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Résumé. L’adaptation de domaine est un champ de l’apprentissage par transfert
où les données d’entrainement (source) du modèle et celles utilisées pour le test (cible)
proviennent de deux domaines dont les distributions sous-jacentes sont différentes, et il
convient d’adapter le modèle appris pour qu’il puisse être utilisé sur les données cibles avec
de bonnes performances. On présente ici un algorithme permettant de traiter l’adaptation
de domaine dans le cas d’espaces source et cible de hétérogènes car représentés par des
espaces de caractéristiques différents. La méthode développée utilise le transport optimal
pour coupler les distributions des deux domaines et son implémentation est illustrée sur
des données de référence.

Mots-clés. transport optimal, apprentissage par tranfert, adaptation de domaine
hétérogène

Abstract. Domain adaptation is a field of transfer learning where the training data
(source) and the test data (target) come from different domains. The data in these two
domains have therefore different underlying distributions, and the learned model should
be adapted so that it can be used on the target data with good performance. We present
here a domain adaptation algorithm to adapt heterogeneous domains, i.e. described by
different features. The developed method uses optimal transport to map the distributions
of the two domains and its implementation is illustrated on benchmark data.

Keywords. optimal transport, transfer learning, heterogeneous domain adaptation

1 Introduction

Transfer learning aims at leveraging knowledge or models learnt on a specific task to
different, but somehow related, learning tasks. In the specific case where the learning
tasks (classification, regression) are the same, but the distribution of the learning and
test data are different, domain adaptation (DA) is considered to slightly update, with
no human supervision, a model trained on a source domain (S) so that it becomes more
robust when being used on data of interest lying in another domain, also named target
domain (T ), describing the same phenomenon but with another point of view.
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In general, most of the existing domain adaptation methods assume that data of both
source and target domains are represented by the same features space, with identical
dimensions. But in some applications, it does not hold so that development of novel
methods must consider domain adaptation across heterogeneous feature spaces, which is
referred to as heterogeneous domain adaptation (HDA).

Transfer learning in general is useful in a context where the availability of data is
limited. Using knowledge acquired in a setting into an other setting helps to solve issues
when data lack. Different cases for supervision are investigated in the literature, and
main methods can be classified regarding two strategies: (1) project both data into a
common subspace by jointly learning the common subspace and a classifier, then itera-
tively align the discriminative dimensions ([7], [1]), and (2) jointly perform implicit data
reconstruction and learn a classifier ([4]).

In this paper, we focus on three kinds of HDA (Table 1): (1) unsupevised HDA when
all the source labels are observed, but none in target, (2) semi-supervised HDA when all
the source labels and some labels in target are observed, (3) partial HDA when source
and target labels are both partially observed.

Y S Y T

Unsupervised DA observed unobserved
Semi-supervised DA observed partially observed
Partial DA partially observed partially observed

Table 1: Several learning cases depending on the labels availability in S and/or T . Note:
in the partial DA setting, since labels in both domains are partially observed, source and
target domains can be interchanged.

Recently, optimal transport (OT) has been investigated as an efficient tool to deal with
DA issues in a unsupervised or semi-supervised context. In the following, we first present
the main principles of OT for DA in section 2. Then, we propose to extend the use of
OT for DA to the case of heterogeneous transfer learning in section 3. Several numerical
experiments are conducted to assess the proposed algorithm. Finally, some perspectives
are discussed in section 4

2 Optimal transport for domain adaptation

Notations In the following, let (XS, Y S) ∈ RnS×dS×C be the source data and (XT , Y T ) ∈
RnT×dT × C the target data. Moreover, P (xS, yS) ∈ P(ΩS, C) and P (xT , yT ) ∈ P(ΩT , C)
denote the joint probability distribution of the data in the source and target domains,
respectively.
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Optimal Transport (OT) Firstly introduced by G. Monge in 1781 and recently more
widely studied (see [5] for details), OT is an optimisation problem that allows to define a
distance between two probability measures (discrete, semi-discrete or continuous) called
the Wasserstein distance. This distance is actually used as a loss in many optimisation
problems and approximation algorithms allow to scale this problem to large dimension set-

tings. We consider two sets of weighted samples XS = {(xS
i , w

S
i ), i = 1 . . . nS,

∑nS

i=1w
S
i =

1} and XT = {(xT
j , w

T
j ), j = 1 . . . nT ,

∑nT

j=1w
T
j = 1}.

