into the cloaked region B 1 in R d (d = 2, 3).
Here and in what follows, for r > 0, B r denotes the ball centered at the origin and of radius r in R d . Our assumption on the geometry of the cloaked region is mainly to simplify the notations. Concerning the transformation, we consider the map F ε : R d → R d defined by

F ε (x) =                    x in R d \ B 2 , 2 -2ε 2 -ε + |x| 2 -ε x |x| in B 2 \ B ε , x ε in B ε . (1.1)
In what follows, we use the standard notations

F * A(y) = ∇F(x)A(x)∇F T (x) | det ∇F(x)| , F * ρ(y) = ρ(x) | det ∇F(x)| , x = F -1 (y), (1.2) 
for the "pushforward" of a symmetric, matrix-valued function A, and a scalar function ρ, by the diffeomorphism F, and I denotes the identity matrix. The cloaking device in the region B 2 \ B 1 constructed from the transformation technique is given by

F ε * I, F ε * 1 in B 2 \ B 1 , (1.3) 
a pair of a matrix-valued function and a function that characterize the material properties in

B 2 \ B 1 .
Physically, this is the pair of the thermal diffusivity and the mass density of the material.

Let Ω with B 2 Ω ⊂ R d (d = 2, 3) * be a bounded region for which the heat flow is considered. Suppose that the medium outside B 2 (the cloaking device and the cloaked region) is homogeneous so that it is characterized by the pair (I, 1), and the cloaked region B 1 is characterized by a pair (a O , ρ O ) where a O is a matrix-valued function and ρ O is a real function, both defined in B 1 . The medium in Ω is then given by

(A c , ρ c ) =                (I, 1)
in Ω \ B 2 ,

F ε * I, F ε * 1 in B 2 \ B 1 , (a O , ρ O ) in B 1 . (1.4) 
In what follows, we make the usual assumption that a O is symmetric and uniformly elliptic and ρ O is a positive function bounded above and below by positive constants, i.e., for a.e. x ∈ B 1 ,

Λ -1 |ξ| 2 ≤ a O (x)ξ, ξ ≤ Λ|ξ| 2 for all ξ ∈ R d , (1.5) 
and

Λ -1 ≤ ρ O (x) ≤ Λ, (1.6) 
for some Λ ≥ 1. Given a function f ∈ L 1 (0, +∞), L 2 (Ω) and an initial condition u 0 ∈ L 2 (Ω), in the medium characterzied by (A c , ρ c ), one obtains a unique weak solution

u c ∈ L 2 (0, ∞); H 1 (Ω) ∩C [0, +∞); L 2 (Ω) of the system                ∂ t (ρ c u c ) -div(A c ∇u c ) = f in (0, +∞) × Ω, u c = 0 on (0, +∞) × ∂Ω, u c (t = 0, •) = u 0 in Ω, (1.7) 
and in the homogeneneous medium characterized by (I, 1), one gets a unique weak solution u ∈ L 2 (0, ∞);

H 1 (Ω) ∩ C [0, +∞); L 2 (Ω) of the system                ∂ t u -∆u = f in (0, +∞) × Ω, u c = 0 on (0, +∞) × ∂Ω, u c (t = 0, •) = u 0 in Ω.
(1.8)

The approximate cloaking meaning of the scheme (1.4) is given in the following result:

Theorem 1.1. Let u 0 ∈ L 2 (Ω) and f ∈ L 1 (0, +∞); L 2 (Ω) be such that supp u 0 , supp f (t, •) ⊂ Ω \ B 2 for t > 0.
Assume that u c and u are the solution of (1.7) and (1.8) respectively. Then, for

0 < ε < 1/2, u c (t, •) -u(t, •) H 1 (Ω\B 2 ) ≤ Ce(ε, d) f L 1 (0,+∞);L 2 (Ω) + u 0 L 2 (Ω) ,
for some positive constant C depending on Λ but independent of f , u 0 , and ε, where

e(ε, d) =        ε if d = 3, | ln ε| -1 if d = 2.
As a consequence of Theorem 1.1, lim ε→0 u c (t, •) = u(t, •) in (0, +∞)×(Ω\ B 2 ) for all f with compact support outside (0, +∞)×B 2 and for all u 0 with compact support outside B 2 . One therefore cannot detect the difference between (A c , ρ c ) and (I, 1) as ε → 0 by observation of u c outside B 2 : cloaking is achieved for observers outside B 2 in the limit as ε → 0.

