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Superlensing using hyperbolic metamaterials: the scalar case

Eric Bonnetier ∗ Hoai-Minh Nguyen †‡

December 18, 2018

Abstract

This paper is devoted to superlensing using hyperbolic metamaterials: the possibility to
image an arbitrary object using hyperbolic metamaterials without imposing any conditions
on size of the object and the wave length. To this end, two types of schemes are suggested and
their analysis are given. The superlensing devices proposed are independent of the object. It
is worth noting that the study of hyperbolic metamaterials is challenging due to the change
type of modelling equations, elliptic in some regions, hyperbolic in some others.

1 Introduction

Metamaterials are smart materials engineered to have properties that have not yet been found
in nature. They have recently attracted a lot of attention from the scientific community, not only
because of potentially interesting applications, but also because of challenges in understanding
their peculiar properties.

Negative index materials (NIMs) is an important class of metamaterials. Their study was
initiated a few decades ago in the seminal paper of Veselago [31], in which he postulated the
existence of such materials. New fabrication techniques now allow the construction of NIMs at
scales that are interesting for applications, and have made them a very active topic of investiga-
tion. One of the interesting properties of NIMs is superlensing, i.e., the possibility to beat the
Rayleigh diffraction limit 1: no constraint between the size of the object and the wavelength is
imposed.

Based on the theory of optical rays, Veselago discovered that a slab lens of index -1 could
exhibit an unexpected superlensing property with no constraint on the size of the object to
be imaged [31]. Later studies by Nicorovici, McPhedran, and Milton [24], Pendry [25, 26],
Ramakrishna and Pendry in [29], for constant isotropic objects and dipole sources, showed
similar properties for cylindrical lenses in the two dimensional quasistatic regime, for the Veselago
slab and cylindrical lenses in the finite frequency regime, and for spherical lenses in the finite
frequency regime. Superlensing of arbitrary inhomogeneous objects using NIMs in the acoustic
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1The Rayleigh diffraction limit is on the resolution of lenses made of a standard dielectric material: the size

of the smallest features in the images they produce is about a half of the wavelength of the incident light.
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and electromagnetic settings was established in [15, 19] for related lens designs. Other interesting
properties of NIMs include cloaking using complementary media [10, 17, 23], cloaking a source
via anomalous localized resonance [1, 2, 9, 13, 16, 20, 22], and cloaking an arbitrary object via
anomalous localized resonance [21].

In this paper, we are concerned with another type of metamaterials: hyperbolic metama-
terials (HMMs). These materials have quite promising potential applications to subwavelength
imaging and focusing; see [27] for a recent interesting survey on hyperbolic materials and their
applications. We focus here on their superlensing properties. The peculiar properties and the
difficulties in the study of NIMs come from (can be explained by) the fact that the equations
modelling their behaviors have sign changing coefficients. In contrast, the modeling of HHMs
involve equations of changing type, elliptic in some regions, hyperbolic in others.

We first describe a general setting concerning HMMs and point out some of their general
properties. Consider a standard medium that occupies a region Ω of Rd (d = 2, 3) with standard
(elliptic) material constant A, except for a subset D in which the material is hyperbolic with
material constant AH in the quasistatic regime (the finite frequency regime is also considered in
this paper and is discussed later). Thus, AH is a symmetric hyperbolic matrix-valued function
defined in D and A is a symmetric uniformly elliptic matrix-valued function defined in Ω \D.
Since metamaterials usually contain damping (metallic) elements, it is also relevant to assume
that the medium in D is lossy (some of its electromagnetic energy is dissipated as heat) and
study the situation as the loss goes to 0. The loss can be taken into account by adding to AH an
imaginary term proportional to the identity matrix I, −iδI, of small amplitude δ. With the loss,
the medium in the whole of Ω is thus characterized by the matrix-valued function Aδ defined by

Aδ =

{
A in Ω \D,

AH − iδI in D.
(1.1)

For a given (source) function f ∈ L2(Ω), the propagation of light/sound is modeled in the
quasistatic regime by the equation

div(Aδ∇uδ) = f in Ω, (1.2)

with an appropriate boundary condition on ∂Ω.
Understanding the behaviour of uδ as δ → 0+ is a difficult question in general due to two

facts. Firstly, equation (1.2) has both elliptic (in Ω \D) and hyperbolic (in D) characters. It is
hence out of the range of the standard theory of elliptic and hyperbolic equations. Secondly, even
if (1.2) is of hyperbolic character in D, the situation is far from standard since the problem in D
is not an initial boundary problem. There are constraints on both the Dirichlet and Neumann
boundary conditions (the transmission conditions). As a consequence, equation (1.2) is very
unstable (see Section 5).

In this paper, we study superlensing using HMMs. The use of hyperbolic media in the
construction of lenses was suggested by Jacob et al. in [6] and was experimentally verified by
Liu et al. in [12]. The proposal of [6] concerns cylindrical lenses in which the hyperbolic material
is given in standard polar coordinates by

AH = aθeθ × eθ − arer × er, (1.3)
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where aθ and ar are positive constants 2. Denoting the inner radius and the outer radius of the
cylinder respectively by r1 and r2, Jacob et al. argued that

the resolution is
r1

r2
λ, (1.4)

where λ is the wave number. They supported their prediction by numerical simulations.
The goal of our paper is to go beyond the resolution problem to achieve superlensing using

HMMs as discussed in [15, 19] in the context of NIMs, i.e., to be able to image an object without
imposing restrictions on the ratio between its size and the wavelength of the incident light.
We propose two constructions for superlensing, which are based on two different mechanisms,
inspired by two basic properties of the one dimensional wave equation.

The first mechanism is based on the following simple observation. Let u be a smooth solution
of the system {

∂2
ttu(t, x)− ∂2

xxu(t, x) = 0 in R+ × [0, 2π],

u(t, ·) is 2π-periodic.
(1.5)

Then u can be written in the form

u(t, x) = a0 + b0t+

∞∑
n=−∞
n 6=0

∑
±
an,±e

i(±nt+nx) in R+ × [0, 2π],

for some constants a0, b0, an,± ∈ C. For the class of Cauchy data satisfying the condition∫ 2π
0 ∂tu(0, x) dx = 0, we have

b0 = 0.

This implies

u(t, ·) = u(t+ 2π, ·) and ∂tu(t, ·) = ∂tu(t+ 2π, ·) for all t ≥ 0, (1.6)

and thus the values of u and ∂tu are transported without alteration over time intervals of length
2π. We speak of tuned superlensing to describe devices that achieve superlensing using this
property.

In particular, we propose the following two dimensional superlensing device in the annulus
Br2 \Br1 :

AH =
1

r
er × er − reθ × eθ in Br2 \Br1 , (1.7)

under the requirement that
r2 − r1 ∈ 2πN+. (1.8)

Throughout the paper, Br denotes the open ball in Rd centered at the origin and of radius r. We
also use the standard notations for the polar coordinates in two dimensions and the spherical
coordinates in three dimensions. With the choice of AH in (1.7), we have

div(AH∇u) =
1

r
(∂2
rru− ∂2

θθu) in Br2 \Br1 .

2It seems to us that in their proposal these constants can be chosen quite freely.
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Hence, if u is a solution to the equation div(AH∇u) = 0 in Br2 \Br1 then

∂2
rru− ∂2

θθu = 0 in Br2 \Br1 . (1.9)

Theorem 1 below shows that (1.8) and (1.9) imply that

u(r2x/|x|) = u(r1x/|x|) and ∂ru(r2x/|x|) = ∂ru(r1x/|x|). (1.10)

This in turn implies the magnification of the medium contained inside Br1 by a factor r2/r1 (the
precise meaning of this is given in the statement of Theorem 1).

Our second class of superlensing devices is inspired by another observation concerning the
one dimensional wave equation. Given T > 0, let u be a solution with appropriate regularity to
the system 

∂2
ttu− ∂2

xxu = 0 in (−T, 0)× [0, 2π],

−∂2
ttu+ ∂2

xxu = 0 in (0, T )× [0, 2π],

u is 2π-periodic w.r.t. x,

u(0+, ·) = u(0−, ·), ∂tu(0+, ·) = −∂tu(0−, ·) in [0, 2π].

(1.11)

Then
u(t, x) = u(−t, x) for (t, x) ∈ (0, T )× [0, 2π]. (1.12)

Indeed, set

v(t, x) = u(−t, x) and w(t, x) = v(t, x)− u(t, x) for (t, x) ∈ (0, T )× (0, 2π).

Then 

∂2
ttw − ∂2

xxw = 0 in (0, T )× [0, 2π],

w(·, 0) = w(·, 2π) = 0 in (0, T ),

w is 2π-periodic w.r.t. x,

w(0+, ·) = ∂tw(0+, ·) = 0 in [0, 2π].

