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Abstract 

Hepatitis C virus (HCV) virions contain a subset of host liver cells proteome often 

composed of interesting virus-interacting factors. A proteomic analysis performed on 

double gradient-purified clinical HCV highlighted the translation regulator LARP1 on 

these virions. This finding was validated using post-virion capture and immunoelectron 
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microscopy, immunoprecipitation applied to in vitro (Huh7.5 liver cells) grown (Gt2a, 

JFH1 strain) and patient-derived (Gt1a) HCV particles. Upon HCV infection of Huh7.5 

cells, we observed a drastic transfer of LARP1 to lipid droplets, inducing colocalization 

with core proteins. RNAi-mediated depletion of LARP1 using the C911 control 

approach decreased extracellular infectivity of HCV Gt1a (H77), Gt2a (JFH1), and 

Gt3a (S52 chimeric strain), yet increased their intracellular infectivity. This latter effect 

was unrelated to changes in the hepatocyte secretory pathway, as evidenced using a 

functional RUSH assay. These results indicate that LARP1 binds to HCV, an event 

associated with retention of intracellular infectivity. 
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Introduction 

Viruses and primate cells have coexisted for several million years. Host cells have 

evolved to eliminate most replicating viruses according to paleovirology studies (Patel 

et al., 2011). Therefore virion-bound host proteins (VBPs) may be considered to 

provide viral species with important components for virus persistence and/or 

propagation through their implication in replication, egress or entry steps of the viral 

cycle (Arthur et al., 1992; Garrus et al., 2001). Assuming that VBPs are likely to play a 

more important role in the viral life cycle than the rest of the cell proteome, the aim of 

our study was to validate the presence of some VBPs on hepatitis C virus (HCV) virions 

and to unravel a potential role for these VBPs at the entry or egress levels. 

HCV is an enveloped positive-strand RNA virus and belongs to the genus Hepacivirus 

in the Flaviviridae family. HCV often establishes persistent infection in humans, which 

may lead to chronic liver disease, cirrhosis, and hepatocellular carcinoma, the third 

most common cause of cancer-related death (El-Serag, 2012). HCV infects 

hepatocytes and induces extensive remodeling of endoplasmic reticulum (ER)-derived 

membranes into a so-called “membranous web” (Egger et al., 2002). This web is 

composed of double membrane vesicles located in close proximity to lipid droplets 

(LDs) and serves as the site of viral genome replication and particle assembly (Aizaki 

et al., 2004), prior to release via the secretory pathway, though the precise 

mechanisms underlying this export process are not fully understood. 

HCV comprises both an abundant amount and a broad variety of VBPs. Indeed, HCV 

virions incorporate not only viral but also host proteins, many of which, notably 

apolipoproteins B and E, have been shown to be functionally implicated in the viral life 

cycle by modulating cellular processes involved in lipid metabolism (Chang et al., 

2007) (Huang et al., 2007; Meunier et al., 2008). In addition, HCV VBPs implicated in 
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protein folding, e.g. HSC70 (Parent et al., 2009), as well as others functions (Benga et 

al., 2010; Cottarel et al., 2016) have been identified. 

The La-Related Protein 1 (LARP1) is a highly evolutionarily conserved translation 

regulating and RNA-binding protein (RBP) of the LARP family, each member of which 

carries a conserved La domain and an RNA-binding region. Following a recent upsurge 

in studies focusing on LARP1 in human biology, after its initial investigation in plants 

(Merret et al., 2013), this RBP was identified as a regulator of both mRNA stability and 

translation (Gentilella et al., 2017; Hong et al., 2017; Lahr et al., 2017), especially with 

respect to transcripts implicated in cell proliferation and cell survival (Stavraka and 

Blagden, 2015). Interestingly, LARP1 is overexpressed in hepatocellular, lung and 

ovarian cancers, where it is an independent predictor of adverse prognosis (Xie et al., 

2013) (Hopkins et al., 2016). Moreover, the level of LARP1 is elevated in squamous 

cervical cancer, where it promotes cell motility and invasion, and binds an mRNA 

interactome enriched in oncogenic transcripts (Mura et al., 2015). In this study, we 

identify LARP1 as a novel component of at least a subset of HCV particles and show 

that it plays a role in the virus life cycle, predominantly by restricting the release of 

three epidemiologically important HCV genotypes. 

