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Introduction

In many branches of mathematical physics, harmonic and stochastic analysis, the classical Hardy inequality plays a central role. It states that, if 1 ≤ p < d,

d -p p p R d |u| p |x| p dx ≤ R d |∇u| p dx,
for every u ∈ C 1 c (R d ) with optimal constant which, contrary to the Sobolev inequality, is never attained. Another class of relevant inequalities is given by the so called Caffarelli-Kohn-Nirenberg inequalities [14,[START_REF] Caffarelli | Partial regularity of weak solutions of the Navier-Stokes equations[END_REF]. Precisely, let p ≥ 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R be such that

(1.1) 1 τ + γ d , 1 p + α d , 1 q + β d > 0, 1 τ + γ d = a 1 p + α -1 d + (1 -a) 1 q + β d ,
and, with γ = aσ + (1 -a)β,

0 ≤ α -σ and α -σ ≤ 1 if 1 τ + γ d = 1 p + α -1 d .
Then, for every

u ∈ C 1 c (R d ), |x| γ u L τ (R d ) ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a)
L q (R d ) , for some positive constant C independent of u. This inequality has been an object of a large amount of improvement and extensions to more general frameworks.

In the non-local case, it was shown in [18,[START_REF] Mazya | On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces[END_REF] that there exists C > 0, independent of 0 < δ < 1, such that

(1.2) C R d |u(x)| p |x| pδ dx ≤ J δ (u),
for all u ∈ C 1 c (R d ), where

J δ (u) := (1 -δ) R 2d
|u(x) -u(y)| p |x -y| d+pδ dxdy.

In light of the results of Bourgain, Brezis, and Mironescu [START_REF] Bourgain | Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations[END_REF]4] and an refinement of Davila [START_REF] Davila | On an open question about functions of bounded variation[END_REF], it holds lim δ 0

J δ (u) = K d,p R d |∇u| p dx, for u ∈ W 1,p (R d ), K d,p := 1 p S d-1 |e • σ| p dσ,
for some e ∈ S d-1 , being S d-1 the unit sphere in R d . This allows to recover the classical Hardy inequality from (1.2) by letting δ 0. Various problems related to J δ are considered in [7,9,10,12,33,34]. The full range of Caffarelli-Kohn-Nirenberg inequalities and their variants were established in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] (see [START_REF] Abdellaoui | Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications[END_REF] for partial results in the case a = 1).

Set, for p ≥ 1, Ω a measurable set of R d , and u ∈ L 1 loc (Ω), I δ (u, Ω) :=

Ω Ω {|u(x)-u(y)|>δ} δ p |x -y| d+p dx dy.

In the case, Ω = R d , we simply denote I δ (u, R d ) by I δ (u). The quantity I δ with p = d has its roots in estimates for the topological degree of continuous maps from a sphere into itself in [5,[START_REF] Nguyen | Optimal constant in a new estimate for the degree[END_REF]. This also appears in characterizations of Sobolev spaces [6,11,12,[START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF][START_REF] Bourgain | Limiting embedding theorems for W s,p when s ↑ 1 and applications[END_REF] and related contexts [8,11,12,23,[START_REF] Bourgain | A new estimate for the topological degree[END_REF]26,[START_REF] Brezis | On a new class of functions related to VMO[END_REF][START_REF] Brezis | The BBM formula revisited[END_REF]. It is known that (see [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF]Theorem 2] and [12, Proposition 1]), for p ≥ 1, (1.3) lim

δ 0 I δ (u) = K d,p R d |∇u| p dx, for u ∈ C 1 c (R d ) 1
and, for p > 1,

(1.4)

I δ (u) ≤ C d,p R d |∇u| p dx, for u ∈ W 1,p (R d ),
for some positive constant C d,p independent of u.

The aim of this paper is to get improved versions of the local Hardy and Caffarelli-Kohn-Nirenberg type inequalities and their variants which involve nonlinear nonlocal nonconvex energies I δ (u) and its related quantities. In what follows for R > 0, B R denotes the open ball of R d centered at the origin of radius r. Our first main result concerning Hardy's inequality is:

Theorem 1.1 (Improved Hardy inequality). Let d ≥ 1, p ≥ 1, 0 < r < R, and u ∈ L p (R d ). We have i) if 1 ≤ p < d and supp u ⊂ B R , then R d |u(x)| p |x| p dx ≤ C I δ (u) + R d-p δ p , 1 In the case p > 1, one can take u ∈ W 1,p (R d ) in (1.3). Nevertheless, (1.3) does not hold for u ∈ W 1,1 (R d ) in
the case p = 1. An example for this is due to Ponce presented in [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF].

ii

) if p > d and supp u ⊂ R d \ B r , then R d |u(x)| p |x| p dx ≤ C I δ (u) + r d-p δ p , iii) if p = d ≥ 2 and supp u ⊂ B R , then R d \Br |u(x)| d |x| d ln d (2R/|x|) dx ≤ C I δ (u) + ln(2R/r)δ d , iv) if p = d ≥ 2 and supp u ⊂ R d \ B r , then B R |u(x)| d |x| d ln d (2|x|/r) dx ≤ C I δ (u) + ln(2R/r)δ d ,
where C denotes a positive constant depending only on p and d.