We now briefly describe the idea of the proof. The starting point of the analysis is the invariance of the heat equations under a change of variables which we now state.

Lemma 1.1. Let d ≥ 2, T > 0, Ω be a bounded open subset of R d of class C 1 ,
and let A be an elliptic symmetric matrix-valued function, and ρ be a bounded, measurable function defined on Ω bounded above and below by positive constants. Let F : Ω → Ω be bijective such that F and F -1 are Lipschitz, det ∇F > c for a.e. x ∈ Ω for some c > 0, and F(x) = x near ∂Ω. Let f ∈ L 1 (0, T ); L 2 (Ω) and u 0 ∈ L 2 (Ω). Then u ∈ L 2 (0, T );

H 1 0 (Ω) ∩ C [0, T ); L 2 (Ω) is the weak solution of                ∂ t (ρu) -div(A∇u) = f in Ω T , u = 0 on (0, T ) × ∂Ω, u(0, •) = u 0 in Ω, (1.9) 
if and only if v(t,

•) := u(t, •) • F -1 ∈ L 2 (0, T ); H 1 0 (Ω) ∩ C [0, T ); L 2 (Ω) is the weak solution of                ∂ t (F * ρ v) -div(F * A ∇v) = F * f in Ω T , u = 0 on (0, T ) × ∂Ω, v(0, •) = u 0 • F -1 in Ω.
(1.10)

Recall that F * is defined in (1.2). In this paper, we use the following standard definition of weak solutions:

Definition 1.1. Let d ≥ 2 and T > 0. We say a function u ∈ L 2 (0, T ); H 1 0 (Ω) ∩ C [0, T ); L 2 (Ω) is a weak solution to (1.9) if u(0, •) = u 0 in Ω and u satisfies d dt Ω ρu(t, •)ϕ + Ω A∇u(t, •)∇ϕ = Ω f (t, •)ϕ in (0, T ), (1.11)
in the distributional sense for all ϕ ∈ H 1 0 (Ω). The existence and uniqueness of weak solutions are standard, see, e.g., [START_REF] Allaire | Numerical analysis and optimization. An introduction to mathematical modelling and numerical simulation[END_REF] (in fact, in [START_REF] Allaire | Numerical analysis and optimization. An introduction to mathematical modelling and numerical simulation[END_REF], f is assumed in L 2 (0, T ); L 2 (Ω) , however, the conclusion holds also for f ∈ L 1 (0, T ); L 2 (Ω) with a similar proof, see, e.g., [START_REF] Nguyen | Electromagnetic wave propagation in media consisting of dispersive metamaterials[END_REF]). The proof of Lemma 1.1 is similar to that of the Helmholtz equation, see, e.g., [START_REF] Kohn | Cloaking via change of variables for the Helmholtz equation[END_REF] (see also [START_REF] Craster | Cloaking via Mapping for the Heat Equation[END_REF] for a parabolic version).

We now return to the idea of the proof of Theorem 1.1. Set

u ε (t, •) = u c (t, •) • F -1 ε for t ∈ (0, +∞).
Then u ε is the unique solution of the system

               ∂ t (ρ ε u ε ) -div(A ε ∇u ε ) = f in (0, +∞) × Ω, u ε = 0 on (0, +∞) × ∂Ω, u ε (t = 0, •) = u 0 in Ω, (1.12) 
where

