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Introduction

Metamaterials are smart materials engineered to have properties that have not yet been found in nature. They have recently attracted a lot of attention from the scientific community, not only because of potentially interesting applications, but also because of challenges in understanding their peculiar properties.

Negative index materials (NIMs) is an important class of metamaterials. Their study was initiated a few decades ago in the seminal paper of Veselago [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF], in which he postulated the existence of such materials. New fabrication techniques now allow the construction of NIMs at scales that are interesting for applications, and have made them a very active topic of investigation. One of the interesting properties of NIMs is superlensing, i.e., the possibility to beat the Rayleigh diffraction limit 1 : no constraint between the size of the object and the wavelength is imposed.

Based on the theory of optical rays, Veselago discovered that a slab lens of index -1 could exhibit an unexpected superlensing property with no constraint on the size of the object to be imaged [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. Later studies by Nicorovici,McPhedran,and Milton [24], Pendry [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF][START_REF] Pendry | Perfect cylindrical lenses[END_REF], Ramakrishna and Pendry in [START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF], for constant isotropic objects and dipole sources, showed similar properties for cylindrical lenses in the two dimensional quasistatic regime, for the Veselago slab and cylindrical lenses in the finite frequency regime, and for spherical lenses in the finite frequency regime. Superlensing of arbitrary inhomogeneous objects using NIMs in the acoustic and electromagnetic settings was established in [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF] for related lens designs. Other interesting properties of NIMs include cloaking using complementary media [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Cloaking using complementary media for the helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF], cloaking a source via anomalous localized resonance [START_REF] Ammari | Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance[END_REF][START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF][START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF][START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime[END_REF][START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF], and cloaking an arbitrary object via anomalous localized resonance [START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case[END_REF].

In this paper, we are concerned with another type of metamaterials: hyperbolic metamaterials (HMMs). These materials have quite promising potential applications to subwavelength imaging and focusing; see [START_REF] Poddubny | Hyperbolic metamaterials[END_REF] for a recent interesting survey on hyperbolic materials and their applications. We focus here on their superlensing properties. The peculiar properties and the difficulties in the study of NIMs come from (can be explained by) the fact that the equations modelling their behaviors have sign changing coefficients. In contrast, the modeling of HHMs involve equations of changing type, elliptic in some regions, hyperbolic in others.

We first describe a general setting concerning HMMs and point out some of their general properties. Consider a standard medium that occupies a region Ω of R d (d = 2, 3) with standard (elliptic) material constant A, except for a subset D in which the material is hyperbolic with material constant A H in the quasistatic regime (the finite frequency regime is also considered in this paper and is discussed later). Thus, A H is a symmetric hyperbolic matrix-valued function defined in D and A is a symmetric uniformly elliptic matrix-valued function defined in Ω \ D. Since metamaterials usually contain damping (metallic) elements, it is also relevant to assume that the medium in D is lossy (some of its electromagnetic energy is dissipated as heat) and study the situation as the loss goes to 0. The loss can be taken into account by adding to A H an imaginary term proportional to the identity matrix I, -iδI, of small amplitude δ. With the loss, the medium in the whole of Ω is thus characterized by the matrix-valued function A δ defined by

A δ = A in Ω \ D,
A H -iδI in D.

(1.1)

For a given (source) function f ∈ L 2 (Ω), the propagation of light/sound is modeled in the quasistatic regime by the equation

div(A δ ∇u δ ) = f in Ω, (1.2) 
with an appropriate boundary condition on ∂Ω.

Understanding the behaviour of u δ as δ → 0 + is a difficult question in general due to two facts. Firstly, equation (1.2) has both elliptic (in Ω \ D) and hyperbolic (in D) characters. It is hence out of the range of the standard theory of elliptic and hyperbolic equations. Secondly, even if (1.2) is of hyperbolic character in D, the situation is far from standard since the problem in D is not an initial boundary problem. There are constraints on both the Dirichlet and Neumann boundary conditions (the transmission conditions). As a consequence, equation (1.2) is very unstable (see Section 5).