In light of (1.3), by letting δ → 0, one obtains variants of i), ii), iii), iv) of Theorem We next discuss an improved version of Caffarelli-Kohn-Nirenberg in the case the exponent a = 1. The more general case is considered in Theorem 3.1 (see also Proposition 3.1). Set, for p ≥ 1, α ∈ R, and Ω a measurable subset of R d ,

I δ (u, Ω, α) := Ω Ω {|u(x)-u(y)|>δ} δ p |x| pα |x -y| d+p dx dy, for u ∈ L 1 loc (Ω).
If Ω = R d , we simply denote I δ (u, R d , α) by I δ (u, α). We have Theorem 1.2 (Improved Caffarelli-Kohn-Nirenberg's inequality for a = 1). Let d ≥ 2, 1 < p < d, τ > 0, 0 < r < R, and u ∈ L p loc (R d ). Assume that

1 τ + γ d = 1 p + α -1 d and 0 ≤ α -γ ≤ 1.
We

have i) if d -p + pα > 0 and supp u ⊂ B R , then R d |x| γτ |u(x)| τ dx p/τ ≤ C I δ (u, α) + R d-p+pα δ p , ii) if d -p + pα < 0 and supp u ⊂ R d \ B r , then R d |x| γτ |u(x)| τ dx p/τ ≤ C I δ (u, α) + r d-p+pα δ p , iii) if d -p + pα = 0, τ > 1, and supp u ⊂ B R , then R d \Br |x| γτ |u(x)| τ ln τ (2R/|x|) dx p/τ ≤ C I δ (u, α) + ln(2R/r)δ p , iv) if d -p + pα = 0, τ > 1, and supp u ⊂ R d \ B r , then B R |x| γτ |u(x)| τ ln τ (2|x|/r) dx p/τ ≤ C I δ (u, α) + ln(2R/r)δ p .
Here C denotes a positive constant independent of u, r, and R.

Remark 1.1. In contrast with Theorem 1.1, in Theorem 1.2, we assume that 1 < p < d. This assumption is required due to the use of Sobolev's inequality related to I δ (u, Ω, 0) (see Lemmas 3.1 and 3.2).

Remark 1.2. Using the theory of maximal functions with weights due to Muckenhoupt [20] (see also [16]), one can bound I δ (u, α) by C R d |x| pα |∇u| p dx for -1/p < α < 1 -1/p and get an improvement of Caffarelli-Kohn-Nirenberg's inequality for a = 1 via Theorem 1.2 and for 0 < a < 1 and 0 ≤ α -σ ≤ 1 via Theorem 3.1 in Section 3. The details of this fact are given in Remark 3.3 (see also Remark 3.2 for a different approach covering a more general result).

We later prove a general version of Theorem 1.2 in Theorem 3.1, where 0 < a ≤ 1, which implies Proposition 3.1 by interpolation. As a consequence of Theorem 3.1 (see also Remark 3.2) and Proposition 3.1, we have

Proposition 1.1. Let p ≥ 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R be such that 1 τ + γ d = a 1 p + α -1 d + (1 -a) 1 q + β d ,
and, with γ

= aσ + (1 -a)β, 0 ≤ α -σ and α -σ ≤ 1 if 1 τ + γ d = 1 p + α -1 d .
We have, for

u ∈ C 1 c (R d ), A1) if 1/τ + γ/d > 0, then R d |x| γτ |u| τ dx 1/τ ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a) L q (R d ) , A2) if 1/τ + γ/d < 0 and supp u ⊂ R d \ {0}, then R d |x| γτ |u| τ dx 1/τ ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a) L q (R d ) .
Assume in addition that α -σ ≤ 1 and τ > 1. We have A3) if 1/τ + γ/d = 0 and supp u ⊂ B R for some R > 0, then

R d |x| γτ ln τ (2R/|x|) |u| τ dx 1/τ ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a) L q (R d ) , A4) if 1/τ + γ/d = 0 and supp u ⊂ R d \ B r for some r > 0, then R d |x| γτ ln τ (2|x|/r) |u| τ dx 1/τ ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a) L q (R d ) .
Here C denotes a positive constant independent of u, r, and R.

Assertion A1) is a slight improvement of the classical Caffarelli-Kohn-Nirenberg. Indeed, in the classical setting, Assertion A1) is established under the additional assumptions 1/p + α/d > 0 and 1/q + β/d > 0, as mentioned in (1.1) in the introduction. Assertion A2) with a = 1 and τ = p was known (see, e.g., [18]). Concerning Assertion A3) with a = 1, this was obtained for d = 2 in [START_REF] Cabré | Existence versus instantaneous blowup for linear heat equations with singular potentials[END_REF] and [START_REF] Adimurthi | An improved Hardy-Sobolev inequality and its applications[END_REF] and, for d ≥ 3, this was established in [START_REF] Adimurthi | An improved Hardy-Sobolev inequality and its applications[END_REF]. Assertion A4) with a = 1 might be known; however, we cannot find any references for it. To our knowledge, the remaining cases seem to be new.

Analogous versions in a bounded domain will be given in Section 4.

The ideas used in the proof of Theorems 1.1 and 1.2, and their general version (Theorem 3.1) are as follows. On one hand, this is based on Poincare's and Sobolev inequalities related to I δ (u, Ω) (see Lemma 2.1 and Lemma 3.1). These inequalities have their roots in [START_REF] Bourgain | A new estimate for the topological degree[END_REF]. Using these inequalities, we derive the key estimate (see Lemma 3.2 and also Lemma 2.1), for an annulus D centered at the origin and for λ > 0,

(1.5) - λD u -- λD u τ dx 1/τ ≤ C λ p-d I δ (u, λD) + δ p a/p - λD u -- λD u q dx (1-a)/q
, for some positive constant C independent of u and λ. On the other hand, decomposing R d into annuli A k which are defined by

A k := x ∈ R d : 2 k ≤ |x| < 2 k+1 ,
and applying (1.5) to each A k , we obtain

- A k u -- A k u τ dx 1/τ ≤ C 2 -(d-p)k I δ (u, A k ) + δ p a/p - A k |u| q (1-a)/q ,
Similar idea was used in [14]. Using (1.5) again in the cases i) and ii), we can derive an appropriate estimate for

2 (γτ +d)k - A k u τ .
This is the novelty in comparison with the approach in [14]. Combining these two facts, one obtains the desired inequalities. The other cases follow similarly. Similar approach is used to establish Caffarelli-Kohn-Nirenberg's inequalities for fractional Sobolev spaces in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF].