 

Results 

In order to identify host cell factors that associate with circulating HCV virions, we 

performed a proteomic analysis of HCV particles isolated from the plasma of two 

viremic patients. Plasma from an aviremic subject served as a control. After initial 

pelleting, HCV particles were sedimented on two sequential iodixanol gradients via 

isopycnic centrifugation as described previously (Cottarel et al., 2016; Parent et al., 

2009). By monitoring HCV RNA in the collected fractions, we identified a peak of viral 
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RNA at 1.12 g/mL of iodixanol (Fig. 1). To further decrease the level of non-specific 

co-sedimented background material, we subjected our virus-containing fractions to a 

second iodixanol gradient-based purification step, together with a naïve plasma 

sample (Parent et al., 2009). Following HPLC/MS analysis of the virus-containing 

fractions as described before (Cottarel et al., 2016) (Parent et al., 2009), we detected 

LARP1 in these fractions, but not in the corresponding aviremic control.  

In order to confirm the presence of LARP1 on the particles, we immunoprecipitated 

LARP1 from JFH1 virus released from Gt2a HCVcc-infected Huh7.5 cells (Delgrange 

et al., 2007) with anti-LARP1 or anti-HCV E2 (CBH5) (Keck et al., 2005). Material was 

then subjected to silica beads-based RNA extraction and RT-qPCR using HCV 

primers. As expected, our positive control, the human anti-E2 CBH5 monoclonal 

antibody displayed the highest enrichment ratio (8-fold) when compared to an isotype 

control. RNA of in vitro produced HCV could be enriched 4-fold using an anti-LARP1 

Ig compared to its isotypic control (Fig. 2a). Delipidated particles using NP40 (0.1%, 

4°C, overnight) did not immunoprecipitate (not shown) using anti-LARP1 antibodies, 

suggesting that LARP1 associates with HCV externally rather than being 

encapsidated. 

To seek further evidence that LARP1 is associated with HCV virions, we performed 

immunogold electron microscopy (IEM) on supernatants of infected Huh7.5 cells, and 

also used immunocapture (Piver et al., 2017) as an alternative and independent EM-

related approach. Viral suspensions were generated from the supernatants of JFH1-

infected Huh7.5 cells which were clarified and concentrated on sucrose cushions 

(Parent et al., 2009) or from patient plasma as previously described (Piver et al., 2017). 

Suspensions were adsorbed on grids and processed (Cottarel et al., 2016). As shown 

in Fig. 2b (left set of images), no virion-like structure was observed in HCV-negative 
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supernatants. No labeling was found for HCV-positive samples stained with secondary 

antibodies only, ruling out non-specific staining. Although labeling was scarce, an issue 

commonly encountered in IEM, as illustrated by our previous ApoE staining (Cottarel 

et al., 2016; Parent et al., 2009), probing HCV-positive supernatants with anti-LARP1 

antibodies exposed virions of 30-60 nm in size (Fig. 2b, right set of images), 

corroborating previously published features of in vitro-derived viral particle 

preparations (Catanese et al., 2013). Gold particles located ≤ 40 nm (corresponding to 

a single immunoglobulin length) away from the virion were considered to be specifically 

bound. These data were confirmed using our recently developed immunocapture 

approach (Piver et al., 2017), implemented here based on anti-E2 and anti-LARP1 

antibodies, and which also revealed small-sized virions (Fig. 2c).  

