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We present new results concerning the approximation of the total variation, ∫ Ω ∇u , of a function u by non-local, non-convex functionals of the form

dx dy, as δ → 0, where Ω is a domain in R d and ϕ ∶ [0, +∞) → [0, +∞) is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate and numerous problems remain open. De Giorgi's concept of Gamma-convergence illuminates the situation, but also introduces mysterious novelties. The original motivation of our work comes from Image Processing.

Introduction

Throughout this paper, we assume that ϕ ∶ [0, +∞) → [0, +∞) is continuous on [0, +∞) except at a finite number of points in (0, +∞) where it admits a limit from the left and from the right. We also assume that ϕ(0) = 0 and that ϕ(t) = min{ϕ(t+), ϕ(t-)} for all t > 0, so that ϕ is lower semi-continuous. We assume that the domain Ω ⊂ R d is either bounded and smooth, or that Ω = R d . The case d = 1 is already of great interest; many difficulties (and open problems!) occur even when d = 1.

Given a measurable function u on Ω, and a small parameter δ > 0, we define the following non-local functionals:

Λ(u) ∶= Ω Ω ϕ( u(x) -u(y) )
x -y d+1 dx dy and Λ δ (u) ∶= δΛ(u δ).

(1.1)

Sometimes, it is convenient to be more specific and to write Λ δ (u, ϕ, Ω) or Λ δ (u, Ω) instead of Λ δ (u).

Our main goal in this paper is to study the asymptotic behaviour of Λ δ as δ → 0. In order to simplify the presentation we make, throughout the paper, the following four basic assumptions on ϕ: ϕ(t) ≤ at 2 in [0, 1] for some positive constant a, σ ⋅ e dσ for some e ∈ S d-1 .

(1.5)

A straightforward computation gives

γ d = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 2 d -1 S d-2 = 2 B d-1 if d ≥ 3, 4 if d = 2, 2 if d = 1, (1.6) 
where S d-2 (resp. B d-1 ) denotes the unit sphere (resp. ball) in R d- 1 . Condition (1.5) is a normalization condition prescribed in order to have (1.9) below with constant 1 in front of ∫ Ω ∇u . Denote A = ϕ; ϕ satisfies (1.2) -(1.5) .

(1.7)

Note that Λ is never convex when ϕ ∈ A.

We also mention the following additional condition on ϕ which will be imposed in Sections 4 and 5: ϕ(t) > 0 for all t > 0.

(1.8)

Note that if (1.2) and (1.3) hold, then Λ δ (u) is finite for every u ∈ H 1 2 (Ω), and in particular for every u ∈ C 1 ( Ω) when Ω is bounded. Assumptions (1.2) and (1.3) cover a large class of functions ϕ used in Image Processing (see the list below) and they simplify the presentation of various technical points. In many parts of the paper they can be weaken; in some places it might even be sufficient to assume only that ∫ ∞ 0 ϕ(t)t -2 dt < +∞. However, assumption (1.4) plays an important role in parts of the proof of Theorem 1. Very little is known without the monotonicity assumption on ϕ, except when d = 1; see Open problem 1.

Here is a list of specific examples of functions ϕ that we have in mind. They all satisfy (1.2)- (1.4). In order to achieve (1.5), we choose ϕ = c i φi where φi is taken from the list below and c i is an appropriate constant. 

φ1 (t) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if t ≤ 1 1 if t > 1.
Example 2:

φ2 (t) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ t 2 if t ≤ 1 1 if t > 1.
Example 3:

φ3 (t) = 1 -e -t 2 .
Examples 2 and 3 are motivated by Image Processing (see Section 5).

In Section 2 we investigate the pointwise limit of Λ δ as δ → 0, i.e., the convergence of Λ δ (u) for fixed u. We first consider the case where u ∈ C 1 ( Ω), with Ω bounded, and prove (see Proposition 1) that Λ δ (u) converges, as δ → 0, to T V (u) = Ω ∇u , the total variation of u.

(1.9)

One may then be tempted to infer that the same conclusion holds for every u ∈ W 1,1 (Ω). Surprisingly, this is not true: for every d ≥ 1 and for every ϕ ∈ A, one can construct a function u ∈ W When dealing with functions u ∈ BV (Ω), the situation becomes even more intricate as explained in Section 2.2. In particular, it may happen (see Pathology 3 in Section 2.2) that, for some ϕ ∈ A and some u ∈ BV (Ω),

lim inf δ→0 Λ δ (u) < Ω ∇u .
On the other hand, we prove (see (2.25)) that, for every ϕ ∈ A,

lim inf δ→0 Λ δ (u) ≥ K Ω ∇u ∀ u ∈ L 1 (Ω),
for some K ∈ (0, 1] depending only on d and ϕ, and (see Proposition 2)

lim sup δ→0 Λ δ (u) ≥ Ω ∇u ∀ u ∈ L 1 (Ω).
Here and throughout the paper, we set ∫ Ω ∇u = +∞ if u ∈ L 1 (Ω) ∖ BV (Ω).

All these facts suggest that the mode of convergence of Λ δ to T V as δ → 0 is delicate and that pointwise convergence may be deceptive. It turns out that Γ-convergence (in the sense of E. De Giorgi) is the appropriate framework to analyze the asymptotic behavior of Λ δ as δ → 0. (For the convenience of the reader, we recall the definition of Γ-convergence in Section 3). Section 3 deals with the following crucial result whose proof is extremely involved. Theorem 1. Let ϕ ∈ A. There exists a constant K = K(ϕ) ∈ (0, 1], which is independent of Ω such that, as δ → 0, Λ δ Γ-converges to Λ 0 in L 1 (Ω), (1.10) where Λ 0 (u) ∶= K Ω ∇u for u ∈ L 1 (Ω).

Here is a direct consequence of Theorem 1 in the case d = 1.

Corollary 1. Let u ∈ L 1 (0, 1) and (u δ ) ⊂ L 1 (0, 1) be such that u δ → u in L 1 (0, 1). Then lim inf δ→0 Λ δ (u δ , (0, 1)) ≥ K(ϕ) u(t 2 ) -u(t 1 ) , (1.11) for all Lebesgue points t 1 , t 2 ∈ (0, 1) of u.

Despite its simplicity, we do not know an easy proof for Corollary 1 even when u δ ≡ u, ϕ = c 1 φ1 , and K(ϕ) is replaced by a positive constant independent of u; in this case the result is originally due to J. Bourgain and H-M. Nguyen [START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF]Lemma 2].

Remark 1. The constant K may also depend on d (actually we have not investigated whether it really depends on d), but for simplicity we omit this (possible) dependence.

Remark 2. The asymptotic behavior of Λ δ as δ → 0 when ϕ = c 1 φ1 has been extensively studied at the suggestion of H. Brezis; see e.g., [START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF][START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF][START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF][START_REF] Nguyen | Further characterizations of Sobolev spaces[END_REF][START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF][START_REF] Nguyen | Some inequalities related to Sobolev norms[END_REF][START_REF] Nguyen | Estimates for the topological degree and related topics[END_REF][START_REF] Ponce | Personal communication to the authors[END_REF]. In this particular case, Theorem 1 and Theorem 3 (below) are originally due to H-M. Nguyen [START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF], [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF], and [START_REF] Nguyen | Some inequalities related to Sobolev norms[END_REF]. The lengthy proof of Theorem 1 borrows numerous ideas from [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF], however, the presence of a general function ϕ ∈ A in Λ δ introduces many new challenges, some still unresolved; see, e.g., Open problems 1 and 2 below.

It would be interesting to remove the monotonicity assumption (1.4) in the definition of A. More precisely, we have Open problem 1. Assume that (1.2), (1.3), and (1.5) hold. Is it true that either the conclusion of Theorem 1 holds, or (Λ δ ) Γ-converges in L 1 (Ω) to 0 as δ → 0?

The answer is positive in the one dimensional case [21].

Remark 3. Note that if one removes the monotonicity assumption on ϕ it may happen that (Λ δ ) Γ → 0 in L 1 (Ω) as δ → 0. This occurs e.g., when supp ϕ ⊂⊂ (0, +∞). Indeed, given u ∈ L 1 (Ω), let (ũ δ ) be a family of functions converging in L 1 (Ω) to u, as δ goes to 0, such that ũδ takes its values in the set mδZ. Here m is chosen such that t < m 2 for t ∈ supp ϕ. It is clear that Λ δ (ũ δ ) = 0, ∀ δ > 0.

Therefore Λ δ Γ → 0 in L 1 (Ω).

The appearance of the constant K = K(ϕ) in Theorem 1 is mysterious and somewhat counterintuitive. Assume for example that Ω is bounded and that u ∈ C 1 ( Ω). We know that Λ δ (u) → ∫ Ω ∇u as δ → 0 (see Proposition 1). On the other hand, it follows from Theorem 1 that there exists a family (u δ ) in L 1 (Ω) such that u δ → u in L 1 (Ω) and Λ δ (u δ ) → K ∫ Ω ∇u as δ → 0. The reader may wonder how K is determined. This is rather easy to explain, e.g., when d = 1 and Ω = (0, 1); K(ϕ) is given by

K(ϕ) = inf lim inf δ→0 Λ δ (v δ ), (1.12) 
where the infimum is taken over all families of functions (v δ ) δ∈(0,1) ⊂ L 1 (0, 1) such that v δ → v 0 in L 1 (0, 1) as δ → 0 with v 0 (x) = x in (0, 1). Unfortunately, formula (1.12) provides very little information about the constant K(ϕ). Taking v δ = v 0 for all δ > 0, we obtain K(ϕ) ≤ 1 for all ϕ. Indeed, an easy computation using the normalization (1.5) shows (see Proposition 1) that lim δ→0 Λ δ (v 0 ) = ∫ 1 0 v ′ 0 = 1. A more sophisticated choice of (v δ ) in [START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF] yields K(ϕ) < 1 when ϕ = c 1 φ1 , for every d ≥ 1. For the convenience of the reader, we include the proof of this fact in Section 3.6. On the other hand, it is nontrivial that K(ϕ) > 0 for all ϕ ∈ A and d ≥ 1. It is even less trivial that inf ϕ∈A K(ϕ) > 0 (see Section 3.5).

Here is a challenging question, which is open even when d = 1.

Open problem 2. Is it always true that K(ϕ) < 1 in Theorem 1? Or even better: Is it true that sup ϕ∈A K(ϕ) < 1?

We believe that indeed K(ϕ) < 1 for every ϕ. (However, if it turns out that K(ϕ) = 1 for some ϕ's, it would be interesting to characterize such ϕ's.)

In Section 4, we establish the following two compactness results. The first one deals with the level sets of Λ δ for a fixed δ, e.g., for δ = 1.

Theorem 2. Let ϕ ∈ A satisfy (1.8), and let (u n ) be a bounded sequence in L 1 (Ω) such that

sup n Λ(u n ) < +∞.
(

1.13)

There exists a subsequence

(u n k ) of (u n ) and u ∈ L 1 (Ω) such that (u n k ) converges to u in L 1 (Ω) if Ω is bounded, resp. in L 1 loc (R d ) if Ω = R d .
The second result concerns a sequence Λ δn with δ n → 0; here (1.8) is not required.

Theorem 3. Let ϕ ∈ A, (δ n ) → 0, and let (u n ) be a bounded sequence in L 1 (Ω) such that sup n Λ δn (u n ) < +∞.
(

1.14)

There exists a subsequence

(u n k ) of (u n ) and u ∈ L 1 (Ω) such that (u n k ) converges to u in L 1 (Ω) if Ω is bounded, resp. in L 1 loc (R d ) if Ω = R d .
In Section 5, we consider problems of the form inf

u∈L q (Ω) E δ (u), (1.15) 
in the case Ω bounded, where

E δ (u) = λ Ω u -f q + Λ δ (u), (1.16) 
q ≥ 1, f ∈ L q (Ω) is given, and λ is a fixed positive constant. Our goal is twofold: investigate the existence of minimizers for E δ (δ being fixed) and analyze their behavior as δ → 0. The existence of a minimizer in (1.15) is not straightforward since Λ δ is not convex and one cannot invoke the standard tools of Functional Analysis. Theorem 2 implies the existence of a minimizer in (1.15). Next we study the behavior of these minimizers as δ → 0. More precisely, we prove Theorem 4. Assume that Ω is bounded, and that ϕ ∈ A satisfies (1.8). Let q ≥ 1, f ∈ L q (Ω), and let u δ be a minimizer of (1.16). Then u δ → u 0 in L q (Ω) as δ → 0, where u 0 is the unique minimizer of the functional E 0 defined on L q (Ω) ∩ BV (Ω) by

E 0 (u) ∶= λ Ω u -f q + K Ω ∇u ,
and 0 < K ≤ 1 is the constant coming from Theorem 1.

Basic ingredients in the proof are the Γ-convergence result (Theorem 1) and the compactness result (Theorem 3).

As explained in Section 5, E δ and E 0 are closely related to functionals used in Image Processing for the purpose of denoising the image f . In fact, E 0 corresponds to the celebrated ROF filter originally introduced by L. I. Rudin, S. Osher and E. Fatemi in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. While E δ (with ϕ as in Examples 2-3) is reminiscent of filters introduced by L. S. Lee [START_REF] Lee | Digital image smoothing and the sigma filter[END_REF] and L. P. Yaroslavsky (see [START_REF] Yaroslavsky | Digital Picture Processing. An introduction[END_REF][START_REF] Yaroslavsky | Fundamentals of Digital Optics[END_REF]). More details can be found in the expository paper by A. Buades, B. Coll, and J. M. Morel [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]; see also [START_REF] Buades | Neighborhood filters and PDE's[END_REF][START_REF] Buades | Non-local means denoising[END_REF][START_REF] Smith | SUSAN-a new approach to low level image processing[END_REF][START_REF] Paris | Bilateral filtering: Theory and applications[END_REF] where various terms, such as "neighbourhood filters","non-local means" and "bilateral filters", are used. Some of these filters admit a variational formulation, as explained by S. Kindermann, S. Osher and P. W. Jones in [START_REF] Kindermann | Deblurring and Denoising of Images by Nonlocal Functionals[END_REF]. Theorem 4 says that such filters "converge" to the ROF filter, as δ → 0, a fact which seems to be new to the experts in Image Processing.

In recent years there has been much interest in the convergence of convex non-local functionals to the total variation, going back to the work of J. Bourgain, H. Brezis and P. Mironescu [START_REF] Bourgain | Another look at Sobolev spaces[END_REF] (see Remark 4 below). Related works may be found in [START_REF] Brezis | How to recognize constant functions. Connections with Sobolev spaces, Volume in honor of M. Vishik[END_REF][START_REF] Davila | On an open question about functions of bounded variation[END_REF][START_REF] Bourgain | Limiting embedding theorems for W s,p when s ↑ 1 and applications[END_REF][START_REF] Ponce | A new approach to Sobolev spaces and connections to Γ-convergence[END_REF][START_REF] Van Schaftingen | Set transformations, symmetrizations and isoperimetric inequalities[END_REF][START_REF] Caffarelli | Nonlocal minimal surfaces[END_REF][START_REF] Leoni | Characterization of Sobolev and BV Spaces[END_REF][START_REF] Fusco | The quantitative isoperimetric inequality and related topics[END_REF][START_REF] Figalli | Isoperimetry and stability properties of balls with respect to nonlocal energies[END_REF][START_REF] Bucur | Nonlocal diffusion and applications[END_REF][START_REF] Brezis | Two subtle convex nonlocal approximation of the BVnorm[END_REF][START_REF] Brezis | The BBM formula revisited[END_REF][START_REF] Brezis | Sobolev Maps with Values into the Circle[END_REF]. For the convergence of non-local functionals to the perimeter, we mention in particular [START_REF] Caffarelli | Uniform estimates and limiting arguments for nonlocal minimal surfaces[END_REF][START_REF] Ambrosio | Gamma-convergence of nonlocal perimeter functionals[END_REF], the two surveys [25, Section 5], [START_REF] Fusco | The quantitative isoperimetric inequality and related topics[END_REF]Section 5.6], and the references therein. As one can see, there is a "family resemblance" with questions studied in our paper. We warn the reader that the non-convexity of Λ δ is a source of major difficulties. Moreover, new and surprising phenomena emerged over the past fifteen years, in particular the discovery in [START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF][START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF] that the Γ-limit and the pointwise limit of (Λ δ ) do not coincide; we refer to [START_REF] Brezis | New approximations of the total variation and filters in Imaging[END_REF] for some historical comments. We also mention that a different type of approximation of the BV-norm of a function u, especially suited when u is the characteristic function of a set A, so that its BV -norm is the perimeter of A, has been recently developed in [START_REF] Ambrosio | Perimeter of sets and BMO-type norms[END_REF] and [START_REF] Ambrosio | BMO-type norms related to the perimeter of sets[END_REF] (with roots in [START_REF] Bourgain | A new function space and applications[END_REF]).

Part of the results in this paper are announced in [START_REF] Brezis | New approximations of the total variation and filters in Imaging[END_REF][START_REF] Nguyen | Estimates for the topological degree and related topics[END_REF][START_REF] Brezis | Non-convex, non-local functionals converging to the total variation[END_REF].

After our work was completed and posted on arXiv, we received an interesting paper by C. Antonucci, M. Gobbino, M. Migliorini and N. Picenni [START_REF] Antonucci | Optimal constants for a non-local approximation of Sobolev norms and total variation[END_REF] concerning the asymptotic behavior of Λ δ as δ → 0 specifically when ϕ = c 1 φ1 and Ω = R d . In particular, they obtain the explicit value of K(c 1 φ1 ) = ln 2 ≈ 0.7 for every d ≥ 1. This confirms the conjecture made by H-M. Nguyen [START_REF] Nguyen | Γ-convergence and Sobolev norms[END_REF] for d = 1. They also answer positively Open problem 3 in Section 3.1 (below) when ϕ = c 1 φ1 and Ω = R d . In addition they present a totally new proof of Theorem 1 when ϕ = c 1 φ1 and Ω = R d . It would be desirable to extend their approach to a general function ϕ ∈ A.

2 Pointwise convergence of Λ δ as δ → 0

Some positive results

The first result in this section is

Proposition 1. Assume that ϕ ∈ A. Then lim δ→0 Λ δ (u) = Ω ∇u , (2.1 
)

for all u ∈ C 1 (Ω) if Ω is bounded, resp. for all u ∈ C 1 c (R d ) if Ω = R d . However, if u ∈ W 1,1 (Ω) (with Ω bounded or Ω = R d ), we can only assert that lim inf δ→0 Λ δ (u) ≥ Ω ∇u , (2.2) 
and strict inequality may happen (see Pathology 1 in Section 2.2).

