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Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime

 for the quasistatic regime. In this paper, we study cloaking a source via ALR for doubly complementary media in the finite frequency regime. To this end, we establish the following results: 1) Cloaking a source via ALR appears if and only if the power blows up; 2) The power blows up if the source is "placed" near the plasmonic structure;

 and on the other hand we add new insights into the problem. This allows us not only to overcome difficulties related to the finite frequency regime but also to obtain new information on the problem. In particular, we are able to characterize the behaviour of the fields far enough from the plasmonic shell as the loss goes to 0 for an arbitrary source outside the core-shell structure in the doubly complementary media setting.

1 Introduction and statement of the main results

Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago in [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. The existence of such materials was confirmed by Shelby, Smith, and Schultz in [START_REF] Shelby | Experimental Verification of a Negative Index of Refraction[END_REF]. The study of NIMs has attracted a lot of attention in the scientific community thanks to their many possible applications. One of the appealing ones is cloaking. There are at least three ways to do cloaking using NIMs. The first one is based on plasmonic structures introduced by Alu and Engheta in [START_REF] Alu | Achieving transparency with plasmonic and metamaterial coatings[END_REF]. The second one uses the concept of complementary media. This was suggested by Lai et al. in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF] and confirmed theoretically in [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] for related schemes (see also [START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF]). The last one is based on the concept of ALR discovered by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF]. In this paper, we concentrate on the last method.

Cloaking a source via ALR was discovered by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF]. Their work has its root from [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF] (see also [START_REF] Milton | A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance[END_REF]) where the localized resonance was observed and established for constant symmetric plasmonic structures in the two dimensional quasistatic regime. More precisely, in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF], the authors studied core-shell plasmonic structures in which a circular shell has permittivity -1 -iδ while its complement has permittivity 1 where δ denotes the loss of the material in the shell 1 . Let r 1 and r 2 be the inner and the outer radius of the shell. They showed that there is a critical radius r * := (r3 2 r -1 1 ) 1/2 such that a dipole is not seen, after the normalization of the power 2 , by an observer away from the core-shell structure, hence it is cloaked, if and only if the dipole is within distance r * of the shell. Moreover, the power E δ (u δ ) of the field u δ , which is defined in (1.5), blows up as the loss δ goes to 0. In [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF], the authors also investigated a single dipole source in the finite frequency regime outside the slab lens of coefficient -1. Two key features of this phenomenon are: 1) the localized resonance, i.e., the fields blow up in some regions and remain bounded in some others as the loss goes to 0; 2) the connection between the localized resonance and the blow up of the power as the loss goes to 0.

Cloaking a source via ALR has been mainly studied in the quasistatic regime. In [START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF], Bouchitte and Schweizer proved that a small circular inclusion of radius γ(δ) (with γ(δ) → 0 fast enough) is cloaked by the core-shell plasmonic structure mentioned above in the two dimensional quasistatic regime if the inclusion is located within distance r * of the shell; otherwise it is visible. Concerning the second feature on cloaking a source via ALR, the blow up of the power was studied for a more general setting in the two dimensional quasistatic regime by Ammari et al. in [START_REF] Ammari | Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance[END_REF] and Kohn et al. in [START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF]. More precisely, they considered non-radial core-shell structures in which the shell has permittivity -1 -iδ and its complement has permittivity 1. In [START_REF] Ammari | Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance[END_REF], Ammari et al. dealt with arbitrary shells and provided a characterization of sources for which the power blows up via the information of the spectral decomposition of a Neumann-Poincaré type operator. In [START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF], Kohn et al. considered core-shell structures in which the outer boundary of the shell is round but the inner is not and established the blow up of the power for some class of sources using a variational approach. A connection between the blow up of the power and the localized resonance depends on the geometry and property of plasmonic structures, see [START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF] (and also [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]) for a discussion on this. Cloaking a source via ALR in some special three dimensional geometry was studied in [START_REF] Ammari | Anomalous localized resonance using a folded geometry in three dimensions[END_REF]. Motivated by the concept of reflecting complementary media suggested and studied in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] and results mentioned above, in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF] we studied cloaking a source via ALR for a general core shell structure of doubly complementary media property (see Definition 1.2) in the quasistatic regime 3 . More precisely, we established the following three properties for doubly complementary media: P1) Cloaking a source via ALR appears if and only if the power blows up.

P2) The power blows up if the source is located "near" the shell.

P3) The power remains bounded if the source is far away from the shell.

Using these results, we extended various results mentioned previously. Moreover, we were able to obtain schemes to cloak an arbitrary source concentrating on an arbitrary smooth bounded manifold of codimension 1 placed in an arbitrary medium via ALR; the cloak is independent of the source. The analysis in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF] is on one hand based on the reflecting techniques initiated in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF], the removing localized singularity technique introduced in [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] to deal with the localized resonance. On the other hand, it is based on new observations on the Cauchy problems and the separation of variables technique for a general shell introduced there. The implementation of this technique is an ad-hoc part of [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF].

In this paper, we study cloaking a source via ALR for the finite frequency regime. More precisely, we establish Properties P1), P2) and P3) for doubly complementary media in the finite frequency regime. As a consequence, we are also able to obtain schemes to cloak a generic source concentrating on the boundary of a smooth bounded open subset of R d placed in an arbitrary medium via ALR; the cloak is independent of the source (see Proposition 5.1 in Section 5). Concerning the analysis, on one hand we extend ideas from [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF] and on the other hand we add various new insights into the problem. This allows us 1) to overcome difficulties related to the finite frequency regime such as the use of the maximum priniciple, 2) to shorten the approach in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], and more importantly 3) to obtain new information on cloaking a source via ALR. In particular, we can characterize the behaviour of the fields far enough from the plasmonic shell as the loss goes to 0 for arbitrary sources outside the core-shell structure in the doubly complementary media setting (Theorem 1.1). This fact is interesting in itself and new to our knowledge. Cloaking arbitrary objects via ALR is considered in [START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF].

Statement of the main results

Let k > 0, let A be a (real) uniformly elliptic symmetric matrix defined in R d (d ≥ 2), and let Σ be a real function defined in R d such that it is bounded below and above by positive constants. Assume that A(x) = I, Σ(x) = 1 for large |x|, (1.1)

and 4 A is piecewise C 1 . (1.2)
Let Ω 1 ⊂⊂ Ω 2 ⊂⊂ R d be smooth bounded simply connected open subsets of R d , and set, for δ ≥ 0,

s δ (x) = -1 -iδ in Ω 2 \ Ω 1 , 1 in R d \ (Ω 2 \ Ω 1 ). (1.3) For f ∈ L 2 c (R d ) with supp f ∩ Ω 2 = Ø and δ > 0, let u δ ∈ H 1 loc (R d ) be the unique outgoing solution to div(s δ A∇u δ ) + k 2 s 0 Σu δ = f in R d . (1.4)
Here and in what follows

L 2 c (R d ) := f ∈ L 2 (R d ) with compact support .
For R > 0 and x ∈ R d , we will denote B(x, R) the open ball in R d centered at x and of radius R; when x = 0, we simply denote

B(x, R) by B R . Recall that a function u ∈ H 1 loc (R d \ B R ) for some R > 0 which is a solution to the equation ∆u + k 2 u = 0 in R d \ B R is said to satisfy the outgoing condition if ∂ r u -iku = o(r 1-d 2 ) as r = |x| → +∞.
The power E δ (u δ ), or more precisely the power dissipated in the medium, is defined by (see, e.g., [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF])

E δ (u δ ) = δ Ω 2 \Ω 1 |∇u δ | 2 .
(1.5)

The normalization of u δ is v δ = c δ u δ which is the unique outgoing solution in

H 1 loc (R d ) of div(s δ A∇v δ ) + k 2 s 0 Σv δ = f δ in R d , (1.6) 
where

f δ = c δ f,
and c δ is the normalization constant such that

E δ (v δ ) = δ Ω 2 \Ω 1 |∇v δ | 2 = 1. (1.7) 
In this paper, we establish properties P1), P2), and P3) for (A, Σ) of doubly complementary property. Before giving the definition of doubly complementary media for a general core-shell structure in the finite frequency regime, let us recall the definition of reflecting complementary media introduced in [17, Definition 1].

