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Introduction

Negative index materials (NIMs) are artificial structures whose refractive index has a negative value over some frequency range. These materials were postulated and investigated theoretically by Veselago in 1964 [45] and their existence was confirmed experimentally by Shelby, Smith, and Schultz in 2001 [44]. New fabrication techniques now allow for the construction of NIMs at scales that are interesting for applications, which has made them a very active topic of investigation. NIMs have attracted a lot of attention from the scientific community, not only because of potentially interesting applications, but also because of challenges involved in understanding their peculiar properties due to the sign changing coefficients in the equations modelling the phenomena.

Concerning the electromagnetic wave, wave phenomena in the time harmonic regime are modelled by Maxwell equations (1.1)

∇ × E = ikµH in R 3 , ∇ × H = -ikεE + j in R 3 .
Here ε and µ are 3×3 matrix-valued functions corresponding to the permittivity and permeability of the medium, respectively, j is the density of charge, k > 0 is the frequency, and i is the pure 1 imaginary complex number (i 2 = -1). NIMs fall into the region in which both ε and µ are negative (in the matrix sense); for a standard material, both ε and µ are positive. Concerning the acoustic wave, phenomena in the time harmonic regime are modeled by the Helmholtz equation

(1.2) div (A∇u) + k 2 Σu = f in R d ,
with d = 2, 3 where A is a d × d matrix-valued function and Σ is a function that describes the properties of the medium. For NIMs, A and Σ are negative; for a standard material, both A and Σ are positive. In the acoustic quasistatic regime k = 0, the medium is therefore characterized by the matrix A. This regime will be discussed in detail in this paper to illustrate the phenomena and mathematical ideas used to investigate NIMs with an exception in Section 5 where only the electromagnetic setting is considered. Facts related to the finite frequency regime and the electromagnetic setting are also mentioned.

To correctly investigate these equations, one adds some loss (friction or damping effects) into the region of NIMs and then studies these equations as the loss goes to 0. Mathematically, the study of media consisting of NIMs faces two difficulties. First, the equations describing the wave phenomena have sign changing coefficients, hence the ellipticity and the compactness are lost in general. Second, a localized resonance, i.e., the field (the solution) explodes in some regions and remains bounded in some others as the loss goes to 0, might appear. In this paper, we report various mathematical results on the properties of NIMs and their applications. The topics are superlensing using complementary media (Section 2), cloaking using complementary media (Section 3), cloaking an object via anomalous localized resonance (Section 4), and the well-posedness and the finite speed propagation properties of electromagnetic waves in the time domain for media consisting of dispersive metamaterials (Section 5). Concerning the first three topics, refined results in comparison with the original works will be presented. Other aspects on NIMs, such as the stability of NIMs and cloaking a source via anamlous localized resonance, will be mentioned briefly in the last section (Section 6) in which we also discuss future directions. This report can be considered as a companion to the one in [START_REF] Nguyen | Negative index materials and their applications: recent mathematics progress[END_REF] written in 2015 in which superlensing using complementary media, cloaking using complementary media, and the stability of NIMs and cloaking a source via anomalous localized resonance are discussed in the spirit of the original works.

Superlensing using complementary media

Superlensing using NIMs was suggested by Veselago in his seminal paper [45]. In this paper, he considered a slab lens with ε = µ = -I, where I denotes the identity matrix, and investigated its lensing property using ray theory. Later, the study of cylindrical lenses in the two dimensional quasistatic regime, the Veselago slab lens, cylindrical lenses and spherical lenses in the finite frequency regime were respectively suggested and examined by Nicorovici, McPhedran, and Milton [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF], Pendry [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF]40], and Pendry and Ramakrishna [42,[START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] for constant isotropic objects.

In this section, we present superlensing schemes in the spirit of [START_REF] Nguyen | Superlensing using complementary media[END_REF] in which we established superlensing using complementary media for arbitrary objects. The superlensing schemes in [START_REF] Nguyen | Superlensing using complementary media[END_REF] are inspired by the ones suggested in [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Pendry | Negative refraction makes a perfect lens[END_REF]40,[START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] but different from there. The lenses in [START_REF] Nguyen | Superlensing using complementary media[END_REF] also have their roots from [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] in which complementary media were defined and investigated from mathematical point of views. It was shown later in [28] that the modification proposed in [START_REF] Nguyen | Superlensing using complementary media[END_REF] in comparison with [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Pendry | Negative refraction makes a perfect lens[END_REF]40,[START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] was necessary in order to achieve superlensing (see also Section 4).

We next mathematically describe superlensing using complementary media. Let B r denote the ball in R d centered at the origin and of radius r > 0. We first consider the quasistatic acoustic setting in a two dimensional, bounded domain. To magnify m times (m > 1) an arbitrary object in B r 0 with r 0 > 0, one uses a lens consisting of two layers as follows. The first layer in B r 1 \ B r 0 is characterized by the identity matrix I, and the second one in B r 2 \ B r 1 is characterized by the matrix -I. Here r 1 and r 2 are defined by (2.1) r 1 = m 1/2 r 0 and r 2 = mr 0 .

Different choices for r 1 and r 2 are possible. Nevertheless, there are some restrictions on them.

In particular, r 1 /r 0 cannot be too close to 1 (see Remark 2.2). The choice considered in (2.1) has the advantage that the system is somehow stable for small loss (see (2.3)) and our proof of superlensing is quite simple in this case.

Assume that the object inside B r 0 is characterized by a symmetric, uniformly elliptic, matrixvalued function a, i.e., for some constant Λ ≥ 1,

Λ -1 |ξ| 2 ≤ a(x)ξ • ξ ≤ Λ|ξ| 2 for a.e. x ∈ B r 0 and for ξ ∈ R 2 ,
and the medium outside B r 2 is homegeneous and, hence, is characterized by the identity matrix I. Then, with the loss being described by a small, positive parameter δ, the medium considered is characterized by

A δ := s δ A, 1 where (2.2) A = a in B r 0 ,
I otherwise, and

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise, for δ ≥ 0.
The superlensing property of the considered lens is confirmed by the following theorem.

Theorem 2.1. Let 0 < δ < 1, Ω be a smooth, bounded, open subset of R 2 , f ∈ L 2 (Ω), and set r 3 = r 2 2 /r 1 . Assume that B r 3 ⊂⊂ Ω and supp f ⊂ Ω \ B r 3 , and let u δ ∈ H 1 0 (Ω) be the unique solution of the equation div (A δ ∇u δ ) = f in Ω. We have (2.3) u δ -û H 1 (Ω) ≤ Cδ 1/2 f L 2 (Ω)

and

(2.4)

u δ -û H 1 (Ω\Br 3 ) ≤ Cδ f L 2 (Ω) ,
for some positive constant C independent of f and δ. In particular,

(2.5) u δ → û in H 1 (Ω \ B r 3 ) as δ → 0.
Here û ∈ H 1 0 (Ω) is the unique solution of the equation

div ( Â∇û) = f in Ω, where  = a(•/m) in B r 2 , I otherwise.
Proof. We first prove (2.3). The key idea of its proof is to construct a solution u 0 ∈ H 1 0 (Ω) to the equation div (A 0 ∇u 0 ) = f in Ω. To motivate the construction of u 0 ∈ H 1 0 (Ω) below, we first assume that there exists such a solution u 0 . Let u 1,0 be the reflection of u 0 in B r 2 through ∂B r 2 via the Kelvin transform F associated with ∂B r 2 , i.e., (2.6)

u 1,0 (x) = u 0 • F -1 for x ∈ R 2 \ B r 2 , where F (x) := r 2 2 x/|x| 2 for x ∈ R 2 .
Note that F respectively transforms ∂B r 1 onto ∂B r 3 and ∂B r 0 onto ∂B r 2 ; the constant r 3 appears naturally here. Since ∆u 0 = 0 in B r 2 \ Br 1 and in B r 1 , it follows that