The Kantorovich formulation consists in finding a coupling matrix P ∈ RnS×nT

+ that

satisfies γ = argmin
P∈U(wS ,wT )

∑
i,j CijPij where U(wS, wT ) is the set of matrices P ∈ RnS×nT

+

which verifies
∑nS

i=1 Pij = wT
j , ∀j = 1 . . . nT and

∑nT

j=1 Pij = wT
j , ∀i = 1 . . . nS, and C is a

cost matrix. In the following, we will note : γ = OT (wS, wT , C).

Optimal Transport for (unsupervised) Domain Adaptation (OTDA)[2]. As-
suming that P (yT |XT ) = P (yS|M(XS)) and P (XT ) = P (M(XS)) with M : ΩS 7→ ΩT

a nonlinear transformation of the input space, the transport map γ is obtained by solv-
ing the OT problem between XS and XT : γ = OT (wS, wT , C) where wS = 1nS/nS,
wT = 1nT /nT and C ∈ RnS×nT

such that Cij = d(xS
i , x

T
j ), with d a dissimilarity measure

and 1 the indicator function.
γ ∈ RnS×nT

can be considered as the empirical joint distribution of P (XS, XT ). The
transport map γ is then used to calculate the barycentric coordinates of the source samples
in the target domain: M(xS

i ) = 1
wS

i

∑
j γijx

T
j . Finally, a classifier f is trained on the

transported source data (M(XS), Y S) and applied on the target data XT to predict
target labels : Y T

pred = f(XT ).

Joint Distribution Optimal Transport (JDOT) [3]. Developed to deal with changes
in the marginal distributions of the features and in the conditional distributions of Y that
can occur with real-world data but that are not handled by OTDA, JDOT consists in
simultaneously optimising the coupling matrix γ and the classifier f by minimising:

min
γ,f

∑
i,j

[
α d(xS

i , x
T
j ) + L(ySi , f(xT

j ))
]
γij

where α is a hyper-parameter and L is a loss function. A Block Coordinate Descent (BCD)
is performed to alternatively estimate γ and f in practice. The authors have shown the
superiority of their approach through experiments on benchmark datasets w.r.t. several
domain adaptation state-of-the-art methods, including previous OT-based approaches,
domain adversarial neural networks or transfer components.

Nevertheless, this approach does not address the heterogeneous domain adaptation
problem. In the following, JDCOT is introduced to deal with this context.
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3 JDCOT: Optimal transport for heterogeneous trans-

fer learning

The aim of the proposed method called Joint Distribution Co-Optimal Transport (JD-
COT) is to deal with heterogeneous domain adaptation with different dimension data.
The way OT maps two domains makes it impractical if they are on different spaces. Co-
Optimal Transport (COOT) [6] has therefore been developed to deal with incomparable
spaces, by simultaneously optimising two transport maps between both samples and fea-
tures with a BCD. We propose to use the principle of COOT to adapt JDOT to the HDA
framework.

Method The JDCOT method consists in simultaneously solving the OT problem on
the samples (γs), the OT problem on the variables (γv) and the classification problem
(fT ), by minimising with a BCD, with i ∈ [1;nS], j ∈ [1;nT ], k ∈ [1; dS], ℓ ∈ [1; dT ]:

min
γs,γv ,fS ,fT

γs∈U(wS,wT )

γv∈U(vS,vT )

∑
i,j,k,ℓ

[
α d(XS

i,k, X
T
j,ℓ) + L

(
f̃S(xS

i ), f̃
T (xT

j )
)]

γs
ijγ

v
kℓ (1)

where vS and vT are the weights of the points (X ′)S and (X ′)T respectively, α is the
JDOT hyper-parameter, and f̃S and f̃T are classifiers, respectively on source and target
domains, such that f̃(x) = y if y is observed and f̃(x) = f(x) otherwise.

Experiments: Settings and datasets We have conducted extensive numerical ex-
periments to illustrate the proposed method considering the three settings reported in
Table 1 (unsupervised DA, semi-supervised DA and partial DA), using the MNIST and
USPS datasets. These datasets contain gray level images of handwritten digits (K = 10
classes) sized 16× 16 for USPS (source) and 28× 28 for MNIST (target), so that the two
domains do not share the same size, as expected in the heterogeneous setting. The exper-
imental protocol consists in randomly selecting 300 images per class (nS = nT = 300×10)
or 30 images per class (nS = nT = 30× 10) in each dataset for the training set. nS

∗ (resp.
nT
∗ ) images are labelled in the source (resp. target) domain. The test set is made up of

200 target images per class and is fixed such as it’s the same for all the experiments. A
convolutional neural network composed of 2 convolutional and 2 dense layers (CNN) is
considered as classifiers.