Remark 4. The convergence of a special sequence of convex non-local functionals to the total variation was originally analyzed by J. Bourgain, H. Brezis and P. Mironescu [START_REF] Bourgain | Another look at Sobolev spaces[END_REF] and further investigated in [START_REF] Brezis | How to recognize constant functions. Connections with Sobolev spaces, Volume in honor of M. Vishik[END_REF][START_REF] Davila | On an open question about functions of bounded variation[END_REF][START_REF] Bourgain | Limiting embedding theorems for W s,p when s ↑ 1 and applications[END_REF][START_REF] Ponce | A new approach to Sobolev spaces and connections to Γ-convergence[END_REF][START_REF] Van Schaftingen | Set transformations, symmetrizations and isoperimetric inequalities[END_REF][START_REF] Leoni | Characterization of Sobolev and BV Spaces[END_REF][START_REF] Brezis | Sobolev Maps with Values into the Circle[END_REF][START_REF] Brezis | Two subtle convex nonlocal approximation of the BVnorm[END_REF][START_REF] Brezis | The BBM formula revisited[END_REF]. More precisely, it has been shown that, for every u ∈ L 1 (Ω),

lim ε→0 J ε (u) = γ d Ω ∇u , (2.3) 
where

J ε (u) = Ω Ω u(x) -u(y) x -y ρ ε ( x -y ) dx dy. (2.4)
Here γ d is defined in (1.5), ρ ε is an arbitrary sequence of radial mollifiers (normalized by the condition ∫ ∞ 0 ρ ε (r)r d-1 dr = 1). As the reader can see, (2.1) and (2.3) look somewhat similar. However, the asymptotic analysis of Λ δ is much more delicate because two basic properties satisfied by J ε are not fulfilled by Λ δ : i) there is no constant C such that, e.g., with Ω bounded,

Λ δ (u) ≤ C Ω ∇u ∀ u ∈ C 1 ( Ω), ∀ δ > 0, (2.5) 
despite the fact lim δ→0 Λ δ (u) = ∫ Ω ∇u for all u ∈ C 1 ( Ω). Indeed, if (2.5) held, we would deduce by density the same estimate for every u ∈ W 1,1 (Ω) and this contradicts Pathology 1 in Section 2.2.

ii) Λ δ (u) is not a convex functional.

It is known (see [START_REF] Ponce | A new approach to Sobolev spaces and connections to Γ-convergence[END_REF]) that the Γ-limit and the pointwise limit of (J ε ) coincide and are equal to γ d ∫ Ω ∇ ⋅ . By contrast, this is not true for Λ δ since the constant K in Theorem 1 might be less than 1 (e.g., when ϕ = c 1 φ1 ).

Here and in what follows in this paper, given a function ϕ ∶ [0, +∞) → R and δ > 0, we denote ϕ δ the function ϕ δ (t) = δϕ(t δ) for t ≥ 0.

With this notation, one has

Λ δ (u, ϕ) = Λ(u, ϕ δ ).
Proof of Proposition 1. We first consider the case

Ω = R d and u ∈ C 1 c (R d ). Fix M > 1 such that u(x) = 0 if x ≥ M -1. We have Λ δ (u) = x >M dx R d ϕ δ ( u(x) -u(y) ) x -y d+1 dy + x ≤M dx R d ϕ δ ( u(x) -u(y) )
x -y d+1 dy.

Since ϕ is bounded and

x >M dx y <M -1 1 x -y d+1 dy < +∞, it follows from the choice of M that lim δ→0 x >M dx R d ϕ δ ( u(x) -u(y) )
x -y d+1 dy = 0.

(2.6)

Replacing y by x + z and using polar coordinates in the z variable, we find

x ≤M dx R d ϕ δ ( u(x) -u(y) ) x -y d+1 dy = x ≤M dx +∞ 0 dh S d-1 ϕ δ ( u(x + hσ) -u(x) ) h 2 dσ.
(2.7) We have

x ≤M dx +∞ 0 dh S d-1 ϕ δ ( u(x + hσ) -u(x) ) h 2 dσ = x ≤M dx +∞ 0 dh S d-1 δϕ u(x + hσ) -u(x) δ h 2 dσ. (2.8)
Rescaling the variable h gives

x ≤M dx +∞ 0 dh S d-1 δϕ u(x + hσ) -u(x) δ h 2 dσ = x ≤M dx +∞ 0 dh S d-1 ϕ u(x + δhσ) -u(x) δ h 2 dσ. (2.9)
Combining (2.7), (2.8), and (2.9) yields

x ≤M dx R d ϕ δ ( u(x) -u(y) ) x -y d+1 dy = x ≤M dx +∞ 0 dh S d-1 ϕ u(x + δhσ) -u(x) δ h 2 dσ.
(2.10) Note that

lim δ→0 u(x + δhσ) -u(x) δ = ∇u(x) ⋅ σ h for (x, h, σ) ∈ R d × [0, +∞) × S d-1 . (2.11)
Since ϕ is continuous at 0 and on (0, +∞) except at a finite number of points, it follows that

lim δ→0 1 h 2 ϕ u(x + δhσ) -u(x) δ = 1 h 2 ϕ ∇u(x) ⋅ σ h
for a.e. (x, h, σ) ∈ R d × (0, +∞) × S d-1 (2.12) (if ∇u(x) ⋅ σ h is a point of discontinuity of ϕ, we may change a little bit h). Rescaling once more the variable h gives

∞ 0 dh S d-1 1 h 2 ϕ ∇u(x) ⋅ σ h dσ = ∇u(x) ∞ 0 ϕ(t)t -2 dt S d-1
σ ⋅ e dσ;

(2.13) here we have also used the obvious fact that, for every V ∈ R d , and for any fixed e ∈ S d-1 ,

S d-1 V ⋅ σ dσ = V S d-1
σ ⋅ e dσ.

(2.14) Thus, by the normalization condition (1.5), we obtain

x ≤M dx ∞ 0 dh S d-1 1 h 2 ϕ ∇u(x) ⋅ σ h dσ = x ≤M ∇u dx. (2.15) Define φ ∶ [0, ∞) → R as follows φ(t) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (a + b)t 2 if 0 ≤ t ≤ 1, a + b if t > 1,
where a and b are the constants in (1.2) and (1.3). Then

ϕ ≤ φ on [0, +∞). (2.16)
We note that ∞ 0 φ(t)t -2 dt < +∞.

(2.17)

Since u ∈ C 1 c (R d ), it is clear that u(x + δhσ) -u(x) δ ≤ Ch for (x, h, σ) ∈ R d × [0, +∞) × S d-1 , (2.18) 
for some positive constant C. On the other hand, by (2.17), The proof of (2.2) is almost identical, even simpler. In fact (2.2) is an immediate consequence of (2.12) and (2.13), and Fatou's lemma.

x ≤M dx ∞ 0 dh S d-1 1 h 2 φ(Ch) dσ < +∞. ( 2 
We next consider the case where Ω is bounded. Let D ⊂⊂ Ω and fix t > 0 small enough such that B(x, t) = {y ∈ R d ; y -x < t} ⊂⊂ Ω for every x ∈ D. We have, for every u ∈ W 1,1 (Ω),

Λ δ (u) ≥ D dx B(x,t) ϕ δ ( u(x) -u(y) ) x -y d+1 dy = D dx t δ 0 S d-1 ϕ u(x + δhσ) -u(x) δ h 2 dσ dh.
By the same method as above, we deduce that

lim inf δ→0 Λ δ (u) ≥ D ∇u ∀ u ∈ W 1,1 (Ω); (2.21) 
which implies (2.2) since D ⊂ Ω is arbitrary.

In order to prove (2.1) for every u ∈ C 1 ( Ω), we write

Λ δ (u) = A δ + B δ + C δ ,
where

A δ = D dx B(x,t) ϕ δ ( u(x) -u(y) ) x -y d+1 dy, B δ = D dx Ω∖B(x,t) ϕ δ ( u(x) -u(y) )
x -y d+1 dy,

and

C δ = Ω∖D dx Ω ϕ δ ( u(x) -u(y) )
x -y d+1 dy.

By the same method as above, we find

lim δ→0 A δ = D ∇u . (2.22)
On the other hand, we have

B δ ≤ δb Ω 2 t d+1 , (2.23) 
and, as above,

C δ ≤ δ Ω∖D dx Ω φ(L x -y δ) x -y d+1 dy,
where L is the Lipschitz constant of u on Ω. An immediate computation gives

C δ ≤ C Ω ∖ D , (2.24) 
where C depends only on L, a, b, and d. It is clear that

Λ δ (u) - Ω ∇u ≤ A δ - D ∇u + B δ + C δ + Ω∖D ∇u .
Using (2.22), (2.23), and (2.24), we conclude that

lim sup δ→0 Λ δ (u) - Ω ∇u ≤ C Ω ∖ D ;
which implies (2.1) since D is arbitrary. The proof is complete. ◻ Remark 5. We call the attention of the reader that the monotonicity assumption (1.4) on ϕ has not been used in the proof of Proposition 1.

Remark 6. The condition u ∈ C 1 (Ω) if Ω is bounded (resp. u ∈ C 1 c (R d ) if Ω = R d ) in (2.1
) is much too strong. In fact, the same conclusion holds under the assumption that Ω is bounded and u is Lipschitz (with an identical proof). More generally, equality (2.1) holds e.g., when u ∈ W 1,p (Ω) for some p > 1, and Ω is bounded (see Proposition C1 in Appendix C). It would be interesting to characterize the set

u ∈ W 1,1 (Ω); lim δ→0 Λ δ (u) = Ω ∇u .
So far we have been dealing with the pointwise convergence of Λ δ (u) when u ∈ W 1,1 (Ω), but it is natural to ask similar questions when u ∈ BV (Ω). As a consequence of Theorem 1, we know that for every ϕ ∈ A, there exists a constant

K = K(ϕ) ∈ (0, 1] such that lim inf δ→0 Λ δ (u) ≥ K Ω ∇u ∀ u ∈ L 1 (Ω).
(2.25)

On the other hand, we also have

Proposition 2. Assume that ϕ ∈ A. Then lim sup δ→0 Λ δ (u) ≥ Ω ∇u ∀ u ∈ L 1 (Ω). (2.26)
Proof of Proposition 2. It suffices to consider the case

F ∶= lim sup δ→0 Λ δ (u) < +∞. (2.27)
We first assume that u ∈ L ∞ (Ω). Set

A = 2 u L ∞ . (2.28) Fix 0 < δ 0 < 1. Set, for 0 < ε < 1 2, T (ε, δ 0 ) ∶= δ 0 0 εδ ε-1 Λ δ (u) dδ = δ 0 0 εδ ε-1 dδ Ω Ω δϕ( u(x) -u(y) δ)
x -y d+1 dx dy.

(2.29)

We next adapt a device from [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF]. Using Fubini's theorem and integrating first with respect to δ, we have

T (ε, δ 0 ) = Ω Ω ε u(x) -u(y) 1+ε x -y d+1 dx dy ∞ u(x)-u(y) δ 0 ϕ(t)t -2-ε dt.
This implies

T (ε, δ 0 ) ≥ c(ε, δ 0 ) Ω Ω u(x)-u(y) <δ 2 0 ε u(x) -u(y) 1+ε
x -y d+1 dx dy,

where c(ε, δ 0 ) = ∞ δ 0 ϕ(t)t -2-ε dt.
It follows from (2.28) that

T (ε, δ 0 ) ≥ c(ε, δ 0 ) Ω Ω ε u(x) -u(y) 1+ε
x -y d+1 dx dy -c(ε, δ 0 )

Ω Ω u(x)-u(y) ≥δ 2 0 εA 1+ε x -y d+1 dx dy. (2.30) Let τ > 0 be arbitrary small. First choose δ 0 small enough such that

∞ δ 0 ϕ(t)t -2 dt ≥ γ -1 d (1 -τ ) (2.31) and Λ δ (u) ≤ F + τ ∀ 0 < δ < δ 0 . (2.32)
We next observe that

Ω Ω u(x)-u(y) ≥α 1 x -y d+1 dx dy < +∞ ∀ α > 0.
(2.33) Indeed, fix t 0 > 0 such that ϕ(t 0 ) > 0 and note

Λ δ (u) ≥ Ω Ω u(x)-u(y) ≥α ϕ δ ( u(x) -u(y) )
x -y d+1 dx dy ≥ δϕ(α δ)

Ω Ω u(x)-u(y) ≥α 1 x -y d+1 dx dy. (2.34) Choosing 0 < δ < min{δ 0 , α t 0 } and using (2.32), we obtain (2.33). We deduce from (2.33) that lim ε→0 c(ε, δ 0 )

Ω Ω u(x)-u(y) >δ 2 0 εA 1+ε x -y d+1 dx dy = 0.

(2.35)

We next invoke the following lemma which is an immediate consequence of the BBM formula (2.3) applied with ρ ε (t) = εt ε-d 1 (0,1) (see [START_REF] Brezis | Two subtle convex nonlocal approximation of the BVnorm[END_REF]Proposition 1]).

Lemma 1. We have 

lim inf ε→0 γ -1 d Ω Ω ε u(x) -u(y) 1+ε x -y d+1 dx dy ≥ Ω ∇u ∀ u ∈ L 1 (Ω). ( 2 
T (ε, δ 0 ) ≤ δ 0 0 εδ ε-1 (F + τ ) dδ = (F + τ )δ ε 0 , so that lim sup ε→0 T (ε, δ 0 ) ≤ F + τ. (2.38) 
From (2.37) and (2.38), we deduce that

F + τ ≥ (1 -τ ) Ω ∇u .
Since τ > 0 is arbitrary, we obtain

lim sup δ→0 Λ δ (u) ≥ Ω ∇u .
The proof is complete in the case u ∈ L ∞ (Ω). In the general case, we proceed as follows. Set, for A > 0,

T A (s) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ s if s ≤ A, A if s > A, -A if s < -A, (2.39) 
and

u A = T A (u). Since ϕ is non decreasing, Λ δ (u A ) ≤ Λ δ (u).

It follows that

Ω ∇u A ≤ lim sup δ→0 Λ δ (u A ) ≤ lim sup δ→0 Λ δ (u).
By letting A → +∞, we obtain

Ω ∇u ≤ lim sup δ→0 Λ δ (u).
The proof is complete. ◻

Some pathologies

Our first example is related to Proposition 1 and shows that inequality (2.2) can be strict. Such a "pathology" was originally discovered by A. Ponce [START_REF] Ponce | Personal communication to the authors[END_REF] for ϕ = c 1 φ1 and presented in [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF]. We describe below a simpler function u ∈ W 1,1 (Ω) which is even more pathological.

Pathology 1. Let d ≥ 1. There exists u ∈ W 1,1 (Ω) such that lim δ→0 Λ δ (u) = +∞ for all ϕ ∈ A; moreover, Λ δ (u) = +∞ ∀ δ > 0 for ϕ = c 2 φ2 .
Proof. For simplicity, we present only the case d = 1 and choose Ω = (-1 2, 1 2). Define, for α > 0,

u(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if -1 2 < x < 0, ln x -α if 0 < x < 1 2.
Clearly, u ∈ W 1,1 (Ω). We claim that, for 0

< α < 1, lim δ→0 Λ δ (u) = +∞ for ϕ = c 1 φ1
and, for 0

< α < 1 2, Λ δ (u) = +∞ ∀ δ > 0 for ϕ = c 2 φ2 .
It is clear that the conclusion follows from the claim since for all ϕ ∈ A there exist α, β > 0 such that ϕ(t) ≥ αc 1 φ1 (βt) for all t > 0.

It remains to prove the claim. For ϕ = c 1 φ1 , we have

Λ δ (u) ≥ c 1 1 2 0 u(x) >δ dx 0 -1 2 δ x -y 2 dy.
For δ sufficiently small, let x δ ∈ (0, 1 2) be the unique solution of ln x -α = δ. A straightforward computation yields

Λ δ (u) ≥ c 1 δ 1 2 x δ 1 x - 1 x + 1 2 dx ∼ δ ln x δ = δ 1-1 α → +∞ as δ → 0, if α < 1. We now consider the case ϕ = c 2 φ2 . We have, since u ≤ 1, Λ δ (u) ≥ C δ 1 2 0 dx 0 -1 2 u(x) 2 x -y 2 dy = C δ 1 2 0 ln x -2α 1 x - 1 x + 1 2 dx = +∞, if 2α < 1. ◻
Next, we mention an example of ϕ ∈ A and u ∈ W 1,1 such that lim δ→0 Λ δ (u) does not exist and the gap between lim inf δ→0 Λ δ (u) and lim sup δ→0 Λ δ (u) is "maximal".

Pathology 2. Let Ω = (0, 1). There exists a function ϕ ∈ A and a function

u ∈ W 1,1 (Ω) such that lim inf δ→0 Λ δ (u) = Ω ∇u and lim sup δ→0 Λ δ (u) = +∞. (2.40)
The construction is presented in Appendix A. Our next example shows that assertion (2.2) in Proposition 1 may fail for u ∈ BV (Ω) ∖ W 1,1 (Ω). Pathology 3. Let Ω = (0, 1). There exists a continuous function ϕ ∈ A and a function

u ∈ BV (Ω) ∩ C( Ω) such that lim inf δ→0 Λ δ (u) < Ω ∇u .
(2.41

)
The construction is presented in Appendix B.

Concluding remark: the abundance of pathologies is quite mystifying and a reasonable theory of pointwise convergence of Λ δ seems out of reach. Fortunately, Γ-convergence saves the situation! 3 Γ-convergence of Λ δ as δ → 0.