∆u 1,0 = 0 in B r 3 \ Br 2 and in R 2 \ Br 3 . 1 A0 plays the role of A in (1.2).
Moreover, by taking into account the continuity u 0 and its flux on ∂B r 2 and ∂B r 3 , we have

u 1,0 = u 0 and ∂ r u 1,0 = -∂ r u 0 | int = ∂ r u 0 | ext on ∂B r 2 and u 1,0 | ext = u 1,0 | int and ∂ r u 1,0 | ext = -∂ r u 1,0 | int on ∂B r 3 .
Here and in what follows, for a smooth, bounded, open subset D of R d , on its boundary ∂D, u| ext and u| int denote the restriction of u in R d \ D and the restriction of u in D, respectively, for an appropriate function u. We also denote [u] as the quantity u| ext -u| int on ∂D and use similar notations for A∇u • ν for an appropriate function u where A is a matrix and ν is the unit normal vector on ∂D directed to the exterior of D. Let u 2,0 be the reflection of u 1,0 in B r 3 through ∂B r 3 via the Kelvin transform G associated with ∂B r 3 , i.e., (2.7)

u 2,0 (x) = u 1,0 • G -1 for x ∈ B r 3 , where G(x) := r 2 3 x/|x| 2 for x ∈ R 2 . We then have (2.8) div ( Â∇u 2,0 ) = 0 in B r 3 u 2,0 = u 1,0 | int and ∂ r u 2,0 = ∂ r u 1,0 | int on ∂B r 3 .
The definition of  in B r 3 appears naturally here. Since  = I in B r 3 \ B r 2 by the choices of r 1 and r 2 (G • F (∂B r 0 ) = ∂B mr 0 = ∂B r 2 ), it follows from (2.8) that ∆u 2,0 = 0 in B r 3 .

Set

(2.9)

w 0 = u 0 in Ω \ Br 2 , u 2,0 in B r 2 . Then (2.10) div ( Â∇w 0 ) = f in Ω \ ∂B r 2 , [w 0 ] = 0 on ∂B r 2 , and [ Â∇w 0 • ν] = 0 on ∂B r 2 .
It follows that w 0 ∈ H 1 0 (Ω) is a solution of (2.11) div ( Â∇w 0 ) = f in Ω.

We derive that û = w 0 in Ω. Inspired by the heuristic arguments above, we define (2.12)

u 0 =        û in Ω \ B r 2 , û • F in B r 2 \ B r 1 , û • G • F = û(m •) in B r 0 .
It is clear from the definition of û that (2.13) ∆u 0 = f in (Ω \ Br 2 ) ∪ (B r 2 \ Br 1 ) and div (a∇u 0 ) = 0 in B r 1 .

Moreover, one can check that (2.14) [u 0 ] = 0 and [s 0 A∇u 0 • ν] = 0 on (∂B r 2 ∪ ∂B r 1 ).

Combining (2.12), (2.13), and (2.14) yields that u 0 ∈ H 1 0 (Ω) is a solution of the equation div (A

0 ∇u 0 ) = f in R 2 .
We have (2.15) div

A δ ∇(u δ -u 0 ) = -div (A δ -A 0 )∇u 0 = iδdiv (χ Br 2 \Br 1 ∇u 0 ) in Ω,
where χ D denotes the characteristic function of a given subset D of R 2 . Applying (2.21) of Lemma 2.1 below, we have

u δ -u 0 H 1 (Ω) ≤ C ∇u 0 L 2 (Br 2 \Br 1 ) ≤ C f L 2 (Ω) .
This yields, by (2.15) and (2.21) of Lemma 2.1 again,

u δ -u 0 H 1 (Ω) ≤ Cδ 1/2 f L 2 (Ω) ,
which is (2.3).

We next establish (2.4). Similar to the definition of u 1,0 and u 2,0 , we define u 1,δ in R 2 \ Br 2 and u 2,δ in B r 3 as follows

u 1,δ = u δ • F -1 in R 2 \ Br 2 and u 2,δ = u 1,δ • G -1 in B r 3 .
As above, one can verify that

(2.16) ∆u 1,δ = 0 in B r 3 \ Br 2 , u 1,δ = u δ on ∂B r 2 , (1 + iδ)∂ r u 1,δ = ∂ r u δ | ext on ∂B r 2 , (2.17) div ( Â∇u 2,δ ) = 0 in B r 3 , u 2,δ = u 1,δ on ∂B r 3 , and ∂ r u 2,δ = (1 + iδ)∂ r u 1,δ | int on ∂B r 3 . Define (2.18) ûδ =        u δ in Ω \ B r 3 , u δ -(u 1,δ -u 2,δ ) in B r 3 \ B r 2 , u 2,δ in B r 2 .
One can check that div Â∇(û δ -û0 ) = 0 in Ω \ (∂B r 2 ∪ ∂B r 3 ). Moreover, by (2.16) and (2.17), one has

[û δ -û0 ] = u δ -u 1,δ = 0, [ Â∇(u δ -û0 ) • e r ] = Â∇(u δ | ext -u 1,δ ) • e r = iδ∂ r u 1,δ | int on ∂B r 2 ,
and

[û δ -û0 ] = u 1,δ -u 2,δ = 0, [ Â∇(u δ -û0 ) • e r ] = ∂ r (u 1,δ | int -u 2,δ ) = -iδ∂ r u 1,δ | int on ∂B r 3 . From Lemma 2.2 below, it follows that ûδ -û0 H 1 (Ω\(∂Br 2 ∪∂Br 3 )) ≤ C δ∂ r u 1,δ | int H -1/2 (∂Br 3 ) + δ∂ r u 1,δ | ext H -1/2 (∂Br 2 ) ≤ Cδ f L 2 (Ω) .
In the last inequality, we use (2.3). Since ûδ = u δ in Ω \ Br 3 , assertion (2.4) follows.

The proof is complete.

Remark 2.1. Assertion (2.5) in a more general setting, the setting of complementary media, is given in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. In [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF], s δ is defined by -1 + iδ in B r 2 \ B r 1 ; nevertheless, this point is not essential. The proof of (2.3) also has its roots from [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. The idea is to use reflections to derive Cauchy's problems from the original equation with sign changing coefficients and then use the unique continuation principle, see, e.g., [41]. This can be applied to a general structure via the change of variables rule, see Lemma 2.3 below. Assertion (2.4) is new in comparison with [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] whose method only yields δ 1/2 instead of δ as the rate of the convergence. The key ingredient in the proof is the introduction of the auxiliary function ûδ . This auxiliary function was introduced in the technique of removing localized singularity by the author to handle the localized resonance associated with NIMs in cloaking and superlensing applications, see our previous work [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF], Section 3, and Remark 2.2). Interestingly, it is also useful even in stable cases for improving the convergence rate. The motivation of (2.4) comes from simulations obtained in the master project of Droxler at EPFL under the supervision of Hesthaven and the author.

Remark 2.2. The choice of r 1 and r 2 in (2.1) is not strict for ensuring (2.5). In previous work [START_REF] Nguyen | Superlensing using complementary media[END_REF], we showed that it is possible to choose

r 1 = m 1/4 r 0 and r 2 = m 1/2 r 1 .
In fact, the approach in [START_REF] Nguyen | Superlensing using complementary media[END_REF] also works for the choice (2. [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF])

r 1 ≥ m 1/4 r 0 and r 2 = m 1/2 r 1 .
Instead of introducing û as in (2.18), we define ûδ as follows

(2.20) ûδ =        u δ in Ω \ B r 3 , u δ -(u 1,δ -u 2,δ ) in B r 3 \ B mr 0 , u 2,δ in B mr 0 . Recall that, if v ∈ H 1 (B R 3 \ B R 1 ) satisfies ∆v = 0 in B R 3 \ B R 1 for 0 < R 1 < R 2 < R 3 , then v H 1/2 (∂B R 2 ) + ∂ r v H -1/2 (∂B R 2 ) ≤ C v H 1/2 (∂B R 1 ) + ∂ r v H -1/2 (∂B R 1 ) α v H 1/2 (∂B R 3 ) + ∂ r v H -1/2 (∂B R 3 ) 1-α , with α = ln(R 3 /R 2 )/ ln(R 3 /R 1 ) 2 .
Using this inequality, one can prove that

u 1,δ -u δ H 1/2 (∂Bmr 0 ) + ∂ r (u 1,δ -u δ ) H -1/2 (∂Bmr 0 ) ≤ Cδ α v H 1 (Ω\Br 3 ) ,
with α = ln(r 3 /r 2 )/ ln(r 3 /r 1 ) which is greater than or equal to 1/2 by (2.19) and the fact that r 3 = r 2 2 /r 1 . Applying the approach used in the proof of (2.3), one can reach (2.5) in the case in which α > 1/2, which is equivalent to r 1 > m 1/4 r 0 . The case in which α = 1/2, corresponding to the choice r 1 = m 1/4 r 0 , requires further arguments; in this case, the convergence in (2.5) is replaced by the weak convergence. The interested reader can find the details in [23, the proof of (2.36)].