Virion-bound host proteins often contribute to viral budding, not least due to their 

specific intracellular localization, as initially highlighted in the HIV field (Garrus et al., 

2001). Using confocal immunofluorescence microscopy, we studied the localization of 

LARP1 with respect to the infection status of Huh7.5 cells and vicinity of LDs as major 

sites for HCV morphogenesis (Miyanari et al., 2007), followed by the investigation of 

several HCV parameters. LARP1 produced a diffuse signal in the cytosol of uninfected 

cells, while it relocated to the immediate proximity of LDs upon infection, in most cases 

exhibiting near total colocalization with the typical LD-associated HCV core protein 

(Fig. 3a). These data were quantitatively verified using Pearson, morphometric and Li 

correlation coefficient approaches (Fig. 3b-d). Despite several attempts, co-

immunoprecipitation assays between HCV core and LARP1 remained unsuccessful, 

suggesting a labile interaction between both proteins at this level. These results 

indicate that an important fraction of the LARP1 cytosolic pool accumulates around 

core-decorated ER/LD structures as previously documented (Miyanari et al., 2007) in 



 8 

an HCV-positive cell-specific manner. No concomitant increase in LARP1 levels upon 

infection could be consistently observed (Suppl. Fig. 1). Altogether such data argue for 

a role for LARP1 in viral assembly processes.  

To test this hypothesis, we then modulated LARP1 expression and tested its effect on 

HCV replication and infectivity. LARP1 levels were transiently modulated by the 

infection. Huh7.5 cells were transfected with non targeting siRNAs, LARP1 C911-

mutated LARP1 siRNAs (Buehler et al., 2012) as a control for excluding off-target 

effects, or with wt LARP1 siRNAs. Knockdown efficiency was verified by RT-qPCR and 

Western blotting (Fig. 4a,b). LARP1 depletion-mediated toxicity was ruled out after 

performing Sulforhodamine B (SRB) (Vichai and Kirtikara, 2006) and Neutral Red (NR) 

(Repetto et al., 2008) assays (Fig. 4c,d). 

The virological consequences of LARP1 depletion were then addressed, by initially 

considering the highly propagative HCV JFH1 (Gt2a) strain. As shown in Fig. 5a,b, 

LARP1 depletion weakly decreased (< 2-fold) intracellular HCV RNA Gt2a levels, 

though no effect was detected extracellularly. This depletion was correlated with a 

strong increase in intracellular infectivity (up to 3.5-fold, see Materials and methods 

section) (Fig. 5c). Intriguingly, no significant effect could be observed on extracellular 

infectivity (Fig. 5d). The same approach was implemented to determine relative 

infectivity levels, by measuring TCID50/HCV RNA ratios, thus evaluating the 

intracellular RNA-to-particle conversion yield. Similarly to global infectivity levels, RNAi 

depletion of LARP1 increased the relative intracellular infectivity up to 3-fold (Fig. 5e). 

Interestingly, a weak (< 2-fold) reduction in the relative extracellular (particle to RNA 

copies) infectivity levels could be observed (Fig. 5f), which were confirmed through 

secreted HCV core antigen (Ag) levels (Fig. 5g). 



 9 

Finally, we evaluated the validity of these results across other HCV genotypes. We 

therefore tested the consequences of LARP1 depletion on the H77 (Gt1a) (Blight et 

al., 2003; Yanagi et al., 1997) and Gt3a-bearing S52 chimeric (Gottwein et al., 2011a) 

strains after electroporation. Post-electroporation viability and proliferative capacity of 

the cells were similar in all instances (Fig. 6a-b-e-f). While no difference could be 

observed at the HCV RNA level irrespective of LARP1 conditions (Fig 6c-g), significant 

inhibition (> 2-fold and 10-fold for Gt1a and Gt3a, respectively) of secreted HCV core 

Ag levels was observed upon LARP1 depletion (Fig. 6d-h). Lack of HCV RNA reduction 

following siRNA transfection was probably due to the presence in excess of in vitro 

transcribed RNA copies, while absence of detection of intracellular infectivity reflects 

the poor, if any, propagation rate of non JFH1 strains in vitro. Nevertheless, these 

findings suggest trans-genotypic validity of our results.  