Definition 1.1 (Reflecting complementary media). Let Ω 1 ⊂⊂ Ω 2 ⊂⊂ Ω 3 ⊂⊂ R d be smooth bounded simply connected open subsets of R d . The media (A, Σ) in Ω 3 \ Ω 2 and (-A, -Σ) in Ω 2 \ Ω 1 are said to be reflecting complementary if there exists a diffeomorphism F : Ω 2 \ Ω1 → Ω 3 \ Ω2 such that F ∈ C 1 ( Ω2 \ Ω 1 ), (F * A, F * Σ) = (A, Σ) for x ∈ Ω 3 \ Ω 2 , (1.8) 
F (x) = x on ∂Ω 2 , (1.9) 
and the following two conditions hold: 1) There exists an diffeomorphism extension of F , which is still denoted by

F , from Ω 2 \ {x 1 } → R d \ Ω2 for some x 1 ∈ Ω 1 ; 2) There exists a diffeomorphism G : R d \ Ω3 → Ω 3 \ {x 1 } such that G ∈ C 1 (R d \ Ω 3 ), G(x) = x on ∂Ω 3 , and G • F : Ω 1 → Ω 3 is a diffeomorphism if one sets G • F (x 1 ) = x 1 .
Here and in what follows, if T is a diffeomorphism, a and σ are a matrix-valued function and a complex function, we use the following standard notations

T * a(y) = DT (x)a(x)∇T (x) T | det ∇T (x)| and T * σ(y) = σ(x) | det ∇T (x)|
where x = T -1 (y). (1.10)

Conditions (1.8) and (1.9) are the main assumptions in Definition 1.1. The key point behind this requirement is roughly speaking the following property: if

u 0 ∈ H 1 (Ω 3 \ Ω 1 ) is a solution of div(s 0 A∇u 0 ) + k 2 s 0 Σu 0 = 0 in Ω 3 \ Ω 1 and if u 1 is defined in Ω 3 \ Ω 2 by u 1 = u 0 • F -1 , then div(A∇u 1 ) + k 2 Σu 1 = 0 in Ω 3 \ Ω 2 , u 1 -u 0 = A∇(u 1 -u 0 ) • ν = 0 on ∂Ω 2 by Lemma 2.
2, a change of variables formula. Here and in what follows, ν denotes the outward unit vector on the boundary of a smooth bounded open subset of R d . Hence u 1 = u in Ω 3 \ Ω 2 by the unique continuation principle, see, e.g., [START_REF] Protter | Unique continuation for elliptic equations[END_REF]. Conditions 1) and 2) are mild assumptions. Introducing G makes the analysis more accessible, see [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF][START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF] and the analysis presented in this paper.

Remark 1.1. Let d = 2, A = I, 0 < r 1 < r 2 < +∞ and set r 3 = r 2 2 /r 1 .
Letting F be the Kelvin transform with respect to ∂B r 2 , i.e., F (x) = r 2 2 x/|x| 2 and Ω i = B r i , one can verify that in the quasistatic regime the core-shell structures considered by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF] and by Kohn et al. in [START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF] have the reflecting complementary property.

Remark 1.2. The class of reflecting complementary media has played an important role in other applications of NIMs such as cloaking and superlensing using complementary media see [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF].

We are ready to introduce the concept of doubly complementary media for the finite frequency regime.

Definition 1.2. The medium (s 0 A, s 0 Σ) is said to be doubly complementary if for some Ω 2 ⊂⊂ Ω 3 , (A, Σ) in Ω 3 \ Ω 2 and (-A, -Σ) in Ω 2 \ Ω 1 are reflecting complementary, and

F * A = G * F * A = A and F * Σ = G * F * Σ = Σ in Ω 3 \ Ω 2 , (1.11) 
for some F and G coming from Definition 1.1 (see Figure 1).

The reason for which media satisfying (1.11) are called doubly complementary media is that [START_REF] Nguyen | Cloaking via anomalous localized resonance. A connection between the localized resonance and the blow up of the power for doubly complementary media[END_REF]). The key property behind Definition 1.2 is as follows. Assume that

(-A, -Σ) in Ω 2 \ Ω 1 is not only complementary to (A, Σ) in Ω 3 \ Ω 2 but also to (A, Σ) in (G • F ) -1 (Ω 3 \ Ω 2 ) (a subset of Ω 1 ) (see
u 0 ∈ H 1 loc (R d ) is a solution of (1.4) with δ = 0 and f = 0 in Ω 2 . Set u 1 = u 0 • F -1 and u 2 = u 1 • G -1 . Then u 1 , u 2 satisfy the equation div(A∇•) + k 2 Σ• = 0 in Ω 3 \ Ω 2 , u 0 -u 1 = A∇u 0 • ν -A∇u 1 • ν = 0 on ∂Ω 2 , and u 1 -u 2 = A∇u 1 • ν -A∇u 2 • ν = 0 on ∂Ω 3 by Lemma 2.
2 (two Cauchy's problems appear, one for (u 0 , u 1 ) and one for (u 1 , u 2 )). This implies relations between u 0 , u 1 , and u 2 .

Remark 1.3. Taking d = 2, A = I and r 3 = r 2 2 /r 1 , and letting F and G be the Kelvin transform with respect to ∂B r 2 and ∂B r 3 , one can verify that the core-shell structures considered by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF] have the doubly complementary property. It is worth noting that one requires no information of A outside B r 3 and inside B r 2 1 /r 2 in the definition of doubly complementary media. More examples on doubly complementary media with quite simple formulas are given in Section 2.3.

Remark 1.4. Given (A, Σ) in R d and Ω 1 ⊂ Ω 2 ⊂⊂ R d , it is not easy in general to verify whether or not (s 0 A, s 0 Σ) is doubly complementary. Nevertheless, given Ω 1 ⊂ Ω 2 ⊂⊂ Ω 3 ⊂⊂ F * A, F * Σ -A, -Σ K * A, K * Σ F K Ω 1 Ω 2 \ Ω 1 Ω 3 \ Ω 2 K = F -1 oG -1 oF Figure 1: (s 0 A, s 0 Σ) is doubly complementary: (-A, -Σ) in Ω 2 \ Ω 1 (the red region) is complementary to (F * A, F * Σ) in Ω 3 \ Ω 2 (the grey region) and (K * A, K * Σ) with K = F -1 • G -1 • F in K(B r 2 \ B r 1 ) (the blue grey region). R d and (A, Σ) in Ω 3 \ Ω 2 , it is quite easy to choose (A, Σ) in Ω 2 such that (s 0 A, s 0 Σ) is doubly complementary. One just needs to choose diffeomorphisms F and G as in Definition 1.1 and define (A, Σ) = (F -1 * A, F -1 * Σ) in Ω 2 \ Ω 1 and (A, Σ) = (F -1 * G -1 * A, F -1 * G -1 * Σ) in F -1 • G -1 (Ω 3 \ Ω 2 )
. This idea is used in Section 5 when we discuss cloaking sources in an arbitrary medium.