We now make some comments on the magnetic Sobolev setting. If A : R d → R d is locally bounded and u : R d → C, we set

Ψ u (x, y) := e i(x-y)•A( x+y 2 ) u(y), x, y ∈ R d . The following diamagnetic inequality holds ||u(x)| -|u(y)|| ≤ Ψ u (x, x) -Ψ u (x, y) , for a.e. x, y ∈ R d .
In turn, by defining

I A δ (u, α) = R d R d {|Ψu(x,y)-Ψu(x,x)|>δ} δ p |x| pα |x -y| d+p dx dy, we have, for α ∈ R, I δ (|u|, α) ≤ I A δ (u, α) for all δ > 0.
Then, the assertions of Theorem 1.1 and 1.2 keep holding with I A δ (u, 0) (resp. I A δ (u, α)) on the right-hand side in place of I δ (u) (resp. I δ (u, α)). For the sake of completeness, we refer the reader to [START_REF] Brezis | How to recognize constant functions. Connections with Sobolev spaces[END_REF] for some recent results about new characterizations of classical magnetic Sobolev spaces in the terms of I A δ (u, 0) (see [START_REF] Brezis | How to recognize constant functions. Connections with Sobolev spaces[END_REF][START_REF] Pinamonti | Magnetic BV functions and the Bourgain-Brezis-Mironescu formula[END_REF]35] for the ones related to J δ ). The paper is organized as follows.

In Section 2 we prove Theorem 1.1. In Section 3 we prove Theorem 3.1 and Proposition 3.1 which imply Theorem 1.2 and Proposition 1.1. In Section 4 we present versions of Theorems 1.1 and 3.1 in a bounded domain Ω.

Improved Hardy's inequality

We first recall that a straightforward variant of [25, Theorem 1] yields the following Lemma 2.1. Let d ≥ 1, p ≥ 1 and set

D := x ∈ R d : r < |x| < R . Then - D u(x) -- D u p dx ≤ C r,R I δ (u, D) + δ p , for all u ∈ L p (D).
As a consequence, we have, for λ > 0, (2.1)

- λD u(x) -- λD u p dx ≤ C r,R λ p-d I δ (u, λD) + δ p , for all u ∈ L p (λD),
where λD := {λx : x ∈ D}. Here C r,R denotes a positive constant independent of u, δ, and λ.

The following elementary inequality will be used several times in this paper.

Lemma 2.2. Let Λ > 1 and τ > 1. There exists C = C(Λ, τ ) > 0, depending only on Λ and τ such that, for all

1 < c < Λ, (2.2) 
(|a| + |b|) τ ≤ c|a| τ + C (c -1) τ -1 |b| τ , for all a, b ∈ R. Proof. Since (2.
2) is clear in the case |b| ≥ |a| and in the case b = 0, by rescaling and considering x = |a|/|b|, it suffices to prove, for C = C(Λ, τ ) large enough, that

(2.3) (x + 1) τ ≤ cx τ + C (c -1) τ -1 , for all x ≥ 1. Set f (x) = (x + 1) τ -cx τ - C (c -1) τ -1 for x > 0. We have f (x) = τ (x + 1) τ -1 -cτ x τ -1 and f (x) = 0 if and only if x = x 0 := c 1 τ -1 -1 -1 .
One can check that

(2.4) lim x→+∞ f (x) = -∞, lim x→1 f (x) < 0 if C = C(Λ, τ ) is large enough. and (2.5) f (x 0 ) = cx τ -1 0 - C (c -1) τ -1 . If c 1 τ -1 > 2 then x 0 < 1 and (2.3) follows from (2.4). Otherwise 1 ≤ s := c 1 τ -1 ≤ 2.
By the mean value theorem, we have

s τ -1 -1 ≤ (s -1) max 1≤t≤2 (τ -1)t τ -2 for 1 ≤ s ≤ 2.
We derive from (2.5) that, with

C = Λ max 1≤t≤2 (τ -1)t τ -2 τ -1 , f (x 0 ) < 0.
The conclusion now follows from (2.4).