To verify whether the enhancing impact of LARP1 depletion on HCV intracellular 

infectivity was due to its general impact on the secretory pathway of the hepatocyte, 

we conducted a RUSH (retention using selective hooks) assay (Boncompain and 

Perez, 2013). Since LARP1 depletion did not impair the trafficking of secretory cargoes 

between the ER and the Golgi apparatus (Suppl. Fig. 2), i.e. increased infectivity was 

not due to increased viral output, we postulate that LARP1 is involved in restricting 

viral infectivity downstream of the replication phase. These results may also indicate 

that the enhanced intracellular infectivity occasioned by LARP1 depletion is reversed 

and/or compensated by other structural components during the secretory process prior 

to the extracellular particle release.
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Discussion 

A virus may contain host proteins for the following reasons: the host protein is present 

at the site of assembly, the protein interacts with a viral protein and is swept up into 

the virion during budding, or its incorporation is needed to perform a specific function 

for the virus. Taken together, derived from MS as well as two methodologically-

unrelated approaches, our data identify LARP1 as a component of at least a subset of 

in vitro-grown (Gt2a) and clinical (Gt1a) HCV virions. These data also suggest that 

some LARP1 regions are exposed on the surface of the secreted viral particle since 

the protein is accessible for antibody binding, though the mechanisms underlying this 

exposure should be further ascertained. Indeed, HCV buds through the ER membrane 

and it is therefore expected that virion-bound proteins such as LARP1 that are 

accessible to antibody binding in IP/RT-qPCR and TCID50 assays translocate to the 

ER lumen prior to their association with the virion. LARP1 rapidly colocalizes with the 

peri-droplet HCV core signals but not with the envelope E2 glycoprotein. The 

association of LARP1 with nascent virions may therefore consist in its intercalation 

either (i) between the ER-derived membrane and the capsid or (ii) as a virion 

membrane embedded protein. Since none of the LARP1 primary sequence features 

encode for a signal peptide, as evidenced by its analysis using Predisi or SignalP 4.0 

(Petersen et al., 2011) software, non-canonical translocation processes (Giuliani et al., 

2011; Nickel and Rabouille, 2009; Nickel and Seedorf, 2008) may thus arise. 

These antibody-based results finally indicate that LARP1 plays a role in early 

interactions of at least a subset of particles with their target cells, as observed for other 

VBPs (Chang et al., 2007) (Parent et al., 2009). Since HCV displays a high level of 

association with non viral-encoded host material (Chang et al., 2007) (Huang et al., 

2007; Meunier et al., 2008), and, in this study, LARP1 inferring intracellular retention 
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of infectivity across three genotypes, this implies that such material must therefore be 

of specific structural importance for the life cycle of this pathogen (Lavie and 

Dubuisson, 2017). 

LARP1 was characterized relatively recently and has proven of interest in the field of 

the Dengue virus (Suzuki et al., 2016), another Flaviviridae member. LARP1 is 

overexpressed in HCC and that it is associated with poorer prognosis (Xie et al., 2013). 

While our study specifically focused on basic virology of HCV, it may prove pertinent 

to consider a potential association between intrahepatic LARP1 levels and HCV levels 

at the cirrhotic stage, the most exposed condition for HCC onset in patients. The fact 

that LARP1 may restrict HCV propagation deserves further investigation in light of its 

HCC-related protein status and the decreased viremia observed in HCC in the clinic 

(Reid et al., 1999). 
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Materials and methods 

Purification of HCV virions 

Infected plasma was obtained from three HCV-positive patients and an aviremic 

control and processed after approval of the French IRB (CPP South-East II, agreement 