Therefore, w = 0 in (0, T ) × (0, 2π) by the uniqueness of the Cauchy problem for the wave
equation. This implies that u(t, x) = u(−t, x) for (t, x) ∈ (0, T ) × (0, 2π) as claimed. In this
direction, we propose the following superlensing device in Br2 \ Br1 in both two and three
dimensions, with rm = (r1 + r2)/2:

AH =


1

r
er ⊗ er − reθ ⊗ eθ in Br2 \Brm ,

−1

r
er ⊗ er + reθ ⊗ eθ in Brm \Br1 ,

for d = 2

and

AH =


1

r2
er ⊗ er − (eθ ⊗ eθ + eϕ ⊗ eϕ) in Br2 \Brm ,

− 1

r2
er ⊗ er + (eθ ⊗ eθ + eϕ ⊗ eϕ) in Brm \Br1 ,

for d = 3.
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In a compact form, one has

AH =


1

rd−1
er ⊗ er − r3−d(I − er ⊗ er) in Br2 \Brm ,

− 1

rd−1
er ⊗ er + r3−d(I − er ⊗ er) in Brm \Br1 .

(1.13)

The choice of AH in (1.13) implies that

div(AH∇u) =
1

rd−1

(
∂2
rru−∆∂B1u

)
in Br2 \Brm ,

and

div(AH∇u) = − 1

rd−1

(
∂2
rru−∆∂B1u

)
in Brm \Br1 ,

where ∆∂B1 denotes the Laplace-Beltrami operator on the unit sphere of Rd. Note also that

∂ru(r−2 , θ) = ∂ru(r+
2 , θ), ∂ru(r−m, θ) = −∂ru(r+

m, θ), ∂ru(r−1 , θ) = −∂ru(r+
1 , θ).

Hence, if u is an appropriate solution to the equation div(AH∇u) = 0 in Br2 \ Br1 , then, by
taking into account the transmission conditions on ∂Brm , one has

∂2
rru−∆∂B1u = 0 in Br2 \Brm ,

−∂2
rru+ ∆∂B1u = 0 in Brm \Br1 ,

u
∣∣
Br2\Brm

= u
∣∣
Brm\Br1

, ∂ru
∣∣
Br2\Brm

= −∂ru
∣∣
Brm\Br1

on ∂Brm .

(1.14)

As in (1.12), one derives that

u
(
(s+ rm)x̂

)
= u

(
(rm − s)x̂

)
for x̂ ∈ ∂B1, s ∈ (0, r2 − rm);

which yields

u(r−2 x̂) = u(r+
1 x̂) and ∂ru(r−2 x̂) = −∂ru(r+

1 x̂) for x̂ ∈ ∂B1. (1.15)

This in turn implies the magnification of the medium contained inside Br1 by a factor r2/r1 (the
precise meaning is given in Theorem 2). In contrast with the first proposal (1.7) where (1.8)
is required, no condition is imposed on r1 and r2 for the second scheme (1.13). We call this
method superlensing using HHMs via complementary property. The idea of using reflection takes
roots in the work of the second author [14]. Similar ideas were used in the study properties of
NIMs such as superlensing [15, 19], cloaking [17, 23], cloaking via anomalous localized resonance
in [16, 20, 21, 22], and the stability of NIMs in [18]. Nevertheless, the superlensing properties
of NIMs and HMMs are based on two different phenomena: the unique continuation principle
for NIMs, and the uniqueness of the Cauchy problem for the wave equation for HMMs.

Suppose that an object to-be-magnified in Br1 is characterized by a symmetric uniformly el-
liptic matrix-valued function a. Throughout the paper, to deal with sufficiently regular solutions
of the wave equation, we assume that

a is of class C1 in a neighborhood of ∂Br1 . (1.16)
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Suppose that outside Br2 the medium is homogeneous and the lens is characterized by a matrix-
valued function AH in Br2 \ Br1 . The whole system (taking loss into account) is then given
by

Aδ =


I in Ω \BR2 ,

AH − iδI in Br2 \Br1 ,

a in Br1 .

(1.17)

Set

H1
m(Ω) :=

{
u ∈ H1(Ω);

∫
∂Ω
u = 0

}
. (1.18)

Concerning the scheme (1.7), we have

Theorem 1. Let d = 2, 0 < δ < 1, 0 < r1 < r2 with r2− r1 ∈ 2πN+, let Ω be a smooth bounded

connected open subset of R2, and let f ∈ L2(Ω) with

∫
Ω
f = 0. Assume that Br2 ⊂⊂ Ω and

supp f ⊂ Ω \Br2. Let uδ ∈ H1
m(Ω) be the unique solution to the system{

div(Aδ∇uδ) = f in Ω,

∂νuδ = 0 on ∂Ω,
(1.19)

where Aδ is given by (1.17) with AH defined by (1.7). We have

‖uδ‖H1(Ω) ≤ C‖f‖L2(Ω) and uδ → u0 strongly in H1(Ω) as δ → 0, (1.20)

where u0 ∈ H1
m(Ω) is the unique solution to (1.19) with δ = 0 and C is a positive constant

independent of f and δ. Moreover, u0 = û in Ω \ Br2 where û ∈ H1
m(Ω) is the unique solution

to the system{
div(Â∇û) = f in Ω,

∂ν û = 0 on ∂Ω,
where Â(x) =

{
I in Ω \Br2 ,

a
(
r1x/r2

)
in Br2 .

(1.21)

Concerning the scheme (1.13), we establish

Theorem 2. Let d = 2, 3, 0 < δ < 1, 0 < r1 < r2, Ω be a smooth bounded connected open

subset of Rd, and let f ∈ L2(Ω) with

∫
Ω
f = 0. Assume that Br2 ⊂⊂ Ω and supp f ⊂ Ω \ Br2.

Let uδ ∈ H1
m(Ω) be the unique solution to the system{

div(Aδ∇uδ) = f in Ω,

∂νuδ = 0 on ∂Ω,
(1.22)

where Aδ is given by (1.17) with AH defined by (1.13). We have

‖uδ‖H1(Ω) ≤ C‖f‖L2(Ω) and uδ → u0 strongly in H1(Ω), (1.23)
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where u0 ∈ H1
m(Ω) is the unique solution to (1.22) with δ = 0 and C is a positive constant

independent of f and δ. Moreover, u0 = û in Ω \ Br2 where û ∈ H1
m(Ω) is the unique solution

to the system{
div(Â∇û) = f in Ω,

∂ν û = 0 on ∂Ω,
where Â(x) =


I in Ω \Br2 ,

rd−2
1

rd−2
2

a
(r1

r2
x
)

in Br2 .
(1.24)

Some comments on Theorems 1 and 2 are in order. The well-posedness and the stability
of (1.19) and (1.22) are established in Lemma 1. The existence and the uniqueness of u0 are part
of the statements of Theorems 1 and 2. Since f is arbitrary with support in Ω \ Br2 , it follows
from the definition of Â that the object in Br1 is magnified by a factor r2/r1. It is worth noting
that the matrix a can be an arbitrary function inside Br1 , provided it is uniformly elliptic and
smooth near ∂Br1 . The lensing properties of the proposed devices in Br2 \Br1 are independent
of the object.

The paper is organized as follows. Section 2 is devoted to tuned superlensing via HMMs.
There, besides the proof of Theorem 1, we also discuss variants in two and three dimensions in
the finite frequency regime (Theorems 3 and 4). Section 3 concerns superlensing using HMMs
via the complementary property. In this section, we prove Theorem 2 and establish its finite
frequency variant (Theorem 5). Finally, in Section 4, we construct HMMs with the required
properties, as limits as δ → 0 of effective media obtained from the homogenization of composite
structures, mixtures of a dielectric and a metal. This derivation involves taking limits with
respect to several length scales (the wavelentgh of the incident light, the period of the layers,
the amplitude of the dissipation). The final section concerns the stability of HMMs. We show
there on a simple example, the properties of an inclusion of hyperbolic metamaterial, embedded
in a matrix of dielectric material, are strongly dependent on the geometry of the inclusion.
Numerical simulations of some of the results presented in our paper are presented in [5]. It
would be interesting to analyse the corresponding problems for the full Maxwell system and to
investigate other possible applications of HMMs. We plan to address this question in future
work.

2 Tuned superlensing using HMMs

In this section, we first present two lemmas on the stability of (1.2), (1.21), and (1.24) and
their variants in the finite frequency regime. In the second part, we discuss a toy model which
illustrates tuned superlensing with hyperbolic media. In the third part, we give the proof of
Theorem 1. In the last part, we discuss its variants in the finite frequency regime.

