Angular distribution of a characteristic x-ray emission transmitted by a periodic multilayer

Karine Le Guen,¹ Meiyi Wu,¹ Jean-Michel André,¹ Zhanshan Wang,² Qiushi Huang,² Ian Vickridge,³ Didier Schmaus,^{3,4} Emrick Briand,³ Sébastien Steydli,³ Philippe Walter,⁵ and Philippe Jonnard,¹

¹ Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université - CNRS, 4 place Jussieu, F-75252 Paris cedex 05, France

² Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China

³ Institut des NanoSciences de Paris, Sorbonne Université - CNRS, 4 place Jussieu, F-75252 Paris cedex 05, France

⁴ Université Paris Diderot-P7, F-75205 Paris cedex 13, France

⁵ Laboratoire d'Archéologie Moléculaire et Structurale, Sorbonne Université - CNRS, 4 place Jussieu, F-75005 Paris, France

About 20 years ago, André¹ suggested to use a multilayer interferential transmission mirror as a soft x-ray fluorescence spectrometer by placing the multilayer between a sample emitting some characteristic radiation to be analyzed and an x-ray detector. In the transmittance curve of the multilayer measured as a function of the detection angle, the presence of a dip indicates the occurrence of a fluorescence emission. From the Bragg law the fluorescence wavelength can be determined allowing the identification of the chemical element.

Figure 1: measured and calculated angular distribution of the transmittance of a $[B_4C/Pd/B_4C/Y]_{x20}$ multilayer at the wavelength of the Si K α emission from the Si substrate.

The dip in the angular distribution of the Si K α characteristic emission, originating from the substrate and transmitted through the B₄C/Pd/B₄C/Y periodic multilayer, is clearly observed in Figure 1. It is well in agreement with simulation. The emission is induced upon proton irradiation through the multilayer and detected with an energy-sensitive CCD camera. Such a device can be envisaged as a spectrometer without mechanical displacement and using various ionizing sources (electrons, x-rays, ions).

¹ J.-M. André, Rev. Sci. Instrum. **69**, 1267 (1998)