Structure of the proof of Theorem 1

Recall that (see e.g., [START_REF] Braides | Γ-convergence for beginners[END_REF][START_REF] Maso | An introduction to Γ-convergence[END_REF]), by definition, a family of functionals (Λ δ ) δ∈(0,1) defined on L 1 (Ω) (with values in R ∪ {+∞}), Γ-converges to Λ 0 in L 1 (Ω) as δ → 0 if the following two properties hold: (G1) For every u ∈ L 1 (Ω) and for every family

(u δ ) δ∈(0,1) ⊂ L 1 (Ω) such that u δ → u in L 1 (Ω) as δ → 0, one has lim inf δ→0 Λ δ (u δ ) ≥ Λ 0 (u).
(G2) For every u ∈ L 1 (Ω), there exists a family (ũ δ ) δ∈(0,1) ⊂ L 1 (Ω) such that ũδ → u in L 1 (Ω) as δ → 0, and lim sup

δ→0 Λ δ (ũ δ ) ≤ Λ 0 (u). Remark 7. It is clear that if (δ n ) ⊂ R + is any sequence converging to 0 as n → +∞ and if (Λ δ ) Γ-converges to Λ 0 , then (Λ δn ) also Γ-converges to Λ 0 .
The constant K which occurs in Theorem 1 will be defined via a "semi-explicit" construction. More precisely, fix any (smooth

) function u ∈ B ∶= u ∈ BV (Ω); ∫ Ω ∇u = 1 ; given any ϕ ∈ A = {ϕ; ϕ satisfies (1.2) -(1.5)}, set K(u, ϕ, Ω) = inf lim inf δ→0 Λ δ (v δ ), (3.1) 
where the infimum is taken over all families of functions

(v δ ) δ∈(0,1) ⊂ L 1 (Ω) such that v δ → u in L 1 (Ω) as δ → 0.
We will eventually establish that K(u, ϕ, Ω) is independent of u and Ω; it depends only on ϕ and d,

and Theorem 1 holds with K = K(u, ϕ, Ω). (

A priori, it is very surprising that K(u, ϕ, Ω) is independent of u ∈ B. However, a posteriori, if one believes Theorem 1, this becomes natural. Indeed,

lim inf δ→0 Λ δ (u δ ) ≥ K Ω ∇u = K, for every family (u δ ) L 1
→ u ∈ B by (G1), and thus K(u, ϕ, Ω) ≥ K. On the other hand, by (G2), there exists a family (ũ δ )

L 1 → u ∈ B such that lim sup δ→0 Λ δ (ũ δ ) ≤ K Ω ∇u = K, and hence K(u, ϕ, Ω) ≤ K.
In view of what we just said, the special choice of u and Ω is irrelevant. For convenience, we define, for ϕ ∈ A,

κ(ϕ) = K(U, ϕ, Q), (3.4) 
where

Q = [0, 1] d and U (x) ∶= (x 1 + ⋅ ⋅ ⋅ + x d ) √ d in Q, so that ∫ Q ∇U = 1.
Here is a comment about Property (G2). From Property (G2), it follows easily that a stronger form of (G2) holds:

(G2') For every u ∈ L 1 (Ω), there exists a family (û δ ) δ∈(0,1) ⊂ L 1 (Ω) ∩ L ∞ (Ω) such that ûδ → u in L 1 (Ω) as δ → 0, and lim sup δ→0 Λ δ (û δ ) ≤ Λ 0 (u).

Indeed, it suffices to take ûδ

= T A δ (ũ δ ),
where T A denotes the truncation at the level A (see (2.39)) and A δ → ∞. This leads naturally to the following

Open problem 3. Given u ∈ L 1 (Ω), is it possible to find (û δ ) δ∈(0,1) ⊂ L 1 (Ω) ∩ C 0 ( Ω) (resp. W 1,1 (Ω), resp. L 1 (Ω) ∩ C ∞ ( Ω)) such that ûδ → u in L 1 (Ω) as δ → 0, and 
lim sup δ→0 Λ δ (û δ ) ≤ Λ 0 (u)?
The question is open even if Ω = (0, 1), u(x) = x, and ϕ = c 1 φ1 .

The heart of the matter is the non-convexity of ϕ, so that one cannot use convolution. If the answer to Open problem 3 is negative, this would be a kind of Lavrentiev gap phenomenon. In that case, it would be very interesting to study the asymptotics as δ → 0 of Λ δ L 1 (Ω)∩C 0 ( Ω) (with numerous possible variants).

In Section 3.2, we prove that 0 < κ(ϕ) ≤ 1 for all ϕ ∈ A.

(3.5)

In Section 3.3, we prove Property (G2) in Theorem 1.

In Section 3.4, we prove Property (G1) in Theorem 1. In Section 3.5, we discuss further properties of κ(ϕ). In particular, we show that inf ϕ∈A κ(ϕ) > 0.

In Section 3.6, we prove that κ(c 1 φ1 ) < 1.

3.2 Proof of (3.5)

By (2.1) in Proposition 1, we have lim δ→0 Λ δ (U, ϕ, Q) = Q ∇U = 1
(the reader may be concerned that Q is not smooth, but the conclusion of Proposition 1 can be easily extended to this case). Hence κ(ϕ) ≤ 1 by the definition (3.1) applied with U and Q.

We next claim that κ(ϕ) > 0. Recall that, by [46, Theorem 2, formulas (1.2) and (1.

3)]

lim inf δ→0 Λ δ (v δ , c 1 φ1 , Q) ≥ K 1 Q ∇U = K 1 ,
for every sequence v δ → U in L 1 (Q) and for some positive constant K 1 (here we also use the fact that convergence in L 1 (Q) implies convergence in measure in Q). On the other hand, it is easy to check that for every ϕ ∈ A there exist α, β > 0 such that

ϕ(t) ≥ αc 1 φ1 (βt) ∀ t > 0.
Thus, for every sequence

(v δ ) → U in L 1 (Q), lim inf δ→0 Λ δ (v δ , ϕ, Q) ≥ αβK 1 > 0.
Consequently, κ(ϕ) > 0.

◻

Proof of Property (G2)

The starting point is the definition of κ(ϕ) given by (3.1) and (3.4), i.e.,

κ = κ(ϕ) = inf lim inf δ→0 Λ δ (v δ , ϕ, Q),
where the infimum is taken over all families of functions

(v δ ) δ∈(0,1) ⊂ L 1 (Q) such that v δ → U in L 1 (Q) as δ → 0.
The goal is to establish (G2) for every domain Ω, i.e., for every u ∈ L 1 (Ω), there exists a family (ũ δ ) δ∈(0,1) ⊂ L 1 (Ω) such that ũδ → u in L 1 (Ω) as δ → 0, and

lim sup δ→0 Λ δ (ũ δ , ϕ, Ω) ≤ κ Ω ∇u .
The first step concerns Property (G2) when u is an affine function on a Lipschitz domain Ω; see Lemma 6 for a precise statement. The proof of Lemma 6 is based on a covering lemma (taken from [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF]Lemma 3]) and some technical ingredients presented in the first part of Section 3.3.1. The next step concerns Property (G2) when the domain is the union of simplices, and u is continuous on the domain, and affine on each simplex. The final step is devoted to the proof of Property (G2) in the general case. Roughly speaking, the idea is to construct a sequence of functions (u n ) and a sequence of domains (Ω n ) such that, for each n, Ω ⊂ Ω n , u n is continuous on Ω n and affine on each simplex of Ω n , Ω n "tends" to Ω, u n → u in L 1 (Ω), and ∇u n L 1 (Ω) → ∇u L 1 (Ω) . One concludes by applying the previous step for each n and invoking a diagonal process.

Preliminaries

This section is devoted to several lemmas which are used in the proof of Property (G2) (some of them are also used in the proof of Property (G1)) and are in the spirit of [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF]Sections 2 and 3].

In this section, ϕ ∈ A is fixed (arbitrary) and 0 < δ < 1. We recall that

ϕ δ (t) = δϕ(t δ) for t ≥ 0. (3.6)
All subsets A of R d are assumed to be measurable and C denotes a positive constant depending only on d unless stated otherwise.

For A ⊂ R d and f ∶ A ↦ R, we denote Lip(f, A) the Lipschitz constant of f on A.
We begin with Lemma 2. Let A ⊂ R d and f, g be measurable functions on A. Define h 1 = min(f, g) and h 2 = max(f, g). We have

Λ δ (h 1 , A) ≤ Λ δ (f, A) + ∬ A 2 ∖B 2 1 ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy (3.7)
and

Λ δ (h 2 , A) ≤ Λ δ (f, A) + ∬ A 2 ∖B 2 2 ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy, (3.8) 
where

B 1 = x ∈ A; f (x) ≤ g(x) and B 2 = x ∈ A; f (x) ≥ g(x) .
Assume in addition that g is Lipschitz on A and L = Lip(g, A). Then

Λ δ (h 1 , A) ≤ Λ δ (f, A) + CL A ∖ B 1 (3.9) and Λ δ (h 2 , A) ≤ Λ δ (f, A) + CL A ∖ B 2 . (3.10)
Proof. It suffices to prove (3.7) and (3.9) since (3.8) and (3.10) are consequences of (3.7) and (3.9) by considering -f and -g. We first prove (3.7). One can easily verify that

h 1 (x) -h 1 (y) ≤ max( f (x) -f (y) , g(x) -g(y) ).
This implies (3.7) since ϕ ≥ 0 and ϕ is non-decreasing.

To obtain (3.9) from (3.7), one just notes that, since g(x) -g(y) ≤ L x -y and ϕ is non-decreasing,

∬ A 2 ∖B 2 1 ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy ≤ ∬ A 2 ∖B 2 1 ϕ δ (L x -y ) x -y d+1 dx dy,
and, by a change of variables and the normalization condition of ϕ,

∬ A 2 ∖B 2 1 ϕ δ (L x -y ) x -y d+1 dx dy ≤ 2 A∖B 1 dx S d-1 dσ ∞ 0 ϕ δ (Lr) r 2 dr ≤ CL A ∖ B 1 .

◻

Here is an immediate consequence of Lemma 2.

Corollary 2. Let -∞ ≤ m 1 < m 2 ≤ +∞, A ⊂ R d , and f be a measurable function on A. Set h = min max(f, m 1 ), m 2 .
We have

Λ δ (h, A) ≤ Λ δ (f, A). (3.11)
Another useful consequence of Lemma 2 is andf, g be measurable functions on A.

Corollary 3. Let c > 0, A ⊂ R d ,
Set B = x ∈ A; f (x) -g(x) > c , h = min max(f, g -c), g + c .
Assume that g is Lipschitz on A with L = Lip(g, A). We have

Λ δ (h, A) ≤ Λ δ (f, A) + CL B .
An important consequence of Corollary 3 is

Corollary 4. Let A ⊂ R d , g ∈ L ∞ (A), (δ k ) ⊂ R + , and (g k ) ⊂ L 1 (A) be such that A is bounded, g is Lipschitz, and g k → g in L 1 (A). There exists (h k ) ⊂ L ∞ (A) such that h k -g L ∞ (A) → 0 and lim sup k→∞ Λ δ k (h k , A) ≤ lim sup k→∞ Λ δ k (g k , A). Similarly, if g δ → g in L 1 (A) as δ → 0, there exists (h δ ) ⊂ L ∞ (A) such that h δ -g L ∞ (A) → 0 and lim sup δ→0 Λ δ (h δ , A) ≤ lim sup δ→0 Λ δ (g δ , A). Proof: Set c k = g k -g 1 2 L 1 (A) . Then c k A k ≤ g k -g L 1 (A) = c 2 k where A k = {x ∈ A; g k (x) - g(x) > c k }, so that lim k→+∞ c k = 0 and lim k→+∞ A k = 0. (3.12) Define h k = min(max(g k , g-c k ), g+c k ) in A. Clearly h k -g L ∞ (A) ≤ c k . Applying Corollary 3, we have Λ δ k (h k , A) ≤ Λ δ k (g k , A) + CL A k , (3.13) 
where L is the Lipschitz constant of g. Letting k → +∞ in (3.13) and using (3.12), one reaches the conclusion for (h k ). The argument for (g δ ) is the same. ◻

We now introduce some notations used later. We denote

i) for x, y ∈ R d , x -y ∞ = sup i=1,⋯,d x i -y i .
ii) for c > 0 and

A ⊂ R d , A c = x ∈ A; dist ∞ (x, ∂A) ≤ c , (3.14) 
where dist ∞ (x, ∂A) ∶= inf y∈∂A x -y ∞ . iii) for c ∈ R and for A, B ⊂ Ω, cA = {ca ; a ∈ A} and A + B ∶= {a + b ; a ∈ A and b ∈ B}. We write A + v instead of A + {v} for v ∈ R d .
We now present an estimate which will be used repeatedly in this paper.

Lemma 3. Let c > 0, g ∈ L 1 (R d ), and let D be a Lipschitz, bounded open subset of R d . Assume that g is Lipschitz in D c with L = Lip(g, D c ). We have D R d ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy ≤ Λ δ (g, D ∖ D c 2 ) + C D Lc + bδ c for δ > 0,
for some positive constant C D depending only on D where b is the constant in (1.3).

Proof.

Set

A 1 = (D ∖ D 3c 4 ) × (D ∖ D c 2 ), A 2 = D 3c 4 × D c ,
and

A 3 = (D ∖ D 3c 4 ) × R d ∖ (D ∖ D c 2 ) ∪ D 3c 4 × (R d ∖ D c ) . It is clear that D × R d ⊂ A 1 ∪ A 2 ∪ A 3 and A 1 ⊂ (D ∖ D c 2 ) × (D ∖ D c 2 ). A straightforward computation yields ∬ A 2 ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy ≤ ∬ A 2 ϕ δ (L x -y ) x -y d+1 dx dy ≤ C D Lc. and, since ϕ ≤ b and if (x, y) ∈ A 3 then x ∈ D and x -y ≥ C D c, ∬ A 3 ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy ≤ ∬ A 3 δb x -y d+1 dx dy ≤ D dx S d-1 dσ ∞ C D c δb h 2 dh ≤ C D δb c. Therefore, D R d ϕ δ ( g(x) -g(y) ) x -y d+1 dx dy ≤ Λ δ (g, D ∖ D c 2 ) + C D Lc + bδ c . ◻ We have Lemma 4. Let (δ k ) ⊂ R + and (g k ) ⊂ L 1 (Q) be such that δ k → 0 and g k → U in L 1 (Q). There exist (c k ) ⊂ R + and (h k ) ⊂ L ∞ (Q) such that c k ≥ δ k , lim k→+∞ c k = 0, h k -U L ∞ (Q) ≤ 2dc k , Lip(h k , Q c k ) ≤ 1,
and lim sup k→+∞ Λ δ k (h k , Q) ≤ lim sup k→+∞ Λ δ k (g k , Q). Similarly, if (g δ ) ⊂ L 1 (Q) is such that g δ → U in L 1 (Q), there exist (c δ ) ⊂ R + and (h δ ) ⊂ L ∞ (Q) such that c δ ≥ δ δ , lim δ→0 c δ = 0, h δ -U L ∞ (Q) ≤ 2dc δ , Lip(h δ , Q c δ ) ≤ 1,
and lim sup δ→0 Λ δ (h δ , Q) ≤ lim sup δ→0 Λ δ (g δ , Q).
Proof. We only give the proof for the sequence (g k ). The proof for the family (g δ ) is the same. By Corollary 4, one may assume that

g k -U L ∞ (Q) → 0. Set c k = max g k -U L ∞ (Q) , δ k , (3.15) 
denote g 0,k = g k , and define

g 1,k (x) = min max g 0,k (x), U (0, x 2 , . . . , x d ) + 2c k , U (1, x 2 , . . . , x d ) -2c k , g 2,k (x) = min max g 1,k (x), U (x 1 , 0, . . . , x d ) + 4c k , U (x 1 , 1, . . . , x d ) -4c k , . . . g d,k (x) = min max g d-1,k (x), U (x 1 , . . . , x d-1 , 0) + 2dc k , U (x 1 , . . . , x d-1 , 1) -2dc k . (3.16) From the definition of U , we have ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ U (x 1 , . . . , x i-1 , 0, x i+1 , . . . , x d ) + 2ic k ≤ U (x) + 2ic k U (x 1 , . . . , x i-1 , 1, x i+1 , . . . , x d ) -2ic k ≥ U (x) -2ic k , for 1 ≤ i ≤ d. It follows from (3.16) that, for 1 ≤ i ≤ d, min g i-1,k (x), U (x) -2ic k ≤ g i,k (x) ≤ max g i-1,k (x), U (x) + 2ic k .
Using the fact U (x) -c k ≤ g 0,k (x) ≤ U (x) + c k by (3.15), we obtain, for 1

≤ i ≤ d, U (x) -2ic k ≤ g i,k (x) ≤ U (x) + 2ic k . (3.17)
Since lim k→+∞ c k = 0, it follows from (3.16) and (3.17) that, for large k,

g i,k (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ U (x 1 , . . . , x i-1 , 0, x i+1 , . . . , x d ) + 2ic k if 0 ≤ x i ≤ c k , U (x 1 , . . . , x i-1 , 1, x i+1 , . . . , x d ) -2ic k , if 1 -c k ≤ x i ≤ 1. (3.18)
We derive from (3.16) and (3.18

) that g d,k is Lipschitz on Q c k with a Lipschitz constant 1 (= ∇U ). We claim that lim sup k→∞ Λ δ k (g i,k , Q) ≤ lim sup k→∞ Λ δ k (g i-1,k , Q) (3.19)
for all 1 ≤ i ≤ d.

We establish (3.19) for i = 1 (the argument is the same for every i). We first apply Lemma 2 with

A = Q, f (x) = max g 0,k (x), U (0, x 2 , ⋯, x d )+2c k , and g(x) = U (1, x 2 , ⋯, x d )-2c k . Recall that Q ∖ B 1 = x ∈ Q; f (x) > g(x) . Note that f (x) ≤ max U (x) + c k , U (0, x 2 , ⋯, x d ) + 2c k ≤ U (x) + 2c k . It follows that if x ∈ Q ∖ B 1 then U (x) + 2c k > U (1, x 2 , ⋯, x d ) -2c k ; this implies 1 -x 1 < 4 √ dc k . Hence Q ∖ B 1 ≤ Cc k and it follows from Lemma 2 that Λ δ k (g 1,k , Q) ≤ Λ δ k max g 0,k (x), U (0, x 2 , ⋯, x d ) + 2c k , Q + Cc k . (3.20)
We next apply Lemma 2 with 

A = Q, f (x) = g 0,k (x), g(x) = U (0, x 2 , ⋯, x d ) + 2c k , and B 2 = {x ∈ Q; f (x) > g(x)}. If x ∈ Q ∖ B 2 we have U (0, x 2 , ⋯, x d ) + 2c k < g 0,k so that U (0, x 2 , ⋯, x d ) + 2c k < U (x) -c k ; this implies x 1 < 3 √ dc k . Hence Q ∖ B 2 ≤ Cc k and it follows from Lemma 2 that Λ δ k max g 0,k (x), U (0, x 2 , ⋯, x d ) + 2c k , Q ≤ Λ δ k (g 0,k , Q + Cc k . ( 3 
Λ δ k (g d,k , Q) ≤ lim sup k→∞ Λ δ k (g k , Q).