2.1 Two useful lemmas

We first establish the following lemma which implies the well-posedness of (1.2). In what
follows, for a subset D of Rd, 1D denotes its characteristic function. For a function u ∈ L2(Ω)
and D ⊂⊂ Ω, we set u+ = u|Ω\D, u− = u|D. When u has a well-defined trace on ∂D, we set

[u] = u+ − u− on ∂D. We also use similar notations for A∇u · ν. We have
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Lemma 1. Let d = 2, 3, k ≥ 0, δ0 > 0, 0 < δ < δ0. Let D ⊂⊂ Ω be two smooth bounded
connected open subsets of Rd. Let A be a bounded matrix-valued function defined in Ω such that
A is uniformly elliptic in Ω\D, A is piecewise C1 in Ω, and let Σ be a complex bounded function
such that =(Σ) ≥ 0. Set

Aδ(x) = A(x)− iδ1D(x)I and Σδ(x) = Σ(x) + iδ1D(x) in Ω. (2.1)

Let gδ ∈ [H1(Ω)]∗, the dual space of H1(Ω), be such that gδ is square integrable near ∂Ω and in
the case k = 0, assume in addition that

∫
Ω gδ = 0. There exists a unique solution vδ ∈ H1(Ω) if

k > 0 (respectively vδ ∈ H1
m(Ω) if k = 0) to the system{

div(Aδ∇vδ) + k2Σδvδ = gδ in Ω,

A∇vδ · ν − ikvδ = 0 on ∂Ω.
(2.2)

Moreover,

‖vδ‖2H1(Ω) ≤
C

δ

∣∣∣∣∫
Ω
gδ v̄δ

∣∣∣∣+ ‖gδ‖2[H1(Ω)]∗ , (2.3)

for some positive constant C depending only on Ω, D, and k. Consequently,

‖vδ‖H1(Ω) ≤
C

δ
‖gδ‖[H1(Ω)]∗ . (2.4)

Proof. We only prove the result for k > 0. The case k = 0 follows similarly and is left to the
reader. The proof is in the spirit of that of [20, Lemma 2.1]. The existence of vδ can be derived
from the uniqueness of vδ by using the limiting absorption principle, see, e.g., [18]. We now
establish the uniqueness of vδ by showing that vδ = 0 if gδ = 0. Multiplying the equation of vδ
by v̄δ (the conjugate of vδ) and integrating by parts, we obtain

−
∫

Ω
〈Aδ∇vδ,∇vδ〉+ k2

∫
Ω

Σδ|vδ|2 +

∫
∂Ω
ik|vδ|2 = 0.

Considering the imaginary part and using the definition (2.1) of Aδ and Σδ, we have

vδ = 0 in D. (2.5)

This implies v−δ = Aδ∇v−δ · ν = 0 on ∂D; which yields, by the transmission conditions on ∂D,

v+
δ = A∇v+

δ · ν = 0 on ∂D.

It follows from the unique continuation (see, e.g., [28]) that vδ = 0 also in Ω \D. The proof of
uniqueness is complete.

We next establish (2.3) by contradiction. Assume that there exists (gδ) ⊂ [H1(Ω)]∗ such
that gδ is square integrable near ∂Ω,

‖vδ‖H1(Ω) = 1 and
1

δ

∣∣∣ ∫
Ω
gδ v̄δ

∣∣∣+ ‖gδ‖2[H1(Ω)]∗ → 0, (2.6)

as δ → δ̂ ∈ [0, δ0]. In fact, we may assume that these properties hold for a sequence (δn) → δ̂.
However, for the simplicity of notation, we still use δ instead of δn to denote an element of such
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a sequence. We only consider the case δ̂ = 0; the case δ̂ > 0 follows similarly. Without loss of
generality, one may assume that (vδ) converges to v0 strongly in L2(Ω) and weakly in H1(Ω) for
some v0 ∈ H1(Ω). Then, by (2.6),{

div(A0∇v0) + k2Σ0v0 = 0 in Ω,

A∇v0 · ν − ikv0 = 0 on ∂Ω.
(2.7)

It follows from the uniqueness that v0 = 0 in Ω. Since vδ → v0 in L2(Ω), it follows that

lim
δ→0
‖vδ‖L2(Ω) = 0. (2.8)

Multiplying the equation of vδ by v̄δ and integrating by parts, we obtain

−
∫

Ω
〈Aδ∇vδ,∇vδ〉+ k2

∫
Ω

Σδ|vδ|2 +

∫
∂Ω
ik|vδ|2 =

∫
Ω
gδ v̄δ. (2.9)

Considering the imaginary part of (2.9) and using (2.6), we have

lim
δ→0

(
‖∇vδ‖L2(D) + ‖vδ‖L2(D) + ‖vδ‖L2(∂Ω)

)
= 0, (2.10)

while the real part of (2.9) together with (2.6), (2.8), and (2.10), yields

lim
δ→0
‖∇vδ‖L2(Ω\D) = 0. (2.11)

Combining (2.8), (2.10), and (2.11) yields

lim
δ→0
‖vδ‖H1(Ω) = 0 :

which contradicts (2.6). The proof is complete. �

Remark 1. In the case k = 0, the result in Lemma 1 also holds for zero Dirichlet boundary
condition in which g ∈ H−1(Ω), the dual space of H1

0 (Ω). Moreover, the constant C depends
only on the ellipticity of A, and on δ0, D, and Ω. The proof follows the same lines.

The following standard result is repeatedly used in this paper:

Lemma 2. Let d = 2, 3, k ≥ 0. Let D, V, Ω be smooth bounded connected open subsets of
Rd such that D ⊂⊂ Ω, ∂D ⊂ V ⊂ Ω. Let A be a matrix-valued function and Σ be a complex
function, both defined in Ω, such that

A is uniformly elliptic in Ω and Σ ∈ L∞(Ω) with =(Σ) ≥ 0 and <(Σ) ≥ c > 0,

for some constant c. Assume that A ∈ C1(Ω \D) and A ∈ C1(V ∩ D̄). Let g ∈ L2(Ω) and in
the case k = 0 assume in addition that

∫
Ω g = 0. There exists a unique solution v ∈ H1(Ω) if

k > 0 (respectively v ∈ H1
m(Ω) if k = 0) to the system{

div(A∇v) + k2Σv = g in Ω,

A∇v · ν − ikv = 0 on ∂Ω.

Moreover,
‖v‖H1(Ω) ≤ C‖g‖L2(Ω) and ‖v‖H2(V \D) ≤ C‖g‖L2(Ω), (2.12)

for some positive constant C independent of f .
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Proof. The existence, the uniqueness, and the first inequality of (2.12) follow from the Fredholm
theory by the uniform ellipticity of A in Ω and the boundary condition used. The second
inequality of (2.12) can be obtained by Nirenberg’s method of difference quotients (see, e.g., [4])
using the smoothness assumption of A and the boundedness of Σ. The details are left to the
reader. �

2.2 A toy problem

In this section, we consider a toy problem for tuned superlensing using HMMs, in which the
geometry is rectangular. Given three positive constants l, L and T , we define 3

R = [−l, L]× [0, 2π], Rl = [−l, 0]× [0, 2π], Rc = [0, T ]× [0, 2π], Rr = [T, L]× [0, 2π].

Denote
Γ := ∂R, Γc,0 = {0} × [0, 2π], and Γc,T = {T} × [0, 2π].

Let a be a uniformly elliptic matrix-valued function defined in Rl ∪Rr. We set

aδ =

(
1− iδ 0

0 −1− iδ

)
,

and define

Aδ =

{
a in Rl ∪Rr,

aδ in Rc,

so that the superlensing device occupies the region Rc. For f ∈ L2(R) with supp f ∩ Rc = Ø,
let uδ ∈ H1

0 (R) be the unique solution to the equation

div(Aδ∇uδ) = f in R. (2.13)

Assume that ‖uδ‖H1(R) is bounded as δ → 0. Then, up to a subsequence, uδ converges weakly
to some u0 ∈ H1

0 (R). It is clear that u0 is a solution to

div(A0∇u0) = f in R. (2.14)

More precisely, u0 ∈ H1
0 (R) satisfies (2.14) if and only if u0 satisfies the elliptic-hyperbolic

system
div(a∇u0) = f in Rl ∪Rr and ∂2

x1x1u0 − ∂2
x2x2u0 = 0 in Rc,

and the transmission conditions{
u0

∣∣
Rl

= u0

∣∣
Rc

∂x1u0

∣∣
Rl

= ∂x1u0

∣∣
Rc
,

on Γc,0 and

{
u0

∣∣
Rr

= u0

∣∣
Rc

∂x1u0

∣∣
Rr

= ∂x1u0

∣∣
Rc
,

on Γc,T .

This problem is ill-posed: in general, there is no solution in H1
0 (R), and so, ‖uδ‖H1(R) → +∞,

as δ → 0. Nevertheless, for some special choices of T , discussed below, the problem is well-posed
and its solutions have peculiar properties.

3Letters c, l, r stand for center, left, and right.
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To describe them, we introduce an “effective domain” RT = [−l, L− T ]× [0, 2π] and

Â(x1, x2), f̂(x1, x2) =

{
a(x1, x2), f(x1, x2) in Rl

a(x1 + T, x2), f(x1 + T, x2) in RT \ Rl.

In what follows, we assume that Â ∈ C2(RT ).

Proposition 1. Let 0 < δ < 1, f ∈ L2(R), and uδ ∈ H1
0 (R) be the unique solution of (2.13).