In the proof of Theorem 2.1, we used the following stability result on u δ .

Lemma 2.1. Let d ≥ 2, δ 0 > 0, 0 < r 1 < r 2 , Ω be a smooth, open subset of R d with B r 2 ⊂⊂ Ω, let A be a uniformly elliptic, matrix-valued function defined in Ω, and let g ∈ H -1 (Ω) 3 . Set A δ = s δ A, where s δ is defined in (2.2). For 0 < δ < δ 0 , there exists a unique solution v δ ∈ H 1 0 (Ω) of div (A δ ∇v δ ) = g in Ω.
2 This inequality can be obtained from the following representation of v in BR 3 \ BR 1 :

v(r, ϑ) = a0 + b0 ln r + ∞ n=1 ± (an,±r n + bn,±r -n )e ±inϑ in BR 3 \ BR 1 .
See also [START_REF] Nguyen | Cloaking using complementary media for electromagnetic waves[END_REF]Lemma 6].

3 H -1 (Ω) denotes the dual space of H 1 0 (Ω).

Moreover,

(2.21) v δ 2 H 1 (Ω) ≤ C δ Ω gv δ and (2.22) v δ 2 H 1 (Ω) ≤ C δ Ω gv δ + C g 2 L 2 (Ω) .
Here C denotes a positive constant independent of g and δ.

Here and in what follows, for a complex number z, we denote z and z as the imaginary part and the real part of z, respectively. Remark 2.3. Various variants of Lemma 2.1 are used in the study of NIMs, see, e.g., [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]28]. In inequality (2.22), one only considers the imaginary part of Ω gv δ . This is useful for improvements on the convergent rate of cloaking effects considered later in Sections 3 and 4. Nevertheless, the proof presented below is quite standard and in the same spirit.

Proof. Multiplying the equation of v δ by vδ (the conjugate of v δ ), integrating by parts, and considering the imaginary part and the real part of the obtained expression, one has

∇v δ 2 L 2 (Ω) ≤ C δ Ω gv δ .
This implies (2.21) by the Poincaré inequality.

To obtain (2.22), we proceed as follows. Multiplying the equation of v δ by vδ , considering the imaginary part, one has

(2.23) ∇v δ 2 L 2 (Br 2 \Br 1 ) ≤ C δ Ω gv δ .
We claim that

(2.24) v δ L 2 (Br 2 \Br 1 ) ≤ C ∇v δ L 2 (Br 2 \Br 1 ) + g L 2 (Ω) .
Assuming this, we obtain

v δ H 1 (Br 2 \Br 1 ) ≤ C ∇v δ L 2 (Br 2 \Br 1 ) + g L 2 (Ω) .
This implies, by the trace theory,

v δ H 1/2 (∂Br 2 ∪∂Br 1 ) ≤ C ∇v δ L 2 (Br 2 \Br 1 ) + g L 2 (Ω) .
Using the equation of v δ in Ω \ B r 3 and in B r 1 , we derive from the standard theory of elliptic equations that

v δ H 1 ((Ω\Br 2 ))∪Br 1 ) ≤ C ∇v δ L 2 (Br 2 \Br 1 ) + g L 2 (Ω) ,
and the conclusion follows from (2.23).

It remains to prove (2.24), which we establish by contradiction. Suppose that there exist a sequence δ n → 0 (by (2.21)) and a sequence

g n → 0 in L 2 (Ω) such that (2.25) 1 = v δn L 2 (Br 2 \Br 1 ) ≥ n ∇v δn L 2 (Br 2 \Br 1 ) + g n L 2 (Ω) ,
where v δn is the solution corresponding to δ n and g n . By the trace theory, one has

v δn H 1/2 (∂Br 2 ∪∂Br 1 ) ≤ C
for some positive constant C independent of n. This in turn implies that

v δn H 1 (Ω) ≤ C.
Without loss of generality, one can assume that v δn converges to

v 0 ∈ H 1 0 (Ω) weakly in H 1 (Ω) and strongly in L 2 (B r 2 \ B r 1 ). Moreover, div (A 0 ∇v 0 ) = 0 in Ω and v 0 is constant in B r 2 \ B r 1 .
Since, by multiplying the equation of v 0 with v0 and integrating by parts,

Ω A 0 ∇v 0 • ∇v 0 = 0,
and v 0 is constant in B r 2 \ B r 1 , it follows that Ω |∇v 0 | 2 = 0. We derive that v 0 = 0 in Ω since v 0 ∈ H 1 0 (Ω). This contradicts the fact that Br 2 \Br 1 |v 0 | 2 = lim n→+∞ Br 2 \Br 1 |v δn | 2 = 1.
The following lemma is standard and was used in the proof of Theorem 2.1.

Lemma 2.2. Let d = 2, 3, Ω be a smooth, open subset of R d , and let A be a symmetric, uniformly elliptic, matrix-valued function defined in Ω, and let

f ∈ L 2 (Ω). Let D ⊂⊂ Ω be a smooth, bounded, open subset of R d , let g ∈ H 1/2 (∂D), and h ∈ H -1/2 (∂D). Assume that v ∈ H 1 (Ω \ ∂D) satisfies        div (A∇v) = f in Ω \ ∂D, [v] = g and [A∇v • ν] = h on ∂D, v = 0 on ∂Ω. Then v H 1 (Ω\∂D) ≤ C f L 2 (Ω) + g H 1/2 (∂D) + h H -1/2 (∂D) ,
for some positive constant C depending only on D, Ω, and the ellipticity of A.

The approach used in the proof of Theorem 2.1 can be extended to the finite frequency regime as well as higher dimensions. The additional tool is the following change of variables rule, see, e.g., [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]Lemma 2].

Lemma 2.3. Let d ≥ 2, D 1 ⊂⊂ D 2 ⊂⊂ D 3 be three smooth, bounded, open subsets of R d . Let a ∈ [L ∞ (D 2 \ D 1 )] d×d , σ ∈ L ∞ (D 2 \ D 1 ), and let T be a bijective from D 2 \ D1 onto D 3 \ D2 such that T ∈ C 1 ( D2 \ D 1 ) and T -1 ∈ C 1 ( D3 \ D 2 ). Assume that u ∈ H 1 (D 2 \ D 1 ) and set v = u • T -1 . Then div (a∇u) + σu = f in D 2 \ D 1 , for some f ∈ L 2 (D 2 \ D 1 ), if and only if (2.26) div (T * a∇v) + T * σv = T * f in D 3 \ D 2 .
Assume in addition that T (x) = x on ∂D 2 . Then

(2.27) v = u and T * a∇v • ν = -a∇u • ν on ∂D 2 .
Here

(2.28) T * a(y) = DT (x)a(x)∇T (x) T | det ∇T (x)| and T * σ(y) = σ(x) | det ∇T (x)| , where x = T -1 (y).
Let a be a symmetric, uniformly elliptic, matrix-valued function and σ be a bounded complex function both defined in B r 0 such that σ > c > 0 and Σ ≥ 0 in B r 0 for some c > 0. Assuming (2.1), we have the following result which is a variant of Theorem 2.1 in the finite frequency regime in both two and three dimensions.