The conclusion follows by choosing

h k = g d,k . ◻
We next establish the following lemma which plays an important role in the proof of Property (G2).

Lemma 5. There exist (c δ ) ⊂ R + and (g δ ) ⊂ L ∞ (Q) such that c δ ≥ √ δ, lim δ→0 c δ = 0, g δ -U L ∞ (Q) ≤ 2dc δ , Lip(g δ , Q c δ ) ≤ 1,
and lim sup δ→0 Λ δ (g δ , Q) ≤ κ.
Proof. Applying Lemma 4, we derive from the definition of κ that there exist a sequence

(g k ) ⊂ L ∞ (Q) and two sequences (δ k ), (c k ) ⊂ R + such that lim k→+∞ δ k = lim k→+∞ c k = 0, c k ≥ δ k , (3.22) 
g k -U L ∞ (Q) ≤ 2dc k , Lip(g k , Q c k ) ≤ 1, (3.23) 
and lim sup k→+∞

Λ δ k (g k , Q) ≤ κ. (3.24)
We next construct a family

(h δ ) ⊂ L ∞ (Q) such that h δ -U L ∞ (Q) → 0 and lim sup δ→0 Λ δ (h δ , Q) ≤ κ. (3.25)
Let (τ k ) be a strictly decreasing positive sequence such that τ k ≤ c k δ k . For each δ small, let k be such that τ k+1 < δ ≤ τ k and define

m 1 = δ k δ ≥ 1 c k and m = [m 1 ]. As usual, for a > 0, [a] denotes the largest integer ≤ a. Define h (1) δ ∶ [0, m] d → R as follows h (1) δ (y) = ∑ d i=1 [y i ] √ d + g k (x) with x = (y 1 -[y 1 ], ⋯, y d -[y d ]). (3.26) 
For α ∈ N d and c ≥ 0, set

Q +α ∶= Q + (α 1 , ⋯, α d ), Q +α,c ∶= Q c + (α 1 , ⋯, α d ), and D +α,c ∶= Q +α ∖ Q +α,c . Define Y = N d ∩ [0, m -1] d and B = ⋃ α∈Y Q +α,c k ∖ Q +α,c k 2 .
We claim that Lip(h 

(1) δ , B) ≤ C. ( 3 
δ , Q +α,c k ∖ Q +α,c k 2 ) ≤ 1 for α ∈ Y. (1) 
On the other hand, if

y ∈ Q +α,c k ∖ Q +α,c k 2 and y ′ ∈ Q +α ′ ,c k ∖ Q +α ′ ,c k 2 with α ≠ α ′ then c k ≤ C y -y ′ so that h (1) δ (y) -h (1) 
δ (y ′ ) ≤ h

(1)

δ (y) -U (y) + h (1) δ (y ′ ) -U (y ′ ) + U (y) -U (y ′ ) by (3.23) ≤ U (y) -U (y ′ ) + 4dc k ≤ y -y ′ + 4dc k ≤ C y -y ′ .
Claim (3.27) follows.

By classical Lipschitz extension it follows from (3.27) that there exists h

(2) δ ∶ R d ↦ R such that h (2) δ = h (1) δ on B and Lip(h (2) δ , R d ) ≤ C. (3.28) Define, for x ∈ R d , h (3) 
δ (x) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ h (1) δ (x) if x ∈ D +α,c k 2 for some α ∈ Y, h (2) 
δ (x) otherwise, (3.29) 
and set

h δ (x) = 1 m 1 h (3) δ (mx) in [0, 1] d .
Since δ = δ k m 1 , by a change of variables, we obtain

Λ δ (h δ , Q) = δ δ k Λ δ k h (3) δ (m ⋅ ), Q = m 1-d m 1 Λ δ k h (3) δ , [0, m] d . (3.30) We next estimate Λ δ k h (3) δ , [0, m] d . For α ∈ Y , applying Lemma 3 with c = c k , D = Q +α and g = h (3) δ , we have ∬ Q+α×[0,m] d ϕ δ ( h (3) δ (x) -h (3) δ (y) ) x -y d+1 dx dy ≤ Λ δ h (3) δ , D +α,c k 2 + C(c k + bδ c k ). (3.31) 
From (3.26) and (3.29), we obtain Λ δ (h

(3) δ , D +α,c k 2 ) = Λ δ (g k , D +(0,⋯,0),c k 2 ) ≤ Λ δ (g k , Q). (3.32) Since [0,m] d [0,m] d ⋯ = α∈Y Qα [0,m] d ⋯,
it follows from (3.31) and (3.32) that

Λ δ k (h (3) δ , [0, m] d ) ≤ m d Λ δ k (g k , Q) + Cm d (c k + bδ k c k ). (3.33) 
Since m ≤ m 1 and c k ≥ δ We next claim that h

Λ δ (h δ , Q) ≤ Λ δ (g k , Q) + C(c k + bδ 1 2 k ). (3.34) 
(δ) 3 -U L ∞ ([0,m] d ) ≤ Cc k . (3.35)
Indeed, for y ∈ [0, m] d , we have, by (3.26),

h (δ) 1 (y) -U (y) = g k (x) -U (x) where x = (y 1 -[y 1 ], ⋯, y d -[y d ]).
It follows from (3.23) that h

(δ) 1 -U L ∞ ([0,m] d ) ≤ Cc k . (3.36)
On the other hand, for y

∈ [0, m] d ∖ ⋃ α∈Y D +α,c k 2 , let ŷ ∈ B such that y -ŷ ≤ c k . Since h (2) δ (ŷ) = h (1) 
δ (ŷ), it follows from (3.28) and (3.35) that where the infimum is taken over all families (g δ ) δ∈(0,1) ⊂ L 1 (S) such that g δ → g in L 1 (S).

h (δ) 2 (y) -U (y) ≤ h (δ) 2 (y) -h (δ) 2 (ŷ) + h (δ) 1 (ŷ) -U (ŷ) + U (ŷ) -U (y) ≤ Cc k (3.
Moreover, there exists a family (h δ ) ⊂ L ∞ (S) such that h δ -g L ∞ (S) → 0 and

lim δ→0 Λ δ (h δ , S) = κ ∇g S . Proof. Note that if T ∶ R d → R d is an affine conformal transformation, i.e., T (x) = aRx + b in R d
for some a > 0, some linear unitary operator R ∶ R d → R d , and for some b ∈ R d , then, for a measurable subset D of R d and f ∈ L 1 (D),

Λ δ (f, D) = a 1-d Λ δ (f ○ T -1 , T (D)),
by a change of variables. Using a transformation T as above, we may write 

g ○ T -1 = U . Then Λ δ (g δ , S) = a 1-d Λ δ (g δ ○ T -1 , T ( 
S = k∈N Q k .
ii) There exists a sequence of disjoint sets (S k ) k∈N such that S k is the image of S by a dilatation and a translation, S k ⊂ Q for all k, and

Q = k∈N S k .
We first claim that m ≥ κ S .

Indeed, let (Q k ) be the sequence of disjoint sets in i).

Clearly, Λ δ (g δ , S)

≥ k∈N Λ δ (g δ , Q k ). (3.40) Fix k ∈ N and let a k > 0 and b k ∈ R d be such that Q k = a k Q + b k . Then Q k = a d k and, by a change of variables, Λ δ (g δ , a k Q + b k ) = a d k Λ δ a k (ĝ δ , Q) where ĝδ (x) = 1 a k g δ (a k x + b k ). (3.41)
From the definition of κ, we have

lim inf δ→0 Λ δ a k (ĝ δ , Q) ≥ κ. (3.42) 
We deduce from (3.41) and (3.42) that which implies m ≥ κ S . Similarly, using ii) one can show that κ S ≥ m. We thus obtain (3.39). It remains to prove that there exists a family (h δ ) such that h δ -g L ∞ (S) → 0 and

lim inf δ→0 Λ δ (g δ , Q k ) ≥ κ Q k . ( 3 
lim δ→0 Λ δ (h δ , S) = κ ∇g S . (3.44) 
As above, we can assume that g = U . Let Q be the image of Q by a dilatation and a translation such that S ⊂⊂ Q. By Lemma 5 and a change of variables, there exists a family

(h δ ) such that h δ → U in L 1 ( Q) and lim δ→0 Λ δ (h δ , Q) = κ Q .
On the other hand, we have, by (3.38),

lim inf δ→0 Λ δ (h δ , Q ∖ S) ≥ κ Q ∖ S . Moreover, Λ δ (h δ , Q) ≥ Λ δ (h δ , S) + Λ δ (h δ , Q ∖ S).
It 

, Q = m ⋃ i=1 Āi ,
and

A 1 = x = (x 1 , . . . , x d ) ∈ R d ; x i > 0 for all 1 ≤ i ≤ d, and 
d i=1 x i < 1 .
We also denote A ,c the set (A ) c (see (3.14)).

The following lemma is a variant of Lemma 5 for {A } m =1 .

Lemma 7. Let ∈ {1, . . . , m} and g be an affine function defined on A such that its normal derivative ∂g ∂n ≠ 0 along the boundary of A , where n denotes the inward normal. There exist a family (g δ ) ⊂ L ∞ (A ) and a family (c δ ) ⊂ R + such that

c δ ≥ √ δ, lim δ→0 c δ = 0, g δ -g L ∞ (A ) ≤ C d ∇g c δ , Lip(g δ , A ,c δ ) ≤ ∇g , and lim sup δ→0 Λ δ (g δ , A ) ≤ κ ∇g A .
Proof. For notational ease, we assume that = 1. The proof is in the spirit of the one of Lemma 4. By Lemma 6, there exists a family

(h δ ) ⊂ L ∞ (A 1 ) such that h δ -g L ∞ (A 1 ) → 0 and lim δ→0 Λ δ (h δ , A 1 ) = κ ∇g A 1 . (3.45) Set c δ = max h δ -g L ∞ (A 1 ) , √ δ and l δ = 2 ∇g c δ .
Denote h 0,δ = h δ , and define, for i = 1, 2, . . . , d, and

x ∈ A 1 , h i,δ (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ max h i-1,δ (x), g(x 1 , . . . , x i-1 , 0, x i+1 , . . . , x d ) + il δ if ∂g ∂x i > 0, min h i-1,δ (x), g(x 1 , . . . , x i-1 , 0, x i+1 , . . . , x d ) -il δ if ∂g ∂x i < 0. (3.46) Set e = ( 1 √ d , . . . , 1 √ d
) and define, for

x ∈ A 1 , h d+1,δ (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ max h d,δ (x), g(z(x)) + (d + 1)l δ if ∂g ∂e < 0, min h d,δ (x), g(z(x)) -(d + 1)l δ if ∂g ∂e > 0.
(3.47)

Here for each x ∈ A 1 , z(x) ∶= x -⟨x, e⟩e + e (the projection of x on the hyperplane P which is orthogonal to e and contains e).

As in the proof of Lemma 4, we have the following three assertions, for

x ∈ A 1 , i) for 1 ≤ i ≤ d + 1, g(x) -i δ ≤ h i,δ (x) ≤ g(x) + i δ , ii) for 1 ≤ i ≤ d and 0 ≤ x i ≤ c δ , h i,δ (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ g(x 1 , . . . , x i-1 , 0, x i+1 , . . . , x d ) + il δ if ∂g ∂x i > 0, g(x 1 , . . . , x i-1 , 0, x i+1 , . . . , x d ) -il δ if ∂g ∂x i < 0, iii) for x -z(x) ≤ c δ , h d+1,δ (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ g(z(x)) + (d + 1)l δ if ∂g ∂e < 0, g(z(x)) -(d + 1)l δ if ∂g ∂e > 0.
It follows that h d+1,δ is Lipschitz on A 1,c δ with Lipschitz constant ∇g . As in the proof of Lemma 4, one has, for 0

≤ i ≤ d, lim sup δ→0 Λ δ (h i+1,δ , A 1 ) ≤ lim sup δ→0 Λ δ (h i,δ , A 1 );
which implies, by (3.45),

lim sup δ→0 Λ δ (h d+1,δ , A 1 ) ≤ lim sup δ→0 Λ δ (h 0,δ , A 1 ) = lim sup δ→0 Λ δ (h δ , A 1 ) = κ ∇g A 1 .
The conclusion now holds for g δ = h d+1,δ . ◻

We end this section with the following result which is a consequence of Lemma 7 by a change of variables.

Definition 1. For each k ∈ N, a set K is called a k-sim of R d if there exist z ∈ Z d and ∈ {1, 2, . . . , m} such that K = 1 2 k A + z 2 k . We have Corollary 5.
Let K be a k-sim of R d and g be an affine function defined on K such that ∂g ∂n ≠ 0 along the boundary of K. There exist a family (g δ ) ⊂ L ∞ (K) and a family

(c δ ) ⊂ R + such that c δ ≥ C k √ δ, lim δ→0 c δ = 0, g δ -g L ∞ (K) ≤ C k ∇g c δ , Lip(g δ , K c δ ) ≤ C k ∇g , and lim sup δ→0 Λ δ (g δ , K) ≤ κ ∇g K .
In Corollary 5 and Section 3.3.2 below, C k denotes a positive constant depending only on k and d and can be different from one place to another.

Proof of Property (G2)

Our goal is to show that (G2) holds with K = κ, i.e., (G2) For every u ∈ L 1 (Ω), there exists a family (ũ δ ) δ∈(0,1) ⊂ L 1 (Ω) such that ũδ → u in L 1 (Ω) as δ → 0, and lim sup

δ→0 Λ δ (ũ δ ) ≤ κ Ω ∇u .
We consider the case Ω = R d and the case where Ω is bounded separately.

Case 1: Ω = R d . The proof is divided into two steps. Given k ∈ N, set R k ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u ∈ C 0 c (R d )
u is affine on each k-sim and ∂u ∂n ≠ 0 along the boundary of each k-sim, unless u is constant on that k-sim

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ . (3.48)
Step 1. We prove Property (G2) when u ∈ R k and k ∈ N is arbitrary but fixed. Set K = {K is a k-sim and u is not constant on K}.

From now on in the proof of Step 1, K denotes a k-sim. By Corollary 5, for each K ∈ K, there exist

(u K,δ ) ⊂ L ∞ (K) and (c K,δ ) ⊂ R + such that c K,δ ≥ C k √ δ, lim δ→0 c K,δ = 0, (3.49) 
u K,δ -u L ∞ (K) ≤ C k ∇u L ∞ (R d ) c K,δ , Lip(u K,δ , K c K,δ ) ≤ C k ∇u L ∞ (R d ) , (3.50) 
and lim sup

δ→0 Λ δ (u K,δ , K) ≤ κ K ∇u dx. (3.51) 
For each δ, let u δ be a function defined in R d such that

u δ = u K,δ in K ∖ K c K,δ 2 for K ∈ K, u δ = u in K for K ∈ K, (3.52) 
and

∇u δ (x) ≤ C k ∇u L ∞ (R d ) for x ∈ R d ∖ ⋃ K∈K (K ∖ K c K,δ 2 ). (3.53) 
Such a u δ exists by (3.50) via standard Lipschitz extension. Applying Lemma 3 with D = K and g = u δ , we have, by (3.50),

∬ K×R d ϕ δ ( u δ (x) -u δ (y) ) x -y d+1 dx dy ≤ Λ δ u δ , K ∖ K c K,δ 2 + C k ( ∇u L ∞ (R d ) c K,δ + bδ c K,δ ). (3.54)
From the definition of u δ , there exists R > 1, independent of δ, such that

u δ = u = 0 in R d ∖B R .
We have, for some b > 0 (see (1.3)), 

∬ (R d ∖B R+1 )×R d ϕ δ ( u δ (x) -u δ (y) ) x -y d+1 dx dy ≤ ∬ B R ×(R d ∖B R+1 ) δb x -y d+1 dy dx ≤ C d R d δb. ( 3 
Λ δ (u δ , R d ) ≤ κ R d ∇u dx. We next claim that u δ → u in L 1 (R d ). Indeed, for x ∈ K c K,δ 2 for some K ∈ K, let x ∈ K c K,δ ∖ K c K,δ 2 be such that x -x ≤ c K,δ . We have u δ (x) -u(x) ≤ u δ (x) -u δ (x) + u δ (x) -u(x) + u(x) -u(x) ≤ C k ∇u L ∞ (R d ) c K,δ . This implies, for K ∈ K, lim δ→0 u δ -u L ∞ (K) = 0, Since u δ = u in K for K ∈ K, we deduce that lim δ→0 u δ -u L 1 (R d ) = 0.
The proof of Step 1 is complete.

Step 2. We prove Property (G2) for a general u ∈ L 1 (R d ). Without loss of generality, one may assume that u ∈ BV (R d ) since there is nothing to prove otherwise. Let

(u n ) ⊂ C ∞ c (R d ) be such that (u n ) converges to u in L 1 (R d ) and ∇u n L 1 (R d ) → ∫ R d ∇u as n → +∞. We next use Lemma 8. Let v ∈ C 1 c (R d ) with supp v ⊂ B R for some R > 0. There exists a sequence (v m ) ⊂ W 1,∞ (R d ) such that v m ⊂ R m , supp v m ⊂ B R for large m and v m → v in W 1,1 (R d ) as m → +∞.
Proof of Lemma 8. There exist a sequence (k m ) ⊂ N and a sequence

(v m ) ⊂ W 1,∞ (R d ) with supp v m ⊂ B R for large m such that i) v m → v in W 1,1 (R d ) as m → +∞.
ii) v m is affine on each m-sim. This fact is standard in finite element theory, see e.g., [START_REF] Allaire | Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation[END_REF]Proposition 6.3.16]. By a small perturbation of v m , one can also assume that ∂v m ∂n ≠ 0 along the boundary of each m-sim, unless v m is constant there. ◻

We now return to the proof of Step 2. By Lemma 8, for each n ∈ N, there exists

v n ∈ R k for some k ∈ N such that v n -u n W 1,1 (R d ) ≤ 1 n.
By Step 1, there exists a family

(v δ,n ) ⊂ L 1 (R d ) such that (v δ,n ) converges to v n in L 1 (R d ) as δ → 0 and lim sup δ→0 Λ δ (v δ,n ) ≤ κ R d ∇v n dx.
Hence there exists δ n > 0 such that, for 0

< δ < δ n Λ δ (v δ,n ) ≤ κ R d ∇v n + 1 n and v δ,n -v n L 1 (R d ) ≤ 1 n.
Without loss of generality, one may assume that (δ n ) is decreasing to 0. Set

u δ = v δ n+1 ,n for δ n+1 ≤ δ < δ n .
Then (u δ ) satisfies the properties required.