Assume that T ∈ 2πN+ and sup f ∩Rc = Ø. Then

‖uδ‖H1 ≤ C‖f‖L2(R) and uδ → u0 strongly in H1(R), (2.15)

where u0 ∈ H1
0 (R) is the unique solution of (2.13) with δ = 0 and C is a positive constant

independent of δ and f . We also have

u0(x1, x2) =

{
û(x1, x2) in Rl,

û(x1 − T, x2) in Rr,

where û ∈ H1
0 (RT ) is the unique solution to the equation

div(Â∇û) = f̂ in RT , (2.16)

Remark 2. It follows from Proposition 1 that u0 can be computed as if the structure in Rc had
disappeared. This phenomenon is similar to that in the Veselago setting: superlensing occurs.

Proof. The proof of Proposition 1 is in the spirit of the approach used by the second author in
[14] to deal with negative index materials. The key point is to construct the unique solution u0

to the limiting problem appropriately and then estimate uδ by studying the difference uδ − u0.
We first construct a solution u0 ∈ H1

0 (R) to (2.13) with δ = 0. Since Â ∈ C2(RT ) and
since f ∈ L2(R), the regularity theory for elliptic equations (see, e.g., [11, 3.2.1.2]) implies that
û ∈ H2(R) and

‖û‖H2(R) ≤ C‖f‖L2(R). (2.17)

Here and in what follows in this proof, C denotes a positive constant independent of f and δ.
It follows that û(0, x2) ∈ H1(Γc,0) and ∂1û(0, x2) ∈ L2(Γc,0). Interpretting x1 and x2 as respec-
tively time and space variables in the rectangle Rc, we seek a solution v ∈ C

(
[0, T ];H1

0 (0, 2π)
)
∩

C1([0, T ];L2(0, 2π)) of the wave equation

∂2
x1x1v − ∂

2
x2x2v = 0 in Rc, (2.18)

with zero boundary condition, i.e., v = 0 on Γ ∩ ∂Ωc, and with the following initial conditions

v(0, x2) = û(0, x2) and ∂x1v(0, x2) = ∂x1 û
∣∣
Rl

(0, x2).

Existence and uniqueness of v follow from the standard theory of the wave equation by taking
into account the regularity information in (2.17). We also have, for 0 ≤ x1 ≤ T ,∫ 2π

0
|∂x1v(x1, x2)|2 + |∂x2v(x1, x2)|2 dx2 =

∫ 2π

0
|∂x1v(0, x2)|2 + |∂x2v(0, x2)|2 dx2

=

∫ 2π

0
|∂x1 û

∣∣
Rl

(0, x2)|2 + |∂x2 û(0, x2)|2 dx2. (2.19)
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Furthermore, one can represent v in Rc in the form

v(x1, x2) =

∞∑
n=1

sin(nx2)
[
an cos(nx1) + bn sin(nx1)

]
, (2.20)

where an, bn ∈ R are determined by the initial conditions satisfied by v at x1 = 0. Since T ∈ 2πN,
it follows from this representation that

v(0, ·) = v(T, ·) and ∂x1v(0, ·) = ∂x1v(T, ·) in [0, 2π], (2.21)

for any initial conditions, and hence for any f with supp f ∩Rc = Ø. Define

u0(x1, x2) =


û(x1, x2) in Rl,

v(x1, x2) in Rc,

û(x1 − T, x2) in Rr.

(2.22)

It follows from (2.16), (2.18), and (2.21) that u0 ∈ H1
0 (Ω) and that it is a solution to (2.13) with

δ = 0. Moreover, by (2.17) and (2.19),

‖u0‖H1(R) ≤ C‖f‖L2(R). (2.23)

We next establish the uniqueness of u0. Let w0 ∈ H1
0 (Ω) be a solution to (2.13) with δ = 0.

Since w0 can be represented as in (2.20) in Rc, we obtain

w0(0, ·) = w0(T, ·) and ∂x1w0(0, ·) = ∂x1w0(T, ·) in [0, 2π].

We can thus define for (x1, x2) in RT

ŵ(x1, x2) =

{
w0(x1, x2) in Rl,

w0(x1 − T, x2) otherwise,

which is a solution to (2.16). By uniqueness for this elliptic equation, it follows that ŵ ≡ û in
RT , and (2.22) shows that w0 ≡ u0 in R.

Finally, we establish (2.15). Define

vδ = uδ − u0 in R. (2.24)

We have

div(Aδ∇vδ) = div(Aδ∇uδ)− div(Aδ∇u0)

= div(Aδ∇uδ)− div(A0∇u0) + div(A0∇u0)− div(Aδ∇u0) in R.

It follows that vδ ∈ H1
0 (Ω) is the solution to

div(Aδ∇vδ) = div(iδ1Rc∇u0) in R. (2.25)
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As in (2.4) in Lemma 1, we obtain from (2.23) that

‖vδ‖H1(R) ≤
C

δ
‖δ∇u0‖L2(Rc) ≤ C‖f‖L2(R); (2.26)

which implies the first inequality of (2.15). It follows that a subsequence of vδ converges weakly
to some v0, solution to (2.14) with f = 0. Uniqueness shows that v0 = 0, and that the whole
sequence vδ converges weakly to 0. As in (2.3) in Lemma 1, we deduce from (2.23), (2.25), and
(2.26) that

‖uδ − u0‖2H1(R) = ‖vδ‖2H1(R) ≤ C
∣∣∣∣∫
Rc

i∇u0∇vδ
∣∣∣∣→ 0, (2.27)

as vδ converges weakly to 0 in H1(R). The proof is complete. �

2.3 Tuned superlensing using HMMs in the quasistatic regime. Proof of
Theorem 1

The proof is in the spirit of that of Proposition 1: the main idea is to construct u0 and then
estimate uδ − u0. We have

‖û‖H1(Ω) ≤ C‖f‖L2(Ω). (2.28)

Using (1.16) and applying Lemma 2, we derive that u ∈ H2(Ω \Br2) and

‖û‖H2(Ω\Br2 ) ≤ C‖f‖L2(Ω). (2.29)

Define a function v in Br2 \Br1 by

∂2
rrv − ∂2

θθv = 0, v is periodic with respect to θ, (2.30)

and
v(r2, θ) = û(r2, θ) and ∂rv(r2, θ) = r2∂rû

+(r2, θ) for θ ∈ [0, 2π]. (2.31)

By considering (2.30) as a Cauchy problem for the wave equation with periodic boundary condi-
tions, in which r and θ are seen as a time and a space variable respectively, the standard theory
shows that there exists a unique such v(r, θ) ∈ C

(
[r1, r2];H1

per(0, 2π)
)
∩ C1([r1, r2];L2(0, 2π)).

We also have, for r1 ≤ r ≤ r2,∫ 2π

0
|∂rv(r, θ)|2 + |∂θv(r, θ)|2 dθ =

∫ 2π

0
|∂rv(r2, θ)|2 + |∂θv(r2, θ)|2 dθ

=

∫ 2π

0
r2

2|∂rû+(r2, θ)|2 + |∂θû(r2, θ)|2 dθ; (2.32)

which yields, by (2.29),
‖v‖H1(Br2\Br1 ) ≤ C‖f‖L2(Ω). (2.33)

Moreover, v can be represented in the form

v(r, θ) = a0 + b0r +

∞∑
n=−∞
n 6=0

∑
±
an,±e

i(nr±nθ) in Br2 \Br1 , (2.34)
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where a0, b0, an,± ∈ C. Since û+ is harmonic in Ω \Br2 , we have

b0 =
1

2π

∫ 2π

0
∂rv(r2, θ) dθ =

1

2π

∫ 2π

0
r2∂rû

+(r2, θ) dθ

=
1

2π

∫
∂Br2

∂rû
+(x) dx =

1

2π

∫
∂Ω
∂ν û(x) dx = 0.

Since r2 − r1 ∈ 2πN+, it follows that

v(r1, θ) = v(r2, θ) and ∂rv(r1, θ) = ∂rv(r2, θ) for θ ∈ [0, 2π]. (2.35)

Set

u0 =


û in Ω \Br2 ,

v in Br2 \Br1 ,

û
(
r2 · /r1

)
in Br1 .

(2.36)

It follows from (2.28), (2.31), (2.33), and (2.35) that u0 ∈ H1(Ω) and

‖u0‖H1(Ω) ≤ C‖f‖L2(Ω). (2.37)

We also have
div(A0∇u0) = f in Ω \ (∂Br1 ∪ ∂Br2). (2.38)

On the other hand, from (1.7), (2.31) and the definition of A0, we have

[A0∇u0 · er] = ∂ru
+
0 −

1

r2
∂ru
−
0 = ∂ru

+
0 −

1

r2
∂rv = 0 on ∂Br2 (2.39)

and from (2.35) and the definition of Â, we obtain

[A0∇u0 · er](x) =
1

r1
∂ru

+
0 (x)−A0∇u−0 · er(x) =

1

r1
∂rv(x)− r2

r1
a(x)∇û−(r2x/r1) · er

=
1

r1
∂rv(r2x/r1)− r2

r1
Â(r2x/r1)∇û+(r2x/r1) · er = 0 on ∂Br1 . (2.40)

A combination of (2.38), (2.39), and (2.40) yields that

div(A0∇u0) = f in Ω;

which implies that u0 is a solution to (1.19) with δ = 0.