We are now ready to give

Proof of Theorem 1.1. Let m, n ∈ Z be such that

2 n-1 ≤ R < 2 n and 2 m ≤ r < 2 m+1 .
It is clear that n -m ≥ 1. By (2.1) of Lemma 2.1, we have, for all k ∈ Z,

- A k u(x) -- A k u p dx ≤ C 2 -(d-p)k I δ (u, A k ) + δ p .
Here and in what follows in this proof, C denotes a positive constant independent of k, u, and δ. This implies

2 -pk A k u(x) -- A k u p dx ≤ C I δ (u, A k ) + 2 (d-p)k δ p . It follows that (2.6) 2 -pk A k |u(x)| p dx ≤ C2 (d-p)k - A k u p + C I δ (u, A k ) + 2 (d-p)k δ p . • Step 1: Proof of i). Summing (2.6) with respect to k from -∞ to n, we obtain (2.7) R d |u(x)| p |x| p dx ≤ C n k=-∞ 2 (d-p)k - A k u p + CI δ (u) + C2 (d-p)n δ p , since d > p.
We also have, by (2.1), for k ∈ Z,

- A k u -- A k+1 u ≤ C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p 1/p .
This implies

- A k u ≤ - A k+1 u + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p 1/p .
Applying Lemma 2.2, we have

- A k u p ≤ 2 d-p+1 1 + 2 d-p - A k+1 u p + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p . It follows that, with c = 2/(1 + 2 d-p ) < 1, 2 (d-p)k - A k u p ≤ c2 (d-p)(k+1) - A k+1 u p + C I δ (u, A k ∪ A k+1 ) + 2 (d-p)k δ p .
We derive that

(2.8) n k=-∞ 2 (d-p)k - A k u p ≤ C n k=-∞ I δ (u, A k ∪ A k+1 ) + C2 (d-p)n δ p .
A combination of (2.7) and (2.8) yields

R d |u(x)| d |x| d dx ≤ CI δ (u) + C2 (d-p)n δ p .
The conclusion of i) follows.

• Step 2: Proof of ii). Summing (2.6) with respect to k from m to +∞, we obtain (2.9)

R d |u(x)| p |x| p dx ≤ C +∞ k=m 2 (d-p)k - A k u p + CI δ (u) + C2 (d-p)m δ p , since p > d.
We also have, by (2.1), for k ∈ Z,

- A k u -- A k+1 u ≤ C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p 1/p .
This implies that

- A k+1 u ≤ - A k u + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p 1/p .
Applying Lemma 2.2, we have

- A k+1 u p ≤ 1 + 2 d-p 2 d-p+1 - A k u p + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p . It follows that, with c = (1 + 2 d-p )/2 < 1, 2 (d-p)(k+1) - A k+1 u p ≤ c2 (d-p)k - A k u p + C I δ (u, A k ∪ A k+1 ) + 2 (d-p)k δ p .
We derive that (2.10)

+∞ k=m 2 (d-p)k - A k u p ≤ CI δ (u) + C2 (d-p)m δ p .
A combination of (2.9) and (2.10) yields

R d |u(x)| p |x| p dx ≤ CI δ (u) + C2 (d-p)m δ p .
The conclusion of ii) follows.

• Step 3: Proof of iii). Let α > 0. Summing (2.6) with respect to k from m to n, we obtain (2.11)

{2 m <|x|<2 n } |u(x)| d |x| d ln α+1 (2R/|x|) dx ≤ C n k=m 1 (n -k + 1) α+1 - A k u d +CI δ (u)+C(n-m)δ d .
We also have, by (2.1), for k ∈ Z, (2.12) -

A k u ≤ - A k+1 u + C I δ (u, A k ∪ A k+1 ) 1/d + δ .
By applying Lemma 2.2 with

c = (n -k + 1) α (n -k + 1/2) α , it follows from (2.12) that, for m ≤ k ≤ n, 1 (n -k + 1) α - A k u d ≤ 1 (n -k + 1/2) α - A k+1 u d (2.13) + C(n -k + 1) d-1-α I δ (u, A k ∪ A k+1 ) + δ d . We have, m ≤ k ≤ n, (2.14) 1 (n -k + 1) α - 1 (n -k + 3/2) α ∼ 1 (n -k + 1) α+1 .
Taking α = d -1 and combining (2.13) and (2.14) yield (2.15)

n k=m 1 (n -k + 1) d - A k u d ≤ CI δ (u) + C(n -m)δ d .
From (2.11) and (2.15), we obtain

{|x|>2 m } |u(x)| d |x| d ln d (2R/|x|) dx ≤ CI δ (u) + C(n -m)δ d .
This implies the conclusion of iii).

•

Step 4 Proof of iv). Let α > 0. Summing (2.6) with respect to k from m to n, we obtain (2.16)

{2 m <|x|<2 n } |u(x)| d |x| d ln α+1 (2|x|/R) dx ≤ C n k=m 1 (k -m + 1) α+1 - A k u d + CI δ (u) + Cδ d .
We have, by (2.1), for k ∈ Z, (2.17) -

A k+1 u ≤ - A k u + C I δ (u, A k ∪ A k+1 ) 1/d + δ .
By applying Lemma 2.2 with

c = (n -k + 1) α (n -k + 1/2) α , it follows from (2.17) that, for m ≤ k + 1 ≤ n, 1 (k -m + 1) α - A k+1 u d ≤ 1 (k -m + 1/2) α - A k u d (2.18) + C(k -m + 1) d-1-α I δ (u, A k ∪ A k+1 ) + δ d . We have, m ≤ k + 1 ≤ n, (2.19) 1 (k -m + 1) α - 1 (k -m + 3/2) α ∼ 1 (k -m + 1) α+1 .
Taking α = d -1 and combining (2.18) and (2.19) yield (2.20)

n k=m 1 (k -m + 1) d - A k u d ≤ CI δ (u) + C(n -m)δ d .

From (2.16) and (2.20), we obtain

{2 m <|x|<2 n } |u(x)| d |x| d ln d (2|x|/R) dx ≤ CI δ (u) + C(n -m)δ d .

This implies the conclusion of iv).

The proof is complete.