Theorem 2.2. Let d = 2, 3, 0 < δ < 1, k > 0, R 0 > r 3 , f ∈ L 2 (R d ), and set r 3 = r 2 2 /r 1 . Assume that supp f ⊂ B R 0 \ B r 3 ,
and let u δ be the unique outgoing solution of the equation

div (A δ ∇u δ ) + k 2 Σ δ = f in R d , where (A δ , Σ δ ) = (s δ A, sδ Σ) and (2.29) A, Σ =        a, σ in B r 0 , F -1 * I, F -1 * 1 in B r 2 \ B r 1 , I, 1 otherwise,
and

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise. 
We have

(2.30) u δ -û H 1 (B R ) ≤ C R δ 1/2 f L 2 (R d )
and

(2.31) u δ -û H 1 (B R \Br 3 ) ≤ C R δ f L 2 (R d ) ,
for some positive constant C R independent of f and δ. In particular,

u δ → û in H 1 loc (R d \ B r 3 ) as δ → 0.
Here, û is the unique outgoing solution of the equation

div ( Â∇û) + k 2 Σû = f in R d , where Â, Σ = m 2-d a(x/m), m -d σ(x/m) in B r 2 , I, 1 otherwise. Recall that a solution v ∈ H 1 loc (R d \ B R ) of the equation ∆v + k 2 v = 0 in R d \ B R ,
for some R > 0, is said to satisfy the outgoing condition if

∂ r v -ikv = o(r -d-1 2 ) as r = |x| → +∞.
Proof. 

u δ 2 H 1 (B R ) ≤ C R δ R d f ūδ -I(u δ ) + C R f 2 L 2 ,
where

I(u δ ) = lim R→+∞ ∂B R k|u δ | 2 .
The details are left to the reader.

Remark 2.4. Superlensing using complementary media is justified mathematically for the electromagnetic wave [START_REF] Nguyen | Superlensing using complementary media and reflecting complementary media for electromagnetic waves[END_REF]. The idea of using reflections is also useful in establishing superlensing using hyperbolic metamaterials, an interesting type of metamaterials, [START_REF] Bonnetier | Superlensing using hyperbolic metamaterials: the scalar case[END_REF] Remark 2.5. Using the change of variables in Lemma 2.3, one can design a general superlensing scheme in which one does not require F (and also G) to be a Kelvin transform, and the lens is not required to be radially symmetric, see [22, Theorems 1 and 2 and Corollary 2] and [29, Theorem 2] for a discussion on the acoustic and electromagnetic settings, respectively.

Cloaking using complementary media

Cloaking using complementary media was suggested by Lai et al. [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. The idea is to cancel the effect of an object by its complementary medium, a concept considered in [42], see [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] for a discussion of this concept from mathematical point of views. The study of cloaking using complementary media faces two difficulties. Firstly, this problem is unstable since the equations describing the phenomenon have sign changing coefficients, hence the ellipticity and the compactness are lost in general. Secondly, localized resonance might appear, as shown in simulations in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF].

Cloaking using complementary media was mathematically justified for acoustic waves [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] and for electromagnetic waves [START_REF] Nguyen | Cloaking using complementary media for electromagnetic waves[END_REF]. The schemes that were used in [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] and [START_REF] Nguyen | Cloaking using complementary media for electromagnetic waves[END_REF] are inspired by the work of Lai. et al. and the study of complementary concept in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF][START_REF] Nguyen | Superlensing using complementary media and reflecting complementary media for electromagnetic waves[END_REF]. Nevertheless, these schemes are different from the ones in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. The modification, mentioned below, is necessary, as shown in the acoustic setting in [28]; without the modification, cloaking might not be achieved (see also Section 4, Proposition 4.1, in particular, and the comments following).

Let us describe how to cloak the region B 2r 2 \ B r 2 for some r 2 > 0 in the spirit of [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF]. We first consider the quasistatic regime. Assume that the cloaked region is characterized by a matrix a, which is symmetric and uniformly elliptic in B 2r 2 \ B r 2 . The cloaking device consists of two parts. The first one, in B r 2 \ B r 1 , makes use of reflecting complementary media to cancel the effect of the cloaked region, and the second one in B r 1 , fills the space that "disappears" from the cancellation by the homogeneous medium. For the first part, we modify the strategy in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. Instead of B 2r 2 \ B r 2 , we consider B r 3 \ B r 2 for some r 3 > 0 as the cloaked region in which the medium is given by the matrix

a e = a in B 2r 2 \ B r 2 , I in B r 3 \ B 2r 2 .
We assume that (3.1)

a e ∈ C 1 ( Br 3 \ B r 2 ).
The complementary medium in B r 2 \ B r 1 is given by -F -1 * a e , where F : B r 2 \ Br 1 → B r 3 \ Br 2 is the Kelvin transform with respect to ∂B r 2 . Concerning the second part, the medium in B r 1 is given by

(3.2) r 2 3 /r 2 2 d-2 I,
which is also different from that suggested by Lai et al. [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. The reason for this choice is to ensure that

(3.3) G * F * A = I in B r 3 ,
where A is defined in (3.4) below. In two dimensions, the medium in B r 1 is I, as used by Lai et al. [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF], while it is not I in three dimensions. With the loss, the medium is characterized by

A δ := s δ A, where (3.4) 
A =              a e in B r 3 \ B r 2 , F -1 * a e in B r 2 \ B r 1 , r 2 3 /r 2 2 d-2 I in B r 1 , I otherwise,
and

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise, for δ ≥ 0.
Let Ω be a smooth bounded open subset of R d with B r 3 ⊂⊂ Ω, and let f ∈ L 2 (Ω). Denote u δ , û ∈ H 1 0 (Ω), respectively, the unique solution of (3.5) div (A δ ∇u δ ) = f in Ω and ∆û = f in Ω.

The cloaking property of this scheme is given in the following theorem.

Theorem 3.1. Let d = 2, 3, 0 < δ < 1, and f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 3 . Let u δ , u ∈ H 1 0 ( 
Ω) be the uniques solutions defined by (3.21). For any 0 < α < 1, there exists > 0, depending only on r 2 , α, and the ellipticity and the Lipschitz constants of a e such that if r 3 > r 2 then

(3.6) u δ H 1 (Ω) ≤ Cδ (α-1)/2 f L 2 (Ω) , and 
(3.7) u δ -û H 1 (Ω\Br 3 ) ≤ Cδ α f L 2 (Ω) ,
for some positive constant C independent of δ and f . In particular, we have

(3.8) u δ → û in H 1 (Ω \ Br 3 ) as δ → 0.
For an observer outside B r 3 , the medium in B r 3 given by A δ looks as the homogeneous one by (3.6) for small δ: one has cloaking.

Proof. Set β = (2 + α)/3. We have, by Lemma 2.1, (3.9)

u δ H 1 (Ω) ≤ CData(f, δ),
where

(3.10) Data(f, δ) := 1 δ Ω f ūδ + f L 2 (Ω) .
As in the proof of Theorem 2.1, define

u 1,δ ∈ H 1 loc (R d \ B r 2 ) and u 2,δ ∈ H 1 (B r 3 ) as follows u 1,δ = u δ • F -1 in R d \ B r 2 and u 2,δ = u 1,δ • G -1 = u δ • F -1 • G -1 in B r 3 .
We have, by Lemma 2.3,

div (A∇u 1,δ ) = 0 in B r 3 \B 2r 2 , u 1,δ = u δ on ∂B r 2 , and (1+iδ)A∇u 1,δ = A∇u δ | ext on ∂B r 2 .
Let A be a Lipschitz extension of a e in B r 3 such that A(0) = I and let

w δ ∈ H 1 0 (B r 3 ) be such that div (A∇w δ ) = 0 in B r 3 \ ∂B r 2 and [A∇w δ • ν] = iδA∇u 1,δ on ∂B r 2 . Then (3.11) w δ H 1 (Br 3 ) ≤ CδData(f, δ) 1/2 .
Applying a three-sphere inequality [25, Lemma 1] to (u 1,δ -u δ )χ Br 3 \Br 2 -w δ in B r 3 4 and using (3.11), we obtain, if is sufficiently large, that (3.12)

u δ -u 1,δ H 1/2 (∂B 2r 2 ) + ∂ r (u δ -u 1,δ )| ext H -1/2 (∂B 2r 2 ) ≤ Cδ β Data(f, δ) 1/2 .
In the spirit of (2.20), we define