We next establish the uniqueness of u0. Let w0 ∈ H1(Ω) be a solution to (1.19) with δ = 0.
Since w0 can be represented as in (2.34) in Br2 \Br1 , we have

w0(r1, θ) = w0(r2, θ) and ∂rw0(r1, θ) = ∂rw0(r2, θ) for θ ∈ [0, 2π]. (2.41)

Define

ŵ(x) =

{
w0(x) in Ω \Br2 ,

w0

(
r1x/r2

)
in Br2 .
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It follows from (2.41) that ŵ ∈ H1(Ω). One can verify that ŵ is a solution of (1.21). Hence
ŵ = û; which yields w0 = u0.

We next establish the inequality in (1.20). Set

vδ = uδ − u0 in Ω. (2.42)

Then vδ ∈ H1(Ω) and satisfies

div(Aδ∇vδ) = div(iδ1Br2\Br1
∇u0) in Ω

and
∂νvδ = 0 on ∂Ω.

Applying (2.4) of Lemma 1, we obtain from (2.37) that

‖vδ‖H1(Ω) ≤ C‖∇u0‖L2(Ω),

which implies the inequality in (1.20). Applying (2.3) of Lemma 1, we derive from (2.37) that

‖uδ − u0‖2H1(Ω) = ‖vδ‖2H1(Ω) ≤ C

∣∣∣∣∣
∫
Br2\Br1

i∇u0∇vδ

∣∣∣∣∣ → 0 as δ → 0,

which completes the proof. �

2.4 Tuned superlensing using HMMs in the finite frequency regime

In this section we consider variants of Theorem 2 in the finite frequency regime. Assume that
the region Br1 to be magnified is characterized by a pair (a, σ) of a matrix-valued function a and
a complex function σ such that a satisfies the standard conditions mentioned in the introduction
(a is uniformly elliptic in Br1 and (1.16) holds) and σ satisfies the following standard conditions

σ ∈ L∞(Br1), with =(σ) ≥ 0 and <(σ) ≥ c > 0, (2.43)

for some constant c. Assume that the lens without loss is characterized by a pair (AH ,ΣH) in
Br2 \Br1 . Taking loss into account, the overall medium is characterized by

Aδ,Σδ =


I, 1 in Ω \Br2 ,

AH − iδI,ΣH + iδ in Br2 \Br1 ,

a, σ in Br1 ,

(2.44)

Given a (source) function f ∈ L2(Ω) and given a frequency k > 0, standard arguments show
that there is a unique solution uδ ∈ H1(Ω) to the system{

div(Aδ∇uδ) + k2Σδuδ = f in Ω,

∂νuδ − ikuδ = 0 on ∂Ω.
(2.45)
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We first consider the three dimensional finite frequency case. The superlens in Br2 \ Br1 is
defined by

(AH ,ΣH) =

(
1

r2
er ⊗ er − (eθ ⊗ eθ + eϕ ⊗ eϕ),

1

4k2r2

)
in Br2 \Br1 . (2.46)

Note that ΣH also depends on k. We have

Theorem 3. Let d = 3, k > 0, 0 < δ < 1, and let Ω be a smooth bounded connected open subset
of R3 and let 0 < r1 < r2 be such that r2 − r1 ∈ 4πN+ and Br2 ⊂⊂ Ω. Let f ∈ L2(Ω) with
supp f ⊂ Ω \ Br2 and let uδ ∈ H1(Ω) be the unique solution of (2.45) where (AH ,ΣH) is given
by (2.46). We have

‖uδ‖H1(Ω) ≤ C‖f‖L2(Ω) and uδ → u0 strongly in H1(Ω), (2.47)

where u0 ∈ H1(Ω) is the unique solution to (2.45) with δ = 0 and C is a positive constant
independent of f and δ. Moreover, u0 = û in Ω \ Br2 where û is the unique solution to the
system

{
div(Â∇û) + k2Σ̂û = f in Ω,

∂ν û− ikû = 0 on ∂Ω,
where Â, Σ̂ =


I, 1 in Ω \Br2 ,

r1

r2
a
(r1

r2
·
)
,
r3

1

r3
2

σ
(r1

r2
·
)

in Br2 .

(2.48)

From the definition of (AH ,ΣH) in (2.46), one derives that if u is a solution to the equation
div(AH∇u) + k2ΣHu = 0 in Br2 \Br1 then

∂2
rru−∆∂B1u+

1

4
u = 0 in Br2 \Br1 .

This equation plays a similar role as the wave equation in (1.9).

Proof. We have, by Lemma 2, that

‖û‖H1(Ω) ≤ C‖f‖L2(Ω) and ‖û‖H2(Ω\Br2 ) ≤ C‖f‖L2(Ω).

Set

u0 =


û in Ω \Br2 ,

v in Br2 \Br1 ,

û
(
r2 · /r1

)
in Br1 ,

(2.49)

where v ∈ H1(Br2 \Br1) is the unique solution of

∂2
rrv −∆∂B1v +

1

4
v = 0 in Br2 \Br1 , (2.50)

v = û on ∂Br2 and ∂rv = r2
2∂rû

+ on ∂Br2 . (2.51)
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For n ≥ 0 and −n ≤ m ≤ n, let Y m
n denote the spherical harmonic function of degree n and

of order m, which satisfies

∆∂B1Y
m
n + n(n+ 1)Y m

n = 0 on ∂B1.

Since the family
(
Y m
n

)
is dense in L2(∂B1), v can be represented in the form

v(x) =
∞∑
n=0

n∑
m=−n

∑
±
anm,±e

±iλnrY n
m(x̂), x ∈ Br2 \Br1 , (2.52)

where λn = (n+ 1/2), r = |x| and x̂ = x
|x| . Note that the 0-order term in (2.50) has been chosen

in Br2 \Br1 so that the dispersion relation writes

λ2
n = n(n+ 1) +

1

4
= (n+

1

2
)2,

which implies that all the terms e±iλnr in (2.52), and thus v, are 4π-periodic functions of r.
Since r2 − r1 ∈ 4πN+, it follows that

v(r1x̂) = v(r2x̂) and ∂rv(r1x̂) = ∂rv(r2x̂) for x̂ ∈ ∂B1. (2.53)

We have, by (2.51),

[A0∇u0 · er] = ∂rû
+ − 1

r2
2

∂rv = 0 on ∂Br2 (2.54)

and, by (2.51) and (2.53),

[A0∇u0 · er](x) =
1

r2
1

∂rv(x)− r2

r1
a(x)∇û−(r2x/r1) · er

=
1

r2
1

∂rv(r2x/r1)− r2
2

r2
1

Â(r2x/r1)∇û−(r2x/r1) · er

=
1

r2
1

∂rv(r2x/r1)− r2
2

r2
1

∂rû
+(r2x/r1) = 0 on ∂Br1 . (2.55)

As in the proof of Theorem 1, one can check that u0 is the unique solution of (2.45) with δ = 0
where (AH ,ΣH) is given by (2.46). Moreover,

‖uδ − u0‖H1(Ω) ≤ C‖f‖L2(Ω)

and
uδ → u0 in H1(Ω).

The proof of these facts is the same as in the proof of Theorem 1.

We next deal with a variant of Theorem 1 in the two dimensional finite frequency regime.
Set

(AH ,ΣH) = (
1

r
er ⊗ er − reθ ⊗ eθ, 0) in Br2 \Br1 . (2.56)

The following theorem describes the superlensing property of the device defined by (2.56).
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Theorem 4. Let d = 2, k > 0, 0 < δ < 1, and let Ω be a smooth bounded connected open
subset of R2. Let 0 < r1 < r2 be such that r2 − r1 ∈ 2πN+ and Br2 ⊂⊂ Ω. Let f ∈ L2(Ω) with
supp f ⊂ Ω \ Br2 and let uδ ∈ H1(Ω) be the unique solution of (2.45) where (AH ,ΣH) is given
by (2.56). We have

‖uδ‖H1(Ω) ≤ C‖f‖L2(Ω) and uδ → u0 strongly in H1(Ω) as δ → 0, (2.57)

where u0 ∈ H1(Ω) is the unique solution to (2.45) with δ = 0 and C is a positive constant
independent of f and δ. Moreover, u0 = û in Ω \ Br2, where û ∈ H1(Ω \ Br2) is the unique
solution to the system 

div(Â∇û) + k2Σ̂û = f in Ω,

∂ν û− ikû = 0 on ∂Ω,

[Â∇û · ν] = 0 on ∂Br2 ,

[û] = c

∫
∂Br2

Â∇û · ν on ∂Br2 ,

(2.58)

where

Â(x), Σ̂(x) =


I, 1 in Ω \Br2 ,

a
(r1

r2
x
)
,
r2

1

r2
2

σ
(r1

r2
x
)

in Br2 ,
and c =

r2 − r1

2πr2
.

Since f is arbitrary with support in Ω \Br2 , it follows from the definition of (Â, Σ̂) that the
object in Br1 is magnified by a factor r2/r1.