Improved Caffarelli-Kohn-Nirenberg's inequality

In the proof of Theorem 1.2, we use the following result Lemma 3.1. Let 1 < p < d, Ω be a smooth bounded open subset of R d , and v ∈ L p (Ω). We have

u L p * (Ω) ≤ C Ω I δ (u) 1/p + u L p + δ ,
where p * := dp/(d -p) denotes the Sobolev exponent of p.

Proof. For τ > 0, let us set

Ω τ := x ∈ R d : dist(x, Ω) < τ .
Since Ω is smooth, by [12, Lemma 17], there exists τ > 0 small enough and an extension U of u in Ω τ such that (3.1)

I δ (U, Ω τ ) ≤ CI δ (u, Ω) and U L p (Ωτ ) ≤ C u L p (Ω) , for 0 < δ < 1. Fix such a τ . Let ϕ ∈ C 1 (R d ) such that supp ϕ ⊂ Ω 2τ /3 , ϕ = 1 in Ω τ /3 , 0 ≤ ϕ ≤ 1 in R d . Define v = ϕU in R d . We claim that (3.2) I 2δ (v) ≤ C I δ (u, Ω) + u p L p (Ω) . Indeed, set f (x, y) = δ p |x -y| d+p 1 {|v(x)-v(y)|>2δ} .
We estimate I 2δ (v). We have

Ω×R d f (x, y) dx dy ≤ Ω τ /3 ×Ω τ /3 f (x, y) dx dy + Ωτ ×R d {|x-y|>τ /4} f (x, y) dx dy, and, since v = 0 in Ω τ \ Ω 2τ /3 , (R d \Ωτ )×R d f (x, y) dx dy ≤ (R d \Ωτ )×(R d \Ωτ ) f (x, y) dx dy + Ωτ ×R d {|x-y|>τ /4} f (x, y) dx dy, (Ωτ \Ω)×R d f (x, y) dx dy ≤ (Ωτ \Ω)×(Ωτ \Ω) f (x, y) dx dy + Ω τ /3 ×Ω τ /3 f (x, y) dx dy + Ωτ ×R d {|x-y|>τ /4} f (x, y) dx dy.
It is clear that, by (3.1), (3.3)

Ω τ /3 ×Ω τ /3 f (x, y) dx dy ≤ CI δ (u, Ω), by the fact that ϕ = 0 in R d \ Ω τ , (3.4) (R d \Ωτ )×(R d \Ωτ )
f (x, y) dx dy = 0, and, by a straightforward computation, (3.5)

Ωτ ×R d {|x-y|>τ /4} f (x, y) dx dy ≤ Cδ p . We have, for x, y ∈ R d , v(x) -v(y) = ϕ(x) U (x) -U (y) + U (y) ϕ(x) -ϕ(y) . It follows that if |v(x) -v(y)| > 2δ then either |U (x) -U (y)| ≥ |ϕ(x) U (x) -U (y) | > δ or C|U (y)||x -y| ≥ |U (y) ϕ(x) -ϕ(y) | > δ.
We thus derive that 

(Ωτ \Ω)×(Ωτ \Ω) f (x, y) dx dy ≤ (Ωτ \Ω) (Ωτ \Ω) {|U (x)-U (y)|>δ} δ p |x -y| d+p dx dy (3.6) + (Ωτ \Ω) (Ωτ \Ω) {|x-y|>Cδ/|U (y)|} δ p |x -y| d+p dx dy.

A straightforward computation yields

(Ωτ \Ω)×(Ωτ \Ω) f (x, y) dx dy ≤ CI δ (u, Ω) + C u p L p (Ω)
A combination of (3.3), (3.4), (3.5), and (3.7) yields Claim (3.2). By applying [25, Theorem 3] and using the fact supp v ⊂ Ω τ , we have

(3.8) v L p * (R d ) ≤ CI 2δ (v) 1/p + Cδ.
The conclusion now follows from Claim (3.2).

Remark 3.1. The assumption p > 1 is required in (3.8).

As a consequence of Lemmas 2.1 and 3.1, we obtain Corollary 3.1. Let d ≥ 2, 1 < p < d, 0 < r < R, and λ > 0, and set

λD := λx ∈ R d : r < |x| < R .
We have, for

1 ≤ q ≤ p * , - λD u(x) -- λD u q dx 1/q ≤ C r,R λ p-d I δ (u, λD) + δ p 1/p , for u ∈ L p (λD),
where C r,R denotes a positive constant independent of u, δ, and λ.

Here is an application of Corollaries 3.1 which plays a crucial role in the proof of Theorem 3.1 below. Lemma 3.2. Let d ≥ 1, 1 < p < d, q ≥ 1, τ > 0, and 0 ≤ a ≤ 1 be such that

1 τ ≥ a 1 p - 1 d + 1 -a q .
Let 0 < r < R, and λ > 0 and set

λD := λx ∈ R d : r < |x| < R .
Then, for u ∈ L 1 (λD),

- λD u -- λD u τ dx 1/τ ≤ C λ p-d I δ (u, λD) + δ p a/p - λD u -- λD u q dx (1-a)/q
, for some positive constant C independent of u, λ, and δ.

Proof. Let τ, σ, t > 0, be such that

1 τ ≥ a σ + 1 -a t .
We have, by a standard interpolation inequality, that

- λD u -- λD u τ dx 1/τ ≤ - λD u -- λD u σ dx a/σ - λD u -- λD u t dx (1-a)/t .
Applying this inequality with σ = p * and t = q and using Corollary 3.1, one obtains the conclusion.