In this paper, we study superlensing using HMMs. The use of hyperbolic media in the construction of lenses was suggested by Jacob et al. in [START_REF] Jacob | Optical hyperlens: far-field imaging beyond the diffraction limit[END_REF] and was experimentally verified by Liu et al. in [START_REF] Liu | Far-field optical hyperlens magnifying sub-diffraction-limited objects[END_REF]. The proposal of [START_REF] Jacob | Optical hyperlens: far-field imaging beyond the diffraction limit[END_REF] concerns cylindrical lenses in which the hyperbolic material is given in standard polar coordinates by

A H = a θ e θ × e θ -a r e r × e r , (1.3) 
where a θ and a r are positive constants2 . Denoting the inner radius and the outer radius of the cylinder respectively by r 1 and r 2 , Jacob et al. argued that the resolution is

r 1 r 2 λ, (1.4) 
where λ is the wave number. They supported their prediction by numerical simulations. The goal of our paper is to go beyond the resolution problem to achieve superlensing using HMMs as discussed in [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF] in the context of NIMs, i.e., to be able to image an object without imposing restrictions on the ratio between its size and the wavelength of the incident light. We propose two constructions for superlensing, which are based on two different mechanisms, inspired by two basic properties of the one dimensional wave equation.

The first mechanism is based on the following simple observation. Let u be a smooth solution of the system

∂ 2 tt u(t, x) -∂ 2 xx u(t, x) = 0 in R + × [0, 2π], u(t, •) is 2π-periodic. (1.5)
Then u can be written in the form

u(t, x) = a 0 + b 0 t + ∞ n=-∞ n =0 ± a n,± e i(±nt+nx) in R + × [0, 2π],
for some constants a 0 , b 0 , a n,± ∈ C. For the class of Cauchy data satisfying the condition 2π 0 ∂ t u(0, x) dx = 0, we have b 0 = 0. This implies

u(t, •) = u(t + 2π, •) and ∂ t u(t, •) = ∂ t u(t + 2π, •) for all t ≥ 0, (1.6) 
and thus the values of u and ∂ t u are transported without alteration over time intervals of length 2π. We speak of tuned superlensing to describe devices that achieve superlensing using this property.

In particular, we propose the following two dimensional superlensing device in the annulus B r 2 \ B r 1 :

A H = 1 r e r × e r -re θ × e θ in B r 2 \ B r 1 , (1.7) 
under the requirement that

r 2 -r 1 ∈ 2πN + . (1.8)
Throughout the paper, B r denotes the open ball in R d centered at the origin and of radius r. We also use the standard notations for the polar coordinates in two dimensions and the spherical coordinates in three dimensions. With the choice of A H in (1.7), we have

div(A H ∇u) = 1 r (∂ 2 rr u -∂ 2 θθ u) in B r 2 \ B r 1 .
Hence, if u is a solution to the equation div(

A H ∇u) = 0 in B r 2 \ B r 1 then ∂ 2 rr u -∂ 2 θθ u = 0 in B r 2 \ B r 1 .
(1.9)

Theorem 1 below shows that (1.8) and (1.9) imply that .10) This in turn implies the magnification of the medium contained inside B r 1 by a factor r 2 /r 1 (the precise meaning of this is given in the statement of Theorem 1).

u(r 2 x/|x|) = u(r 1 x/|x|) and ∂ r u(r 2 x/|x|) = ∂ r u(r 1 x/|x|). ( 1 
Our second class of superlensing devices is inspired by another observation concerning the one dimensional wave equation. Given T > 0, let u be a solution with appropriate regularity to the system

             ∂ 2 tt u -∂ 2 xx u = 0 in (-T, 0) × [0, 2π], -∂ 2 tt u + ∂ 2 xx u = 0 in (0, T ) × [0, 2π], u is 2π-periodic w.r.t. x, u(0 + , •) = u(0 -, •), ∂ t u(0 + , •) = -∂ t u(0 -, •) in [0, 2π]. (1.11) Then u(t, x) = u(-t, x) for (t, x) ∈ (0, T ) × [0, 2π]. (1.12) 
Indeed, set v(t, x) = u(-t, x) and w(t, x) = v(t, x) -u(t, x) for (t, x) ∈ (0, T ) × (0, 2π).