The first result of this paper is the following theorem which reveals the behavior of u δ for a general source f with support outside Ω 2 .

Theorem 1.1. Let d ≥ 2, k > 0, 0 < δ < 1, f ∈ L 2 c (R d ) with supp f ∩ Ω 2 = Ø, and let u δ ∈ H 1 loc (R d ) be the unique outgoing solution of (1.4). Assume that (s 0 A, s 0 Σ) is doubly complementary. Then u δ → û weakly in H 1 loc (R d \ Ω 3 ), (1.12 
)

where û ∈ H 1 loc (R d ) is the unique outgoing solution of div( Â∇û) + k 2 Σû = f in R d . (1.13)
Here

( Â, Σ) := (A, Σ) in R d \ Ω 3 , (G * F * A, G * F * Σ) in Ω 3 .
(1.14)

Using Theorem 1.1, one can establish the equivalence between the blow up of the power and the cloaking a source via ALR as follows. Suppose that the power blows up, i.e.,

lim n→∞ δ n ∇u δn 2 L 2 (Ω 2 \Ω 1 ) = +∞.
Then, by Theorem 1.1, v δn → 0 in R d \ Ω 2 since c δn → 0; the localized resonance takes place. The source c δn f is not seen by observers far away from the shell: the source is cloaked. If the power E δn (u δn ) remains bounded, then the source is not cloaked since u δn → û weakly in

H 1 loc (R d \ B r 3 ) and û ∈ H 1 loc (R d )
is the unique outgoing solution to (1.13). Remark 1.5. It follows from (1.10) that if (s 0 A, s 0 Σ) is a doubly complementary medium then (A, Σ) is not piecewise constant; hence the separation of variables method is out of reach for this setting in general.

In comparison with [20, Theorem 1.1], Theorem 1.1 in this paper is stronger: no conditions on the blow up rate of the power are required. The proof of Theorem 1.1 is in the spirit of [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]. Nevertheless, we add two important ingredients. The first one is on the blow up rate of the power of u δ in (2.21) which is derived in this paper instead of being assumed previously. The second one is on the removing localized singularity technique. In this paper, we are able to construct in a simple and robust way the singular part of u δ which is necessary to be removed. This helps us to avoid the ad-hoc separation of variables method for a general shell developed and implemented in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]. The construction of the removing term comes from a remark of Etienne Sandier. The author would like to thank him for it. To our knowledge, Theorem 1.1 is new and is the first result providing the connection between the blow up of the power and the invisibility of a source in the finite frequency regime. A numerical simulation from [10] illustrating Theorem 1.1 is given in Section 2.3.

Concerning the blow up of the power, we can prove the following result which holds for a large class of media in which the reflecting complementary property holds only locally. Proposition 1.1. Let d ≥ 2 and k > 0. Assume that there exists a diffeomorphism F :

Ω 2 \ Ω 1 → Ω 3 \ Ω 2 for some Ω 2 ⊂⊂ Ω 3 ⊂ R d such that F ∈ C 1 ( Ω2 \ Ω 1 ), F (x) = x on ∂Ω 2 , and (A, Σ) = (F * A, F * Σ) in D where D := B(x 0 , R 0 ) ∩ (Ω 3 \ Ω 2 )
for some x 0 ∈ ∂Ω 2 and R 0 > 0. Let f ∈ L 2 c (R d ) and assume that A is Lipschitz in D. There exists 0 < r 0 < R 0 , independent of f , such that if D 1 := D ∩ B(x 0 , r 0 ) and there is no solution v ∈ H 1 (D 1 ) to the Cauchy problem

div(A∇v) + k 2 Σv = f in D 1 and v = A∇v • ν = 0 on ∂D 1 \ ∂B(x 0 , r 0 ) then lim sup δ→0 δ Ω 2 \Ω 1 |∇u δ | 2 = +∞,
where

u δ ∈ H 1 loc (R d )
is the unique outgoing solution of (1.4). Property P2) is understood in the sense of Proposition 1.1. Some conditions on the source are necessarily imposed since for sources of the form div(A∇ϕ) + k 2 Σϕ with smooth ϕ and supp ϕ ⊂ R d \ Ω 3 , the corresponding solution is ϕ, which is bounded, and the power remains finite and even goes to 0. Note that (s 0 A, s 0 Σ) is not required to be doubly complementary in Proposition 1.1. Proposition 1.1 is inspired from [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Lemma 10] which has its root from [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]. More quantitative conditions on the blow-up of the power are presented in Proposition 1.3 where Ω 2 \ Ω 1 = B r 2 \ B r 1 and (A, Σ) = (I, 1) in Ω 3 \ Ω 2 , and the medium is doubly complementary.

Concerning the boundedness of the power, we have the following result, which implies Property P3).

Proposition 1.2. Let d ≥ 2, k > 0, 0 < δ < 1, and f ∈ L 2 c (R d ),
and let u δ ∈ H 1 (R d ) be the unique solution (1.4). Assume that (s 0 A, s 0 Σ) is a doubly complementary medium and supp f ∩ Ω 3 = Ø. We have, for R > 0,

u δ H 1 (B R ) ≤ C R f L 2 ,
for some positive constant C R independent of f and δ. 2 is somehow surprising and requires the doubly complementary property since in general u δ H 1 (B R ) can be blown up with the order 1/δ for some R > 0 (see [START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF]Theorem 2]). The blow up rate 1/δ is the worst case possible (see Lemma 2.1).

In the case Ω j = B r j for j = 2, 3, (A, Σ) = (I, 1) in Ω 3 \Ω 2 and d = 2, 3, more quantitative estimates on the blow up and the boundedness of the power are given in the following

Proposition 1.3. Let d = 2, 3, k > 0, and f ∈ L 2 c (R d ),
and let u δ ∈ H 1 (R d ) be the unique solution of (1.4). Assume that (s 0 A, s 0 Σ) is a doubly complementary medium, Ω 2 = B r 2 and Ω 3 = B r 3 for some 0 < r 2 < r 3 , and (A, Σ) = (I, 1) in B r 3 \ B r 2 . We have 1. If there exists w ∈ H 1 (B r 0 \ B r 2 ) for some r 0 > √ r 2 r 3 with the properties

∆w + k 2 w = f in B r 0 \ B r 2 and w = ∂ r w = 0 on ∂B r 2 , then lim sup δ→0 δ u δ 2 H 1 (Br 3 ) < +∞.
2. If there does not exist v ∈ H 1 (B r 0 \ B r 2 ) for some r 0 < √ r 2 r 3 with the properties

∆v + k 2 v = f in B r 0 \ B r 2 and v = ∂ r v = 0 on ∂B r 2 , then lim inf δ→0 δ ∇u δ 2 L 2 (Br 3 \Br 2 ) = +∞.
This proposition is in the spirit of [20, Theorems 1.2 and 1.3] (inspired by [START_REF] Ammari | Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance[END_REF]). One only assumes that (A, Σ) = (I, 1) in B r 3 \ B r 2 and (s 0 A, s 0 Σ) is doubly complementary. (A, Σ) can be arbitrary outside of B r 3 : the separation of variables method is out of reach here. The proof of the first statement of Proposition 1.3 is based on a kind of removing singularity technique and has roots from [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]. A key point is the construction of the auxiliary function W δ in (4.17). The proof of the second statement is based on an observation on a Cauchy problem in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF] and involves a three spheres inequality.