We also have, see [31, Theorem on page 125 and the following remarks] Lemma 3.3 (Nirenberg's interpolation inequality). Let d ≥ 1, p ≥ 1, q ≥ 1, τ > 0, and 0 ≤ a ≤ 1 be such that

1 τ ≥ a 1 p - 1 d + 1 -a q .
Let 0 < r < R, and λ > 0 and set

λD := λx ∈ R d : r < |x| < R .
Then, for u ∈ L 1 (λD),

- λD u -- λD u τ dx 1/τ ≤ C ∇u a L p (λD) C u 1-a L q (λD) ,
for some positive constant C independent of u, λ, and δ.

We prove the following more general version of Theorem 1.2:

Theorem 3.1. Let p ≥ 1, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R be such that (3.9) 1 τ + γ d = a 1 p + α -1 d + (1 -a) 1 q + β d ,
and, with γ

= aσ + (1 -a)β, 0 ≤ α -σ ≤ 1. Set, for k ∈ Z, (3.10) I δ (k, u) := I δ (u, A k ∪ A k+1 , α) + 2 k(αp+d-p) δ p if 1 < p < d, |x| α ∇u p L p (A k ∪A k+1 )
otherwise.

We have, for u ∈ L p loc (R d ) and m, n ∈ Z with m < n, i) if 1/τ + γ/d > 0 and supp u ⊂ B 2 n , then

R d \B 2 m |x| γτ |u| τ dx 1/τ ≤ C n k=m-1 I δ (k, u) a/p |x| β u (1-a) L q (R d ) , ii) if 1/τ + γ/d < 0 and supp u ⊂ R d \ B 2 m , then B 2 n |x| γτ |u| τ dx 1/τ ≤ C n k=m-1 I δ (k, u) a/p |x| β u (1-a) L q (R d ) , iii) if 1/τ + γ/d = 0, τ > 1, and supp u ⊂ B 2 n , then R d \B 2 m |x| γτ ln τ (2 n+1 /|x|) |u| τ dx 1/τ ≤ C n k=m-1 I δ (k, u) a/p |x| β u (1-a) L q (R d ) , iv) if 1/τ + γ/d = 0, τ > 1, and supp u ⊂ R d \ B 2 m , then B 2 n |x| γτ ln τ (2 n+1 /|x|) τ dx 1/τ ≤ C n k=m-1 I δ (k, u) a/p |x| β u (1-a) L q (R d ) .
Here C denotes a positive constant independent of u, δ, k, n, and m.

Proof. We only present the proof in the case 1 < p < d. The proof for the other case follows similarly, however instead of using Lemma 3.2, one applies Lemma 3.3. We now assume that 1 < p < d. Since α -σ ≥ 0, by Lemma 3.2, we have

(3.11) - A k u -- A k u τ dx 1/τ ≤ C 2 -(d-p)k I δ (u, A k ) + δ p a/p - A k |u| q
(1-a)/q . Using (3.9), we derive from (3.11) that (3.12)

A k |x| γτ |u| τ dx ≤ C2 (γτ +d)k - A k u τ + C I δ (u, A k , α) + 2 k(αp+d-p) δ p aτ /p |x| β u (1-a)τ L q (A k ) .
• Step 1: Proof of i). Summing (3.12) with respect to k from m to n, we obtain

{|x|>2 m } |x| γτ |u| τ dx ≤C n k=m 2 (γτ +d)k - A k u τ (3.13) 
+C

n k=m I δ (u, A k , α) + 2 k(αp+d-p) δ p aτ /p |x| β u (1-a)τ L q (A k ) .
By Lemma 3.2, we have

- A k u ≤ - A k+1 u + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p a/p - A k ∪A k+1 |u| q 1-a q .
Applying Lemma 2.2, we derive that

- A k u τ ≤ 2 γτ +d+1 1 + 2 γτ +d - A k+1 u τ + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p aτ /p - A k ∪A k+1 |u| q (1-a)τ q .
It follows that, with c = 2/(1 + 2 γτ +d ) < 1,

2 (γτ +d)k - A k u τ ≤c2 (γτ +d)(k+1) - A k+1 u τ +C I δ (u, A k ∪ A k+1 , α) + 2 k(αp+d-p) δ p aτ /p |x| β u (1-a)τ L q (A k ∪A k+1 ) .
This yields

(3.14) n k=m 2 (γτ +d)k - A k u τ ≤ C n k=m I δ (u, A k ∪A k+1 , α)+2 k(αp+d-p) δ p aτ /p |x| β u (1-a)τ L q (A k ∪A k+1 ) .
Combining (3.13) and (3.14) yields

(3.15) {|x|>2 m } |x| γτ |u| τ ≤ C n k=m-1 I δ (u, A k ∪ A k+1 , α) + 2 k(αp+d-p) δ p aτ /p |x| β u (1-a)τ L q (A k ∪A k+1 ) .
Applying the inequality, for s ≥ 0, t ≥ 0 with s + t ≥ 1, and for x k ≥ 0 and y k ≥ 0,

n k=m x s k y t k ≤ C s,t n k=m x k s n k=m y k t ,
to s = aτ /p and t = (1 -a)τ /q, we obtain from (3.15) that (3.16)

{|x|>2 m } |x| γτ |u| τ dx ≤ C n k=m I δ (k, u) aτ /p |x| β u (1-a)τ L q (R d )
since a/p + (1 -a)/q ≥ 1/τ thanks to the fact α -σ -1 ≤ 0.

• Step 2: Proof of ii). The proof is in the spirit of the proof of ii) of Theorem 1.1. The details are left to the reader.