(A ε , ρ ε ) =          (I, 1) in Ω \ B ε , ε 2-d a O (•/ε), ε -d ρ O (•/ε) in B ε . (1.13) Moreover, u c -u = u ε -u in (0, +∞) × (Ω \ B 2 ).
In comparing the coefficients of the systems verified by u and u ε , the analysis can be derived from the study of the effect of a small inclusion B ε . The case in which finite isotropic materials contain inside the small inclusion was investigated in [START_REF] Ammari | Direct Algorithms for Thermal Imaging of Small Inclusions[END_REF] (see also [START_REF] Amstutz | Topological sensitivity analysis for time-dependent problems[END_REF] for a related context). The analysis in [START_REF] Ammari | Direct Algorithms for Thermal Imaging of Small Inclusions[END_REF] partly involved the polarization tensor information and took the advantage of the fact that the coefficients inside the small inclusion are finite. In the cloaking context, Craster et al. [START_REF] Craster | Cloaking via Mapping for the Heat Equation[END_REF] derived an estimate of the order ε d for a time larger than a threshold one. Their analysis is based on long time behavior of solutions to parabolic equations and estimates for the degree of visibility of the conducting problem, see [START_REF] Kohn | Cloaking via change of variables in electric impedance tomography[END_REF][START_REF] Nguyen | A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity[END_REF], hence the threshold time goes to infinity as ε → 0.

In this paper, to overcome the blow up of the coefficients inside the small inclusion and to achieve the cloaking effect at any positive time, we follow the approach of Nguyen and Vogelius in [START_REF] Nguyen | Approximate cloaking for the wave equation via change of variables[END_REF]. The idea is to derive appropriate estimates for the effect of small inclusions in the time domain from the ones in the frequency domain using the Fourier transform with respect to time. Due to the dissipative nature of the heat equation, the problem in the frequency for the heat equation is more stable than the one corresponding to the acoustic waves, see, e.g., [START_REF] Nguyen | Full range scattering estimates and their application to cloaking[END_REF][START_REF] Nguyen | Approximate cloaking for the wave equation via change of variables[END_REF], and the analysis is somehow easier to handle in the high frequency regime. After using a standard blow-up argument, a technical point in the analysis is to obtain an estimate for the solutions of the equation ∆v+iωε 2 v = 0 in R d \ B 1 (ω > 0) at the distance of the order 1/ε in which the dependence on ε and ω are explicit (see Lemma 2.2). Due to the blow up of the fundamental solution in two dimensions, the analysis requires new ideas. We emphasize that even though our setting is in a bounded domain with zero Dirichlet boundary condition, we employs Fourier transform in time instead of eigenmodes decomposition as in [START_REF] Craster | Cloaking via Mapping for the Heat Equation[END_REF] to put both systems of u ε and u in the same context.

Proof of the main result

To implement the analysis in the frequency domain, let us introduce the Fourier transform with respect to time t:

φ(k, x) = R ϕ(t, x)e ikt dt for k ∈ R, (2.1) 
for ϕ ∈ L 2 ((-∞, +∞), L 2 (R d ))
. Extending u, u c , u ρ , and f by 0 for t < 0, and considering the Fourier with respect to time at the frequency ω > 0, we obtain

∆û + iωû = -( f + u 0 ) in Ω, and div(A ε ∇û ε ) + iωρ ε ûε = -( f + u 0 ) in Ω,
where

(A ε , ρ ε ) =        (I, 1) in Ω \ B ε , ε 2-d a O (•/ε), ε -d ρ O (•/ε) in B ε .
The main ingredient in the proof of Theorem 1.1 is the following:

Proposition 2.1. Let ω > 0, 0 < ε < 1/2, and let g ∈ L 2 (Ω) with supp g ⊂ Ω \ B 2 . Assume that v, v ε ∈ H 1 (Ω) are respectively the unique solution of the systems

       ∆v + iωv = g in Ω, v = 0 on ∂Ω, and        div(A ε ∇v ε ) + iωρ ε v ε = g in Ω, v ε = 0 on ∂Ω. We have v ε -v H 1 (Ω\B 2 ) ≤ Ce(ε, ω, d)(1 + ω -1/2 ) g L 2 (Ω) , (2.2) 
for some positive constant C independent of ε, ω, and g. Here

e(ε, ω, 3) = εe -ω 1/2 /4 , (2.3 
)

and e(ε, ω, 2) =        e -ω 1/2 /4 /| ln ε| if ω ≥ 1/2, ln ω/ ln(ωε) if 0 < ω < 1/2.
(2.4)

The rest of this section is divided into three subsections. In the first subsection, we present several lemmas used in the proof of Proposition 2.1. The proofs of Proposition 2.1 and Theorem 1.1 are then given in the second and the third subsections, respectively.