As a consequence of Proposition 1.3 and Theorem 1.1, one obtains new (non-trivial) variants and generalizations of the result of Milton and Nicorovici in the finite frequency regime in both two and three dimensions; note that (A, Σ) can be arbitrary outside B r 3 .

We finally point out that the stability of the Helmholtz equation with sign changing coefficients was studied by the integral method, the pseudo differential operator theory, and the T-coercivity approach in [START_REF] Chesnel | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF][START_REF] Kettunen | On absence and existence of the anomalous localized resonance without the quasi-static approximation[END_REF] and references therein, and was recently unified and extended in [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] via the use of the reflecting technique and the study of Cauchy's problems. It was also shown in [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] that the complementary property is necessary for the appearance of resonance.

The paper is organized as follows. The proof of Theorem 1.1 is given in Section 2. In this section, we also provide various examples of doubly complementary media with quite simple formulas and numerical simulations illustrating Theorem 1.1 (section 2.3). Sections 3 and 4 are devoted to the proofs of Propositions 1.1 and 1.3 respectively. Finally, in Section 5, we present schemes of cloaking to cloak a general class of sources via ALR in an arbitrary medium for the finite frequency regime.

Proof of Theorem 1.1

This section containing three subsections is organized as follows. In the first subsection, we present a lemma on the stability of (1.4) and recall a change of variables formula from [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] which is used repeatedly in this paper. The proof of Theorem 1.1 is given in the second subsection. In the last subsection, we present various examples of doubly complementary media with quite simple formulas and present a simulation illustrating Theorem 1.1.

Preliminaries

The main result of this section is the following lemma, which implies the stability of (1.4) and is used repeatedly in this paper. 5 with support in B R 0 . For 0 < δ < δ 0 , there exists a unique outgoing solution

Lemma 2.1. Let d ≥ 2, k > 0, δ 0 > 0, R 0 > 0, g ∈ H -1 (R d )
v δ ∈ H 1 loc (R d ) to the equation div(s δ A∇v δ ) + k 2 s 0 Σv δ = g in R d . (2.1)
Moreover,

v δ 2 H 1 (B R ) ≤ C R δ gv δ + C R g 2 H -1 , (2.2) 
for some positive constant C R independent of g and δ.

Proof. We only establish (2.2). The uniqueness of v δ follows from (2.2). The existence of v δ can be derived from the uniqueness of v δ by using the limiting absorption principle, see, e.g., [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]. Without loss of generality, one may assume that (1.1) holds for |x| ≥ R 0 and Ω 2 ⊂⊂ B R 0 . We begin with establishing (2.2) with R = R 0 by contradiction. Assume that (2.2) with R = R 0 is not true. Then there exists (g

δ ) ⊂ H -1 (R d ) such that supp g δ ⊂⊂ B R 0 , v δ H 1 (B R 0 ) = 1 and 1 δ g δ vδ + g δ 2 H -1 → 0, (2.3) as δ → δ ∈ [0, δ 0 ], where v δ ∈ H 1 loc (R d ) is the unique solution to the equation div(s δ A∇v δ ) + k 2 s 0 Σv δ = g δ in R d . (2.4)
In fact, by contradiction these properties only hold for a sequence (δ n ) → δ. However, for simplicity of notation, we still use δ instead of δ n to denote an element of such a sequence. We only consider the case δ = 0; the case δ > 0 follows similarly. Since (see e.g., [16, Lemma

2.3]), for R > R 0 , v δ H 1 (B R \B R 0 ) ≤ C R v δ H 1/2 (∂B R 0 ) , (2.5) 
for some positive constant C R independent of δ and g δ , and ∆v δ + k 2 v δ = 0 in R d \ B R 0 , without loss of generality, one may assume that (v δ ) converges to v 0 strongly in

L 2 loc (R d ), weakly in H 1 loc (R d ), and strongly in H 2 (B R 0 +2 \ B R 0 ) for some v 0 ∈ H 1 loc (R d ). Then, by (2.3), we obtain div(s 0 A∇v 0 ) + k 2 s 0 Σv 0 = 0 in R d . (2.6) 
Since v δ satisfies the outgoing condition, it follows that v 0 also satisfies the outgoing condition. Multiplying (2.4) by vδ and integrating on B R with R ≥ R 0 , we have

B R s δ A∇v δ , ∇v δ dx - B R k 2 s 0 Σ|v δ | 2 dx = - B R g δ vδ dx + ∂B R ∂ r v δ vδ . (2.7)
Letting δ → 0, by (2.3), we obtain, for R ≥ R 0 ,

∂B R ∂ r v 0 v0 = 0. (2.8)
Since v 0 satisfies the outgoing condition, it follows from Rellich's lemma that v 0 = 0 in R d \B R 0 6 . Using (2.6) and the fact that v 0 ∈ H 1 loc (R d ), we derive from the unique continuation principle that

v 0 = 0 in R d . (2.9)
Letting R → ∞, considering the imaginary part in (2.7), and using (2.3), we obtain

∇v δ L 2 (Ω 2 \Ω 1 ) → 0 as δ → 0. (2.10) Since v δ → v 0 = 0 strongly in H 2 (B R 0 +2 \ B R 0 ), it follows that lim δ→0 ∂B R 0 +1 ∂ r v δ vδ = 0.
6 In the case δ > 0, instead of (2.8), we obtain ∂B R ∂rv δ vδ ≤ 0. This also implies that v δ = 0 by Rellich's lemma. The rest of the proof works well for the case δ > 0.

Considering the real part of (2.7) with R = R 0 + 1, we derive from (2.10) that

v δ H 1 (B R 0 +1 ) → 0 as δ → 0.
We have a contradiction by (2.3). Hence (2.2) holds for R = R 0 .

The conclusion now follows from (2.5).

We end this subsection by stating a change of variables formula which is a consequence of [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]Lemma 2].

Lemma 2.2. Let D 1 ⊂⊂ D 2 ⊂⊂ D 3 be three smooth bounded open subsets of R d . Let a ∈ [L ∞ (D 2 \ D 1 )] d×d , σ ∈ L ∞ (D 2 \ D 1 ) and let T be a diffeomorphism from D 2 \ D1 onto D 3 \ D2 . Assume that u ∈ H 1 (D 2 \ D 1 ) and set v = u • T -1 . Then div(a∇u) + σu = f in D 2 \ D 1 , for some f ∈ L 2 (D 2 \ D 1 ), if and only if div(T * a∇v) + T * σv = T * f in D 3 \ D 2 .
(2.11)

Assume in addition that T (x) = x on ∂D 2 . Then v = u and T * a∇v • ν = -a∇u • ν on ∂D 2 . (2.12) 
Recall that T * a, T * σ, and T * f are given in (1.10). Here and in what follows, when we mention a diffeomorphism T : Ω → Ω for two smooth open subsets Ω, Ω of R d , we mean that T is a diffeomorphism, T ∈ C 1 ( Ω), and T -1 ∈ C 1 ( Ω ).