Proof of Theorem 4. The proof is in the spirit of Theorem 1. The main difference is the fact
that in the representation (2.64) below, the term b0 does not vanish in general. The solution
to the wave equation in the lens Br2 \ Br1 is thus the sum of a periodic function and a linear
term (in r). The constant c in the second transmission condition of (2.58) accounts precisely
for the latter. The well-posedness of (2.58) is established in Lemma 3 below. From this Lemma
it follows that

‖û‖H1(Ω\∂Br2 ) ≤ C‖f‖L2(Ω). (2.59)

Applying Lemma 3, we derive that u ∈ H2(Ω \Br2) and

‖û‖H2(Ω\Br2 ) ≤ C‖f‖L2(Ω). (2.60)

Let v defined in H1(Br2 \Br1) be the unique solution of

∂2
rrv − ∂2

θθv = 0, v is periodic with respect to θ, (2.61)

and
v(r2, θ) = û(r2, θ) and ∂rv(r2, θ) = r2∂rû

+(r2, θ) for θ ∈ [0, 2π]. (2.62)

As in (2.33), we have
‖v‖H1(Br2\Br1 ) ≤ C‖f‖L2(Ω). (2.63)
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Moreover, v can be represented in the form

v(r, θ) = a0 + b0r +

∞∑
n=−∞
n6=0

∑
±
an,±e

i(nr±nθ) in Br2 \Br1 , (2.64)

where a0, b0, an,± ∈ C. Since r2 − r1 ∈ 2πN+, it follows that, for θ ∈ [0, 2π],

v(r2, θ)− v(r1, θ) = b0(r2 − r1), and ∂rv(r1, θ) = ∂rv(r2, θ). (2.65)

It is clear that ∫
∂Br2

∂rv(x) dx = 2πb0r2.

Set

u0 =


û in Ω \Br2 ,

v in Br2 \Br1 ,

û
(
r2 · /r1

)
in Br1 .

(2.66)

We have, by (2.62),
[u0] = û+ − v = 0 on ∂Br2

and the definition of c together with (2.62) and (2.65) yields

[u0](r1, θ) = v(r1, θ)− û−(r2, θ)

= v(r2, θ)− b0(r2 − r1)−
(
û+(r2, θ)− 2πb0r2

r2 − r1

2πr2

)
= 0 for θ ∈ [0, 2π].

We derive from (2.59) and (2.63) that

‖u0‖H1(Ω) ≤ C‖f‖L2(Ω). (2.67)

We also have
div(A0∇u0) + k2Σ0u0 = f in Ω \ (∂Br1 ∪ ∂Br2). (2.68)

As in (2.39) and (2.40) in the proof of Theorem 1, we have

[A0∇u0 · er] = 0 on ∂Br2 and [A0∇u0 · er] = 0 on ∂Br1 . (2.69)

A combination of (2.68) and (2.69) yields that

div(A0∇u0) + k2Σ0u0 = f in Ω;

which implies that u0 is a solution to (2.45) with δ = 0.

The proof of the uniqueness of u0 and the convergence of uδ to u0 in H1(Ω) are the same as
in the proof of Theorem 1. �

The following lemma is used in the proof of Theorem 4.
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Lemma 3. Let d = 2, 3, and k > 0. Let D, V, Ω be smooth bounded connected open subsets of
Rd such that D ⊂⊂ Ω, ∂D ⊂ V ⊂ Ω. Let A be a bounded, piecewise C1, matrix-valued function
defined in Ω which is assumed to be uniformly elliptic in Ω and let Σ be a bounded complex-
valued function, such that Im(Σ) ≥ 0 in Ω. Assume that A ∈ C1(Ω \D) and A ∈ C1(V ∩ D̄).
Let g ∈ L2(Ω) and c ∈ R. There exists a unique solution v ∈ H1(Ω \ ∂D) to the system

div(A∇v) + k2Σv = g in Ω \ ∂D,

A∇v · ν − ikv = 0 on ∂Ω,

[A∇v · ν] = 0 on ∂D,

[v] = c

∫
∂D

A∇v · ν on ∂D.

(2.70)

Moreover,
‖v‖H1(Ω\∂D) ≤ C‖g‖L2(Ω) and ‖v‖H2(V \D) ≤ C‖g‖L2(Ω), (2.71)

for some positive constant C independent of g.

Proof. The existence of v can be derived from the uniqueness of v by using the limiting
absorption principle. We now establish the uniqueness for (2.70). Let v ∈ H1(Ω \ ∂D) be a
solution to (2.70) with g = 0. Multiplying the equation by v, integrating over Ω \D and over
D, yields ∫

Ω

(
A∇v · ∇v − k2Σ|v|2

)
+ c
∣∣∣ ∫

∂D
A∇v · ν

∣∣∣2 − ik ∫
∂Ω
|v|2 = 0. (2.72)

Taking the imaginary part, we obtain that v = 0 on ∂Ω. The boundary condition in (2.70) then
implies A∇v · ν = 0 on ∂Ω. It thus follows from the unique continuation principle that v = 0
in Ω \D, and in particular v+ = A∇v+ · ν = 0 on ∂D. From the transmission conditions of v
on ∂D in (2.70), it follows hat v− = A∇v− · ν = 0 on ∂D as well. We conclude from the unique
continuation principle that v ≡ 0 in D. The proof of uniqueness is complete.

We next establish the first inequality of (2.71) by contradiction. Assume that there exists a
sequence gn ∈ L2(Ω) which is square integrable near ∂Ω, and an associated sequence of solutions
(vn) ⊂ H1(Ω \ ∂D) to (2.70) such that

lim
n→+∞

||gn||[H1(Ω)]∗ = 0 and ||vn||H1(Ω\∂D) = 1. (2.73)

Extracting a subsequence, we may assume that vn converges weakly in H1(Ω\∂D) and strongly
in L2(Ω) to some v ∈ H1(Ω \ ∂D) which is a solution to (2.70) with right-hand side 0. By
uniqueness, v = 0 in Ω and thus vn converges to 0 weakly in H1(Ω \ ∂D) and strongly in L2(Ω).
Similar to (2.72), we have∫

Ω

(
A∇vn · ∇vn − k2Σ|vn|2

)
+ c
∣∣∣ ∫

∂D
A∇vn · ν

∣∣∣2 − ik ∫
∂Ω
|vn|2 =

∫
Ω
gnvn,

By considering the real part, using (2.73), and noting that

c

∫
∂D

A∇vn · ν = [vn] on ∂D and [vn]→ 0 in L2(∂D),
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we derive that ∫
∂Ω
A∇vn · ∇vn → 0 as n→ +∞.

Hence vn → 0 in H1(Ω \ ∂D). This contradicts (2.73).
The second inequality of (2.71) can be obtained by Nirenberg’s method of difference quotients

(see, e.g., [4]) using the smoothness assumption of A and the boundedness of Σ. The details are
left to the reader. �

3 Superlenses using HMMs via complementary property

In this section, we consider a lens with coefficients (AH ,ΣH) inBr2\Br1 in the finite frequency
regime of the form

(AH ,ΣH) =


( 1

rd−1
er ⊗ er − r3−d(I − er ⊗ er),

1

r2

)
in Br2 \Brm ,(

− 1

rd−1
er ⊗ er + r3−d(I − er ⊗ er),−

1

r2

)
in Brm \Br1 ,

(3.1)

where
rm = (r1 + r2)/2.

It will be clear below, that the choice ΣH = 1/r2 in Br2 \Brm and −1/r2 in Brm \Br1 is just a
matter of simplifying the presentation. Any real-valued pair (σ̃1/r

2, σ̃2/r
2) ∈ L∞(Brm \Br1)×

L∞(Br2 \Brm) which satisfies

σ̃2(x) = −σ̃1

(
(|x| − rm)x/|x|

)
is admissible. The superlensing property of the device (3.1) is given by the following theorem:

Theorem 5. Let d = 2, 3, k > 0, Ω be a smooth bounded connected open subset of Rd, and let
f ∈ L2(Ω). Fix 0 < r1 < r2 and assume that Br2 ⊂⊂ Ω and supp f ⊂ Ω \Br2. Let uδ ∈ H1(Ω)
(0 < δ < 1) be the unique solution to (2.45) where (AH ,ΣH) is given by (3.1). We have

‖uδ‖H1(Ω) ≤ C‖f‖L2(Ω) and uδ → u0 strongly in H1(Ω), (3.2)

where u0 ∈ H1(Ω) is the unique solution of (2.45) where (AH ,ΣH) is given by (3.1) correspond-
ing to δ = 0 and C is a positive constant independent of f and δ. Moreover, u0 = û in Ω \Br2,
where ûδ is the unique solution to the system{

div(Â∇û) + k2Σ̂û = f in Ω,

∂ν û− ikû = 0 on ∂Ω,
(3.3)

where

Â(x), Σ̂(x) =


I, 1 in Ω \Br2 ,

rd−2
1

rd−2
2

a
(r1

r2
x
)
,
rd1
rd2
σ
(r1

r2
x
)

in Br2 .
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Since f is arbitrary with support in Ω \ Br2 , it follows from the definition of Â that the
object in Br1 is magnified by a factor r2/r1. We emphasize again that no condition is imposed
on r2 − r1.