• Step 3: Proof of iii). Fix ξ > 0. Summing (3.12) with respect to k from m to n, we obtain (3.17)

{|x|>2 m } 1 ln 1+ξ (τ /|x|) |x| γτ |u| τ dx ≤ C n k=m 1 (n -k + 1) 1+ξ - A k u τ + C n k=m I δ (u, A k , α) + 2 k(αp+d-p) δ p aτ /p |x| β u (1-a)τ L q (A k ) .
By Lemma 3.2, we have

- A k u ≤ - A k+1 u + C 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p a/p - A k ∪A k+1 |u| q 1-a q .
Applying Lemma 2.2 with

c = (n -k + 1) ξ (n -k + 1/2) ξ , we deduce that (3.18) 1 (n -k + 1) ξ - A k u τ ≤ 1 (n -k + 1/2) ξ - A k+1 u τ + C(n -k + 1) τ -1-ξ 2 -(d-p)k I δ (u, A k ∪ A k+1 ) + δ p aτ /p - A k ∪A k+1 |u| q (1-a)τ q .
Recall that, for k ≤ n and ξ > 0,

(3.19) 1 (n -k + 1) ξ - 1 (n k + 3/2) ξ ∼ 1 (n -k + 1) ξ+1 .
Taking ξ = τ -1, we derive from (3.18) and (3.19) that (3.20)

n k=m 2 (γτ +d)k 1 (n -k + 1) τ - A k u τ ≤ n k=m C I δ (k, u) aτ /p |x| β u (1-a)τ L q (A k ∪A k+1 ) .
Combining (3.17) and (3.20), as in (3.16), we obtain

{|x|>2 m } |x| γτ ln τ (2 n+1 /|x|) |u| τ dx ≤ C n k=m I δ (k, u) aτ /p |x| β u (1-a)τ L q (R d ) .
•

Step 4: Proof of iv). The proof is in the spirit of the proof of iv) of Theorem 1.1. The details are left to the reader.

The proof is complete.

Remark 3.2. For p > 1, we have (see [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF]Theorem 4])

I δ (k, u) ≤ C A k ∪A k+1 |x| pα |∇u| p dx for k ∈ Z,
for some positive constant C independent of k and u. This implies n k=m-1

I δ (k, u) 1/p ≤ C |x| α ∇u L p (R d ) .
From Theorem 3.1, one then obtains improvement of Caffarelli-Kohn-Nirenberg's inequality for the case 0 ≤ α -σ ≤ 1 and for 1 < p < d.

Using Theorem 3.1, we can derive that

Proposition 3.1. Let p ≥ 1, q ≥ 1, τ > 0, 0 < a < 1, α, β, γ ∈ R be such that 1 τ + γ d = a 1 p + α -1 d + (1 -a) 1 q + β d ,
and, with γ = aσ + (1 -a)β, α -σ > 1 and

1 τ + γ d = 1 p + α -1 d .
We have, for

u ∈ C 1 c (R d ), i) if 1/τ + γ/d > 0, then R d |x| γτ |u| τ dx 1/τ ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a) L q (R d ) , ii) if + γ/d < 0 and supp u ⊂ R d \ {0}, then R d |x| γτ |u| τ dx 1/τ ≤ C |x| α ∇u a L p (R d ) |x| β u (1-a) L q (R d ) ,
for some positive constant C independent of u.

Proof. The proof is in the spirit of the approach in [14] (see also [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF]). Since

1 p + α -1 d = 1 q + β d .
by scaling, one might assume that

|x| α ∇u L p (R d ) = 1 and |x| β u L q (R d ) = 1.
Let 0 < a 2 < 1 be such that

(3.21) |a 2 -a| is small enough, and set 1 τ 2 = a 2 p + 1 -a 2 q and γ 2 = a 2 (α -1) + (1 -a 2 )β.
We have

(3.22) 1 τ 2 + γ 2 d = a 2 1 p + α -1 d + (1 -a 2 ) 1 q + β d .
Recall that

(3.23) 1 τ + γ d = a 1 p + α -1 d + (1 -a) 1 q + β d .
Since a > 0 and α -σ > 1, it follows from (3.21) that

(3.24) 1 τ - 1 τ 2 = (a -a 2 ) 1 p - 1 q + a d (α -σ -1) > 0.
We first choose a 2 such that 

(3.25) a 2 < a if 1 p + α -1 d < 1 q + β d , (3.26 
|x| γ u L τ (R d \B 1 ) ≤ C |x| γ 2 u L τ 2 (R d ) .
Applying Theorem 3.1 (see also Remark 3.2), we have

|x| γ 2 u L τ 2 (R d ) ≤ C |x| α ∇u a 2 L p (R d ) |x| β u (1-a 2 ) L q (R d ) ≤ C, which yields (3.28) |x| γ u L τ (R d \B 1 ) ≤ C.
We next choose a 2 such that

(3.29) < a 2 if 1 p + α -1 d < 1 q + β d , (3.30) a 2 < a if 1 p + α -1 d > 1 q + β d .
Using 

|x| γ u L τ (B 1 ) ≤ C |x| γ 2 u L τ 2 (R d ) .
Applying Theorem 3.1 (see also Remark 3.2), we have

|x| γ 2 u L τ 2 (R d ) ≤ C |x| α ∇u a 2 L p (R d ) |x| β u (1-a 2 ) L q (R d ) ≤ C, which yields (3.32) |x| γ u L τ (R d \B 1 ) ≤ C.
The conclusion now follows from (3.28) and (3.32). The claim (3.34) is proved.