Proof of Theorem 1.1

Define

u 1,δ = u δ • F -1 in R d \ Ω 2 and u 2,δ = u 1,δ • G -1 in Ω 3 .
It follows from (1.11) and Lemma 2.2 that div(A∇u

1,δ ) + k 2 Σu 1,δ + iδ div A∇u 1,δ = div(A∇u 2,δ ) + k 2 Σu 2,δ = 0 in Ω 3 \ Ω 2 . (2.13) u δ -u 1,δ = 0 on ∂Ω 2 , A∇u δ Ω 3 \Ω 2 • ν -(1 + iδ)A∇u 1,δ • ν = 0 on ∂Ω 2 , (2.14) u 1,δ -u 2,δ = 0 on ∂Ω 3 , and (1 + iδ)A∇u 1,δ Ω 3 \Ω 2 • ν -A∇u 2,δ • ν = 0 on ∂Ω 3 . (2.15) Set ûδ =        u δ in R d \ Ω 3 , u δ -(u 1,δ -u 2,δ ) in Ω 3 \ Ω 2 , u 2,δ in Ω 2 .
( 

         div( Â∇û δ ) + k 2 Σû δ = f in R d \ (∂Ω 2 ∪ ∂Ω 3 ), Â∇û δ R d \Ω 3 • ν -Â∇û δ Ω 3 • ν = -iδA∇u 1,δ Ω 3 \Ω 2 • ν on ∂Ω 3 , Â∇û δ Ω 3 \Ω 2 • ν -Â∇û δ Ω 2 • ν = iδA∇u 1,δ Ω 3 \Ω 2 • ν on ∂Ω 2 .
(2.17)

Here we used the fact that ( Â, Σ) = (A, Σ) in Ω 3 \ Ω 2 . By Lemma 2.1, we have, for R > 0,

u δ H 1 (B R ) ≤ C R δ -1 f L 2 . (2.18)
It follows from (2.17) and Lemma 2.1 again that, for R > 0,

ûδ H 1 (B R ) ≤ C R f L 2 .
As a consequence, we have, for R > 0,

u δ H 1 (B R \Ω 3 ) ≤ C R f L 2 . (2.19) First fix R > 0 such that Ω 3 ⊂⊂ B R and then fix x 0 ∈ B R \ Ω 3 and r 0 > 0 such that B(x 0 , r 0 ) ⊂ B R \ Ω 3 . We have, from (2.19), u δ L 2 (B(x 0 ,r 0 )) ≤ C R f L 2 .
(2.20) Using (2.18), (2.20), and the fact that div(A∇u

δ ) + k 2 Σu δ = f in B R \ Ω 2
, one is able to derive from a three spheres inequality that u δ L 2 (B R \Ω 2 ) is much smaller than δ -1 f L 2 , which is the order of an upper bound of

u δ H 1 (B R \Ω 2 ) . Indeed, applying [2, Theorem 5.3] to u δ in B R \ Ω 2 with ε = C f L 2 (B R \Ω 2 )
for some positive constant C large enough so that [2, (1.29)] holds with F = 0 (the largeness of C depends only on R and Ω 2 ), we obtain from (2.18) and (2.20) that, for 0 < δ < 1/2,

u δ L 2 (B R \Ω 2 ) ≤ Cδ -1 f L 2 / ln µ (1/δ),
for some positive constants C and µ, independent of f and δ (recall that R and r 0 are fixed); which implies lim 

δ→0 δ u δ L 2 (B R \Ω 2 ) = 0. ( 2 
δ u δ H 1 (B R ) = 0.
From (2.17) we have, for R > 0,

ûδ -û H 1 (B R ) → 0 as δ → 0.
The proof is complete.

Remark 2.1. One of the key points in the proof is the definition of ûδ in (2.16) after introducing u 1,δ and u 2,δ as in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]. In Ω 3 \ Ω 2 , we remove u 1,δ -u 2,δ from u δ . The removing term is the singular part of u δ in Ω 3 \ Ω 2 . The way of defining the removing term is intrinsic and more robust than the one in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], which is based on the separation of variables for a general shell developed there. As seen from there, the removing term becomes more and more singular when one approaches ∂Ω 2 . The idea of removing the singular term was inspired by the study of the Ginzburg-Landau equation in the work of Bethuel, Brezis, and Helein in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF]. Another new important point in the proof is to establish (2.21). This is obtained by first proving that u δ is bounded outside Ω 3 (this is again based on the behaviour of ûδ ) and then applying a three spheres inequality.

Some examples of doubly complementary media and a numerical simulation

We first present some examples of doubly complementary media with quite simple formulas. Let 0 < r 1 < r 2 and α, β > 1 be such that αβ -α -

β = 0. Set r 3 = r α 2 /r α-1 1 , r 0 = r α 1 /r α-1 2 
, and m = r 3 /r 1 = (r 2 /r 1 ) α , and define Ω j = B r j for j = 1, 2, 3. Assume that

A, Σ =        I, 1 in B r 3 \ B r 2 , A 1 , Σ 1 in B r 2 \ B r 1 , m d-2 I, m d in B r 1 \ B r 0 , (2.22) 
where Here the spherical and the polar coordinates are used. Considering F (x) = r α 2 x/|x| α and G(x) = r β 3 x/|x| β and noting that G • F = mI, one can verify that (s 0 A, s 0 Σ) is doubly complementary [START_REF] Nguyen | Superlensing using complementary media[END_REF] (see also [START_REF] Nguyen | Superlensing using complementary media and reflecting complementary media for electromagnetic waves[END_REF] for the details), ( Â, Σ) = (I, 1) in B r 3 \ B r 2 .

A 1 , Σ 1 = r α 2 r α 1 α -1 e r ⊗ e
We next present simulations illustrating Theorem 1.1. These are taken from the joint work with Droxler and Hesthaven in [10], where we present various simulations illustrating cloaking and superlensing properties of NIMs in the two and three dimensional acoustic settings. The author thanks them for letting him present some simulations here. Consider the two dimensional finite frequency regime with k = 1. Set

r 0 = 1/2, r 1 = √ 2/2, r 2 = 1, r 3 = √ 2, and r 4 = √ 2 + 1,
and define Ω j = B r j for j = 1, 2, 3. Consider

A, Σ =              I, 1 in B r 4 \ B r 2 , I, r 4 2 /|x| 4 in B r 2 \ B r 1 , I, 4 in B r 1 \ B r 0 , 2I, 2 in B r 0 .
Then (s 0 A, s 0 Σ) is doubly complementary by taking

α = β = 2. Since G • F = 2I, one can verify that Â, Σ = I, 1 in B r 4 \ B r 2 , 2I, 1/2 in B r 2 .
In Figure 2, we present a simulation of û, the unique solution in H 1 0 (B r 4 ) of the equation div( Â∇û) + k 2 Σû = f in B r 4 where f = 5 in D and 0 otherwise and D is the small (pink) region visible on the figure. The real part of u δ , the unique solution in H 1 0 (B r 4 ) to the equation div(s δ A∇u δ ) + k 2 s δ Σu δ = f in B r 4 with δ = 5 * 10 -5 , is given in Figure 3. One easily sees from these simulations that the real part of u δ and û are close outside B r 3 . This is consistent with the prediction given in Theorem 1.1. Note that u δ blows up in B r 3 \ B r 1 ; hence the removing term u 1,δ -u 2,δ is necessary for the boundedness of ûδ . 7 .