Preliminaries

In this subsection, we state and prove several useful lemmas used in the proof of Proposition 2. The first result is the following simple one:

Lemma 2.1. Let d = 2, 3, k > 0, and let v ∈ H 1 (R d \ D) be such that ∆v + ikv = 0 in R d \ D. We have, for R > 2, v H 1 (B R \D) ≤ C R (1 + k) v H 1/2 (∂D) , (2.5) 
for some positive constants C R independent of k and v.

Proof. Multiplying the equation by v (the conjugate of v) and integrating by parts, we have

R d \D |∇v| 2 -ik R d \D |v| 2 = ∂D ∂ ν vv.
This implies

R d \D |∇v| 2 + k R d \D |v| 2 ≤ C ∂ ν v H -1/2 (∂D) v H 1/2 (∂D) . (2.6)
Here and in what follows, C denotes a positive constant independent of v and k. Since ∆v = -ikv in B 2 \ D, by the trace theory, see, e.g., [7, Theorem 2.5], we have

∂ ν v H -1/2 (∂D) ≤ C ∇v L 2 (B 2 \D) + ∆v L 2 (B 2 \D) ≤ C ∇v L 2 (B 2 \D) + k v L 2 (B 2 \D) . (2.7)
Combining (2.6) and (2.7) yields

R d \D |∇v| 2 + k R d \D |v| 2 ≤ C(1 + k) v 2 H 1/2 (∂D) .
(2.8)

The conclusion follows when k ≥ 1.

Next, consider the case 0 < k < 1. In the case where d = 3, the conclusion is a direct consequence of (2.8) and the Hardy inequality (see, e.g., [START_REF] Nédélec | Acoustic and electromagnetic equations, integral representations for harmonic problems[END_REF]Lemma 2.5.7]):

R 3 \D |v| 2 |x| 2 ≤ C R 3 \D |∇v| 2 .
(2.9)

We next consider the case where d = 2. One just needs to show

B R \D |v| 2 ≤ C v 2 H 1/2 (∂D) .
(2.10)

By the Hardy inequality (see, e.g., [18, Lemma 2.5.7]),

R 2 \D |v| 2 |x| 2 ln(2 + |x|) 2 ≤ C R 2 \D |∇v| 2 + B 2 \D |v| 2 , (2.11)
it suffices to prove (2.10) for R = 2 by contradiction. Suppose that there exists a sequence (k n ) → 0 and a sequence (

v n ) ∈ H 1 (R 2 \ D) such that ∆v n + ik n v n = 0 in R 2 \ D, v n L 2 (B 2 \D) = 1, and lim n→+∞ v n H 1/2 (∂D) = 0. Denote W 1 (R 2 \ D) =        u ∈ L 1 loc (R 2 \ D); u(x) ln(2 + |x|) 1 + |x| 2 ∈ L 2 (R 2 \ D) and ∇u ∈ L 2 (R 2 \ D)       
.

By (2.8) and (2.11), one might assume that v n converges to v weakly in H 1 loc (R 2 \ D) and strongly in

L 2 (B 2 \ D). Moreover, v ∈ W 1 (R 2 \ D) and v satisfies ∆v = 0 in R 2 \ D, v = 0 on ∂D, (2.12) 
and v L 2 (B 2 \D) = 1. (2.13) 
From (2.12), we have v = 0 in R 2 \ D (see, e.g., [START_REF] Nédélec | Acoustic and electromagnetic equations, integral representations for harmonic problems[END_REF]) which contradicts (2.13). The proof is complete.