Results in bounded domains

In this section, we present some results in the spirit of Theorems 1. L q (Ω) .

Here C denotes a positive constant independent of u and δ.

Proof. Let v be the extension of u in R d as in the proof of Lemma 3.1. As in the proof of Lemma 3.1, we have, since 0 ∈ Ω,

I 2δ (v, α) ≤ C I δ (u, Ω, α) + u L p (Ω) .
We also have, since 0 ∈ Ω,

|x| β v L q (R d ) ≤ C |x| β u L q (Ω) .
The conclusion now follows from Theorem 3.1.

(

  Ωτ \Ω) (Ωτ \Ω) {|x-y|>Cδ/|U (y)|} δ p |x -y| d+p dx dy ≤ Ωτ dy {|x-y|>Cδ/|U (y)|} δ p |x -y| d+p dx = C Ωτ |U (y)| p dy. Using (3.1), we deduce from (3.6) that (3.7)

Remark 3 . 3 . 1 ( 3 1 ≤

 33131 Using the approach in the proof of[START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF] Theorem 2], one can prove that, for p > 1,(3.33)I δ (u, α) ≤ C R d S d-1 |x| pα |M(σ, ∇u)(x)| p dσ dx,whereM(σ, ∇u)(x) := sup r>0 1 r r 0 |∇u(x + sσ) • σ| ds.We claim that, for -1/p < α < 1 -1/p, it holds(3.34) R d |x| pα |M(σ, ∇u)(x)| p dσ dx ≤ C R d |x| pα |∇u(x) • σ| p dx, for all σ ∈ S d-1 ,for some positive constant C independent of σ and u. Then, combining (3.33) and (3.34) yields(3.35) I δ (u, α) ≤ C R d |x| pα |∇u| p dx.as mentioned in Remark 1.2. For simplicity, we assume that σ = e d = (0, • • • , 0, 1) ∈ R d and prove (3.34). We have, for any bounded interval (a, b) and for any x ∈ R d-+ |s|) pα ds -b a (|x | + |s|) -pα/(p-1) ds p-C, for some positive constant C independent of (a, b) and x since -1/p < α < 1 -1/p. Applying the theory of maximal functions with weights due to Muckenhoupt [20, Corollary 4] (see also [16, Theorem 1]), which holds whenever the weight satisfies (3.36), we obtain R d |x| pα |M(e d , ∇u)(x)| p dx ≤ C R d-1 R (|x | + |x |) pα |M(e d , ∇u)(x , x d )| p dx d dx ≤ C R d-1 R (|x | + |x d |) pα |∂ x d u(x , x d )| p dx d dx ≤ C R d |x| pα |∇u| p dx.

  1 and 3.1 for a smooth bounded domain Ω. As a consequence of Theorem 1.1 and the extension argument in the proof of Lemma 3.1, we obtainProposition 4.1. Let d ≥ 1, 1 ≤ p ≤ d, Ω B R a smooth open subset of R d , and u ∈ L p (Ω). We have i) if 1 ≤ p < d, then Ω |u(x)| p |x| p dx ≤ C Ω I δ (u, Ω) + u p L p (Ω) + δ p , ii) if p > d and supp u ⊂ Ω \ B r , then Ω |u(x)| p |x| p dx ≤ C Ω I δ (u, Ω) + u p L p (Ω) + r d-p δ p , iii) if p = d ≥ 2, then Ω\Br |u(x)| d |x| d ln d (2R/|x|) dx ≤ C Ω I δ (u, Ω) + u p L p (Ω) + ln(2R/r)δ d , iv) if p = d ≥ 2 and supp u ⊂ Ω \ B r , then Ω∩B R |u(x)| d |x| d ln d (2|x|/r) dx ≤ C Ω I δ (u, Ω) + u p L p (Ω) + ln(2R/r)δ d ,Here C Ω denotes a positive constant depending only on p and Ω.Using Theorem 1.2, we deriveProposition 4.2. Let d ≥ 2, 1 < p < d, q ≥ 1, τ > 0, 0 < a ≤ 1, α, β, γ ∈ R, 0 ∈ Ω ⊂ B R a smooth bounded open subset of R d , and u ∈ L p (Ω) be such that γ = aσ + (1 -a)β, 0 ≤ α -σ ≤ 1. We have i) if 1/τ + γ/d > 0, then Ω |x| γτ |u| τ dx 1/τ ≤ C I δ (u, Ω, α) + u p L p (Ω) + δ p a/p |x| β u (1-a) L q (Ω) , ii) if 1/τ + γ/d < 0 and supp u ⊂ Ω \ {0}, then Ω |x| γτ |u| τ dx 1/τ ≤ C I δ (u, Ω, + u p L p (Ω) + δ p a/p |x| β u (1-a) L q (Ω) , iii) if 1/τ + γ/d = 0 and τ > 1, then Ω\Br |x| γτ ln τ (2R/|x|) |u| τ dx 1/τ ≤ C I δ (u, Ω, α) + u p L p (Ω) + δ p ln(2R/r) a/p |x| β u (1-a) L q (Ω) , iv) if 1/τ + γ/d = 0,τ > 1, and supp u ⊂ Ω \ B r , then Ω |x| γτ ln τ (2|x|/r) |u| τ dx 1/τ ≤ C I δ (u, Ω, α) + u p L p (Ω) + δ p ln(2R/r)

  1.1 where the RHS is replaced by C R d |∇u| p dx; see Proposition 1.1 for a more general version. By (1.3) and (1.4), Theorem 1.1 provides improvement of Hardy's inequalities in the case p > 1.