(3.13) ûδ =        u δ in Ω \ B r 3 , u δ -(u 1,δ -u 2,δ ) in B r 3 \ B 2r 2 , u 2,δ in B 2r 2 .
We have

∆(û δ -û) = 0 in Ω \ (∂B r 3 ∪ ∂B 2r 2 ), [û δ -û] = 0 on ∂B r 3 , [∂ r (û δ -û)] = -iδ∂ r u 1,δ | int on ∂B r 3 , and [û δ -û] = u δ -u 1,δ , [∂ r (u δ -û)] = ∂ r (u δ | ext -u 1,δ
) on ∂B 2r 2 . By Lemma 2.1, we obtain from (3.9) and (3.12) that

(3.14) ûδ -û0 H 1 (Ω) ≤ Cδ β Data(f, δ) 1/2 .
By (3.10), this implies, since β > 1/2, that

(3.15) ûδ H 1 (Ω\Br 3 ) ≤ C f L 2 (Ω) .
We derive from (3.10) and (3.15) that

(3.16) Data(f, δ) ≤ Cδ -1 f 2 L 2 (Ω)
and from (3.14) and (3.15) that

(3.17) ûδ -û H 1 (Ω) ≤ Cδ β-1/2 f L 2 (Ω) .
Up to this point, the analysis is in the spirit of [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF], and we now add some new ingredients to derive the desired conclusions. We have, by (3.17),

Ω f ūδ - Ω f ū ≤ Cδ β-1/2 f 2 L 2 (Ω)
and, by multiplying the equation of û with ū and considering the imaginary part,

Ω f ū = 0. It follows from (3.10) that Data(f, δ) ≤ Cδ β-3/2 f 2 L 2 (Ω) . From (3.14), we obtain ûδ -û H 1 (Ω) ≤ Cδ 3β/2-3/4 f L 2 (Ω) . Repeating this process, one reaches, for n ≥ 1, that Data(f, δ) ≤ C n δ β(1+1/2+..+1/2 n-1 )-(1/2+..+1/2 n )-1 f 2 L 2 (Ω) and ûδ -û H 1 (Ω) ≤ C n δ β(1+1/2+..+1/2 n )-(1/2+..+1/2 n+1 ) f L 2 (Ω) ,
where C n is a positive constant independent of δ and f . The conclusion follows by taking n large enough.

Remark 3.1. One of the crucial steps of this proof is to introduce the function û. In general u 1,δ -u δ explodes in the region B r 3 \ B 2r 2 . A numerical simulation of this fact is given in the work of Lai. et al. [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. A mathematical illustration of this phenomenon can be seen from the explicit representation of u δ -u 1,δ in B r 3 \ B 2r 2 using separation of variables, see [25, Proof of Theorem 1]. The definition of û is inspired by the concept of the normalizing energy used in the study of the Ginzburg-Landau equation, see, e.g., [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF].

We next present the result in the finite frequency regime. Assume that the cloaked region is characterized by a matrix a that is symmetric, uniformly elliptic and a bounded complex function σ that satisfies σ > c > 0 and σ ≥ 0 both defined in B 2r 2 \ B r 2 . As in the spirit of the zero-frequency case, we consider the layer B r 3 \ B r 2 as the cloaked region that is characterized by

a e , σ e = a, σ in B 2r 2 \ B r 2 , I, 1 in B r 3 \ B 2r 2 .
The cloaking device consists of two parts. The first one, the complementary layer in B r 2 \ B r 1 , is characterized by -F -1 * a e , -F -1 * σ e . Concerning the second part, the medium in B r 1 is given by

(3.18) r 2 3 /r 2 2 d-2 I, (r 2 3 /r 2 2 ) d .
Again, the reason for this choice is to ensure

(3.19) G * F * A = I and , G * F * Σ = 1 in B r 3 ,
where A and Σ are defined in (3.20). We will assume that (3.1) holds. Set A δ := s δ A and Σ δ := sδ Σ, where, for δ ≥ 0, (3.20)

A, Σ =              a e , σ e in B r 3 \ B r 2 , F -1 * a e , F -1 * σ e in B r 2 \ B r 1 , r 2 3 /r 2 2 d-2 I, (r 2 3 /r 2 2 ) d in B r 1 , I, 1 otherwise,
and

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise. Let k > 0, f ∈ L 2 (R d ) with compact support and denote u δ , û ∈ H 1 loc (R d )
, respectively, the unique outgoing solutions of

(3.21) div (A δ ∇u δ ) + k 2 Σ δ u δ = f in R d and ∆û + k 2 û = f in R d .
Here is the variant of Theorem 3.1 for the finite frequency regime, which confirms the cloaking property of the scheme considered.

Theorem 3.2. Let d = 2, 3, k > 0, 0 < δ < 1, R 0 > r 3 , f ∈ L 2 (R d ) with supp f ⊂ B R 0 \ B r 3 . Let u δ , u ∈ H 1 loc (R d
) be the unique outgoing solutions defined by (3.21). For any 0 < α < 1, there exists > 0, depending only on r 2 , α, and the ellipticity and the Lipschitz constants of a e such that if r 3 > r 2 then

(3.22) u δ H 1 (B R ) ≤ Cδ (α-1)/2 f L 2 (R d ) , and 
(3.23) u δ -û H 1 (B R \Br 3 ) ≤ Cδ α f L 2 (R d ) ,
for some positive constant C independent of δ and f . In particular, we have

(3.24) u δ → û in H 1 loc (R d \ Br 3 ) as δ → 0.
Proof. The proof of Theorem 3.2 is in the spirit of Theorem 3.1 with a crucial point being the establishment of (3.12) in the finite frequency regime. This can be done as follows. On one hand, we have, by [33, Theorem 2], (3.25)

u δ -u 1,δ H(∂B 2r 2 ) ≤ C ∂ r (u δ -u 1,δ )| ext α H(∂Br 2 ) u δ -u 1,δ H(∂B 4r 2 ) + u δ | ext -u 1,δ H(∂Br 2 ) 1-α .
for some positive constant τ depending only on r 2 and the ellipticity and the Lipschitz of a e . Here we denote v H(∂Br

) := v H 1/2 (∂Br) + A∇v • ν H -1/2 (∂Br) .
On the other hand, we obtain, by [START_REF] Nguyen | Cloaking using complementary media for electromagnetic waves[END_REF]Lemma 6], that

(3.26) u δ -u 1,δ H(∂B 4r 2 ) ≤ C k u δ -u 1,δ ξ H(∂B 2r 2 ) u δ -u 1,δ 1-ξ H(∂Br 3 ) ,
where ξ = ln r 3 /(4r 2 ) / ln r 3 /(2r 2 ) . Combining (3.25) and (3.26) yields (3.12) if is sufficiently large. The rest of the proof is in the spirit of Theorem 2.1. The details are omitted.

Remark 3.2. Previous given proof of cloaking using complementary media [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] can be extended to the finite frequency regime. Nevertheless, the size of the cloaked object (the cloaked region) is small as k is large. In [START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF], we extended the approach in [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] for the finite frequency regime in which the size of the object can be independent of the frequency k. In fact, we showed that there exists λ 0 > 1 depending on the ellipticity and the Lipschitz of a e such that one can cloak an object inside B λ 0 r 2 \ B r 2 ; nevertheless λ 0 can be smaller than 2 but one can choose a large r 2 to compensate this. The proof given here is again in the spirit of the work [START_REF] Nguyen | Cloaking using complementary media for electromagnetic waves[END_REF] in which cloaking using complementary media for electromagnetic waves is investigated.

Remark 3.3. Using the change of variables in Lemma 2.3, one can design a general cloaking scheme in which one does not requires F (and also G) to be a Kelvin transform and the cloaking device is not necessary to be radially symmetric, see [START_REF] Nguyen | Cloaking using complementary media for electromagnetic waves[END_REF] for a discussion in the electromagnetic setting.