The proof of Case 1 is complete. ◻ Case 2: Ω is bounded. We prove Property (G2) for a general u ∈ L 1 (Ω). Without loss of generality, one may assume that u ∈ BV (Ω). Let R > 0 be such that Ω ⊂⊂ B R and let

(u n ) ⊂ C ∞ (R d ) with supp u n ⊂ B R such that u n → u in L 1 (Ω) and ∇u n L 1 (Ω) → ∫ Ω ∇u as n → +∞ (the existence of such a sequence (u n ) is standard). Set, for k ∈ N, Ω k = x ∈ K for some k-sim K such that K ∩ Ω ≠ Ø .
It is clear that, for each n, lim

k→+∞ Ω k ∇u n = Ω ∇u n . (3.56) 
By Lemma 8 (applied with v = u n ) and (3.56), for each n, there exist

k = k n ∈ N and v n ∈ R k such that v n -u n W 1,1 (R d ) ≤ 1 n and Ω k ∇v n ≤ Ω ∇v n + 1 n. (3.57) 
In what follows (except in the last two sentences), n is fixed. By Case 1 (applied with u = v n ), there exists a family

(v δ,n ) ⊂ L 1 (R d ) such that v δ,n → v n in L 1 (R d ) as δ → 0 and lim sup δ→0 Λ δ (v δ,n , R d ) ≤ κ R d ∇v n . (3.58)
Applying Lemma 6, we have 

lim inf δ→0 Λ δ (v δ,n , K) ≥ κ K ∇v n for each k-sim K. Since R d ∖ Ω k = ⋃ K is a k-sim K⊂R d ∖Ω k K, it follows that lim inf δ→0 Λ δ (v δ,n , R d ∖ Ω k ) ≥ κ R d ∖Ω k ∇v n . (3.59) Clearly Λ δ (v δ,n , R d ∖ Ω k ) + Λ δ (v δ,n , Ω k ) ≤ Λ δ (v δ,n , R d ). ( 3 
Λ δ (v δ,n , Ω) ≤ κ Ω ∇v n + κ n.
Hence there exists δ n > 0 such that, for 0

< δ < δ n Λ δ (v δ,n , Ω) ≤ κ Ω ∇v n + κ n + 1 n and v δ,n -v n L 1 (Ω) ≤ 1 n.
Without loss of generality, one may assume that (δ n ) is decreasing to 0. Set

u δ = v δ n+1 ,n in Ω for δ n+1 ≤ δ < δ n .
Then (u δ ) satisfies the required properties. ◻

Proof of Property (G1)

The starting point is again the definition of κ(ϕ) given by (3.1) and (3.4), i.e.,

κ = κ(ϕ) = inf lim inf δ→0 Λ δ (v δ , ϕ, Q),
where the infimum is taken over all families of functions

(v δ ) δ∈(0,1) ⊂ L 1 (Q) such that v δ → U in L 1 (Q) as δ → 0.
The goal is to establish (G1) for every domain Ω, i.e., for every u ∈ L 1 (Ω) and for every family (u δ ) δ∈(0,1) ⊂ L 1 (Ω) such that u δ → u in L 1 (Ω) as δ → 0, one has

lim inf δ→0 Λ δ (u δ , ϕ, Ω) ≥ κ Ω ∇u .
It turns out to be convenient to replace U by another function (the function H 1 2 defined below) in the definition of κ. Set

H(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if x 1 < 0, 1 otherwise,
and denote

H c (x) ∶= H(x 1 -c, x ′ ) for (x 1 , x ′ ) ∈ R × R d-1 and c ∈ R. Define γ ∶= inf lim inf δ→0 Λ δ (g δ , ϕ, Q), (3.61) 
where the infimum is taken over all families of functions (g δ ) δ∈(0,1)

⊂ L 1 (Q) such that g δ → H 1 2 in L 1 (Q). Note that ∫ Q ∇H 1 2 = 1. It follows from Property (G2) that γ ≤ κ. (3.62)
In the next section, we prove Proposition 3. We have γ = κ.

Clearly, this is consistent with Theorem 1.

The proof of (G1) in one dimension is based on Proposition 3 and the "essential variation" characterization of BV functions in one dimension (see, e.g., [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Section 5.10.1]). The proof in higher dimensions is in the same spirit but much more involved. In order to be able to apply Proposition 3, we use Radon-Nikodym's theorem, a covering lemma à la Besicovitch, and a characterization of BV functions by slicing (see Section 3.4.2).

Proof of Proposition 3

The proof of Proposition 3 is based on two lemmas. The first one in the spirit of Lemma 4 is:

Lemma 9. There exist a sequence (h k ) ⊂ L 1 (Q) and two sequences (δ k ), (c k ) ⊂ R + such that lim k→+∞ δ k = lim k→+∞ c k = 0, lim k→+∞ h k = H 1 2 in L 1 (Q), h k (x) = 0 for x 1 < 1 2 -c k , h k (x) = 1 for x 1 > 1 2 + c k , 0 ≤ h k (x) ≤ 1 in Q, and lim k→∞ Λ δ k (h k , Q) = γ.
Proof. From the definition of γ, there exist a sequence (τ k ) ⊂ R + and a sequence

(g k ) ⊂ L 1 (Q) such that τ k → 0, g k → H 1 2 in L 1 (Q), and 
lim k→∞ Λ τ k (g k , Q) = γ. (3.63) Set c k = g k -H 1 2 1 4 L 1 (Q) so that lim k→+∞ c k = 0 and lim k→∞ {x ∈ Q; g k (x) -H 1 2 (x) ≥ c k } c k ≤ lim k→∞ g k -H 1 2 L 1 (Q) c 2 k = 0. (3.64) Define two continuous functions h 1,k , h 2,k ∶ Q → R which depend only on x 1 as follows h 1,k (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ c k if x 1 < 1 2 -c k , 1 + c k if x 1 > 1 2 , affine w.r.t. x 1 otherwise, h 2,k (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ -c k if x 1 < 1 2 , 1 -c k if x 1 > 1 2 + c k , affine w.r.t. x 1 otherwise. Set g 1,k = min max(g k , h 2,k ), h 1,k and g 2,k = min max(g 1,k , c k ), 1 -c k . It is clear that, in Q, g 2,k (x) = c k for x 1 < 1 2 -c k , g 2,k (x) = 1 -c k for x 1 > 1 2 + c k , c k ≤ g 2,k ≤ 1 -c k . (3.65) We claim that lim sup k→∞ Λ τ k (g 2,k , Q) = γ. (3.66)
Indeed, by Corollary 2, we have

Λ τ k (g 2,k , Q) ≤ Λ τ k (g 1,k , Q). (3.67) Note that ∇h 1,k L ∞ (Q) ≤ 1 c k and ∇h 2,k L ∞ (Q) ≤ 1 c k .
Using (3.64) and applying Lemma 2, we obtain 

lim sup k→∞ Λ τ k (g 1,k , Q) ≤ lim sup k→∞ Λ τ k (g k , Q). ( 3 
Λ τ k (g 2,k , Q) ≤ γ;
which is (3.66). One can now verify that the conclusion holds for

h k ∶= (1 -2c k ) -1 (g 2,k -c k ) and δ k ∶= (1 -2c k ) -1 τ k by (3.

65) and (3.66). ◻

We next prove

Lemma 10. Set g(x) = x 1 in Q. There exist a sequence (g k ) ⊂ L 1 (Q) and a sequence (δ k ) ⊂ R + such that lim k→+∞ δ k = 0, lim k→+∞ g k = g in L 1 (Q),
and lim sup k→∞ Λ δ k (g k , Q) ≤ γ.
Proof. By Lemma 9, there exist a sequence (h k ) ⊂ L 1 (Q) and two sequences

(δ k ), (c k ) ⊂ R + such that lim k→+∞ δ k = lim k→+∞ c k = 0, (3.69) h k (x) = 0 for x 1 < 1 2 -c k , h k (x) = 1 for x 1 > 1 2 + c k , 0 ≤ h k (x) ≤ 1 in Q, (3.70) and lim k→∞ Λ δ k (h k , Q) = γ. (3.71)
Fix n ∈ N and consider the sequence

(f k ) ∶ Q ↦ R defined as follows f k (x) = 1 n h k x 1 - j n + 1 2 - 1 2n , x ′ + j n for x ∈ Q j , 0 ≤ j ≤ n -1, (3.72)
where

Q j = [j n, (j + 1) n] × [0, 1] d-1 . We deduce from (3.70) that Q f k (x) -x 1 dx ≤ 1 n . (3.73) We claim that lim sup k→∞ Λ δ k n (f k , Q) ≤ lim sup k→∞ Λ δ k (h k , Q) = γ. (3.74) It is clear that Λ δ k n (f k , Q) ≤ n-1 j=0 Λ δ k n (f k , Q j ) + n-1 j=0 ∬ Q j ×(Q∖Q j ) ϕ δ k n ( f k (x) -f k (y) )
x -y d+1 dx dy.

(3.75)

Set Q = [ 1 2 -1 2n , 1 2 + 1 2n ] × [0, 1] d-1 .
We have, by the definition of f k , 

Λ δ k n (f k , Q j ) = 1 n Λ δ k (h k , Q) ≤ 1 n Λ δ k (h k , Q). (3.76) If (x, y) ∈ Q j × (Q ∖ Q j ) then f k (x) = f k (y) if x 1 -y 1 < 1 (2n) -c
∬ Q i ×(Q∖Q i ) ϕ δ k n ( f k (x) -f k (y) )
x -y d+1 dx dy ≤ lim sup We now reintroduce the dependence on n. By the above, there exists

k→+∞ ∬ Q i ×(Q∖Q i ) x 1 -y 1 ≥1 (2n)-c k bδ k n x -y d+1
f k,n , defined for k, n ≥ 1, such that Q f k,n (x) -x 1 dx ≤ 1 n and lim sup k→∞ Λ δ k n (f k,n , Q) ≤ γ for each n.
Thus for each n, there exists k n such that Λ δ kn n (f kn,n , Q) ≤ γ + 1 n. The desired conclusions hold for (f kn,n ) and (δ kn n). ◻

Proof of Proposition 3:

We have κ ≤ γ by Lemmas 6 and 10; and κ ≥ γ by (3.62). Hence γ = κ. ◻

Some useful lemmas

We begin with a consequence of the definition of γ and Proposition 3.

Lemma 11. For any ε > 0 there exists

δ ε > 0 such that if δ < δ ε and g ∈ L 1 (Q) with g -H 1 2 L 1 (Q) < δ ε then Λ δ (g, Q) ≥ κ -ε.
We now prove

Lemma 12. Let c, τ > 0 and (g δ ) ⊂ L 1 (R) with R = (a 1 , b 1 ) × (a, b) d-1
for some a 1 < b 1 and a < b be such that τ < (b 1 -a 1 ) 8. Assume that, for small δ,

g δ (x) = 0 for x 1 < a 1 + τ, g δ (x) = c for x 1 > b 1 -τ, and 0 ≤ g δ (x) ≤ c for x ∈ R.
We have, with

R ′ = (a, b) d-1 , lim inf δ→0 Λ δ (g δ , R) ≥ cκ R ′ .
Here and in what follows, for a subset in R d-1 , ⋅ denotes its (d-1)-dimensional Hausdorff measure unless stated otherwise.

Proof. We only present the proof in two dimensions for simplicity of notations. Let d = 2. For s > 0, set

R s = (a 1 , b 1 ) × [(a, a + s) ∪ (b -s, b)].
We first prove that, for every s > 0,

lim inf δ→0 [Λ δ (g δ , R) + Λ δ (g δ , R s )] ≥ cκ R ′ . (3.78)
Without loss of generality, one may assume that

R = (0, b 1 ) × (0, b 2 ) and c = 1. (3.79) Let g 1,δ ∶ (0, b 1 ) × R be such that g 1,δ (x) = g δ (x) for x ∈ R, g 1,δ (x) = g δ (x 1 , -x 2 ) for x ∈ (0, b 1 ) × (-b 2 , 0), (3.80)
and g 1,δ is a periodic function in x 2 with period 2b 2 . Set

R j = (0, b 1 ) × (jb 2 , jb 2 + b 2 ) for j ≥ 0 and R(m) = (0, b 1 ) × (0, 2mb 2 ) for m ≥ 0. It is clear that, for m ∈ N, Λ δ (g 1,δ , R(m)) = 2m-1 j=0 Λ δ (g 1,δ , R j ) + 2m-1 j=0 ∬ R j ×(R(m)∖R j )
ϕ δ ( g 1,δ (x) -g 1,δ (y) )

x -y 3 dx dy. (3.81)

From the definition of g 1,δ , we have, for 0

≤ j ≤ 2m -1, Λ δ (g 1,δ , R j ) = Λ δ (g δ , R). (3.82) Clearly, for 0 ≤ j ≤ 2m -1, ∬ R j ×(R(m)∖R j ) ϕ δ ( g 1,δ (x) -g 1,δ (y) ) x -y 3 dx dy = ∬ R j ×(R(m)∖R j ) x 2 -y 2 <s ϕ δ ( g 1,δ (x) -g 1,δ (y) )
x -y 3 dx dy

+ ∬ R j ×(R(m)∖R j ) x 2 -y 2 ≥s ϕ δ ( g 1,δ (x) -g 1,δ (y) )
x -y 3 dx dy;

which yields, by the definition of g 1,δ and (1.3),

∬ R j ×(R(m)∖R j ) ϕ δ ( g 1,δ (x) -g 1,δ (y) ) x -y 3 dx dy ≤ Λ δ (g δ , R s ) + Cδm s 3 . (3.83)
Here and in what follows in this proof, C denotes a positive constant independent of δ and m. Combining (3.81), (3.82), and (3.83) yields

Λ δ (g 1,δ , R(m)) ≤ 2mΛ δ (g δ , R) + 2mΛ δ (g δ , R s ) + Cδm 2 s 3 . (3.84) Define g 2,δ ∶ R 2 → R as follows g 2,δ (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ g 1,δ (x) if x 1 ∈ (0, b 1 ), 0 if x 1 ≤ 0, 1 if x 1 ≥ b 1 .
Since g 1,δ (x) = 0 for x 1 < τ and g 1,δ (x) = 1 for

x 1 > b 1 -τ , by (1.
3), we have, for m ∈ N,

Λ δ (g 2,δ , (-mb 2 , mb 2 ) × (0, 2mb 2 )) ≤ Λ δ (g 1,δ , R(m)) + Cδm 4 τ 3 . (3.85) Set, for m ∈ N and x ∈ Q, g 3,δ,m (x) = g 2,δ 2b 2 m(x 1 -1 2, x 2 ) .
By a change of variables, we have 

Λ δ (g 2,δ , (-mb 2 , mb 2 ) × (0, 2mb 2 )) = 2mb 2 Λ δ (g 3,δ,m , Q). ( 3 
b 2 Λ δ (g 3,δ,m , Q) ≤ Λ δ (g δ , R) + Λ δ (g δ , R s ) + Cδm s 3 + Cδm 3 τ 3 . (3.87)
Since 0 ≤ g 2,δ ≤ 1, it follows from the definition of g 3,δ,m that

g 3,δ,m -H 1 2 L 1 (Q) ≤ C m.
By Lemma 11, for every ε > 0 there exists

m ε > 0 such that if m ≥ m ε then lim inf δ→0 Λ δ (g 3,δ,m , Q) ≥ κ -ε. (3.88) Taking m = m ε in (3.87), we derive from (3.88) that lim inf δ→0 [Λ δ (g δ , R) + Λ δ (g δ , R s )] ≥ (κ -ε)b 2 . (3.89)
Since ε > 0 is arbitrary, we obtain (3.78) by (3.79).

We are now ready to prove

lim inf δ→0 Λ δ (g δ , R) ≥ cκ R ′ . (3.90)
Without loss of generality, one may again assume (3.79). Fix n ∈ N (arbitrary) and define s = s(n) = b 2 (4n 2 ). For 0 ≤ j ≤ n, by (3.78) (applied with R = R ∖ R js ), we have,

lim inf δ→0 Λ δ (g δ , R ∖ R js ) + Λ δ (g δ , R js+s ∖ R js ) ≥ κ(b 2 -2js).
Summing these inequalities for j from 0 to n -1 and noting that

Λ δ (g δ , R) ≥ n-1 j=0 Λ δ (g δ , R js+s ∖ R js ) and b 2 -2js ≥ b 2 -b 2 (2n),
we obtain lim inf

δ→0 (n + 1)Λ δ (g δ , R) ≥ nκb 2 [1 -1 (2n)].
This implies lim inf

δ→0 Λ δ (g δ , R) ≥ n n + 1 κb 2 [1 -1 (2n)].
Since n ∈ N is arbitrary, we obtain

lim inf δ→0 Λ δ (g δ , R) ≥ κb 2 .
The proof is complete. ◻

Here is a more general version of Lemma 12.