#2010-08-AM2). Plasmas were stabilized with 10 mM Hepes (Gibco), antiproteases 

(Roche), centrifuged at 8,000 g for 15 min at 4°C, filtered through 0.45 µm membranes, 

layered onto a 20% sucrose cushion in TNE (10 mM Tris, 150 mM NaCl, 2 mM EDTA) 

and ultracentrifuged at 27,000 rpm for 4 h at 4°C. Pellets were then resuspended in 1 

mL of TNE, layered on top of 15-40% iodixanol gradients, and submitted to isopycnic 
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ultracentrifugation for 16 h at 31,200 rpm at 4°C. Fractions were then harvested from 

the top of the gradient. The amount of HCV RNA in each fraction was determined by 

real-time quantitative polymerase chain reaction (RT-qPCR). The fractions with the 

highest RNA content and the corresponding fractions from the uninfected control were 

pooled and dialyzed against TNE overnight at 4°C. Fractions were then concentrated 

10- to 20-fold in YM-3 concentration devices (Centricon; Millipore, Billerica, MA), 

subjected to a second ultracentrifugation step as described above and processed for 

mass spectrometry. 

 

Electron microscopy 

Viral suspensions were generated from infected cell supernatants or patient plasma 

which was clarified and then concentrated on a 20% sucrose cushion as described 

(Parent et al., 2009). Suspensions were adsorbed on 200 mesh Nickel grids coated 

with formvar-C for 2 min at room temperature (RT). Immunogold labeling was 

performed by floating the grids on droplets of reactive medium. Grids were blocked in 

1% BSA / 1% normal goat serum / 50 mM Tris-HCl, pH 7.4 for 10 min at RT. Incubation 

with anti-LARP1 primary antibodies (40 µg/ml) was carried out in a wet chamber for 2 

h at RT. Following successive washes in 50 mM Tris-HCl, pH 7.4 and pH 8.2 at RT, 

grids were first incubated in 1% BSA / 50 mM Tris-HCl, pH 8.2 in a wet chamber for 10 

min at RT and then labeled with 10 nm gold-conjugated IgG (Aurion) diluted 1/80 in 

1% BSA / 50 mM Tris-HCl pH 8.2 for 45 min. Grids were then subjected to two washes 

in 50 mM Tris-HCl pH 8.2 and pH 7.4 and finally rinsed in distilled water. Following a 

2 min fixation with 4% glutaraldehyde, grids were stained with 2% phosphotungstic 

acid for 2 min and then analyzed using a transmission electron microscope (Jeol 1400 

JEM, Tokyo, Japan) equipped with a Gatan camera (Orius 600) and a Digital 
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Micrograph Software.  

 

Immunocapture 

The formvar-carbon EM grids (S162, Oxford Instruments) were initially incubated with 

0.01% poly-L lysine for 30 min at RT and then with selected antibodies (20 µg/mL) for 

1 h at RT. Grids were washed in PBS and incubated with biological samples containing 

or not viral particles, for 2 h at RT. EM grids were washed in PBS and incubated for 20 

min in 4% paraformaldehyde and 1% glutaraldehyde in 0.1 M phosphate buffer, pH 

7.2. Particles trapped on grids were stained with 0.5% uranyl acetate for examination 

under a JEOL 1230 transmission electron microscope (Piver et al., 2017). 

 

Cell culture and HCV infection / electroporation. 

The human hepatoma cell line Huh7.5 was cultured in Dulbecco’s minimal essential 

medium (DMEM; Life Technologies) supplemented with 10% fetal bovine serum (FBS; 

Thermo Scientific) and 1% penicillin-streptomycin (Life Technologies). Viral stocks 

(Gt2a) or experiments (Gt1a and Gt3a) were generated via transfection of in vitro 

transcripts encoding the JFH1 genotype 2a-derived strain (Delgrange et al., 2007) or 

H77 (Yanagi et al., 1997) and S52 (Gottwein et al., 2010; Gottwein et al., 2011b) 

strains. 2x104 cells/cm2 were infected with HCV JFH1 at an MOI of 0.1.  