Unsupervised and semi-supervised HDA At first, JDCOT and COOT are com-
pared in the unsupervised (nS

∗ = nS and nT
∗ = 0) and semi-supervised (nS

∗ = nS and
∀k ∈ [1;K], nT

k,∗ ∈ {1; 3; 10}) cases. In these settings, all source labels are known such

that ∀xS
i ∈ XS, f̃S(xS

i ) = ySi . In the semi-supervised case, fT is initialised with the nT
∗
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available target labels. Its performance on the test set is reported as a baseline score in
Table 2. Table 2 also reports the correct classification rate on the test set (test accuracy)
over 10 random samplings for the training sets. The test accuracy of COOT is computed
with the CNNt model trained with the estimated target labels given by label propagation
through γs. The test accuracy of JDCOT is the one given by fT at the end of the BCD
procedure. In the unsupervised case, since no target label is available to initialise fT , a
first estimate of the target labels is given by label propagation after executing the unsu-
pervised COOT method. Both JDCOT and COOT allow to improve the baseline score
and JDCOT’s performance is growing along with the number of known target labels. The
3 000-sized sample is big enough to allow a good unsupervised performance for COOT
so that introducing some target labels does not improve it. In the 300-sized sample case,
introducing semi-supervision allows to considerably improve both COOT and JDCOT’s
performances. Finally, JDCOT outperforms COOT in all cases and is generally more
stable.

nT
k,∗ baseline

nS = nT = 3 000 nS = nT = 300
COOT JDCOT COOT JDCOT

0 - 72.96 ±8.2 77.27 ±9.1 57.27 ±16.2 58.08 ±17.2
1 39.59 ±6.0 75.81 ±4.9 78.45 ±1.1 61.74 ±14.5 69.98 ±2.8
3 56.82 ±4.4 75.35 ±6.5 79.02 ±0.9 69.71 ±7.2 73.19 ±2.4
10 80.49 ±3.1 75.75 ±6.8 88.34 ±1.7 77.25 ±1.7 85.67 ±1.7

Table 2: Mean and standard deviation of the test accuracy (%) over 10 random samplings for
the training sets, considering two sample sizes. nT

∗,k denotes the number of known labels in each
class k, in target domain.

Partial HDA The partial HDA setting (semi-supervision in both domains) is then
considered, with nS = nT = 3 000 and nS

k,∗ = nT
k,∗ ∈ {3; 5; 25; 100} labelled samples

per class in each domain. Table 3 reports the test accuracy after initialising the model
with the available target labels (init) and after the whole process (final), along with the
number of known labels per class. JDCOT increases the accuracy both on source and
target domains which shows that the information transfer established by solving the OT
problem from a domain to another works positively.
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JDCOT n∗,k 3 5 25 100

source
init 70.9 ±4.3 77.9 ±2.3 92 ±0.7 97.6 ±0.4
final 73.5 ±5.3 84.6 ±2.5 94.6 ±0.9 98 ±0.2

target
init 62.7 ±3.2 70.5 ±3.4 90.2 ±0.9 96.1 ±0.7
final 68.7 ±5.5 79 ± 3.2 90.3 ±0.5 97 ± 0.2

Table 3: Mean and standard deviation of the test accuracy (%) over 10 random samplings for the
training set. nS = nT = 3 000. n∗,k denotes the number of known labels in each class k, in each domain.

4 Conclusion and discussion

Joint Distribution Co-Optimal Transport (JDCOT) is a method to deal with heteroge-
neous transfer learning using optimal transport: it performs domain adaptation in the
case of source and target spaces of different features and different dimensions, matching
both samples and features with transport maps. The method can deal with unsupervised,
semi-supervised and partial domain adaptation.

An extension of JDCOT to a deep learning setting, for example to study image
datasets, has also been defined to enable dealing with larger data dimensions by simulta-
neously optimising 2 transport plans and 2 features extractors gS and gT (CNNs). The
vector representations of the data are compared instead of the data themselves, and op-
timisation is done with minibatch stochastic gradient descent.
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