Lemma 13. Let c, τ > 0 and

(g δ ) ⊂ L 1 (R) with R = (a 1 , b 1 ) × (a, b) d-1 for some a 1 < b 1 and a < b be such that τ < (b 1 -a 1 ) 8. Set A δ = x ∈ R ∶ g δ (x) > 0 and a 1 ≤ x 1 ≤ a 1 + τ and B δ = x ∈ R ∶ g δ (x) < c and b 1 -τ ≤ x 1 ≤ b 1 .
We have, with

R ′ = (a, b) d-1 , lim inf δ→0 Λ δ (g δ , R) ≥ cκ R ′ -C d c lim sup δ→0 ( A δ + B δ ) τ,
Proof. Define two continuous functions f 1 and f 2 in R which depend only on x 1 as follows

f 1 (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if x 1 ≤ a 1 + τ 2, c if x 1 ≥ a 1 + τ,
affine w.r.t. x 1 otherwise, and

f 2 (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if x 1 ≤ b 1 -τ, c if x 1 ≥ b 1 -τ 2, affine w.r.t. x 1 otherwise. Define h 1,δ = max min g δ , c , 0 , h 2,δ = min(h 1,δ , f 1 ), and h 3,δ = max(h 2,δ , f 2 ).
By Corollary 2, we have

Λ δ (h 1,δ , R) ≤ Λ δ (g δ , R),
and by Lemma 2, we obtain

Λ δ (h 2,δ , R) ≤ Λ δ (h 1,δ , R) + C d c {h 1,δ > f 1 } τ ≤ Λ δ (h 2,δ , R) + C d c A δ τ, and Λ δ (h 3,δ , R) ≤ Λ δ (h 2,δ , R) + C d c {h 2,δ < f 2 } τ ≤ Λ δ (h 2,δ , R) + C d c B δ τ. It follows that Λ δ (h 3,δ , R) ≤ Λ δ (g δ , R) + C d c( A δ + B δ ) τ.
One can easily check that h 3,δ (x) = 0 for

x 1 ≤ a 1 + τ 2, h 3,δ (x) = c for x 1 ≥ b 1 -τ 2, and 0 ≤ h 3,δ ≤ c in R.
Applying Lemma 12 for h 3,δ , we obtain the conclusion. ◻

We next recall the definition of a Lebesgue surface (see [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF]):

Definition 2. Let g ∈ L 1 (R) with R = ∏ d i=1 (a i , b i ) for some a i < b i (1 ≤ i ≤ d) and t ∈ (a 1 , b 1 ). Set R ′ = ∏ d i=2 (a i , b i ).
The surface x 1 = t is said to be a Lebesgue surface of g if for almost every z ′ ∈ R ′ , (t, z ′ ) is a Lebesgue point of g, the restriction of g to the surface x 1 = t is integrable with respect to (d -1)-Hausdorff measure, and lim

ε→0+ t+ε ⨏ t-ε R ′ g(s, z ′ ) -g(t, z ′ ) dz ′ ds = 0. (3.91) 
For i = 2, . . . , d, we also define the notion of the Lebesgue surface for surfaces x i = t with t ∈ (a i , b i ) in a similar manner.

The following lemma plays a crucial role in our analysis; its proof relies on Lemma 13.

Lemma 14. Let g ∈ L 1 (R) and (g δ ) ⊂ L 1 (R) with R = ∏ d i=1 (a i , b i ) for some a i < b i (1 ≤ i ≤ d) such that (g δ ) → g in L 1 (R). Set R ′ = ∏ d i=2 (a i , b i ). Let a 1 < t 1 < t 2 < b 1 be such that the surface x 1 = t j (j = 1, 2) is a Lebesgue surface of g. We have lim inf δ→0 Λ δ g δ , (t 1 , t 2 ) × R ′ ≥ κ R ′ g(t 2 , x ′ ) -g(t 1 , x ′ ) dx ′ . Proof. Fix ε > 0 (arbitrary). Let A ′ be the set of all elements z ′ ∈ R ′ such that, for j = 1, 2, (t j , z ′ ) is a Lebesgue point of g(t j , ⋅) and (t j , z ′ ) is a Lebesgue point of g. Then A ′ = R ′ . For each z ′ ∈ A ′ , there exists l(z ′ , ε) > 0 such that for every closed cube Q ′ l (z ′ ) ⊂ R d-1 centered at z ′ with length 0 < l < l(z ′ , ε), we have ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ (x 1 , y ′ ) ∈ (t 1 , t 1 + l) × Q ′ l (z ′ ); g(x 1 , y ′ ) -g(t 1 , z ′ ) ≥ ε 2 ≤ εl d , (x 1 , y ′ ) ∈ (t 2 -l, t 2 ) × Q ′ l (z ′ ); g(x 1 , y ′ ) -g(t 2 , z ′ ) ≥ ε 2 ≤ εl d , (3.92) 
and, for j = 1, 2,

⨏ Q ′ l (z ′ ) g(t j , y ′ ) -g(t j , z ′ ) dy ′ < ε. (3.93) Fix z ′ ∈ A ′ and 0 < l < l(z ′ , ε). Since (g δ ) → g in L 1 (R), it follows from (3.92) that, when δ is small, ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ (x 1 , y ′ ) ∈ (t 1 , t 1 + l) × Q ′ l (z ′ ); g δ (x 1 , y ′ ) -g(t 1 , z ′ ) ≥ ε ≤ 2εl d , (x 1 , y ′ ) ∈ (t 2 -l, t 2 ) × Q ′ l (z ′ ); g δ (x 1 , y ′ ) -g(t 2 , z ′ ) ≥ ε ≤ 2εl d . (3.94) 
We claim that

lim inf δ→0 Λ δ g δ , (t 1 , t 2 ) × Q ′ l (z ′ ) ≥ κ g(t 2 , z ′ ) -g(t 1 , z ′ ) Q ′ l (z ′ ) -Cε Q ′ l (z ′ ) , (3.95) 
for some positive constant C depending only on d. Indeed, without loss of generality, one may assume that g(t

2 , z ′ ) ≥ g(t 1 , z ′ ). It is clear that (3.95) holds if g(t 2 , z ′ ) -g(t 1 , z ′ ) ≤ 4ε by choosing C = 10. We now consider the case g(t 2 , z ′ ) -g(t 1 , z ′ ) > 4ε. Applying Lemma 13 for g δ -g(t 1 , z ′ ) -ε in the set (t 1 , t 2 ) × Q ′ l (z ′ ), τ = l, and c = g(t 2 , z ′ ) -g(t 1 , z ′ ) -2ε, we derive that lim inf δ→0 Λ δ g δ , (t 1 , t 2 ) × Q ′ l (z ′ ) ≥ κ g(t 2 , z ′ ) -g(t 1 , z ′ ) -2ε Q ′ l (z ′ ) -Cε Q ′ l (z ′ )
since, by (3.94),

A δ = (x 1 , y ′ ) ∈ (t 1 , t 1 + l) × Q ′ l (z ′ ); g δ (x 1 , y ′ ) -g(t 1 , z ′ ) -ε > 0 ≤ (x 1 , y ′ ) ∈ (t 1 , t 1 + l) × Q ′ l (z ′ ); g δ (x 1 , y ′ ) -g(t 1 , z ′ ) ≥ ε ≤ 2εl d = 2εl Q ′ l (z ′ )
and

B δ = (x 1 , y ′ ) ∈ (t 2 -l, t 2 ) × Q ′ l (z ′ ); g δ (x 1 , y ′ ) -g(t 1 , z ′ ) -2ε < g(t 2 , z ′ ) -g(t 1 , z ′ ) -ε ≤ (x 1 , y ′ ) ∈ (t 1 , t 1 + l) × Q ′ l (z ′ ); g(x 1 , y ′ ) -g(t 1 , z ′ ) ≥ ε ≤ 2εl d = 2εl Q ′ l (z ′ ) .
This implies Claim (3.95).

On the other hand, by Besicovitch's covering theorem (see e.g., [34, Corollary 1 on page 35]1 ), there exist a sequence

(z ′ k ) k∈N ⊂ A ′ and disjoint cubes Q ′ l k (z ′ k ) k∈N ⊂ R ′ such that 0 < l k < l(z ′ k , ε) for every k, and A ′ = k∈N Q ′ l k (z ′ k ) . (3.96) 
[For the convenience of the reader, we explain how to apply [34, Corollary 1] in our situation. We take

n = d -1, A is our A ′ , F = Q ′ l (z ′ ); z ′ ∈ A ′ and 0 < l < l(z ′ , ε) , and U = R ′ . ] It follows from (3.95) that lim inf δ→0 Λ δ g δ , (t 1 , t 2 ) × R ′ ≥ k κ g(t 2 , z ′ k ) -g(t 1 , z ′ k ) Q ′ l k (z ′ k ) -Cε Q ′ l k (z ′ k ) . (3.97) 
We claim that

g(t 2 , z ′ k ) -g(t 1 , z ′ k ) Q ′ l k (z ′ k ) ≥ Q ′ l k (z ′ k ) g(t 2 , y ′ ) -g(t 1 , y ′ ) dy ′ -2ε Q ′ l k (z ′ k ) . (3.98) 
Indeed, we have 

Q ′ l k (z ′ k ) g(t 2 , y ′ ) -g(t 1 , y ′ ) dy ′ ≤ Q ′ l k (z ′ k ) g(t 2 , y ′ ) -g(t 2 , z ′ ) + g(t 1 , y ′ ) -g(t 1 , z ′ ) dy ′ + g(t 2 , z ′ k ) -g(t 1 , z ′ k ) Q ′ l k (z ′ k ) ;
Λ δ g δ , (t 1 , t 2 ) × R ′ ≥ κ R ′ g(t 2 , y ′ ) -g(t 1 , y ′ ) dy ′ -Cε R ′ .
Since ε > 0 is arbitrary, we obtain the conclusion. ◻

We next recall the notion of essential variation in [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF] related to BV functions.

Definition 3. Let g ∈ L 1 (R) with R = ∏ d i=1 (a i , b i ) for some a i < b i (1 ≤ i ≤ d). Set R ′ = ∏ d i=2 (a i , b i ).
The essential variation of g in the first direction is defined as follows

ess V (g, 1, R) = sup ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ m i=1 R ′ g(t i+1 , x ′ ) -g(t i , x ′ ) dx ′ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ,
where the supremum is taken over all finite partitions {a 1 < t 1 < ⋅ ⋅ ⋅ < t m+1 < b 1 } such that the surface x 1 = t k is a Lebesgue surface of g for 1 ≤ k ≤ m + 1. For 2 ≤ j ≤ d, we also define ess V (g, j) the essential variation of g in the j th direction in a similar manner.

The following result provides a characterization of BV functions (see e.g., [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF]Proposition 3]).

Proposition 4. Let g ∈ L 1 (R) with R = ∏ d i=1 (a i , b i ) for some a i < b i (1 ≤ i ≤ d). Then g ∈ BV (R) if and only if ess V (g, j, R) < +∞, ∀ 1 ≤ j ≤ d. Moreover, for g ∈ BV (R), ess V (g, j, R) = R ∂g ∂x j ∀ 1 ≤ j ≤ d.
As a consequence of Lemma 14 and Proposition 4, we have

Corollary 6. Let g ∈ L 1 (R) and (g δ ) ⊂ L 1 (R) with R = ∏ d i=1 (a i , b i ) for some a i < b i (1 ≤ i ≤ d) such that (g δ ) → g in L 1 (R). We have lim inf δ→0 Λ δ g δ , R ≥ κ R ∂g ∂x j ∀ 1 ≤ j ≤ d.

Proof of Property (G1) completed

Recall that for each u ∈ BV (Ω), ∇u is a Radon measure on Ω. By Radon-Nikodym's theorem, we may write ∇u = σ ∇u , for some σ ∈ L ∞ (Ω, ∇u , R d ) and σ = 1 ∇u -a.e. (see e.g., [34, Theorem 1 on page 167]).

Then for ∇u -a.e. x ∈ Ω, one has (see e.g., [34, Theorem 1 on page 43])

lim r→0 1 ∇u (Q r (x, σ(x))) Qr(x,σ(x)) σ(y) ∇u(y) dy = σ(x) 2 .
Hereafter for any (x, σ, r) ∈ Ω × S d-1 × (0, +∞), Q r (x, σ) denotes the closed cube centered at x with edge length 2r such that one of its faces is orthogonal to σ. It follows that, for ∇ua.e. x ∈ Ω,

lim r→0 1 ∇u (Q r (x, σ(x))) Qr(x,σ(x)) σ(y) ⋅ σ(x) ∇u(y) dy = 1. Since σ(y) ⋅ σ(x) ≤ σ(y) ⋅ σ(x) ≤ 1,
we derive that, for ∇u -a.e. x ∈ Ω,

lim r→0 1 ∇u (Q r (x, σ(x))) Qr(x,σ(x)) σ(y) ⋅ σ(x) ∇u(y) dy = 1.
In other words, for ∇u -a.e. x ∈ Ω, lim r→0 Qr(x,σ(x))

∇u(y) ⋅ σ(x) dy

Qr(x,σ(x))

∇u(y) dy = 1.

(3.99)

Denote A = {x ∈ Ω; (3.99) holds}. Fix ε > 0 (arbitrary). For x ∈ A, there exists a sequence s n = s n (x, ε) → 0 as n → +∞ such that, for all n,

Qs n (x,σ(x)) ∇u(y) ⋅ σ(x) dy Qs n (x,σ(x)) ∇u(y) dy ≥ 1 -ε. (3.100) 
and

∂Qs n (x,σ(x)) ∇u(y) dy = 0. (3.101) Set F = Q sn(x,ε) (x, σ(x)); x ∈ A and n ∈ N .
By Besicovitch's covering theorem (see e.g., [34, Corollary 1 on page 35] applied with A, F, U = Ω, and µ = ∇u ), there exists a collection of disjoint cubes

Q r k x k , σ(x k ) k∈N with x k ∈ A and r k = s n k (x k , ε) such that ∇u (Ω) = ∇u ⋃ k∈N Q r k x k , σ(x k ) . (3.102) 
From (3.100) and (3.101), we have 

Qr k (x k ,σ(x k )) ∇u(y) dy ≤ 1 1 -ε Qr k (x k ,σ(x k )) ∇u(y) ⋅ σ(x k ) dy (3.
∇u (Ω) ≤ 1 1 -ε k∈N Qr k (x k ,σ(x k )) ∇u(y) ⋅ σ(x k ) dy. (3.105) 
Applying Corollary 6 and using (3.104), we obtain

κ Qr k (x k ,σ(x k )) ∇u(y) ⋅ σ(x k ) dy ≤ lim inf δ→0 Λ δ u δ , Q r k (x k , σ(x k )) . (3.106) 
From (3.105) and (3.106), we have

κ ∇u (Ω) ≤ 1 1 -ε lim inf δ→0 Λ δ u δ , Ω . (3.107) 
Since ε > 0 is arbitrary, we have established that, for u ∈ BV (Ω),

lim inf δ→0 Λ δ u δ , Ω ≥ κ ∇u (Ω).
Suppose now that u ∈ BV loc (Ω), we may apply the above for any ω ⊂⊂ Ω and therefore we conclude that lim inf δ→0 Λ δ u δ , Ω ≥ κ ∇u (Ω).

Hence it now suffices to prove that if lim inf δ→ Λ δ (u δ , Ω) < +∞, then u ∈ BV loc (Ω). Indeed, this is a consequence of Corollary 6.

The proof is complete. ◻

Further properties of K(ϕ)

This section deals with properties of κ(ϕ) defined in (3.4). Our main result is:

Theorem 5. We have κ(ϕ) ≥ κ(c 1 φ1 ) for all ϕ ∈ A;

(3.108) in particular, inf ϕ∈A κ(ϕ) > 0.

Proof. The proof uses an idea in [START_REF] Nguyen | Further characterizations of Sobolev spaces[END_REF]Section 2.3]. From the definition of κ(c 1 φ1 ), we have (see [START_REF] Nguyen | Γ-convergence, Sobolev norms, and BV functions[END_REF]Lemma 8])

∀ ε > 0, ∃δ(ε) > 0 such that if v-U L 1 (Q) < δ(ε) and δ < δ(ε), then Λ δ (v, c 1 φ1 ) ≥ κ(c 1 φ1 )-ε. (3.109) Next we fix ϕ ∈ A. Fix (u δ ) ⊂ L 1 (Q) be such that u δ → U in L 1 (Q). Our goal is to prove that lim inf δ→0 Λ δ (u δ , ϕ) ≥ κ(c 1 φ1 ). (3.110) 
Let c > 1 and ε > 0. Since ϕ is non-decreasing, we have

Q Q ϕ δ ( u δ (x) -u δ (y) ) x -y d+1 dxdy ≥ ∞ k=-∞ Q Q c -k-1 < u δ (x)-u δ (y) ≤c -k ϕ δ (c -k-1 )
x -y d+1 dxdy.

(3.111)

Using the fact that

Q Q c -k-1 < u δ (x)-u δ (y) ≤c -k 1 x -y d+1 dxdy = Q Q u δ (x)-u δ (y) >c -k-1 1 x -y d+1 dxdy - Q Q u δ (x)-u δ (y) >c -k 1 x -y d+1 dxdy, we obtain ∞ k=-∞ Q Q c -k-1 < u δ (x)-u δ (y) ≤c -k ϕ δ (c -k-1 ) x -y d+1 dxdy = ∞ k=-∞ ϕ δ (c -k ) -ϕ δ (c -k-1 ) Q Q u δ (x)-u δ (y) >c -k 1 x -y d+1 dxdy. (3.112) We have, for any k 0 > 0, ∞ k=-∞ ϕ δ (c -k ) -ϕ δ (c -k-1 ) Q Q u δ (x)-u δ (y) >c -k 1 x -y d+1 dxdy ≥ ∞ k=k 0 ϕ δ (c -k ) -ϕ δ (c -k-1 ) c k Q Q u δ (x)-u δ (y) >c -k c -k x -y d+1 dxdy. (3.113) Applying (3.109) with v = u δ and δ = c -k , we obtain c 1 Q Q u δ (x)-u δ (y) >c -k c -k x -y d+1 dxdy ≥ κ(c 1 φ1 ) -ε, (3.114) 
provided u δ -U L 1 (Q) < δ(ε) and c -k < δ(ε). In particular, there exist δ(ε) > 0 and k(ε, c) ∈ N such that (3.114) holds for δ < δ(ε) and k ≥ k(ε, c). Combining (3.113) and (3.114) yields

∞ k=-∞ ϕ δ (c -k ) -ϕ δ (c -k-1 ) Q Q u δ (x)-u δ (y) >c -k 1 x -y d+1 dxdy ≥ c -1 1 ∞ k 0 κ(c 1 φ1 ) -ε c k ϕ δ (c -k ) -ϕ δ (c -k-1 ) , (3.115)
for k 0 = k(ε, c) and δ < δ(ε). We derive from (3.111), (3.112), and (3.115) that, for δ < δ(ε),

Λ δ (u δ ) ≥ c -1 1 κ(c 1 φ1 ) -ε ∞ k=k 0 c k ϕ δ (c -k ) -ϕ δ (c -k-1 ) . (3.116)
We have, since 

ϕ δ ≥ 0, ∞ k=k 0 c k ϕ δ (c -k ) -ϕ δ (c -k-1 ) = ∞ k=k 0 c k ϕ δ (c -k ) - ∞ k=k 0 c k ϕ δ (c -k-1 ) ≥ 1 c ∞ k=k 0 +1 ϕ δ (c -k )c k (c -1) (3.117) and, since ϕ δ is non-decreasing, ∞ k=k 0 +1 ϕ δ (c -k )c k (c -1) = ∞ k=k 0 +1 ϕ δ (c -k ) c -k c -k-1 t -2 dt ≥ ∞ k=k 0 +1 c -k c -k-1 ϕ δ (t)t -2 dt = c -k 0 -1 0 ϕ δ (t)t
Λ δ (u δ ) ≥ 1 c c -1 1 κ(c 1 φ1 ) -ε c -k 0 -1 0 ϕ δ (t)t -2 dt. Note that lim δ→0 c -k 0 -1 0 ϕ δ (t)t -2 dt = lim δ→0 c -k 0 -1 δ 0 ϕ(t)t -2 dt = ∞ 0 ϕ(t)t -2 dt = γ -1 d by (1.5).
On the other hand, by (1.5) applied with c 1 φ1 , we have

γ d c 1 ∞ 1 t -2 dt = γ d c 1 = 1.
We derive that lim inf

δ→0 Λ δ (u δ ) ≥ 1 c (κ(c 1 φ1 ) -ε).
Since c > 1 and ε > 0 are arbitrary, we obtain (3.108). ◻ Theorem 5 suggests the following question Note that if (x, y) ∈ Z i,n we have

u(y) -u(x) = y 1 -x 1 > 1 n and u n (y) -u n (x) = (i + 1) n -i n = 1 n, so that Z i,n ⊂ B n ∖ A n for 0 ≤ i ≤ n -2.
On the other hand if (x, y) ∈ Z i,n we have

x -y 2 = x 1 -y 1 2 + x ′ -y ′ 2 ≤ 4 n 2 + x ′ -y ′ 2 ,
and consequently

∬ Bn∖An 1 x -y d+1 dx dy ≥ n-2 i=0 ∬ Z i,n 1 x -y d+1 dx dy ≥ n-2 i=0 1 4n 2 ∬ Q ′ ×Q ′ 1 (4 n 2 ) + x ′ -y ′ 2 d+1 2 dx ′ dy ′ ∼ 1 n ∬ Q ′ ×Q ′ 1 (4 n 2 ) + x ′ -y ′ 2 d+1 2 dx ′ dy ′ . (3.124) 
Recall the (easy and) standard fact that

∬ Q ′ ×Q ′ 1 a 2 + x ′ -y ′ 2 d+1 2
dx ′ dy ′ ∼ 1 a 2 for small a. The following subtle estimate from [47, Theorem 1] (with roots in [START_REF] Bourgain | A new characterization of Sobolev spaces[END_REF]) plays a crucial role in the proof of Theorems 2 and 3.