We also have

Lemma 2.2. Let d = 2, 3, ω > 0, 0 < ε < 1/2, and let v ∈ H 1 (R d \ D) be a solution of ∆v + iωε 2 v = 0 in R d \ D. We have, for 3/2 < |x| < R, |v(x/ε)| ≤ Ce(ε, ω, d) v H 1/2 (∂D) , (2.14) 
for some positive constant C = C R independent of ε, ω and v.

Recall that e(ε, ω, d) is given in (2.3) and (2.4).

Proof. By the trace theory and the regularity theory of elliptic equations, we have

v L 2 (∂B 2 ) + ∇v L 2 (∂B 2 ) ≤ C v H 2 (B 5/2 \B 3/2 ) ≤ C(1 + ω 1/2 ε) v H 1 (B 3 \B 1 ) . (2.15) 
It follows from Lemma 2.1 that

v L 2 (∂B 2 ) + ∇v L 2 (∂B 2 ) ≤ C(1 + ω 3/2 ) v H 1/2 (∂D) . (2.16) 
Here and in what follows in this proof, C denotes a positive constant depending only on R and D.

The representation formula gives

v(x) = ∂B 2 G (x, y)∂ r v(y) -∂ r y G (x, y)v(y) dy for x ∈ R d \ B2 , (2.17) 
where = e iπ/4 εω 1/2 , and, for x y,

G (x, y) = e i |x-y| 4π|x -y| if d = 3 and G (x, y) = i 4 H (1) 0 ( |x -y|) if d = 2.
Here H (1) 0 is the Hankel function of the first kind of order 0. Recall, see, e.g., [START_REF] Lebedev | Special Functions and Their Applications[END_REF]Chapter 5], that

H (1) 0 (z) = 2i π ln |z| 2 + 1 + 2iγ π + O(|z| 2 log |z|) as z → 0, z (-∞, 0], (2.18) 
and

H (1) 0 (z) = 2 πz e i(z+ π 4 ) (1 + O(|z| -1 )) z → ∞, z (-∞, 0]. (2.19) 
We now consider the case d = 3. We have, for 3/2 < |x| < R and y ∈ ∂B 2 , 

|e i |x/ε-y| | ≤ e - √ 2 2 ω 1/2 |x-εy| ≤ e -ω
|∂ r y G (x/ε, y)| ≤ C ε 2 ω 1/2 |x| + ε 2 |x| 2 e -ω 1/2 |x|/3 ≤ Cεe -3ω
v(x) = ∂B 2 G (x, y) -G (x, 0) ∂ r v(y) -∂ r y G (x, y)v(y) dy + ∂B 2 G (x, 0)∂ r v(y) dy.
(2.23)

Since d = 2, we have v L ∞ (B 5 \B 3 ) ≤ C v H 2 (B 5 \B 3 ) ≤ C v H 2 (B 5 \B 2 ) ≤ C(1 + ω 1/2 ) v H 1 (B 6 \B 1 )
.

It follows from Lemma 2.1 and the trace theory that 

v L ∞ (B 5 \B 3 ) + v L 2 (∂B 2 ) + ∇v L 2 (∂B 2 ) ≤ C(1 + ω 3/2 ) v H
/2 < |x| < R, |v(x/ε)| ≤          C| ln ω| | ln | || v H 1/2 (∂D) if 0 < ω < 1/2, Cω 3/2 e -3ω 1/2 /10 | ln | || v H 1/2 (∂D) if 1/2 < ω < ε -2 /4,
which yields the conclusion in the case 0 < ω < ε -2 /4. The proof is complete.

Proof of Proposition 2.1

In this proof, C denotes a positive constant depending only on Ω and Λ. Multiplying the equation of v ε by vε and integrating in Ω, we derive that

Ω A ε ∇v ε , ∇v ε + ω Ω ρ ε |v ε | 2 ≤ C g 2 L 2 (Ω) . (2.27) 
Here we used Poincaré's inequality

v ε L 2 (Ω) ≤ C ∇v ε L 2 (Ω) .
It follows from (2.27) that

v ε (ε • ) 2 H 1/2 (∂B 1 ) ≤ C v ε (ε • ) 2 H 1 (B 1 ) ≤ C B ε 1 ε d-2 |∇v ε | 2 + 1 ε d |v ε | 2 ≤ C(1 + ω -1 ) g 2 L 2 (Ω) .
(2.28)