Cloaking an object via anomalous localized resonance

In this section, we present another cloaking technique using NIMs namely cloaking an object via anomalous localized resonance. The advantage of this cloaking technique over the one using complementary media is that the cloaking devices used here are independent of the cloaked object. This cloaking technique was suggested in [28] and inspired from [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF]. In the two dimensional case, it was shown in [28] that the negative index layer of the lens considered in Section 2 can act like a cloaking device for a finite size object near by, see Figure 1. More precisely, in the quasistatic regime, we have Theorem 4.1. Let d = 2, 0 < r 0 < r 1 < r 2 , x 1 ∈ ∂B r 1 , and x 2 ∈ ∂B r 2 . Set r 3 := r 2 2 /r 1 and

C := B(x 1 , r 0 ) ∩ B r 1 ∪ B(x 2 , r 0 ) ∩ (B r 3 \ B r 2 )
, assume that B r 3 ⊂⊂ Ω and let a c be a symmetric 

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise. Given f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 3 , let u δ , û ∈ H 1 0 (Ω)
, respectively, be the unique solution to the equations

(4.2) div (A δ ∇u δ ) = f in Ω and ∆û = f in Ω.
For any 0 < α < 1, there exists r 0 (α) > 0 that depends only on α, r 1 , and r 2 , such that if r 0 < r 0 (α) then

(4.3) u δ -û H 1 (Ω\Br 3 ) ≤ Cδ α f L 2 (Ω) ,
where C is a positive constant independent of f , δ, r 0 , x 1 , and x 2 .

Proof. Set β = (2 + α)/3. We have, by Lemma 2.1,

(4.4) u δ H 1 (Ω) ≤ CData(f, δ), where (4.5) Data(f, δ) := 1 δ Ω f ūδ + f 2 L 2 (Ω) .
As in the proof of Theorem 2.1, define

u 1,δ ∈ H 1 loc (R 2 \ B r 2 ) and u 2,δ ∈ H 1 (B r 3 ) as follows u 1,δ = u δ • F -1 in R 2 \ B r 2 and u 2,δ = u 1,δ • G -1 in B r 3 . Set S = B r 3 \ B r 2 ∩ B(x 2 , r 0 ) ∪ G • F (B(x 1 , r 0 ) ∩ B r 1 )
. By Lemma 2.3, we have

(4.6) u 1,δ -u δ = 0 and ∂ r u 1,δ | ext -∂ r u δ = -iδ∂ r u 1,δ | ext on ∂B r 2 \ ∂S, and 
(4.7) u 2,δ -u 1,δ = 0 and ∂ r u 2,δ | int -∂ r u 1,δ = iδ∂ r u 1,δ | int on ∂B r 3 \ ∂S.
Applying Lemma 2.3, we obtain ∆u

1,δ = 0 in B r 3 \ B r 2 and ∆u 2,δ = 0 in B r 3 \ (G • F )(B(x 1 , r 0 ) ∩ B r 1 ) . Recall that (4.8) ∆u δ = 0 in (B r 3 \ B r 2 ) \ C.
Denote x 3 ∈ ∂B r 3 the image of x 1 by F . The new key ingredient in comparison with the approach used in the proof of Theorem 3.1 is the fact that there exist two constants R 2 , R 3 > 0 such that if r 0 is small enough and if one defines

O 2 = B r 2 ∪ {|z -x 2 | < R 2 }, O 3 = B r 3 \ {|z -x 3 | < R 3 }, and O = O 3 \ O 2 , then (4.9) u 1,δ -u δ H 1/2 (∂O 2 ) + ∂ r (u 1,δ -u δ ) H -1/2 (∂O 2 ) ≤ Cδ β u δ H 1 (Br 3 ) and (4.10) u 2,δ -u 1,δ H 1/2 (∂O 3 ) + ∂ r (u 2,δ -u 1,δ ) H -1/2 (∂O 3 ) ≤ Cδ β u δ H 1 (Br 3 ) .
The details of the proof of this fact, which are out of the scope of this survey, are given in [28, Section

       u δ in Ω \ O 3 , u 2,δ -(u 1,δ -u δ ) in O, u 2,δ in O 2 . 3.1]. Define (4.11) ûδ = 
Then, ûδ ∈ H 1 Ω \ ∂O with ûδ = 0 on ∂Ω is a solution of the equation

∆û δ = f in Ω \ ∂O.
This implies, by (4.9) and (4.10), (4.12) ûδ -û H 1 (Ω\∂O) ≤ Cδ β u δ H 1 (Br 3 ) .

Since β > 1/2, it follows from (4.5) that

(4.13) ûδ H 1 (Ω\∂O) ≤ C f L 2 (Ω) .
This in turn implies that

(4.14) Data(f, δ) ≤ Cδ -1 f 2 L 2 (Ω) and (4.15) ûδ -û H 1 (Ω\∂O) ≤ Cδ β-1/2 f L 2 (Ω) .
Involving the arguments used in the last part of the proof of Theorem 3.1, we have, for n ≥ 1,

Data(f, δ) ≤ Cδ β(1+..+1/2 n-1 )-(1+..+1/2 n )-1 f 2 L 2 (Ω) and ûδ -û H 1 (Ω\∂O) ≤ Cδ β(1+..+1/2 n )-(1/2+..+1/2 n+1 ) f L 2 (Ω) .
The conclusion follows by taking n sufficiently large.

Remark 4.1. As mentioned, one of the key ingredients are (4.9) and (4.10). This is based on a three-sphere inequality with a partial information, see [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF]Section 3.1]. The proof of this result also involves the properties of conformal maps. A variant of these inequalities holds for the Helmholtz equation in two dimensions. Due to the use of the conformal maps in two dimensions, we do not know if the variants of (4.9) and (4.10) hold for three dimensions. Nevertheless, a modification of the cloaking construction can be made to obtain a cloaking device that can cloak some finite region near by. The modification is based on the concept of doubly complementary media that was first introduced in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF] with its roots in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. The interested reader can find a detailed discussion in [28].

Invoking ideas similar to those in the proof of Theorem 4.1, we establish, see [28, Proposition 3.2], that

Proposition 4.1. Let d = 2, 0 < δ < 1, 0 < r 0 < r 1 < r 2 , and x 3 ∈ ∂B r 3 with r 3 = r 2 2 /r 1 . Assume that B r 3 ⊂⊂ Ω and let f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 3 . Let a c be a symmetric uniformly elliptic matrix-valued function defined in B(x 3 , r 0 ) ∩ B r 3 . Let u δ ∈ H 1 0 (Ω) be the unique solution of (3.21) where div (s δ A∇u δ ) = f in Ω.
Here A is given by (3.4) where

a e = a c in B(x 3 , r 0 ) ∩ B r 3 , I in (B r 3 \ B r 2 ) \ B(x 3 , r 0 ).
There exists r * > 0 depending only on r 1 and r 2 such that if r 0 < r * , then

(4.16) u δ → û in L 2 (Ω \ B r 3 ).
Here û ∈ H 1 0 (Ω) is the unique outgoing solution to the equation

(4.17) div ( Â∇û) = f in Ω, where  = a c in B(x 0 , r 0 ) ∩ B r 3 , I otherwise.
From (4.16) and (4.17), one concludes that the object in B r 3 \ B r 2 is not cloaked by its complementary medium in B r 2 \ B r 1 as suggested in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF] and as is usually accepted in the literature.