Lemma 15. Let d ≥ 1, B 1 be the unit ball (or cube), and u ∈ L 1 (B 1 ). There exists a positive constant C d , depending only on d, such that

B 1 B 1 u(x) -u(y) dx dy ≤ C d B 1 B 1 u(x)-u(y) >1 1 x -y d+1 dx dy + 1 . (4.1) Proof. Define U (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ u(x) if x ∈ Ω, u x Γ -sν(x Γ ) if x ∈ Ω t ∖ Ω.
It is clear that

U L 1 (Ωt) ≤ C u L 1 (Ω) .
In this proof C denotes a positive constant depending only on Ω. It remains to prove that Λ(U, Ω t ) ≤ CΛ(u, Ω).

By the definition of Λ in (1.1), it suffices to show that

Ωt dy Ωt∖Ω ϕ( U (x) -U (y) ) x -y d+1 dx ≤ C Ω Ω ϕ( u(x) -u(y) ) x -y d+1 dx dy. (4.6) If x ∈ Ω t ∖ Ω and y ∈ Ω t ∖ Ω, then U x Γ + s 1 ν(x Γ ) -U y Γ + s 2 ν(y Γ ) = u x Γ -s 1 ν(x Γ ) -u y Γ -s 2 ν(y Γ ) , and x Γ + s 1 ν(x Γ ) -y Γ + s 2 ν(y Γ ) ≥ C x Γ -s 1 ν(x Γ ) -y Γ -s 2 ν(y Γ ) ,
and, if x ∈ Ω t ∖ Ω and y ∈ Ω, then

U x Γ + s 1 ν(x Γ ) -U (y) = u x Γ -s 1 ν(x Γ ) -u(y),
and

x Γ + s 1 ν(x Γ ) -y ≥ C x Γ -s 1 ν(x Γ ) -y .
Hence (4.6) holds. ◻

We are ready to present the Proof of Theorem 2. It suffices to consider the case where Ω is bounded. By Lemma 17, one only needs to prove that up to a subsequence, u n → u in L 1 loc (Ω). For a cube Q in Ω, define

F (u, Q) = Q Q ϕ u(x) -u(y)
x -y d+1 dx dy + Q .

Since, by (4.4),

1 Q Q Q u(x) -u(y) dx dy ≤ C d λ ϕ(λ) Q 1 d Q Q ϕ u(x) -u(y) x -y d+1 dx dy + λ Q , it follows that 1 Q Q Q u(x) -u(y) dx dy ≤ ρ( Q )F (u, Q), (4.7) 
where

ρ(t) ∶= C d inf λ>0 λt 1 d ϕ(λ) + λ .
It is clear that ρ is non-decreasing and, by (1.8), lim t→0 ρ(t) = 0. (4.8)

For ε > 0 and n ∈ N, set

u n,ε (x) = 1 ε d Qε(x) u n (y) dy,
where Q ε (x) is the cube centered at x of side ε. Fix an arbitrary cube Q ⊂⊂ Ω. We claim that

Q u n (x) -u n,ε (x) dx → 0 as ε → 0, uniformly in n. (4.9) 
Let ε be small enough such that

Q + ε[-1, 1] d ⊂ Ω.
Then there exists a finite family Q(j)

i∈J of disjoint open ε-cubes such that Q ⊂ interior ⋃ j∈J Q(j) ⊂ ⋃ j∈J 2Q(j) ⊂ Ω,
and thus cardJ ∼ 1 ε d . Here and in what follows aQ(j) denotes the cube which has the same center as Q(j) and of a times its length. Applying (4.7) we have

Q(j) u n (x) -u n,ε (x) dx ≤ C 2Q(j) 2Q(j) 2Q(j) u n (x) -u n (y) dx dy ≤Cρ(2 d ε d )F u n , 2Q(j) , (4.10) 
since Q(j) + ε[-1 2, 1 2] d ⊂ 2Q(j). Note that the family 2Q(j) is not disjoint, however, they have a finite number of overlaps (depending only on d). Therefore, for any f ≥ 0,

j 2Q(j) 2Q(j) f ≤ C Ω Ω f, (4.11) 
Summing with respect to j in (4.10), we derive from (4.11) that

Q u n (x) -u n,ε (x) dx ≤ Cρ(2 d ε d )F u n , Ω . (4.12) 
Using (1.13), (4.8), and (4.12), we obtain (4.9). It follows from (4.9) and a standard argument (see, e.g., the proof of the theorem of Riesz-Frechet-Kolmogorov in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 4.26]) that there exists a subsequence (u n k ) of (u n ) and u ∈ L 1 loc (Ω) such that (u n k ) converges to u in L 1 loc (Ω). ◻ Remark 8. Using Theorem 2, one can prove that Λ is lower semi-continuous with respect to weak convergence in L q for any q ≥ 1.

Some functionals related to Image Processing

Given q ≥ 1, λ > 0, δ > 0, d ≥ 1, Ω a smooth bounded open subset of R d , and f ∈ L q (Ω), consider the non-local, non-convex functional defined on L q (Ω) by

E δ (u) = λ Ω u -f q + Λ δ (u) ∶= λ Ω u -f q + δ Ω Ω ϕ( u(x) -u(y) δ)
x -y d+1 dx dy.

(5.1)

Our goal in this section is twofold. In the first part, we investigate the existence of a minimizer for E δ (δ is fixed) and then we study the behavior of these minimizers (or almost minimizers) as δ → 0. In the second part, we explain how these results are connected to Image Processing.

Variational problems associated with E δ

We start with an immediate consequence of Theorem 2.

Corollary 7. Let δ > 0 be fixed. Assume that ϕ ∈ A satisfies (1.8). There exists u ∈ L q (Ω)

such that E δ (u) = inf w∈L q (Ω) E δ (w).
As we know from Theorem 1, under assumptions (1.2)-(1.5), (Λ δ ) Γ-converges to K ∫ Ω ∇⋅ as δ → 0, for some constant 0 < K ≤ 1. Therefore, one may expect that the minimizers of E δ converge to the unique minimizer in L q (Ω) of E 0 , where Theorem 6. Let d ≥ 1, q ≥ 1, Ω be a smooth bounded open subset of R d , f ∈ L q (Ω), and ϕ ∈ A. Let (δ n ), (τ n ) be two positive sequences converging to 0 as n → ∞ and u n ∈ L q (Ω) be such that

E 0 (w) = λ Ω w -f q + K Ω ∇w . ( 5 
E δn (u n ) ≤ inf u∈L q (Ω) E δn (u) + τ n . (5.3) 
Then u n → u 0 in L q (Ω) where u 0 is the unique minimizer of the functional E 0 defined on L q (Ω) ∩ BV (Ω) by

E 0 (u) ∶= λ Ω u -f q + K Ω ∇u , and 0 < K ≤ 1 is the constant in Theorem 1. Proof. It is clear that (u n ) is bounded in L 1 (Ω)
. By Theorem 3, there exists a subsequence (u n k ) which converges to some u 0 a.e. and in L 1 (Ω). It follows from Fatou's lemma and Property (G1) in Section 3 that

E 0 (u 0 ) ≤ lim inf k→∞ E δn k (u n k ). (5.4) 
We will prove that u 0 is the unique minimizer of E 0 in L q (Ω) ∩ BV (Ω). Let v ∈ L q (Ω) ∩ BV (Ω) be the unique minimizer of E 0 . Applying Theorem 1, there exists v n ∈ L 1 (Ω) such that v n → v in L 1 (without loss of generality, one may assume that v n → v a.e.) and

lim sup n→∞ Λ δn (v n ) ≤ K Ω ∇v .
For A > 0, recall the notation T A defined in (2.39). From (1.4), we have

Λ δn (T A v n ) ≤ Λ δn (v n ).
By definition of u n , we obtain

E δn (u n ) ≤ λ Ω T A v n -f q + Λ δn (T A v n ) + τ n ≤ λ Ω T A v n -f q + Λ δn (v n ) + τ n . Letting n → ∞ yields E 0 (u 0 ) ≤ lim inf n→∞ E δn (u n ) ≤ λ Ω T A v -f q + K Ω ∇v . As A → ∞, we find E 0 (u 0 ) ≤ λ Ω v -f q + K Ω ∇v . (5.5) 
This implies that u 0 is the unique minimizer of E 0 .

We next prove that

u n → u 0 in L q . Since E 0 (u 0 ) ≥ lim sup n→∞ E δn (u n ) ≥ E 0 (u 0 )
by (5.5), and

lim inf n→∞ Λ δn (u n ) ≥ K Ω ∇u 0 ,
by Theorem 1, we have lim

n→∞ Ω u n -f q = Ω u 0 -f q .
In addition we know that u n -f → u 0 -f a.e. in Ω. Therefore u n -f → u 0 -f in L q (Ω); thus u n → u 0 in L q (Ω). The proof is complete. ◻ Remark 9. In case a Lavrentiev -type gap does occur (see Open problem 3 and the subsequent comments) it would be interesting to investigate what happens in Theorem 6 if E δ L q (Ω) is replaced by E δ C 0 ( Ω) (with numerous possible variants).

Connections with Image Processing

A fundamental challenge in Image Processing is to improve images of poor quality. Denoising is an immense subject, see, e.g., the excellent survey by A. Buades, B. Coll and J. M. Morel [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. One possible strategy is to introduce a filter F and use a variational formulation min

u λ Ω u -f 2 + F (u) , (5.6) 
or, alternatively, the associated Euler equation 2λ(u -f ) + F ′ (u) = 0.

(5.7)

Here f is the given image of poor quality, λ > 0 is the fidelity parameter (fixed by experts) which governs how much filtering is desirable. Minimizers of (5.6) (or solutions to (5.7)) are the denoised images.

Many types of filters are used in Image Processing. Here are three popular ones. The first one is the celebrated (ROF) filter due L. Rudin, S. Osher, and E. Fatemi [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]:

F (u) = Ω ∇u
(see also [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF][START_REF] Chan | Recent Developments in Total Variation Image Restoration[END_REF][START_REF] Haddad | An improvement of Rudin-Osher-Fatemi model[END_REF]). The corresponding minimization problem is

(ROF ) min u∈L 2 (Ω) λ Ω u -f 2 + Ω ∇u .
The functional in (ROF ) is strictly convex. It follows from standard Functional Analysis that, given f ∈ L 2 (Ω), there exists a unique minimizer u 0 ∈ BV (Ω) ∩ L 2 (Ω).

The second filter, due to G. Gilboa and S. Osher [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF] (see also [START_REF] Gilboa | Nonlocal operators with applications to image processing[END_REF]), is

F (u) = Ω Ω u(x) -u(y) 2 x -y 2 w(x, y) dy 1 2 dx,
where w is a given weight function. The corresponding minimization problem is

(GO) min u∈L 2 (Ω) λ Ω u -f 2 + Ω Ω u(x) -u(y) 2
x -y 2 w(x, y) dy

1 2
dx .

The functional in (GO) is strictly convex. Again by standard Functional Analysis, there exists a unique minimizer u 0 of (GO). One can prove (see [START_REF] Brezis | Two subtle convex nonlocal approximation of the BVnorm[END_REF]) that if w(x, y) = ρ ε ( x -y ), where (ρ ε ) is a sequence of mollifiers as in Remark 4, then the corresponding minimizers (u ε ) of (GO ε ) (i.e., (GO) with w(x, y) = ρ ε ( x -y )) converge, as ε → 0, to the unique solution of the (ROF k ) problem

(ROF k ) min u∈L 2 (Ω)∩BV (Ω) λ Ω u -f 2 + k Ω ∇u ,
where

k = S d-1 σ ⋅ e 2 dσ 1 2 
,

for some e ∈ S d-1 . The proof in [START_REF] Brezis | Two subtle convex nonlocal approximation of the BVnorm[END_REF] is strongly inspired by the results of J. Bourgain, H. Brezis, and P. Mironescu [START_REF] Bourgain | Another look at Sobolev spaces[END_REF], A. Ponce [START_REF] Ponce | A new approach to Sobolev spaces and connections to Γ-convergence[END_REF], and G. Leoni and D. Spector [START_REF] Leoni | Corrigendum to "Characterization of Sobolev and BV Spaces[END_REF].

In a similar spirit, G. Aubert and P. Kornprobst in [START_REF] Aubert | Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?[END_REF] have proposed to use the filter

F (u) = I ε (u) = Ω Ω u(x) -u(y) x -y ρ ε ( x -y ) dx dy,
and the corresponding minimization problem is

(AK ε ) min u∈L 2 λ Ω u -f 2 + Ω Ω u(x) -u(y) x -y ρ ε ( x -y ) dx dy .
As above, (AK ε ) admits a unique minimizer u ε and, as ε → 0, (u ε ) converges to the solution of (ROF γ d ) where γ d is the constant defined in (1.5).

More recently, J.-F. Cai, B. Dong, S. Osher, and Z. Shen [START_REF] Cai | Image restoration, total variation, wavelet frames, and beyond[END_REF] have studied a general version of (ROF ) of the type

inf u ν Du * + 1 2 Ω Au -f 2 ,
where ν is a positive constant, D is a linear differential operator, A is a bounded linear operator, and * is a properly chosen norm. They introduce a discretized version

E n (u) = ν D n u * + 1 2 Ω A n u -f n 2 of E(u) = ν Du * + 1 2 Ω Au -f 2
and prove that (E n ) converges to E both pointwise and in the sense of Γ-convergence. This is again a situation where the pointwise limit and the Γ-limit coincide. Consequently, (almost) minimizers of E n converge to (almost) minimizers of E.

The third type of filter was introduced in the pioneering works of L. S. Lee [START_REF] Lee | Digital image smoothing and the sigma filter[END_REF] and L. P. Yaroslavsky (see [START_REF] Yaroslavsky | Digital Picture Processing. An introduction[END_REF][START_REF] Yaroslavsky | Fundamentals of Digital Optics[END_REF]); more details can be found in the expository paper by A. Buades, B. Coll, and J. M. Morel [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]; see also [START_REF] Buades | Neighborhood filters and PDE's[END_REF][START_REF] Buades | Non-local means denoising[END_REF][START_REF] Paris | Bilateral filtering: Theory and applications[END_REF][START_REF] Smith | SUSAN-a new approach to low level image processing[END_REF]) where the terms "neighbourhood filters", "non-local means" and "bilateral filters" are used. Originally, they were not formulated as variational problems. In an important paper K. Kindermann, S. Osher and P. W. Jones [START_REF] Kindermann | Deblurring and Denoising of Images by Nonlocal Functionals[END_REF] showed that some of these filters come from the Euler-Lagrange equation of a minimization problem where the functional F has the form

F (u) = Ω Ω ϕ u(x) -u(y) δ w( x -y ) dx dy,
δ > 0 is a fixed small parameter, ϕ is a given non-convex function, and w ≥ 0 is a weight function. The corresponding minimization problem is

(Y N F δ ) min u∈L 2 λ Ω u -f 2 + Ω Ω ϕ u(x) -u(y) δ w( x -y ) dx dy .
Here are some examples of ϕ ′ s and w ′ s used in Image Processing see, e.g., [39, Section 3]:

i) ϕ = φ2 or ϕ = φ3 (from the list of examples in the Introduction).

ii) w = 1 or

w(t) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 if t < ρ, 0 otherwise, for some ρ > 0.
Such a constant δ n exists by Proposition 1 (in fact u n-1 is only Lipschitz; however Proposition 1 holds as well for Lipschitz functions, see also Proposition C1). Set T n = e -δ -1 n and let y n be the middle point of the interval (x n , x n + T n ) and fix 0 < t n < T n 4 such that 

w n (x) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ constant in [0, x n ], affine in [x n , y n -t n ], affine in [y n -t n , y n + t n ],
affine in

[y n + t n , x n + T n ], constant in [x n + T n , 1],
and

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ w n (0) = 0, w n (y n -t n ) = δ n 3, w n (y n + t n ) = 2δ n 3, w n (x n + T n ) = δ n . Set u n = u n-1 + w n in (0, 1).
Since w n and u n-1 are Lipschitz, it follows that u n is Lipschitz. Moreover, one can verify that (u n ) converges in W 1,1 (0, 1) by noting that w n W 1,1 (0,1) ≤ 2δ n ≤ 2δ 1 8 n-1 .