Proof of Proposition 1.1

We prove Proposition 1.1 by contradiction. Assume that lim sup

δ→0 δ ∇u δ 2 L 2 (Ω 2 \Ω 1 ) < +∞. ( 3.1) 
Since div(A∇u δ ) + k 2 s 0 s -1 δ Σu δ = 0 in Ω 2 \ Ω 1 and Σ is bounded above and below by positive constants, it follows from a compactness argument that

u δ L 2 (Ω 2 \Ω 1 ) ≤ C ∇u δ L 2 (Ω 2 \Ω 1 )
. 7 The simulations are done for a bounded domain but this point is not essential. We derive from (3.1) that lim sup

δ→0 δ u δ 2 H 1 (Ω 2 \Ω 1 ) < +∞. (3.2) 
Since, for R > 0,

u δ H 1 (B R ) ≤ C u δ H 1 (Ω 2 \Ω 1 )
see, e.g., [22, Lemmas 1 and 3], it follows that, for R > 0, lim sup

δ→0 δ u δ 2 H 1 (B R ) < +∞. Define u 1,δ = u δ • F -1 in Ω 3 \ Ω 2 and set v δ = u 1,δ -u δ in D.
We then obtain div(A∇v

δ ) + k 2 Σv δ = g δ in D, (3.3) 
v δ = 0 on D ∩ ∂Ω 2 and A∇v δ • ν = h δ on ∂D ∩ ∂Ω 2 . (3.4) 
Here

g δ = -iδ div A∇u 1,δ -f = iδ 1 + iδ k 2 Σu 1,δ -f in D and h δ = iδ∇u 1,δ • ν on ∂D ∩ ∂Ω 2 .
It is clear from (3.2) that

g δ + f L 2 (D) + h δ H -1/2 (∂D∩∂Ω 2 ) ≤ Cδ 1/2 , (3.5) 
for some positive constant C R independent of f , g, and h. Define V 0 in R d as follows

V 0 =        V in R d \ Ω 2 , V • F in Ω 2 \ Ω 1 , V • G • F in Ω 1 . (4.3) 
Applying Lemma 2.2, we derive from (1.11

) that V 0 ∈ R>0 H 1 (B R \ ∂Ω 3 ∪ ∂Ω 1 ) is an outgoing solution to div(s 0 A∇V 0 ) + k 2 s 0 ΣV 0 = f in R d \ (∂Ω 3 ∪ ∂Ω 1 ).
Applying Lemma 2.2 again, one obtains from the definition of V 0 and V that

[V 0 ] = g and [A∇V 0 • ν] = h on ∂Ω 3 . and [V 0 ] = 0 and [A∇V 0 • ν] = 0 on ∂Ω 1 . Hence V 0 ∈ R>0 H 1 (B R \ ∂Ω 3
) is an outgoing solution of (4.1) with δ = 0. Set

W δ = V δ -V 0 in R d . (4.4) 
Then

W δ ∈ H 1 loc (R d ) is the unique solution to div(s δ A∇W δ ) + k 2 s 0 ΣW δ = -div iδA∇V 0 1 Ω 2 \Ω 1 in R d .
Here and in what follows, for a subset D of R d , 1 D denotes its characteristic function. Applying Lemma 2.1, we have

W δ H 1 (B R ) ≤ C R V 0 H 1 (Ω 2 \Ω 1 ) . (4.5) 
The conclusion now follows from (4.2), (

Before stating the second lemma, we recall some properties of the Bessel and Neumann functions and the spherical Bessel and Neumann functions of large orders. We first introduce, for n ≥ 0, Ĵn (r) = 2 n n!J n (r) and Ŷn (r

) = - π 2 n (n -1)! Y n (r), (4.6) 
and, for n ≥ 1,

ĵn (t) = 1 • 3 • • • (2n + 1)j n (t) and ŷn = - y n (t) 1 • 3 • • • (2n -1) , (4.7) 
where J n and Y n are the Bessel and Neumann functions and j n and y n are the spherical Bessel and Neumann functions of order n respectively. Then (see, e.g., [8, (3.57), (3.58), (2.37) and (2.38)]), one has, as n → +∞,

Ĵn (t) = t n 1 + O(1/n) , Ŷn (t) = t -n 1 + O(1/n) , (4.8) 
ĵn (r) = r n 1 + O(1/n) and ŷn (r) = r -n-1 1 + O(1/n) . (4.9)

Using (4.8) and (4.9), we can now implement the analysis in the quasistatic regime developed in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF] to the finite frequency regime in this section.

We are ready to state the second lemma which is on a three spheres inequality for the homogeneous Helmholtz equation in two and three dimensions. 

+ k 2 v = 0 in B R . Then, for 0 < R 1 < R 2 < R 3 ≤ R, v H 1 (B R 2 ) ≤ C R,k v α H 1 (B R 1 ) v 1-α H 1 (B R 3 )
, A recent discussion on three spheres inequalities for second order elliptic equations and their applications for cloaking using complementary media is given in [START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF].

where α = ln(R 3 /R 2 )/ ln(R 3 /R 1 ) and C R,k is a positive constant independent of R 1 , R 2 ,
Proof. By rescaling, one can assume that k = 1. We consider the case d = 2 and d = 3 separately. We first give the proof in two dimensions. Since ∆v

+ v = 0 in B R , one can represent v in the form v = ∞ n=0 ± a n,± Ĵn (|x|)e ±inθ in B R ,
for a n,± ∈ C (n ≥ 0) with a 0,+ = a 0,-where Ĵn is defined in (4.6). Note that, for 0 < r ≤ R,

v 2 H 1 (Br) ∼ ∞ n=0 ± a n,± Ĵn (|x|)e ±inθ 2 H 1 (Br) (4.10)
Here and in what follows in this section, a b means that a ≤ Cb for some positive constant C independent of n and δ, a ∼ b means that a b and b a. On the other hand, for each n, there exists a constant C n > 1 such that

C -1 n |a n,± | 2 r 2 ≤ a n,± Ĵn (|x|)e ±inθ 2 H 1 (Br) ≤ C n |a n,± | 2 r 2 . ( 4.11) 
The conclusion now follows from (4.8), (4.10) and (4.11) after applying Hölder's inequality. The proof in three dimensions follows similarly. In this case v can be represented in the form

v = ∞ n=0 n -n a n m ĵn (|x|)Y n m (x) in B R ,
for a n m ∈ C and x = x/|x| where Y n m is the spherical harmonic function of degree n and of order m. The conclusion is now a consequence of (4.9) after applying Hölder's inequality as in the two dimensional case. The details are left to the reader.

Proof of Proposition 1.3

The proof is in the same spirit as the one of [20, Theorems 1.2 and 1.3] and is divided into two steps. By rescaling, one can assume that k = 1.