Electromagnetic wave propagation in media consisting of dispersive metamaterials

The fundamental Maxwell's equations -without source -are

(5.1) ∂ t D(t, x) = ∇ × H(t, x), ∂ t B(t, x) = -∇ × E(t, x), for t ∈ R, x ∈ R 3 , where E ∈ R 3 (resp. H ∈ R 3 ) is the electric (resp. magnetic) field and D ∈ R 3 (resp. B ∈ R 3 )
is the electric (resp. magnetic) induction field. In order to close the system (5.1), one adds constitutive relations that express D and B as functions of E and H. For dispersive media, these relations are frequency dependent. Taking these constitutive relations into account, the corresponding system of (5.1) in the time domain has the form (5.2)

ε rel (x)∂ t E(t, x) + (λ ee * E)(t, x) + (λ em * H)(t, x) = ∇ × H(t, x), µ rel (x)∂ t H(t, x) + (λ me * E)(t, x) + (λ mm * H)(t, x) = -∇ × E(t, x), t ∈ R, x ∈ R 3 ,
where * stands for the convolution with respect to time t. Here the following conventions/assumptions are imposed on ε rel , µ rel , and λ ij for i, j ∈ {e, m}:

(5.3) ε rel and µ rel are two 3 × 3 real symmetric uniformly elliptic matrices defined in R 3 .

and

(5.4)

λ ij , λ ij ∈ L 1 loc R, L ∞ (R 3 ) 3×3
, and λ ij is real-valued, for (i, j) ∈ e, m 2 .

In this section, for a time-dependent quantity X(t, x), its temporal Fourier transform is given by (5.5)

X(ω, x) := 1 √ 2π R X(t, x)e iωt dt, for ω ∈ R, x ∈ R 3 .
Let χ ij be the susceptibilities that characterizes the dispersive effects of the medium. The connection between λ ij and χ ij is

(5.6) λ ij (ω, x) := -iω χ ij (ω, x), for (i, j) ∈ {e, m} 2 , ω ∈ R, x ∈ R 3 .
The permittivity ε and the permeability µ of the medium are given by (5.7) ε := ε rel + χ ee and µ := µ rel + χ mm .

The details of deriving (5.2) from (5.1) using the appropriate assumptions on dispersive media are given in [START_REF] Nguyen | Electromagnetic wave propagation in dispersive metamaterials[END_REF]Section 2].

Two fundamental assumptions physically relevant to the model, causality and passivity, are imposed.

Causality: the effect cannot precede the cause, i.e., the present states of the system depend only on its states in the past. Mathematically, one requires (5.8) λ ij (t) = 0, for all t < 0 and for all (i, j) ∈ {e, m} 2 .

Under this assumption, we have, for (i, j) ∈ {e, m} 2 , (5.9)

(λ ij * X)(t, •) = t -∞ λ(t -τ, •)X(τ, •) dτ = ∞ 0 λ(τ, •)X(t -τ, •) dτ, for t ∈ R.
Passivity: One assumes, for almost every x ∈ R 3 , for almost every ω ∈ R, and for all X ∈ C6 5 , that 6

(5.10) Re λ ee (ω, x) λ em (ω, x) λ me (ω, x) λ mm (ω, x) X • X ≥ 0, Assumption (5.10) means that the medium is dissipative, i.e., it does not produce electromagnetic energy by itself.

In the anisotropic case (χ em = χ me = 0), condition (5.10) is equivalent to7 

(5.11) ω Im ε(ω), ω Im µ(ω) ≥ 0, for almost all ω ∈ R.

Condition (5.11) ensures that when small loss is added, the problem associated with the outgoing (Silver-Müller) condition at infinity is well-posed (see, e.g., [START_REF] Nguyen | Superlensing using complementary media and reflecting complementary media for electromagnetic waves[END_REF]). Adding a small loss is the standard mechanism to study phenomena related to metamaterials in the frequency domain. Nevertheless, condition (5.11) does not exclude the ill-posedness in the frequency domain when the loss is 0 (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Proposition 2]). As one sees later, even if the problem is ill-posed in the frequency domain for some frequency, the well-posedness is roughly ensured for the problem in the time domain under the causality and passivity conditions mentioned above (see Theorem 5.1).

One of typical classes of dispersive anisotropic media (χ me = χ em = 0) satisfying condition (5.4), the causality (5.8) and the passivity (5.10) is the class of media obeying Lorentz' model. For a homogeneous isotropic medium, the susceptibilities χ ee and χ mm are of the form (see e.g., [15, (7.51)]) (5.12)

χ(ω) = n =1 ω 2 p, ω 2 0, -ω 2 -2iγ ω I, for ω ∈ R,
where ω p, (resp. ω 0, and γ ) are positive (resp. non-negative) material constants (recall that I is the identity matrix). Using the residue theorem, one can show (see e.g., [15, (7.110)]) that for t ∈ R one has (5.13)

χ(t) = √ 2πϑ(t) n =1 ω 2 p, sin(ν t) ν e -γ t I 3 and λ(t) = √ 2πϑ(t) n =1 ω 2 p, d dt sin(ν t) ν e -γ t I 3 ,
where ν 2 = ω 2 0, -γ 2 (if ω 0, > γ ) and ϑ is the Heaviside function, i.e., ϑ(t) = 1 if t ≥ 0 and ϑ(t) = 0 otherwise. Here λ is defined in such a way that λ(ω) = -iω χ(ω) for ω ∈ R.

We study (5.2) under the form of the initial problem at the time t = 0, assuming that the data are known in the past t < 0. Set

(5.14) (λ ij X)(t, •) := t 0 λ(t -τ, •)X(τ, •) dτ, for t > 0.
For X = E or H, under the causality assumption (5.8)-(5.9), one has for t > 0 that

(λ ij * X)(t, •) = t 0 λ ij (t -τ, •)X(τ, •) dτ + 0 -∞ λ ij (t -τ, •)X(τ, •) dτ = (λ ij X)(t, •) + 0 -∞ λ ij (t -τ, •)X(τ, •) dτ. (5.15)
Hence if the data are known for the past t < 0, then the last term is known at time t > 0. With the presence of sources, one can then reformulate system (5.2) under the form (5.16)

         ε rel (x)∂ t E(t, x) + (λ ee E)(t, x) + (λ em H)(t, x) = ∇ × H(t, x) + f e (t, x), µ rel (x)∂ t H(t, x) + (λ me E)(t, x) + (λ mm H)(t, x) = -∇ × E(t, x) + f m (t, x), E(0, x) = E 0 (x), H(0, x) = H 0 (x),
for t > 0 and x ∈ R 3 . Here E 0 and H 0 are the initial data at time t = 0, and f e , f m are given fields that can be considered as "effective" sources since they also take into account the last terms in (5.15). Set

(5.17)

u := E H , u 0 := E 0 H 0 , f := f e f m , Au := ∇ × H -∇ × E , (5.18) 
Λ := λ ee λ em λ me λ mm and M := ε rel 0 0 µ rel .

System (5.16) can then be rewritten in the following compact form:

(

5.19) M (x)∂ t u(t, x) + (Λ u)(t, x) = Au(t, x) + f (t, x), u(0, x) = u 0 (x), for t > 0, x ∈ R 3 .

Define

(5.20)

H := L 2 (R 3 ) 3 × L 2 (R 3 ) 3 and V := H curl (R 3 ) × H curl (R 3 ),
equipped with the standard inner products induced from L 2 (R 3 ) 3 and H curl (R 3 ). One can verify that H and V are Hilbert spaces. We also denote

(5.21) M 6 (L ∞ (R 3 
)) as the space of 6 × 6 real matrices whose entries are L ∞ (R 3 ) functions.

In what follows, in the time domain, we only consider real quantities.

Concerning the well-posedness of (5.19), we prove, see [34, Theorem 3.1],

Theorem 5.1. Let T ∈ (0, +∞), u 0 ∈ H, f ∈ L 1 (0, T ; H), and Λ ∈ L 1 0, T ; M 6 (L ∞ (R 3 ) . Assume that (5.3), (5.4), (5.8) and (5.10) hold. There exists a unique weak solution u ∈ L ∞ (0, T ; H) of (5.19) on (0, T ). Moreover, the following estimate holds

(5.22) M u(t, •), u(t, •) H ≤ M u 0 , u 0 1/2 H + C t 0 f (s, •) H ds 2 in (0, T ),
where C is a positive constant depending only on the coercivity of M .