Let u be the limit of (u n ) in W 1,1 (0, 1). We derive from the construction of u n that u is non-decreasing, and for n ≥ 1, u(x) = u n (x) for x ≤ x n+1 , (A5) Since, for c ≥ 2, Assume that u n-1 (n ≥ 1) is defined and satisfies the following properties:

u is constant in (x n + T n , x n+1 ), ( 
1 k k-2 i=0 (i+1) k i k dx (i+2) k (i+2) k-1 (ck) 1 x -y 2 dy ≤ k -1 k 1 k 1 ck 1 k - 1 ck -2 ≤ 1 c 1 - 1 c
u n-1 is non-decreasing, continuous, and piecewise affine, u n-1 (0) = 0, (B4)

and there exists a partition 0 = t 0,n-1 < t 1,n-1 < ⋯ < t 2l n-1 ,n-1 = 1 such that, with the notation J i,n-1 = [t i,n-1 , t i+1,n-1 ], the following four properties hold:

u n-1 is constant on J 2i,n-1 for i = 0, ⋯, l n-1 -1, (B5)

u n-1 is affine and not constant on J 2i+1,n-1 for i = 0, ⋯, l n-1 -1, (B6) the total variation of u n-1 on the interval J i,n-1 with i odd (where u n-1 is not constant) is always 1 l n-1 , i.e., u n-1 (t 2i+2,n-1 ) -u n-1 (t 2i+1,n-1 ) = 1 l n-1 for i = 0, ⋯, l n-1 -1, (B7) and the intervals J i,n-1 with i odd have the same length which is less than the one of any interval J i,n-1 with i even, i.e., J 1,n-1 = J 3,n-1 = ⋯ = J 2l n-1 -1,n-1 < J 2i,n-1 for i = 0, ⋯, l n-1 -1. (B8)

Since u n-1 (0) = 0, it follows from the properties of u n-1 in (B5) and (B6) that 

u n (t) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ u n-1 (t) if t ∈ B n-1 , 1 l n-1 v kn (s) + i l n-1 if t ∈ J 2i+1,n-1 for some 0 ≤ i ≤ l n-1 -1, ( B13 
)
where s = (t -t 2i+1,n-1 ) J 2i+1,n-1 . Then u n satisfies (B4)-(B8) for some l n and t i,n . Since 0 ≤ v k (x) ≤ x for x ∈ [0, 1], we deduce from (B9) and the definition of u n that u n ≤ u n-1 . On the other hand, we derive from (B9) and (B13) that, for m ≥ n, u m -u n L ∞ (0,1) ≤ 1 l n .

Hence the sequence (u n ) is Cauchy in C([0, 1]). Let u be the limit and set

δ n = 1 (l n-1 k n ). ( B14 
)
It follows from the definition of u n and u that u(t) = u n (t) for t = t i,n-1 with 0 ≤ i ≤ 2l n-1 .

(B15)

From the construction of u n in (B13), the property of v k in (B2), and (B8), we derive that if u(x) -u(y) > δ n , then x -y > τ n , (B16) where τ n is defined in (B11). Since u n-1 is constant in J 2i,n-1 for 0 ≤ i ≤ l n-1 -1 by (B5), it follows from (B13) that u is constant in J 2i,n-1 for 0 ≤ i ≤ l n-1 -1. We derive that We claim that 1 h 2 ϕ M σ (∇u)(x)h dx ∈ L 1 Ω × (0, +∞) × S d-1 . (C9)

Assuming (C9), we may then apply the dominated convergence theorem using (C4), (C5), (C6), (C7), and (C9), and conclude that (C3) holds.

To show (C9), it suffices to prove that, for all σ ∈ S d-1 ,

Ω dx ∞ 0 1 h 2 ϕ M σ (∇u)(x)h dh ≤ C R d ∇u p 1 p . ( C10 
)
Here and in what follows C denotes a positive constant independent of u and δ; it depends only on Ω and p. For simplicity of notation, we assume that σ = e d ∶= (0, ⋯, 0, 1). By a change of variables, we have The idea of using the theory of maximal functions to derive a similar estimate (in a slightly different context but still for ϕ = c 1 φ1 ) is originally due to A. Ponce and J. Van Schaftingen [START_REF] Ponce | Personal communication to the authors[END_REF]; see also H-M. Nguyen [START_REF] Nguyen | Some new characterizations of Sobolev spaces[END_REF].
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(1. 2 )

 2 ϕ(t) ≤ b in R + for some positive constant b, )t -2 dt = 1, where γ d ∶= S d-1

  [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], we deduce from (3.30) and (3.33) that

Combining ( 3 .

 3 [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF],(3.24), and (3.34) yields lim sup δ→0 Λ δ (h δ , Q) ≤ κ.

37 )Claim ( 3 . 35 )

 37335 now follows from(3.36) and(3.37). Using(3.35), we derive from the definition of h δ and the facts thatm 1 ≥ 1 c k and c k → 0 that h δ -U L ∞ (Q) → 0. Hence (3.25) is established. The conclusion now follows from (3.25) and Lemma 4. ◻ We next establish Lemma 6. Let S be an open bounded subset of R d with Lipschitz boundary and let g be an affine function defined on S. Then inf lim inf δ→0 Λ δ (g δ , S) = κ ∇g S , (3.38)

  S)) and ∇g S = a 1-d T (S) Hence, it suffices to prove Lemma 6 for g = U . Denote m the LHS of (3.38). Since ∇g = ∇U = 1, (3.38) becomes m = κ S . (3.39) The proof of (3.39) is based on a covering lemma [46, Lemma 3] (applied first with Ω = S and B = Q and then with Ω = Q and B = S) which asserts that i) There exists a sequence of disjoint sets (Q k ) k∈N such that Q k is the image of Q by a dilation and a translation, Q k ⊂ S for all k, and

Λ

  δ (g δ , S) ≥ κ S ;

  dx dy = 0 (3.77) (recall that n is fixed). Combining (3.71), (3.75), (3.76), and (3.77) yields (3.74).

  .86) Combining (3.84), (3.85), and (3.86) yields

  103) and ∂Qr k (x k ,σ(x k )) ∇u(y) dy = 0. (3.104) Combining (3.102) and (3.103) yields

  -2 dt. (3.118) It follows from (3.116), (3.117), and (3.118) that, for δ < δ(ε),

  123),(3.124), and (3.125) yieldsΛ 1 n (u, c 1 φ1 ) -Λ 1 n (u n , c 1 φ1 ) ≥ C d > 0.(3.126)From Proposition 1, we get limn→∞ Λ 1 n (u) = Q ∇u = 1. (3.127) The desired result (3.120) follows from (3.126) and (3.127). ◻ 4 Compactness results. Proof of Theorems 2 and 3

  -y 2 dy ≥ n. (A4) Such a t n exists by (A2). Define a continuous function w n ∶ [0, 1] ↦ [0, 1], n ≥ 2, as follows

A6) u( 1 )⋯-y 2 . 1 xn 2δ n c 1 xΛ δn 3 (δn 3 ( 1 (i+2) k 1 x

 12113311 -u(x n ) ≤ k≥n δ k < 2δ n , (A7) since δ k < δ k-1 8. We have Λ 2δn (u) = where ⋯ = ϕ 2δn ( u(x) -u(y) ) x -y 2 dy, since u is constant in [x n-1 + T n-1 , x n ].It follows from (A3) that Λ 2δn (u) ≤ hand, from (A4), (A5), and the definition of w n , we have, for n ≥ 1, w n (x) -w n (y) )x -y 2 dy≥ yn-tn xn dx xn+Tn yn+tn c 1 δ n 3 x -y 2 dy ≥ c 1 n 3. (A9)Combining (A8) and (A9) and noting that u n → u in W 1,1 (0, 1), we obtain the conclusion. ◻ B Appendix: Proof of Pathology 3We first establish (2.41) for ϕ = c 1 φ1 where c 1 = 1 2 is the normalization constant. Let c ≥ 5 and for each k ∈ N (k ≥ 4) define a non-decreasing continuous functionv k ∶ [0, 1] ↦ [0, 1] with v k (1) = 1 as follows v k (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ i k for x ∈ [i k, (i + 1) k -1 (ck)] ∀ i = 0, ⋯, k -1, affine for x ∈ [(i + 1) k -1 (ck), (i + 1) k] ∀ i = 0, ⋯, k -1. (B1) Clearly, if v k (x) -v k (y) > 1 k then x -y > 1 k. (B2) Define V k (x) ∶= lim c→+∞ v k (x) for x ∈ [0, 1]. Since c 1 =12, one can show that (see [44, page 683]) A 0 ∶= lim sup k→∞ Λ 1 k (V k ) = lim sup -y 2 dy < 1 = lim δ→0 Λ δ (x, [0, 1]).

Fix

  such a constant c. We are now going to define by induction a sequence ofu n ∶ [0, 1] ↦ [0, 1]. Set u 0 = v 4 .

u n- 1 1 x

 11 (t) = s l n-1 + i l n-1 for t ∈ J 2i+1,n-1 where s = (t -t 2i+1,n-1 ) J 2i+1,n-1 . -1 is the union of all intervals on which u n-1 is constant). For n ∈ N, let k n be a sufficient large integer -y 2 dy ≤ ln τ , such a constant k n exists by (B3). Define

1 ]

 1 ∖J i,n-1 u(x)-u(y) >δn δ n x -y 2 dy. (B17)Using (B16), we have, by (B11),

1 ] 2 2i+1,n- 1 u 1 1 h 2 1 h 2 0 dhS d- 1 1 h 2 ϕ 1 0 1 0h 1 0h

 1211212012111 ∖J i,n-1 u(x)-u(y) >δn δ n x -y 2 dy ≤ 4l n-1 -y 2 dy ≤ 4 n.(B18)We now estimate, for 0≤ i ≤ l n-1 -1, ∬ J (x)-u(y) >δn δ n x -y 2 dx dy. Define g i ∶ J 2i+1,n-1 → [0, 1], for 0 ≤ i ≤ l n-1 -1, as follows g i (x) = (x -t 2i+1,n-1 ) J 2i+1,n-1 for x ∈ J 2i+1,n-1 .and thus it suffices to establish that limδ→0 Ω dx R d ϕ δ ( u(x) -u(y) ) x -y d+1 dy = Ω ∇u dx. (C3)Using polar coordinates and a change of variables, we have, as in (2.10),Ω dx R d ϕ δ ( u(x) -u(y) ) x -y d+1 dy = ϕ u(x + δhσ) -u(x) δ dσ. (C4)As in (2.12), we also obtain limδ→0 ϕ u(x + δhσ) -u(x) δ = 1 h 2 ϕ ∇u(x) ⋅ σ h for a.e. (x, h, σ) ∈ Ω × (0, +∞) × S d-1 . (C5)As in (2.15), we haveΩ dx ∞ ∇u(x) ⋅ σ h dσ = Ω ∇u dx. (C6)On other hand, since ϕ is non-decreasing, it follows that, for δ > 0,1 h 2 ϕ u(x+δhσ)-u(x) δ ≤ 1 h 2 ϕ M σ (∇u)(x)h for a.e. (x, h, σ) ∈ R d ×(0, +∞)×S d-1 ,(C7) where M σ (∇u)(x) ∶= sup τ >0 ∇u(x + sτ σ) ⋅ σ ds for x ∈ R d . (C8) Indeed, we have u(x + δhσ) -u(x) δ ≤ ∇u(x + sδhσ) ⋅ σ ds ≤ h sup τ >0 ∇u(x + sτ σ) ⋅ σ ds.

∂⨏ x d +τ x d ∂Remark 10 .

 d10 M e d (∇u)(x)h dh = Ω M e d (∇u)(x) dx ∞ 0 ϕ(t)t -2 dt =γ -1 d Ω M e d (∇u)(x) dx ≤ C Ω M e d (∇u)(x) x d u(x ′ , x d + sτ ) ds = sup τ >0 x d u(x ′ , s) ds.We haveΩ M e d (∇u)(x) p dx ≤ R d M e d (∇u)(x) p dx = R d-1 dx ′ R M e d (∇u)(x ′ , x d ) p dx d . (C12)Since, by the theory of maximal functions in one dimension,R M e d (∇u)(x ′ , x d ) p dx d ≤ C R ∂ x d ′ , x d ) p dx d , it follows from (C12) that Ω M e d (∇u)(x) p dx ≤ C R d ∇u(x) p dx. (C13)Combining (C11) and (C13) implies (C10) for σ = e d . The proof is complete. ◻ The above proof shows that Λ δ (u) ≤ C p ∇u L p (Ω) ∀ u ∈ W 1,p (Ω).

  Throughout the rest of Section 3.3, we let A 1 , A 2 , . . . , A m be disjoint open (d + 1)simplices in R d such that every coordinate component of any vertex of A i is equal to 0 or 1

follows that lim sup δ→0 Λ δ (h δ , S) ≤ κ S , which implies (3.44) by

(3.38)

. ◻

In[START_REF] Evans | Measure theory and fine properties of functions[END_REF], this result is stated for balls but a similar argument works for cubes with arbitrary orientations.

In[START_REF] Evans | Measure theory and fine properties of functions[END_REF], this result is stated for balls but a similar argument works for cubes with arbitrary orientations.
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Open problem 4. Assume that ϕ, ψ ∈ A satisfy ϕ ≥ ψ near 0 (resp. ϕ = ψ near 0). (3.119) Is it true that K(ϕ) ≥ K(ψ) resp. K(ϕ) = K(ψ) ?

We conclude this section with a simple observation Proposition 5. The set A is convex and the function ϕ ↦ κ(ϕ) is concave on A. Moreover, t ↦ κ(tϕ + (1 -t)ψ) is continuous on [0, 1] for all ϕ, ψ ∈ A. In particular, κ(A) is an interval.

This is an immediate consequence of the fact that

and that ϕ ↦ Λ δ (v δ , ϕ) is linear for fixed δ.

3.6 Proof of the fact that K(c 1 φ1 ) < 1 for every d ≥ 1

In view of Theorem 1, it suffices to construct a bounded domain Ω ⊂ R d , a function u ∈ BV (Ω) with ∫ Ω ∇u = 1, a sequence δ n → 0, and a sequence

We take Ω = Q, δ n = 1 n, u(x) = x 1 where x = (x 1 , x ′ ) with x 1 ∈ (0, 1) and x ′ ∈ Q ′ = (0, 1) d-1 , and

Clearly

It follows from the definition of u n and u that for

which implies that

By scaling, we obtain, for any ball or cube B,

The reader can find in [START_REF] Brezis | On a new class of functions related to VMO[END_REF] a connection between these inequalities and the V M O BM O spaces.

Here is a question related to Lemma 15:

Open problem 5. Is it true that

Proof of Theorem 2

In this subsection we fix δ = 1. We recall the notation from (1.1)

x -y d+1 dx dy.

Here is an immediate consequence of Lemma 15.

Lemma 16. Let B be a ball (or cube) and ϕ be such that (1.4) and (1.8) hold, and let u ∈ L 1 (B). We have

Assume Ω is bounded. Denote Γ = ∂Ω, and set

For t small enough, every x ∈ Ω t ∖ Ω can be uniquely written as

where x Γ is the projection of x onto Γ, s = dist (x, Γ), and ν(y) denotes the outward normal unit vector at y ∈ Γ.

Lemma 17. Assume that Ω is bounded. Fix t > 0 small enough such that (4.5) holds for any x ∈ Ω t . There exists an extension U of u in Ω t such that

for some positive constant C depending only on Ω.

Proof of Theorem 3

It suffices to consider the case where Ω is bounded. By Lemma 17, one only needs to prove that up to a subsequence, u n → u in L 1 loc (Ω). Fix λ 0 > 0 such that ϕ(λ 0 ) > 0. Without loss of generality, one may assume that λ 0 = 1. From (1.14), we have

We now follow the same strategy as in the proof of Theorem 2. Define

Here Q ε (x) is the cube centered at x of side ε. Fix an arbitrary cube Q ⊂⊂ Ω. We claim that lim

Then there exists a finite family Q(j)

We have

since Q(j) + ε[-1 2, 1 2] d ⊂ 2Q j . By (4.15) and (4.2) with B = 2Q(j), we have

Summing with respect to j in (4.16), we obtain

Clearly, for fixed n, lim

Therefore (4.14) holds and we conclude as in the proof of Theorem 2. ◻

In this paper, we suggest a new example for w:

(5.8)

Taking λ ∼ 1 δ, more precisely λ = γ δ, we are led to the minimization problem:

(5.9)

Up to now, there was no rigorous analysis whatsoever for problems of the form (Y N F δ ).

Even the existence of minimizers in (Y N F δ ), for fixed δ, was lacking. Our contributions for the new choice of w in (5.8) are twofold:

1. Existence of minimizers for (5.9) under fairly general assumptions on ϕ (Theorem 2).

2. Asymptotic analysis as δ → 0:

A Appendix: Proof of Pathology 2

We construct a function u ∈ W 1,1 (0, 1) such that, for ϕ = c 1 φ1 ,

Set x n = 1 -1 n for n ≥ 1. Set δ 1 = 1 100 and T 1 = e -δ -1 1 . Let y 1 be the middle point of the interval (x 1 , x 1 + T 1 ) and fix 0 < t 1 < T 1 4 such that

for all α < β < γ, such a t 1 exists. Define u 1 ∈ W 1,1 (0, 1) by

affine in

and

Assuming that δ k , T k , t k , and u k are constructed for 1 ≤ k ≤ n -1 and for n ≥ 2 such that u k is Lipschitz. We then obtain δ n , T n , t n , and u n as follows. Fix 0 < δ n < δ n-1 8 sufficiently small such that Λ 2δn (u n-1 ) +

We claim that, for 0

, and x < y,

Here we used (B15) and the fact that u is non-decreasing. It follows from the definition of

The claim is proved. By a change of variables, for i = 0, ⋯, 2l n-1 -1,

we deduce from the claim that (B20)

Note that u ∈ C([0, 1]) is non-decreasing and u(0) = 0 and u(1) = 1. This implies

63 Therefore (2.41) holds for ϕ = c 1 φ1 and u.

We next construct a continuous function ϕ which is "close" to c 1 φ1 such that (2.41) holds for ϕ and the function u constructed above. For ≥ 1, define a continuous function ϕ ∶ [0, +∞) ↦ R by

where α is the constant such that

Since a → c 1 = 1 2 and β → 1 as → +∞, the conclusion holds for ϕ when is large. The proof is complete. ◻ C Appendix: Pointwise convergence of Λ δ (u) when u ∈ W 1,p (Ω)

In this section, we prove the following result x -y d+1 dy,