Then              ∂ 2 tt w -∂ 2 xx w = 0 in (0, T ) × [0, 2π], w(•, 0) = w(•, 2π) = 0 in (0, T ), w is 2π-periodic w.r.t. x, w(0 + , •) = ∂ t w(0 + , •) = 0 in [0, 2π].
Therefore, w = 0 in (0, T ) × (0, 2π) by the uniqueness of the Cauchy problem for the wave equation. This implies that u(t, x) = u(-t, x) for (t, x) ∈ (0, T ) × (0, 2π) as claimed. In this direction, we propose the following superlensing device in B r 2 \ B r 1 in both two and three dimensions, with r m = (r 1 + r 2 )/2:

A H =      1 r e r ⊗ e r -re θ ⊗ e θ in B r 2 \ B rm , - 1 r e r ⊗ e r + re θ ⊗ e θ in B rm \ B r 1 , for d = 2
and

A H =      1 r 2 e r ⊗ e r -(e θ ⊗ e θ + e ϕ ⊗ e ϕ ) in B r 2 \ B rm , - 1 r 2 e r ⊗ e r + (e θ ⊗ e θ + e ϕ ⊗ e ϕ ) in B rm \ B r 1 , for d = 3.
In a compact form, one has

A H =      1 r d-1 e r ⊗ e r -r 3-d (I -e r ⊗ e r ) in B r 2 \ B rm , - 1 r d-1 e r ⊗ e r + r 3-d (I -e r ⊗ e r ) in B rm \ B r 1 . (1.13) The choice of A H in (1.13) implies that div(A H ∇u) = 1 r d-1 ∂ 2 rr u -∆ ∂B 1 u in B r 2 \ B rm ,
and div(A H ∇u) = - 1 r d-1 ∂ 2 rr u -∆ ∂B 1 u in B rm \ B r 1 ,
where ∆ ∂B 1 denotes the Laplace-Beltrami operator on the unit sphere of R d . Note also that

∂ r u(r - 2 , θ) = ∂ r u(r + 2 , θ), ∂ r u(r - m , θ) = -∂ r u(r + m , θ), ∂ r u(r - 1 , θ) = -∂ r u(r + 1 , θ).
Hence, if u is an appropriate solution to the equation div(A H ∇u) = 0 in B r 2 \ B r 1 , then, by taking into account the transmission conditions on ∂B rm , one has

       ∂ 2 rr u -∆ ∂B 1 u = 0 in B r 2 \ B rm , -∂ 2 rr u + ∆ ∂B 1 u = 0 in B rm \ B r 1 , u Br 2 \Br m = u Br m \Br 1 , ∂ r u Br 2 \Br m = -∂ r u Br m \Br 1 on ∂B rm . (1.14) 
As in (1.12), one derives that

u (s + r m )x = u (r m -s)x for x ∈ ∂B 1 , s ∈ (0, r 2 -r m ); which yields u(r - 2 x) = u(r + 1 x) and ∂ r u(r - 2 x) = -∂ r u(r + 1 x) for x ∈ ∂B 1 . (1.15) 
This in turn implies the magnification of the medium contained inside B r 1 by a factor r 2 /r 1 (the precise meaning is given in Theorem 2). In contrast with the first proposal (1.7) where (1.8) is required, no condition is imposed on r 1 and r 2 for the second scheme (1.13). We call this method superlensing using HHMs via complementary property. The idea of using reflection takes roots in the work of the second author [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. Similar ideas were used in the study properties of NIMs such as superlensing [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF], cloaking [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Cloaking using complementary media for the helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF], cloaking via anomalous localized resonance in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime[END_REF][START_REF] Nguyen | Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object: the acoustic case[END_REF][START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF], and the stability of NIMs in [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]. Nevertheless, the superlensing properties of NIMs and HMMs are based on two different phenomena: the unique continuation principle for NIMs, and the uniqueness of the Cauchy problem for the wave equation for HMMs.

Suppose that an object to-be-magnified in B r 1 is characterized by a symmetric uniformly elliptic matrix-valued function a. Throughout the paper, to deal with sufficiently regular solutions of the wave equation, we assume that a is of class C 1 in a neighborhood of ∂B r 1 .