 

siRNA-mediated knockdown 

Twenty thousand cells per square centimeter were transfected with 33 nM final 

concentration of non-targeting control siRNAs, C911-mutated LARP1 siRNAs (Buehler 

et al., 2012) or wt LARP1 siRNAs (Sigma-Aldrich, sense strand, 5’-3’: 

GGUGACUUUGGAGAUGCAAUC, antisense strand, 5’-3’: 
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GAUUGCAUCUCCAAAGUCACC) using Lipofectamine 2000 (Invitrogen), according 

to the manufacturer’s instructions. The target sequence of LARP1, 5’-3’: 

GGTGACTTTGGAGATGCAATC corresponds to the GenBank Acc.# NM_015315. 

 

Immunofluorescence 

siRNA-transfected Huh7.5 cells were fixed in 2% paraformaldehyde, permeabilized 

and blocked with 0.1% triton X-100 / 3% BSA in PBS at RT, then stained with the 

primary antibodies overnight at 4°C (anti-LARP1 from Novus #NBP1-19128, anti-HCV 

core clone #C7/50 from Santa Cruz, 2 µg/mL) and finally incubated with Alexa–

conjugated secondary antibodies (1 µg/mL). Cell nuclei were counterstained with 

Hoechst 33358 (0.025µg/mL in PBS) and visualized under a Leica SP5 confocal 

microscope. Overlaid images were obtained using the ImageJ software.  

 

Immunoblotting  

Immunoblotting was performed using 30 µg of RIPA-resuspended Huh7.5 cell lysates, 

then resolved on 10% SDS-PAGE, blotted onto nitrocellulose membranes (Amersham 

Biosciences), blocked using 5% low fat dried milk in PBS for 1hr at RT and probed 

overnight at 4°C with antibodies raised against LARP1 (1/1,000; Novus Biologicals, 

cat. #NBP1-19128) and tubulin (1/10,000; Sigma-Aldrich, cat. #T5168). 

 

Immunoprecipitation and neutralization assays 

Supernatants from infected cells were harvested 4 days post infection, cleared by 

centrifugation (8,000 g, 15 min. 4°C) and then supplemented with 10 mM HEPES and 

protease inhibitors. Immunoprecipitation of secreted virions with antibodies coupled to 

protein G magnetic beads (Pierce, 2 µg/IP) was carried out as described previously 
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(Jammart et al., 2013). Material was then subjected to RNA extraction (Qiagen) and 

RT-qPCR.  

 

HCV TCID50 infectivity assay 

Cells were seeded onto 96-well plates (6,400 cells/well) the day before infection. Cells 

were then inoculated with 10-fold serial dilutions of the supernatants of interest. 96 h 

post-infection, cells were washed in PBS, fixed for 10 min in methanol/acetone and 

blocked for 30 min in 1X PBS / 5% BSA at RT. Cells were then probed with in-house 

HCV antiserum (#1804; 1/500) in 1X PBS / 3% BSA for 1hr at RT. After three washes 

in 1X PBS / 3% BSA, bound primary antibodies were probed with 1 µg/mL goat anti-

human Alexa Fluor 488 secondary antibodies (Life Technologies) for 1hr at RT and 

visualized by epifluorescence (Nikon TE2000E). Viral titers were determined using the 

adapted Reed & Münch method (Lindenbach, 2009). 

 

Neutral Red assay 

The Neutral Red (NR) assay was conducted as described by Repetto (Repetto et al., 

2008). Briefly, the NR stock solution (40 mg NR dye in 10 mL PBS) was diluted in 

culture medium to a final concentration of 4 mg/mL and then centrifuged at 600 g for 

10 min to remove any precipitated dye crystals. Cells were then incubated with 100 µL 

of NR medium for 1hr. NR medium was removed and the cells washed with PBS. 