Step 1: Proof of the first statement. Define

u 1,δ = u δ • F -1 in R d \ B r 3 , and u 2,δ = u 1,δ • G -1 in B r 3 . Let φ ∈ H 1 (B r 3 \ B r 2 ) be the unique solution to ∆φ + φ = f in B r 3 \ B r 2 , φ = 0 on ∂B r 2 , and ∂ r φ -iφ = 0 on ∂B r 3 , (4.12) 
and set

W = w -φ in B r 0 \ B r 2 . Then W ∈ H 1 (B r 3 \ B r 2 ) satisfies ∆W + W = 0 in B r 0 \ B r 2 , W = 0 on ∂B r 2 , and ∂ r W = -∂ r φ on ∂B r 2 . (4.13) 
We now consider the case d = 2 and d = 3 separately. It follows from (4.8) and (4.15) that, for some N > 0 independent of W ,

W 2 H 1 (Br 0 \Br 2 ) ∼ N n=0 ± (|a n,± | 2 + |b n,± | 2 ) + ∞ n=N +1 ± n|a 2 n,± |r 2n 0 < +∞. ( 4.16) 
We also assume that (4.15) holds for n > N . One of the keys in the proof is the construction of W δ ∈ H 1 (B r 3 \ B r 2 ) which is defined as follows

W δ = ∞ n=0 ± 1 1 + ξ n a n,± Ĵn (|x|) + b n,± Ŷn (|x|) e ±inθ in B r 3 \ B r 2 , (4.17) 
where

ξ n = 0 if 0 ≤ n ≤ N, δ 1/2 (r 3 /r 0 ) n if n ≥ N + 1. (4.18)
From the definition of W δ , we have

∆W δ + W δ = 0 in B r 3 \ Br 2 , W δ = 0 on ∂B r 2 , (4.19) 
and

W δ 2 H 1 (Br 3 \Br 2 ) ∼ N n=0 ± (|a n,± | 2 + |b n,± | 2 ) + ∞ n=N +1 ± n|a n,± | 2 1 + ξ 2 n r 2n 3 . (4.20)
From the definition of ξ n in (4.18), we have 

n|a n,± | 2 1 + ξ 2 n r 2n 3 ≤ δ -1 n|a n,± | 2 r 2n 0 . ( 4 
) + s 0 ΣW 1,δ = 0 in R 2 \ ∂B r 2 , [s δ A∇W 1,δ • ν] = (-1 -iδ)h δ on ∂B r 2 ,
where

h δ = -∂ r (φ + W δ ) on ∂B r 2 ,
and let W 2,δ ∈ H 1 loc (R 2 \ ∂B r 3 ) be the unique outgoing solution to div(s δ A∇W

2,δ ) + s 0 ΣW 2,δ = f 1 R 2 \Br 3 in R 2 \ ∂B r 3 , [W 2,δ ] = φ + W δ and [A∇W 2,δ • ν] = ∂ r φ + ∂ r W δ on ∂B r 3 .
From (4.12), (4.19), and the fact (A, Σ) = (I, 1) in B r 3 \ B r 2 , we have

u δ -(φ + W δ )1 Br 3 \Br 2 = W 1,δ + W 2,δ in R 2 . ( 4.23) 
Using (4.13) and (4.17), we obtain, on ∂B r 2 ,

h δ = -∂ r (φ + W δ ) = ∂ r (W -W δ ) = ∂ r ∞ n=N +1 ± ξ n 1 + ξ n a n,± Ĵn (|x|) + b n,± Ŷn (|x|) e ±inθ .
It follows from (4.15) that

h δ 2 H -1/2 (∂Br 2 ) ∞ n=N +1 ± n|ξ n | 2 1 + |ξ n | 2 |a n,± | 2 r 2n 2 . (4.24)
From the definition of ξ n in (4.18) and the fact that r 0 > √ r 2 r 3 , we derive that

n|ξ n | 2 1 + |ξ n | 2 r 2n 2 ≤ δnr 2n 0 . (4.25) 
A combination of (4.24) and (4.25) yields

h δ H -1/2 (∂Br 2 ) ≤ Cδ 1/2 W H 1/2 (∂Br 0 ) ≤ Cδ 1/2 .
Applying Lemma 2.1, we have Case 2: d = 3. We represent W in the form

W 1,δ H 1 (Ω) ≤ (C/δ)δ 1/2 = Cδ -1/2 . ( 4 
W = ∞ n=0 n -n a n m ĵn (|x|) + b n m ŷn (|x|) Y n m (x) in B r 3 \ B r 0 , (4.28) 
for a n m , b n m ∈ C and x = x/|x|, where ĵn and ŷn are defined in (4.7). Define

W δ ∈ H 1 (B r 3 \B r 2 ) by W δ = ∞ n=0 n -n 1 1 + ξ n a n m ĵn (|x|) + b n m ŷn (|x|) Y n m (x) in B r 3 \ B r 2 ,
where ξ n is given by (4.18). The proof now follows similarly as in the case d = 2; however instead of using (4.8), we apply (4.9). The details are left to the reader.

Step 2: Proof of the second statement. Define u 1,δ = u δ • F and denote u 2 -n and u 1,2 -n by u n and u 1,n . for notational ease. Since

u n H 1 (Br 3 \Br 2 ) ≤ C u n H 1 (Ω 2 \Ω 1 + C J L 2 ,
it suffices to prove by contradiction that lim sup

n→+∞ 2 -n/2 u n H 1 (Br 3 \Br 2 ) + u 1,n H 1 (Br 3 \Br 2 ) = +∞. (4.29) Assume that m := sup n 2 -n/2 u n H 1 (Br 3 \Br 2 ) + u 1,n H 1 (Br 3 \Br 2 ) < +∞. (4.30) Define v n = u n -u 1,n in B r 3 \ B r 2 and φ n = i2 -n ∂ r u 1,n on ∂B r 2 .
Then, by Lemma 2.2, we obtain

∆v n + v n = f in B r 3 \ B r 2 , v n = 0 on ∂B r 2 , and ∂ r v n = φ n on ∂B r 2 . (4.31) We claim that (v n ) is a Cauchy sequence in H 1 (B r 0 \ B r 2 ). Indeed, set V n = v n+1 -v n in B r 3 \ B r 2 and Φ n = φ n+1 -φ n on ∂B r 2 .
We have ∆V n + V n = 0 in B r 3 \ B r 2 , V n = 0 on ∂B r 2 , and ∂ r V n = Φ n on ∂B r 2 .

From (4.30), we derive that 

V n H 1 (B R 2 \B R 1 ) ≤ Cm2 n/
+ v = f in B r 0 \ B r 2 , v = 0 on ∂B R 1 , ∂ r v = 0 on ∂B r .
This contradicts the non-existence of v. Hence (4.29) holds. The proof is complete.