(1.16)

Suppose that outside B r 2 the medium is homogeneous and the lens is characterized by a matrixvalued function A H in B r 2 \ B r 1 . The whole system (taking loss into account) is then given by

A δ =        I in Ω \ B R 2 , A H -iδI in B r 2 \ B r 1 , a in B r 1 .
(1.17)

Set H 1 m (Ω) := u ∈ H 1 (Ω); ∂Ω u = 0 . (1.18)
Concerning the scheme (1.7), we have

Theorem 1. Let d = 2, 0 < δ < 1, 0 < r 1 < r 2 with r 2 -r 1 ∈ 2πN + , let Ω be a smooth bounded connected open subset of R 2 , and let f ∈ L 2 (Ω) with Ω f = 0. Assume that B r 2 ⊂⊂ Ω and supp f ⊂ Ω \ B r 2 . Let u δ ∈ H 1 m (Ω)
be the unique solution to the system

div(A δ ∇u δ ) = f in Ω, ∂ ν u δ = 0 on ∂Ω, (1.19) 
where A δ is given by (1.17) with A H defined by (1.7). We have

u δ H 1 (Ω) ≤ C f L 2 (Ω) and u δ → u 0 strongly in H 1 (Ω) as δ → 0, (1.20) 
where u 0 ∈ H 1 m (Ω) is the unique solution to (1. [START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF]) with δ = 0 and C is a positive constant independent of f and δ. Moreover, u 0 = û in Ω \ B r 2 where û ∈ H 1 m (Ω) is the unique solution to the system

div( Â∇û) = f in Ω, ∂ ν û = 0 on ∂Ω, where Â(x) = I in Ω \ B r 2 , a r 1 x/r 2 in B r 2 .
(1.21)

Concerning the scheme (1.13), we establish

Theorem 2. Let d = 2, 3, 0 < δ < 1, 0 < r 1 < r 2 , Ω be a smooth bounded connected open subset of R d , and let f ∈ L 2 (Ω) with Ω f = 0. Assume that B r 2 ⊂⊂ Ω and supp f ⊂ Ω \ B r 2 .
Let u δ ∈ H 1 m (Ω) be the unique solution to the system

div(A δ ∇u δ ) = f in Ω, ∂ ν u δ = 0 on ∂Ω, (1.22) 
where A δ is given by (1.17) with A H defined by (1.13). We have

u δ H 1 (Ω) ≤ C f L 2 (Ω) and u δ → u 0 strongly in H 1 (Ω), (1.23) 
where u 0 ∈ H 1 m (Ω) is the unique solution to (1.22) with δ = 0 and C is a positive constant independent of f and δ. Moreover, u 0 = û in Ω \ B r 2 where û ∈ H 1 m (Ω) is the unique solution to the system

div( Â∇û) = f in Ω, ∂ ν û = 0 on ∂Ω, where Â(x) =      I in Ω \ B r 2 , r d-2 1 r d-2 2 a r 1 r 2 x in B r 2 .
(1.24) Some comments on Theorems 1 and 2 are in order. The well-posedness and the stability of (1. [START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF]) and (1.22) are established in Lemma 1. The existence and the uniqueness of u 0 are part of the statements of Theorems 1 and 2. Since f is arbitrary with support in Ω \ B r 2 , it follows from the definition of  that the object in B r 1 is magnified by a factor r 2 /r 1 . It is worth noting that the matrix a can be an arbitrary function inside B r 1 , provided it is uniformly elliptic and smooth near ∂B r 1 . The lensing properties of the proposed devices in B r 2 \ B r 1 are independent of the object.

The paper is organized as follows. Section 2 is devoted to tuned superlensing via HMMs. There, besides the proof of Theorem 1, we also discuss variants in two and three dimensions in the finite frequency regime (Theorems 3 and 4). Section 3 concerns superlensing using HMMs via the complementary property. In this section, we prove Theorem 2 and establish its finite frequency variant (Theorem 5). Finally, in Section 4, we construct HMMs with the required properties, as limits as δ → 0 of effective media obtained from the homogenization of composite structures, mixtures of a dielectric and a metal. This derivation involves taking limits with respect to several length scales (the wavelentgh of the incident light, the period of the layers, the amplitude of the dissipation). The final section concerns the stability of HMMs. We show there on a simple example, the properties of an inclusion of hyperbolic metamaterial, embedded in a matrix of dielectric material, are strongly dependent on the geometry of the inclusion. Numerical simulations of some of the results presented in our paper are presented in [START_REF] Droxler | [END_REF]. It would be interesting to analyse the corresponding problems for the full Maxwell system and to investigate other possible applications of HMMs. We plan to address this question in future work.