Plates were incubated for 10 min under shaking with 150 µL/well of NR destain solution 

(50% ethanol 96%, 49% deionized water, 1% glacial acetic acid). OD was measured 

at 540 nm in a microplate spectrophotometer. 

 

Sulforhodamine B assay 
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Cells were incubated with 100 µL of 0.057% Sulforhodamine B (SRB) at RT for 30 min 

and then rinsed four times with 1% acetic acid, followed by four washes with distilled 

water. Plates were left to dry at RT and then incubated in 200 µL of 10 mM Tris pH 

10.5. Plates were placed on an orbital shaker for 5 min and OD measured at 510 nm 

in a microplate reader. 

 

Quantitative RT-PCR 

Total RNA was extracted using trizol (Invitrogen). 1 µg of RNA was DNAse I-digested 

(Promega) and then reverse transcribed using MMLV reverse transcriptase 

(Invitrogen) according to the manufacturer’s instructions. Quantitative real-time PCR 

was performed on a LightCycler 480 device (Roche) using the iQ SYBR Green 

Supermix (Bio-Rad). PCR primers sequences (5’-3’) and qPCR conditions were 

defined as follows: GUS-F: CGTGGTTGGAGAGCTCATTTGGAA, GUS-R: 

ATTCCCCAGCACTCTCGTCGGT, HCV RC1: GTCTAGCCATGGCGTTAGTA, HCV 

RC21: CTCCCGGGGCACTCGCAAGC, LARP1-F: 

TCAAACTTTCGGTAGCCAAACT, and LARP1-R: GCCTGGCAACCAGAGATCAAA. 

Annealing temparature was 55°C in all instances. Primer specificity was assessed by 

melting curves and agarose gel electrophoresis. 

 

HCV core Elisa assay 

The supernatants (100 µl) of HCV Gt1a-, Gt2a- and Gt3a-infected cells were spun 

down (8,000 g, 5 min, 4°C) prior to Elisa processing using the Quick titer HCV core 

Antigen Elisa kit (Cell Biolabs Inc) according to the manufacturer’s instructions. 

 

Figure legends 
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Figure 1. Double gradient-based enrichment of HCV particles harvested from 

clinical material. 

Clarified and 20% sucrose cushion-pelleted plasmas were subjected to isopycnic 

fractionation using two sequential 10% to 60% linear iodixanol gradients. HCV RNA 

levels were determined in each fraction after the first run and fractions bearing the 

highest viral signal by qPCR were loaded atop the second gradient prior to a second 

round of qPCR. The density of each fraction was determined using a refractometer. 

The graph is representative of two independent fractionation processes performed on 

two distinct patient plasmas. Plasma from an aviremic subject served as co-purification 

/ mass spectrometry negative control and was processed in parallel. 

 

Figure 2. LARP1 is a hepatitis C virus particle-bound host factor.  

(a) LARP1-mediated immunoprecipitation of HCV RNA. Supernatants harvested from 

HCVcc-infected Huh7.5 cells (3 days post-infection (p.i.)) were subjected to 

clarification and immunoprecipitation using the indicated antibodies. HCV RNA was 

extracted and subsequently analyzed by RT-qPCR. Mann-Whitney test, P < 0.05 (*). 

(b) Association of LARP1 with cell culture-derived HCVcc evidenced by IEM. 

Concentrated supernatants of infected Huh7.5 cells were deposited onto EM grids and 

processed for immunogold labeling using the indicated antibodies. Bound anti-LARP1 

antibodies were detected using secondary Igs conjugated to 10 nm gold particles. 

Pictures are representative of two labeling procedures. (c) Association of LARP1 with 

cell culture-derived HCV particles evidenced by immunocapture EM. Grids previously 

coated with control Igs, anti-HCV E2 (clone #AR3A) or anti-LARP1 were then 

incubated with supernatants of HCV-infected Huh7.5 cells and visualized under TEM. 