Proof. Again, the proof mimics that of Theorem 1. We have

‖û‖H1(Ω) ≤ C‖f‖L2(Ω), (3.4)

and, by (1.16) and Lemma 2,
‖û‖H2(Ω\Br2 ) ≤ C‖f‖L2(Ω). (3.5)

Define v in Br2 \Brm as follows

∂2
rrv −∆∂B1v + k2v = 0 in Br2 \Brm (3.6)

and, on ∂Br2 ,
v = û and ∂rv = rd−1

2 ∂rû
+. (3.7)

We consider (3.6) and (3.7) as a Cauchy problem for the wave equation defined on the manifold
∂B1 for which r plays the role of the time variable. By the standard theory for the wave equation,
there exists a unique such v ∈ C

(
[rm, r2];H1(∂B1)

)
∩ C1([rm, r2];L2(∂B1)). We also have∫

∂B1

|∂rv(r, ξ)|2 + |∇∂B1v(r, ξ)|2 + k2|v(r, ξ)|2 dξ

=

∫
∂B1

|∂rv(r2, ξ)|2 + |∇∂B1v(r2, ξ)|2 + k2|v(r2, ξ)|2 dξ

=

∫
∂B1

r
2(d−1)
2 |∂rû+(r2, ξ)|2 + |∇∂B1 û(r2, ξ)|2 + k2|û(r2, ξ)|2 dξ. (3.8)

It follows that v ∈ H1(Br2 \Brm) and

‖v‖H1(Br2\Brm ) ≤ C‖f‖L2(Ω). (3.9)

Let vR ∈ H1(Brm \Br1) be the reflection of v through ∂Brm , i.e.,

vR(x) = v
(
(rm − |x|)x/|x|

)
in Brm \Br1 . (3.10)

Define

u0 =



û in Ω \Br2 ,

v in Br2 \Brm ,

vR in Brm \Br1 ,

û(r2 · /r1) in Br1 .

Then u0 ∈ H1(Ω) and

div(A0∇u0) + k2Σ0u0 = f in Ω \ (∂Br1 ∪ ∂Br2). (3.11)
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On the other hand, from the definition of u0 and v, we have

[A0∇u0 · er] = ∂rû
+ − 1

rd−1
2

∂rv = 0 on ∂Br2 , (3.12)

The properties of the reflection and the definition of AH garantee that the transmission condi-
tions also hold on ∂Brm , and from the definition of Â and (3.7), we obtain

[A0∇u0 · er](x) = − 1

rd−1
1

∂rvR(x)− r2

r1
a(x)∇û−(r2x/r1) · er

=
1

rd−1
1

∂rv(r2x/r1)− rd−1
2

rd−1
1

Â(r2x/r1)∇û−(r2x/r1) · er

=
1

rd−1
1

∂rv(r2x/r1)− rd−1
2

rd−1
1

∂rû
+(r2x/r1) = 0 on ∂Br1 . (3.13)

A combination of (3.11), (3.12), and (3.13) yields that u0 ∈ H1(Ω) and satisfies

div(A0∇u0) + k2Σ0u0 = f in Ω;

which implies that u0 is a solution for δ = 0. We also obtain from (3.4), (3.5), (3.8), and (3.9)
that

‖u0‖H1(Ω) ≤ C‖f‖L2(Ω). (3.14)

We next establish the uniqueness of u0. Let w0 ∈ H1(Ω) be a solution for δ = 0. Note that
w0 is fully determined in Br2 \ Brm from the Cauchy data w0(r2x̂), ∂rw0(r2x̂), x̂ ∈ ∂B1. Given
the form of the coefficients AH , w must also have the symmetry

w0(x) = w0

(
(rm − |x|)x/|x|

)
in Brm \Br1 .

It follows that for x̂ ∈ ∂B1

w0(r2x̂) = w0(r1x̂) and ∂rw0(r2x̂) = ∂rw0(r1x̂).

Thus the function ŵ defined by

ŵ(x) =

{
w0(x) x ∈ Ω \Br2 ,

w0(r1x/r2) x ∈ Br2 ,

is a solution to (3.3). By uniqueness for this elliptic equation, ŵ0 = û, which in turn implies
that w0 = u0 and uniqueness of u0 follows.

Finally, we establish (3.2). Set

vδ = uδ − u0 in Ω. (3.15)

It is easy to see that vδ ∈ H1
0 (Ω) and that it satisfies

div(Aδ∇vδ) + k2Σδvδ = div(iδ1Br2\Br1
∇u0)− iδk21Br2\Br1

u0 in Ω.

23



Applying (2.4) of Lemma 1, we derive from (3.14) that

‖vδ‖H1(Ω) ≤ C‖∇u0‖L2(Ω), (3.16)

which implies the uniform bound in (3.2) and, as in the proof of Theorem 1, that vδ converges
weakly to 0 in H1(Ω). Applying (2.3) of Lemma 1 and using (3.14) and (3.16), we obtain

‖uδ − u0‖2H1(Ω) = ‖vδ‖2H1(Ω) ≤ C

{∣∣∣∣∣
∫
Br2\Br1

∇u0∇vδ

∣∣∣∣∣+

∣∣∣∣∣
∫
Br2\Br1

u0vδ

∣∣∣∣∣
}
→ 0,

since vδ converges weakly to 0, which completes the proof. �

Proof of Theorem 2. The proof of Theorem 2 is similar to the above proof and is left to the
reader.

4 Constructing hyperbolic metamaterials

In this section, we show how one can design the type of hyperbolic media used in the previous
sections, by homogenization of layered materials. We restrict ourselves to superlensing using
HMMs via complementary property in the three dimensional quasistatic case, in order to build
a medium AHδ that satisfies, as δ → 0,

AHδ → AH =


1

r2
er ⊗ er − (I − er ⊗ er) in Br2 \Brm ,

− 1

r2
er ⊗ er + (I − er ⊗ er) in Brm \Br1 ,

(4.1)

such as that considered in (1.13). Recall that rm = (r1 + r2)/2. The argument can easily be
adapted to tuned superlensing using HMMs in two dimensions and to superlensing using HMMs
via complementary property in two dimensions and to the finite frequency regime. Our approach
follows the arguments developped by Murat and Tartar [8] for the homogenization of laminated
composites.

For a fixed δ > 0, let θ = 1/2 and let χ denote the characteristic function of the interval
(0, 1/2). For ε > 0, set, for x ∈ Br2 \Brm ,

b1,ε,δ(x) =
1

r2

[
(−1− iδ)χ(r/ε) +

(
1− χ(r/ε)

)
/3
]
,

b2,ε,δ(x) = (−3− iδ)χ(r/ε) +
(
1− χ(r/ε)

)
,

and, for x ∈ Brm \Br1 ,

b1,ε,δ(x) =
1

r2

[
(−1/3− iδ)χ(r/ε) +

(
1− χ(r/ε)

)]
,

b2,ε,δ(x) = (−1− iδ)χ(r/ε) + 3
(
1− χ(r/ε)

)
.

24



Note that since periodic functions converge weakly* to their average in L∞, one can easily
compute the L∞ weak-* limits

b1,H,δ :=
(
w ∗ − lim

ε→0
(b1,ε,δ)

−1
)−1

and b2,H,δ := w ∗ − lim
ε→0

b2,ε,δ, (4.2)

and in particular we have in Br2 \Brm b1,H,δ(x) =
2(1 + iδ)

r2(2 + 3iδ)
=

(
1− iδ/2 +O(δ2)

)
/r2,

b2,H,δ(x) = (−1− iδ/2),
(4.3)

and in Brm \Br1 b1,H,δ(x) =
−2/3− 2iδ

r2(2/3− iδ)
= −1− 9iδ/2 +O(δ2),

b2,H,δ(x) = (1− iδ/2).
(4.4)

Set
aε,δ(x) = b1,ε,δ(r)er ⊗ er + b2,ε,δ(r) (eθ ⊗ eθ + eϕ ⊗ eϕ) . (4.5)

Let a be a uniformly elliptic matrix-valued function and define

Aε,δ(x) =


I in Ω \Br2 ,

aε,δ in Br2 \Br1 ,

a in Br1 ,

(4.6)

and

AHδ (x) =


I in Ω \Br2 ,

b1,H,δer ⊗ er + b2,H,δ (eθ ⊗ eθ + eϕ ⊗ eϕ) in Br2 \Br1 ,

a in Br1 .