The notion of weak solutions for (5.19) is:

Definition 5.1. Let T ∈ (0, +∞), u 0 ∈ H and f ∈ L 1 (0, T ; H). A function u ∈ L ∞ (0, T ; H) is called a weak solution of (5.19) on [0, T ] if (5.23) d dt M u(t, •), v H + (Λ u)(t, •), v H = u(t, •), Av H + f (t, •), v H in (0, T ) for all v ∈ V,

and

(5.24) u(0, •) = u 0 .

Remark 5.1. One can easily check that if u is a smooth solution and decays sufficiently at infinity, then u is a weak solution by integration by parts, and that if u is a weak solution and smooth, then u is a classical solution.

We next discuss the finite speed propagation for (5.19). In what follows, B(a, R) stands for the ball in R 3 of radius R > 0 and centered at a ∈ R 3 . Set The following result is on the finite speed propagation of (5.19), see [34, Theorem 3.2]:

Theorem 5.2. Let R > 0, a ∈ R 3 , and u 0 ∈ H. For T > R/c a,R , let f ∈ L 1 (0, T ; H) and Λ ∈ L 1 (0, T ; M 6 L ∞ (R 3 ) . Assume that (5.3), (5.4), (5.8) and (5.10) hold,

(5.27) supp u 0 ∩ B(a, R) = ∅, and

(5.28) supp f (t, •) ∩ B(a, R -c a,R t) = ∅,
for almost every t ∈ (0, R/c a,R ).

Let u ∈ L ∞ (0, T ; H) be the unique weak solution of (5.19) on (0, T ). Then

(5.29) supp u(t, •) ∩ B(a, R -c a,R t) = ∅,
for almost every t ∈ (0, R/c a,R ).

We briefly mention here the ideas of the proofs of Theorems 5.1 and 5.2. The construct of a solution in Theorem 5.1 is based on the Galerkin method. One of the key observations is the following inequality (5.30)

t 0 (Λ v)(s, •), v(s, •) H ds ≥ 0, for v ∈ L ∞ (0, T ; H), t ∈ (0, T ).
Similar observations in the acoustic setting were used in different contexts, see, e.g., [START_REF] Nguyen | Generalized impedance boundary conditions for scattering by strongly absorbing obstacles for the full wave equation: the scalar case[END_REF]36]. The inequality (5.30) plays an important role in deriving the following estimate for an approximate solution u n after multiplying the equation of u n by u n and integrating by parts, which gives

(5.31) M u n (t, •), u n (t, •) H ≤ M u n (t = 0, •), u n (t = 0, •) H + 2 t 0 f (s, •) H u n (s, •) H ds.
By Gronwall's lemma, this in turn implies the desired estimate for a solution u obtained via the standard compactness argument, see, e.g., [START_REF] Evans | Partial differential equations[END_REF]. . The uniqueness of u is quite standard as in the standard wave equations after noting (5.30). The proof of Theorem 5. This yields the desired conclusion. As far as we know, the proof of finite speed propagation for energy solutions is not presented in standard references on partial differential equations.

Other topics and future directions

Some interesting aspects of NIMs are not discussed in this survey, such as the stability of NIMs and cloaking a source via anomalous localized resonance, because we have nothing new to add to these topics. The stability of NIMs in the frequency domain for acoustic waves was investigated by Costabel and Stephan in 1985 [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF] using the integral method. Later, this problem was studied by the integral method and the pseudo-differential operators theory [38] and by the T -coercivity approach (see [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials[END_REF] and references therein). In these works, the well-posedness was established in the Fredholm sense in H 1 , meaning that the compactness holds; the existence and the uniqueness are not discussed. Recently, [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] we introduced a new approach to study the stability aspect of NIMs. More precisely, we investigated the well-posedness of the Helmholtz equations involving sign changing coefficients. Our approach involved the study of Cauchy problems, which are derived by reflections in the spirit of the proofs presented in Sections 2, 3, and 4 using the change of variables formula in Lemma 2.3. We then proposed various methods to study these Cauchy problems. One method was via the prominent work of Agmon, Douglis, and Nirenberg [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II[END_REF] (via Fourier analysis or fundamental solutions) and others were based on variational methods/ multiplier techniques. In consequence, we can unify and extend largely known works. In particular, we proved that (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Corollary 1]) the well-posedness holds if, under some smoothness assumptions, A + > A -on Γ or A + < A -on Γ, for all connected component Γ of the sign changing coefficient interface, A + is the restriction of A in the region A > 0, and A -is the restriction of -A in the region A < 0. We also showed that the complementary property of media is almost necessary for the occurrence of resonance (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Proposition 2]). A numerical algorithm in the spirit of this approach was also studied in [START_REF] Abdulle | An optimization-based numerical method for diffusion problems with sign-changing coefficients[END_REF].

The second aspect we do not discuss in this survey is cloaking a source via anomalous localized resonance. This cloaking technique is relative due to the fact that the power, which is roughly speaking the standard energy of the fields in the region of NIMs multiplied by the loss, must be normalized for the cloaking purpose. This phenomenon was observed by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF] (see also [START_REF] Milton | A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance[END_REF]) for a symmetrical radial structures in a two dimensional quasistatic regime and was considered in a general setting, the setting of doubly complementary media in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime[END_REF] for the acoustic regime (see also [START_REF] Ammari | Anomalous localized resonance using a folded geometry in three dimensions[END_REF][START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF][START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF] for related results in some specific settings). It has been shown [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime[END_REF] that i) cloaking a source via anomalous localized resonance appears if and only if the power blows up; ii) the power blows up if the source is located "near" the plasmonic layer made of NIMs; iii) the power remains bounded if the source is far away from the plasmonic layer. It is worth noting that there is no connection between the blow up of the power and the localized resonance in general [START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF]. Finally, we want to mention that the design of metamaterials poses new and interesting problems that are being extensively investigated in the litterature, see [8,[START_REF] Chen | Resonance and double negative behavior in metamaterials[END_REF][START_REF] Guenneau | Homogenization of 3d finite chiral photonic crystals[END_REF][START_REF] Kohn | Magnetism and homogenization of microresonators[END_REF] and the refences therein.

An interesting direction concerning NIMs, or more generally metamaterials is to study these metamaterials in the time domain. For example, it would be interesting to understand conditions under which the energy of solutions of the Maxwell equations considered in Section 5 decay in any bounded domain; this is known for (standard) positive index media. Another interesting question would be to investigate the limiting amplitude principle, which concerns the behavior of the fields in the time domain generated by a harmonic forcing term for large time. In some particular settings, the limiting amplitude principle was already considered in [START_REF] Gralak | Macroscopic Maxwell's equations and negative index materials[END_REF][START_REF] Cassier | Spectral theory for Maxwell's equations at the interface of a metamaterial. Part I: Generalized Fourier transform[END_REF], but the question for a general setting remains open.
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 1 Figure 1. The red lens layer will cloak the blue region C. An observer outside B r3 (r 3 = r 2 2 /r 1 ) sees neither the red layer nor the blue regions.
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 5 [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] c(x) := γ e (x)γ m (x), for x ∈ R 3 , where γ e (x) and γ m (x) are the largest eigenvalues of ε rel (x) -1/2 and µ rel (x) -1/2 , respectively. According to assumption (5.3), c(x) is bounded above and below by a positive constant. For a ∈ R 3 and R > 0, we denote(5.26) c a,R := ess sup x∈B(a,R) c(x).

  2 is standard via(5.30) if one knows that the solution u is regular. To overcome the lack of the regularity of u, we consider the functionU (t, x) := t 0 u(s, x) ds, for t ∈ [0, T ), x ∈ R 3and show that(5.32) supp U (t, •) ∩ B(a, R -c a,R t) = ∅, for almost every t ∈ (0, R/c a,R ).

  The proof of Theorem 2.2 is similar to the one of Theorem 2.1 by using Lemma 2.3 and applying variants of Lemmas 2.1 and 2.2, see, e.g., [22, Lemma 1] or [30, Lemma 2.1] for variants of Lemma 2.1, which is of the form

Here C denotes the set of complex numbers.

Here • stands for the Euclidean scalar product in C 6 .

Here for a 3 × 3 matrix A, we denote A ≤ 0 if Ax • x ≤ 0 for all x ∈ R 3 .
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