Similarly, using the equation for v and Poincaré's inequality, we get

v H 1 (Ω) ≤ C g L 2 (Ω) . (2.29) 
Since ∆v + iωv = 0 in B 2 , using Caccioppolli's inequality, we have

v H 3 (B 1 ) ≤ C v H 2 (B 3/2 ) ≤ C v H 1 (B 2 ) ≤ C g L 2 (Ω) . (2.30) 
By Sobolev embedding, as

d ≤ 3, v W 1,∞ (B 1 ) ≤ C v H 3 (B 1 ) . (2.31) It follows that v(ε • ) H 1/2 (∂B 1 ) ≤ C v(ε • ) H 1 (B 1 ) ≤ C v W 1,∞ (B 1 ) ≤ C g L 2 (Ω) . (2.32) Set w ε = v ε -v in Ω \ B ε . Then w ε ∈ H 1 (Ω \ B ε ) and satisfies                ∆w ε + iωw ε = 0 in Ω \ B ε , w ε = v ε -v on ∂B ε , w ε = 0 on ∂Ω. (2.33) Let w ε ∈ H 1 (R d \ B ε ) be the unique solution of the system        ∆ w ε + iω w ε = 0 in R d \ B ε , w ε = w ε on ∂B ε , (2.34) 
and set

W ε = w ε (ε • ) in R d \ B 1 .
Then W ε ∈ H 1 (R d \ B 1 ) is the unique solution of the system

       ∆ W ε + iωε 2 W ε = 0 in R d \ B 1 , W ε = w ε (ε • ) on ∂B 1 .
( 

χ ε = w ε -ϕ w ε in Ω \ B ε .
Then χ ε ∈ H 1 0 (Ω \ B ε ) and satisfies

∆χ ε + iωχ ε = -∆ϕ w ε -2∇ϕ • ∇ w ε in Ω \ B ε .
Multiplying the equation of χ ε by χε and integrating by parts, we obtain, by Poincaré's inequality, The conclusion now follows from (2.28) and (2.32).

χ

Proof of Theorem 1.1

Let v ε = u εu. Using the fact that v ε is real, by the inversion theorem and Minkowski's inequality, we have, for t > 0,

v ε (t, •) L 2 (Ω\B 2 ) ≤ C ∞ 0 vε (ω, •) L 2 (Ω\B 2 ) dω.
(2.39) Using Proposition 2.1, we get It follows from (2.39) that, for t > 0, v ε (t, •) L 2 (Ω\B 2 ) ≤ Ce(ε, d) f L 1 (0,+∞);L 2 (Ω) + u 0 L 2 (Ω) .

Similarly, we have, for t > 0, ∇v ε (t, •) L 2 (Ω\B 2 ) ≤ Ce(ε, d) f L 1 (0,+∞);L 2 (Ω) + u 0 L 2 (Ω) .

The conclusion follows.

  1. Throughout, D ⊂ B 1 denotes a smooth, bounded, open subset of R d such that R d \ D is connected, and ν denotes the unit normal vector field on ∂D, directed into R d \ D.

0 ( 1 0 ( 1

 0101 , •) L 2 (Ω\B 2 ) dω ≤ C ∞ + ω -1/2 )e(ε, ω, d) f (ω) + u 0 L 2 (Ω\B 2 ) dω ≤ Cesssup ω>0 f (ω) + u 0 L 2 (Ω\B 2 ) ∞ + ω -1/2 )e(ε, ω, d) dω ≤ Ce(ε, d) f L 1 (0,+∞);L 2 (Ω) + u 0 L 2 (Ω) .

  1/2 |x|/3 .