(n = 3 +/- s.d.). Mann-Whitney, P < 0.05 (*). For clarity, only highest significance is 
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shown. 

 

Figure 3. HCV infection triggers LARP1 accumulation around lipid droplets. 

(a) LARP1 and core co-localization. HCVcc-infected Huh7.5 cells (3 days p.i.) were 

fixed, permeabilized and stained for HCV core proteins and LARP1 prior to incubation 

with Alexa 488 (HCV core signal) and Alexa-594 (LARP1 signal)-conjugated 

secondary antibodies. Cells were counterstained with Hoechst 33358. Merged images 

were obtained using the ImageJ software. (b) Pearson co-localization coefficient. 

Coefficient was calculated using the ImageJ software and plotted against the indicated 

time points. (c) Morphometric assessment of co-localization. Green (HCV core) and 

red (LARP1) fluorescence intensities were plotted for each pixel across a 

representative lipid droplet image as shown (dashed line) using the Plot Profile function 

of the ImageJ software. Correlation coefficients for the selected couples of intensity 

values (core/LARP1) are shown. (d) Further statistical assessment of this co-

localization dataset implemented using the Li coefficient. Profile of positive staining 

amplitude values confirm near total co-localization (Bolte and Cordelieres, 2006). Data 

are representative of six independent experiments. 

 

Figure 4. RNAi-based depletion of LARP1 expression.  

(a,b) Cells transfected with siRNAs were subsequently cultured for 24 to 72 h prior to 

RNA extraction (a) or immunobloting (b). Anti-LARP1-specific primers or anti-LARP1 

antibodies, respectively were used. Homogenous loading and blotting were previously 

assessed by Ponceau Red staining (not shown) and using anti-tubulin antibodies. (c,d) 

Related cell toxicity assays. The same cultures as a were tested for cell proliferation 

and viability using the SRB and NRA assays, respectively. n = 3, Mann-Whitney test: 
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ns, non-significant. 

 

Figure 5. Virological consequences of LARP1 depletion.  

HCVcc-infected cells were transfected with siRNAs and subsequently cultured for 24 

to 72 h prior to: intracellular RNA extraction followed by RT-qPCR using HCV and GUS 

primers (a), extracellular RNA extraction followed by RT-qPCR using HCV primers (b), 

intracellular or extracellular TCID50 quantification followed by protein normalization (c-

d) or by HCV RNA normalization (e-f), and finally (g) secreted HCV core Ag 

quantification by Elisa (n = 3 +/- s.d.). Mann-Whitney, P < 0.05 (*). 

 

Figure 6. Validation of virological consequences of LARP1 depletion in HCV Gt1a 

and Gt3a (chimeric) strains. 

(a-b-e-f). Evaluation of cell viability post-HCV Gt1a (H77) and Gt3a (S52) 

electroporation using the NRA (a-e) and SRB (b-f) assays. Intracellular RNA extraction 

followed by RT-qPCR using HCV RC1-RC21 and GUS primers (c-g). Extracellular 

quantification of secreted HCV core Ag levels (d-h).  

 

Supplementary Figure 1. LARP1 is not modulated by HCV infection. 

Cells were infected with HCV at a MOI of 0.1 or left uninfected and cultured for 3 days 

prior to western blotting using anti-LARP1 and anti-HCV core antibodies. Homogenous 

loading and blotting were previously assessed by Ponceau Red staining (not shown) 

and using anti-tubulin antibodies (n = 3). 

 

Supplementary Figure 2. Functionality of the secretory pathway is unaltered by 

LARP1 depletion.  



 21 

Huh7.5 cells were transfected with the indicated siRNAs. Co-localization of GM130 

and MannII-GFP is shown for each condition at baseline and 20 min post-displacement 

(n = 2). 
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