5 Cloaking a source via anomalous localized resonance in the finite frequency regime

In this section, we describe how to use the theory discussed previously to cloak a source f concentrating on a bounded smooth manifold of codimension 1 in an arbitrary medium. We follow the strategy in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]. Without loss of generality, one may assume that the medium is contained in B r 3 \ B r 2 for some 0 < r 2 < r 3 and characterized by a matrix-valued function a and a real bounded function σ. We assume in addition that a is Lipschitz and uniformly elliptic in B r 3 \ B r 2 and σ is bounded below by a positive constant. Let f ∈ L 2 (∂Ω) for some bounded smooth open subset Ω ⊂⊂ B r 3 \ B r 2 . We also assume that Ω ⊂⊂ B(x 0 , r 0 ) for some r 0 > 0 and x 0 ∈ ∂B r 2 where r 0 is the constant coming from Proposition 1.1. Define r 1 = r 2 2 /r 3 . Let F : B r 2 \{0} → R d \B r 2 and G : R d \B r 3 → B r 3 \{0} be the Kelvin transform with respect to ∂B r 2 and ∂B r 3 respectively. Define

A, Σ =              a, σ in B r 3 \ B r 2 , F -1
It is clear that (s 0 A, s 0 Σ) is doubly complementary. Applying Theorem 1.1 and Proposition 1.1, we obtain In fact, Theorem 1.1 and Proposition 1.1 only deal with the case f ∈ L 2 , however, the same results hold for f stated here and the proofs are unchanged. Suppose that this is not true, i.e., such a W exists. Since div(A∇W ) + k 2 ΣW = 0 in D \ Ω and W = A∇W • ν = 0 on ∂D ∩ ∂B r 2 , it follows from the unique continuation principle that W = 0 in D \ Ω. Hence W Ω ∈ H 1 0 (Ω) is a solution of div(A∇W ) + k 2 ΣW = 0 in Ω. We derive that f = -A∇W • ν Ω on ∂Ω. This contradicts the fact that f ∈ H. The proof is complete.

  Proposition 1.2 is a consequence of [17, Corollary 2 and Theorem 1]. A more general version of Proposition 1.2 is given in Lemma 4.1 in Section 4.1. The conclusion of Proposition 1.

) r 3α 2 rA 1 ,) r 2α 2 r

 212 r + (α -1) e θ ⊗ e θ + e θ ⊗ e ϕ , (α -13α if d = 3, (2.23) and Σ 1 = 1 α -1 e r ⊗ e r + (α -1)e θ ⊗ e θ , (α -12α if d = 2. (2.24)

Figure 2 :

 2 Figure 2: Simulation of û.

Figure 3 :

 3 Figure 3: Simulation of u δ with δ = 5 × 10 -5 .

Lemma 4 . 2 .

 42 Let d = 2, 3, k, R > 0, and let v ∈ H 1 (B R ) be a solution to the equation ∆v

R 3 , and v. Remark 4 . 1 .

 41 The case k = 0 is well-known and first noted by Hadamard in two dimensions.

Case 1 :

 1 d = 2. Since ∆W + W = 0 in B r 0 \ B r 2 , one can represent W as follows W = ∞ n=0 ± a n,± Ĵn (|x|) + b n,± Ŷn (|x|) e ±inθ in B r 0 \ B r 2 , (4.14) for a n,± , b n,± ∈ C (n ≥ 0) with a 0,+ = a 0,-and b 0,+ = b 0,-where Ĵn and Ŷn are defined in (4.6). Using (4.8) and the fact that W = 0 on ∂B r 2 , we derive that, for large n, |b n,± | ∼ |a n,± |r 2n 2 . (4.15)

Proposition 5 . 1 .

 51 Let d ≥ 2, δ > 0, and Ω ⊂⊂ D := B(x 0 , r 0 ) ∩ (B r 3 \ B r 2 ) be smooth and open, let f ∈ L 2 (∂Ω) and let u δ and v δ be defined by (1.4) and (1.6) where (A, Σ) is given in (5.1). Assume that f ∈ H whereH := A∇v • ν ∂Ω ; v ∈ H 1 0 (Ω) is a solution of div(A∇v) + k 2 Σv = 0 in Ω .There exists a sequence (δ n ) → 0 such thatlim n→∞ E δn (u δn ) = +∞.Moreover,v δn → 0 weakly in H 1 loc (R d \ B r 3 ). Remark 5.1.It is worth noting from the definition of H that H has finite dimensions and for all positive k except for a discrete set, H = {0} by Fredholm's theory. Therefore, as a consequence of Proposition 5.1, for all positive frequency except a discrete set, and for all f ∈ L 2 (∂Ω), f is cloaked by the structure (5.1) after the normalization.Proof. By Theorem 1.1 and Proposition 1.1, it suffices to prove that there is no W ∈ H 1 (D) such that div(A∇W ) + k 2 Σ = f in D and W = A∇W • η = 0 on ∂D ∩ ∂B r 2 .

  .16) It follows from (2.13), (2.14), and (2.15) that ûδ ∈ H 1 loc (R d ) is the unique outgoing solution of

  2 and Φ n H 1/2 (∂Br 2 ) ≤ Cm2 -n/2 .(4.32)Let U n ∈ H 1 (B r 3 ) be the unique solution of∆U n + U n = 0 in B r 3 \ ∂B r 2 , [∂ r U n ] = Φ n , and ∂ r U n -iU n = 0 on ∂B r 3 . have U n H 1 (Br 3 ) ≤ C Φ n H -1/2 (∂Br 2 ) . (4.33) Applying Lemma 4.2 for V n 1 Br 3 \Br 2 -U n in B r 3 , we obtain from (4.33) that V n H 1 (Br 0 \Br 2 ) ≤ C Φ n α H -1/2 (∂Br 2 ) V n 1-α H 1 (Br 3 \Br 2 ) + Φ n H -1/2 (∂Br 2 ) ,where α = ln(r 3 /r 0 )/ ln(r 3 /r 2 ) > 1/2 since r 0 < √ r 2 r 3 . It follows from (4.32) thatV n H 1 (Br 0 \Br 2 ) ≤ Cm2 -βn , where β = 2α -1 /2 > 0. Hence (v n ) is a Cauchy sequence in H 1 (B r 0 \ B r 2). Let v be the limit of v n in H 1 (B r 0 \ B r 2 ). It follows from (4.31) that ∆v

	We

In fact, in[START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF] and in other works, the authors consider the permittivity -1 + iδ instead of -1 -iδ; but this point is not essential.

More details on the normalization process are given later.

Roughly speaking, the plasmonic shell is not only complementary with a part of the complement of the core shell but also complement to a part of the core.

This assumption is used for various uniqueness statements obtained by the unique continuation principle.

H -1 (R d ) denotes the dual space of H 1 (R d ).

for some positive constant C independent of δ. Using (3.3), (3.4), and (3.5), and applying [22, Lemma 10], we have lim sup

which contradicts (3.2). The proof is complete.

4 Proof of Proposition 1.3

This section containing two subsections is devoted to the proof of Proposition 1.3. In the first subsection, we present two lemmas used in the proof of Proposition 1.3 and the proof of Proposition 1.3 is given in the second subsection.

Two useful lemmas

In this subsection, we establish two lemmas which are used in the proof of Proposition 1.3. The first one is a more general version of Proposition 1.2.

Then, for R > 0,

for some positive constant C R independent of δ, f , g, and h.

Here and in what follows in this paper, we denote

for a matrix-valued function M , and for an appropriate function v.

Proof. The proof has its roots from [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] (see also [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]) and the key point is to construct a solution V 0 of (4.1) for δ

where ( Â, Σ) is defined in (1.14). We obtain, for R > 0,