	It follows that, for 3/2 < |x| < R and y ∈ ∂B 2 ,	
	|G (x/ε, y)| ≤ Cεe -3ω 1/2 /10 .	(2.20)
	Similarly, one has, for 3/2 < |x| < R and y ∈ ∂B 2 ,	

  Cεe -3ω 1/2 /10 ( v L 2 (∂B 2 ) + ∇v L 2 (∂B 2 ) ) for 3/2 < |x| < R. Cεe -ω 1/2 /4 v H 1/2 (∂D) for 3/2 < |x| < R;which is the conclusion in the case d = 3.We next deal with the case where d = 2 and ω > ε -2 /4, which is equivalent to | | > 1/2. From (2.19), we derive that, for 3/2 < |x| < R and y ∈ ∂B 2 , |G (x/ε, y)| ≤ Cω -1/4 e -3ω 1/2 /10 and |∂ r y G (x/ε, y)| ≤ Cεω 1/4 e -3ω 1/2 /10 . Cεe -ω 1/2 /4 v H 1/2 (∂D) for 3/2 < |x| < R, which gives the conclusion in this case.We finally deal with the case where d = 2 and 0 < ω < ε -2 /4, which is equivalent to | | < 1/2. From (2.17), we obtain, for x ∈ ∂B 4 ,

	1/2 /10 . Using (2.16) and combining (2.17) and (2.22), we obtain, since ω > ε -2 /4, Combining (2.17), (2.20), and (2.21) yields |v(x/ε)| ≤ We derive from (2.16) that |v(x/ε)| ≤ (2.22) (2.21) |v(x/ε)| ≤

  C| ln ω| and |∇y G (x/ε, y)| ≤ Cε for 3/2 < |x| < R, y ∈ ∂B 2 , Cω -1/4 e -3ω 1/2 /10 and |∇ y G (x/ε, y)| ≤ Cεω 1/4 e -3ω 1/2 /10 for 3/2 < |x| < R, y ∈ ∂B 2 ,

						1/2 (∂D) .	(2.24)
	Since, by (2.18),				
		|∇ y G (x, y)| ≤ C for x ∈ ∂B 4 and y ∈ ∂B 2
	and				
		|G (x, 0)| ≥ C| ln | || for x ∈ ∂B 4 ,
	we derive from (2.23) and (2.24) that		
		∂B 2	∂ r v(y) dy ≤	C(1 + ω 3/2 ) | ln | ||	v H 1/2 (∂D) .	(2.25)
	Again using (2.17), we get, for 3/2 < |x| < R,		
	v(x/ε) =	G (x/ε, y)-G (x/ε, 0) ∂ r v(y)-∂ r y G (x/ε, y)v(y) dy+	G (x/ε, 0)∂ r v(y) dy. (2.26)
	∂B 2				∂B 2
	Since, by (2.18), for 0 < ω < 1/2,			
	|G (x/ε, 0)| ≤ and, by (2.19), for 1/2 < ω < ε -2 /4,			
	|G (x/ε, 0)| ≤ we derive from (2.24), (2.25), and (2.26) that, for 3	

  2.35)Fix r 0 > 2 such that Ω ⊂ B r 0 . By Lemma 2.2, we have, for 1 ≤ |x| < r 0 , that| W ε (x/ε)| ≤ Ce(ε, ω, d) w ε (ε • ) H 1/2 (∂B 1 ) , which yields, for x ∈ B r 0 \ B 1 , that | w ε (x)| ≤ Ce(ε, ω, d) w ε (ε • ) H 1/2 (∂B 1 ) . Since ∆ w ε + iω w ε = 0 in B r 0 \ B 1 , it follows from Caccioppoli's inequality that w ε H 1 (B 2 \B 3/2 ) ≤ Ce(ε, ω, d) w ε (ε • ) H 1/2 (∂B 1 ) .(2.36) Fix ϕ ∈ C 2 (R d ) such that ϕ = 1 in B 3/2 and ϕ = 0 in R d \ B 2 , and set

  ε H 1 (Ω\B ε ) ≤ C w ε H 1 (B 2 \B 3/2 ) . H 1 (Ω\B 2 ) ≤ Ce(ε, ω, d) w ε (ε • ) H 1/2 (∂B 1 ) .

	(2.37)
	Combining (2.36) and (2.37) yields
	w ε (2.38)
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