(4.7)

We have

Proposition 2. Let 0 < r1 < r2, and let Ω be a smooth bounded connected open subset of R3

such that Br2 ⊂⊂ Ω. Given f ∈ L2(Ω) with supp f ∩ Br2 = Ø, let uε,δ ∈ H1
0 (Ω) be the unique

solution to
div(Aε,δ∇uε,δ) = f in Ω,

where Aε,δ is given by (4.6). Then, as ε→ 0, uε,δ converges weakly in H1(Ω) to uH,δ ∈ H1
0 (Ω)

the unique solution of the equation

div(AHδ ∇uH,δ) = f in Ω,

where AHδ is defined by (4.7).
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Remark 3. Materials given in (4.5) could in principle be fabricated as a laminated composite
containing anisotropic metallic phases with a conductivity described by a Drude model. Also
note that the imaginary part of AHδ has the form −iδM , where M is a diagonal, positive definite
matrix, and is not strictly equal to −iδI as in the hypotheses of Theorem 2. Nevertheless, its
results hold for this case as well.

Proof. For notational ease, we drop the dependance on δ in the notation. By Lemma 1 (see
also Remark 1), there exists a unique solution uε ∈ H1

0 (Ω) to

div(Aε∇uε) = f in Ω, (4.8)

which further satisfies ||uε||H1(Ω) ≤ C ||f ||L2(Ω), with C independent of ε (it may depend on
δ though). We may thus assume, that up to a subsequence, uε converges weakly in H1(Ω) to
some uH ∈ H1(Ω). Standard results in homogenization [8] show that uH ∈ H1

0 (Ω) solves an
equation of the same type as (4.8):

div(AH∇uH) = f in Ω, (4.9)

where the tensor of homogenized coefficients AH has the form

AH(x) =


I for x ∈ Ω \Br2 ,

aH(x) for x ∈ Br2 \Br1 ,

a(x) for x ∈ Br1 .

To identify the tensor aH , set

σ1,ε = r2b1,ε∂ruε in Br2 \Br1 . (4.10)

Using spherical coordinates in Br2 \Br1 , we have

div(Aε∇uε) =
1

r2
∂r(r

2b1,ε∂ruε) +
b2,ε
r2

∆∂B1uε in Br2 \Br1 ,

where ∆∂B1 denotes the Laplace-Beltrami operator on ∂B1. This implies, since supp f∩Br2 = Ø,

∂rσ1,ε = −∆∂B1

(
b2,ε(r)uε

)
in Br2 \Br1 ,

since b2,ε only depends on r for a fixed ε. Consequently, σ1,ε and ∂rσ1,ε are uniformly bounded
with respect to ε in L2

(
r1, r2, L

2(∂B1)
)

and in L2
(
r1, r2, H

−1(∂B1)
)

respectively. Invoking
Aubin compactness theorem as in [8], we infer that up to a subsequence, σ1,ε converges strongly
in L2

(
r1, r2, H

−1(∂B1)
)

to some limit σ1,H ∈ L2(Br2 \Br1). Rewriting (4.10) as(
r2b1,ε

)−1
σ1,ε = ∂ruε,

and letting ε→ 0, yields

σ1,H =
(
w ∗ − lim(r2b1,ε)

−1
)−1

∂ruH

=
r2

w ∗ − lim(b1,ε)−1
∂ruH .
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On the other hand, since uε → uH strongly in L2(Ω), it follows that b2,ε(r)uε → w∗− lim b2,ε(r)uH
in L2. We derive that

∂r
(
r2b1,H∂ruH

)
+ ∆∂B1

(
b2,HuH

)
= 0 in Br2 \Br1 , (4.11)

where b1,H =
(
w ∗ − lim(b1,ε)

−1
)−1

and b2,H = w ∗ − lim b2,ε. We can then identify

aH = b1,Her ⊗ er + b2,H (eθ ⊗ eθ + eϕ ⊗ eϕ) ,

which, given (4.3–4.4), has the form considered in (3.1).

Since periodic functions weakly-* converge to their average in L∞ one easily checks that in
fact the whole sequence uε converges to the unique H1

0 -solution to (4.11). �

5 Stability of HMMs

Both the mechanisms for superlensing, that we propose in this paper, rely on the ability
to transport the Cauchy data without alteration (or barely) from one interface of the lens to
the other. In this section, we investigate the sensitivity of these results to the constraints on

the design, namely to the conditions r2 − r1 ∈ 2πN+ or rm =
r2 + r1

2
that are assumed in the

previous sections. To this end, let l > 0 and L > 0, and consider

R = (−l, L)× (0, 2π), Rl = (−l, 0)× (0, 2π), RL = (0, L)× (0, 2π).

We also set Γ = ∂R, and

Γ−lat = {−l} × (0, 2π), Γ+
lat = {L} × (0, 2π), Γtb =

(
(−l, L)× {2π}

)
∪
(
(−l, L)× {2π}

)
.

Let Aδ denote the conductivity defined in R by

Aδ(x) =


I x ∈ Rl,(

1− iδ 0
0 −1− iδ

)
x ∈ RL.

Let f ∈ H1/2
0,0 (Γ−lat)

4 and for δ > 0 denote uδ ∈ H1(R) the unique solution to

div(Aδ∇uδ) = 0 in R,

uδ = 0 on Γtb,

uδ = f on Γ−lat,

uδ = 0 on Γ+
lat.

(5.1)

This configuration corresponds to that of Section 2.2, where only the left half of the domain
(cut through the middle of the hyperlens) is considered. Note that one could equally study the
configuration where a homogeneous Neumann boundary condition is imposed on Γ+

lat.

4The closure of C∞c (Γ−lat) in H1/2(Γ−lat).
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The transmission conditions on x1 = 0 read

uδ(0
−, x2) = uδ(0

+, x2) and ∂x1uδ(0
−, x2) = ∂x1uδ(0

+, x2), 0 < x2 < 2π.

Using the same arguments as in Section 2, one can show that if there exists a solution u0 ∈ H1(R)
of (5.1) with δ = 0 then the problem is stable in the sense that (uδ) remains bounded in H1(R).
Otherwise, there exists a sequence (δn)→ 0 such that ‖uδn‖H1(R)

→ +∞ as n→ +∞. We now

compute such a possible solution u0. If u0 solves (5.1) with δ = 0, then it must have the form

u0(x1, x2) =


∑

n≥1 sin(nx2) (ane
nx1 + bne

−nx1) −l < x < 0∑
n≥1 sin(nx2) (αn cos(nx1) + βn sin(nx1)) 0 < x < L,

where an, bn, αn, βn ∈ R. Assume that the Dirichelt data on Γ−lat decomposes as

f(−l, x2) =
∞∑
n=1

fn sin(nx2),

for some fn ∈ C. Expressing the transmission on x1 = 0, and the boundary conditions on Γ±lat
yields 4× 4 homogeneous linear systems

e−nl enl 0 0
1 1 −1 0
1 −1 0 −1
0 0 cos(nL) sin(nL)




an
bn
αn
βn

 =


fn
0
0
0

 , n ≥ 1,

with determinants

dn := e−nl [cos(nL)− sin(nL)]− enl [cos(nL) + sin(nL)] .

Under the condition
dn 6= 0 for n ≥ 1

we can solve for the coefficients
an
bn
αn
βn

 =
1

dn


fn [cos(nL)− sin(nL)]
−fn [cos(nL) + sin(nL)]

−2fn sin(nL)
2fn cos(nL)

 ,

and construct a formal solution to (5.1) when δ = 0. The requirement that u0 ∈ H1(R) however
imposes conditions on the growth of the dn’s.

Assume that L/π is irrational and Diophantine of class r ∈ N+, i.e., there exists ε > 0 such
that

∀ (p, q) ∈ Z× Z∗
∣∣∣∣Lπ − p

q

∣∣∣∣ >
ε

qr
.
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Let p ∈ N be such that πp+ π/4 < nL < π(p+ 1) + π/4. Then one has for n large enough

|dn| ≥ enl
∣∣∣ cos(nL) + sin(nL)

∣∣∣− 2e−nl

= enl
∣∣∣∣cos(nL) + sin(nL)−

(
cos
(3π

4
+ πp

)
+ sin

(3π

4
+ πp

))∣∣∣∣− 2e−nl

≥ enl
2
√

2

π

∣∣∣∣nL− (3π

4
+ πp

)∣∣∣∣− 2e−nl

≥ enl2
√

2n

∣∣∣∣Lπ − 3 + p

4n

∣∣∣∣− 2e−nl

≥ enl2
√

2
nε

(4n)r
− 2e−nl > cn,

for some c > 0. It follows that∑
n≥1

(1 + n2)(a2
n + b2n + α2

n + β2
n) < +∞,

and there exists a solution u0 ∈ H1(R) to (5.1).

Assume now that L =
4p+ 3

4q
for some p, q ∈ N, q 6= 0. Then cos(nL) + sin(nL) vanishes for

an infinite number of n’s, for which dn = O(e−nl). One can then construct examples of data f
such that

∑∞
n=1(1 + n2)(a2

n + b2n + α2
n + β2

n) is not converging. In this case, there is no solution
in H1(Ω) to (5.1).

Given the dense character of Diophantine numbers, we see that, as the dissipation parameter
tends to 0, the solution operator is clearly not continous with respect to the geometry of the
HMMs region (see also [3, 7] for related questions concerning the Dirichlet problem for the wave
equation).
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