Tuned superlensing using HMMs

In this section, we first present two lemmas on the stability of (1.2), (1.21), and (1.24) and their variants in the finite frequency regime. In the second part, we discuss a toy model which illustrates tuned superlensing with hyperbolic media. In the third part, we give the proof of Theorem 1. In the last part, we discuss its variants in the finite frequency regime.

Two useful lemmas

We first establish the following lemma which implies the well-posedness of (1.2). In what follows, for a subset D of R d , 1 D denotes its characteristic function. For a function u ∈ L 2 (Ω) and D ⊂⊂ Ω, we set u + = u |Ω\D , u -= u |D . When u has a well-defined trace on ∂D, we set [u] = u + -u -on ∂D. We also use similar notations for A∇u • ν. We have

Lemma 1. Let d = 2, 3, k ≥ 0, δ 0 > 0, 0 < δ < δ 0 . Let D ⊂⊂ Ω be two smooth bounded connected open subsets of R d . Let A be a bounded matrix-valued function defined in Ω such that A is uniformly elliptic in Ω \ D, A is piecewise C 1 in Ω, and let Σ be a complex bounded function such that (Σ) ≥ 0. Set A δ (x) = A(x) -iδ1 D (x)I and Σ δ (x) = Σ(x) + iδ1 D (x) in Ω.
(2.1)

Let g δ ∈ [H 1 (Ω)] *
, the dual space of H 1 (Ω), be such that g δ is square integrable near ∂Ω and in the case k = 0, assume in addition that Ω g δ = 0. There exists a unique solution

v δ ∈ H 1 (Ω) if k > 0 (respectively v δ ∈ H 1 m (Ω) if k = 0) to the system div(A δ ∇v δ ) + k 2 Σ δ v δ = g δ in Ω, A∇v δ • ν -ikv δ = 0 on ∂Ω.
(2.2)

Moreover, v δ 2 H 1 (Ω) ≤ C δ Ω g δ vδ + g δ 2 [H 1 (Ω)] * , (2.3) 
for some positive constant C depending only on Ω, D, and k. Consequently,

v δ H 1 (Ω) ≤ C δ g δ [H 1 (Ω)] * . (2.4) 
Proof. We only prove the result for k > 0. The case k = 0 follows similarly and is left to the reader. The proof is in the spirit of that of [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime[END_REF]Lemma 2.1]. The existence of v δ can be derived from the uniqueness of v δ by using the limiting absorption principle, see, e.g., [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]. We now establish the uniqueness of v δ by showing that v δ = 0 if g δ = 0. Multiplying the equation of v δ by vδ (the conjugate of v δ ) and integrating by parts, we obtain

- Ω A δ ∇v δ , ∇v δ + k 2 Ω Σ δ |v δ | 2 + ∂Ω ik|v δ | 2 = 0.
Considering the imaginary part and using the definition (2.1) of A δ and Σ δ , we have

v δ = 0 in D. (2.5) 
This implies v - δ = A δ ∇v - δ • ν = 0 on ∂D; which yields, by the transmission conditions on ∂D,

v + δ = A∇v + δ • ν = 0 on ∂D.
It follows from the unique continuation (see, e.g., [START_REF] Protter | Unique continuation for elliptic equations[END_REF]) that v δ = 0 also in Ω \ D. The proof of uniqueness is complete. We next establish (2.3) by contradiction. Assume that there exists (g

δ ) ⊂ [H 1 (Ω)] * such that g δ is square integrable near ∂Ω, v δ H 1 (Ω) = 1 and 1 δ Ω g δ vδ + g δ 2 [H 1 (Ω)] * → 0, (2.6) as δ → δ ∈ [0, δ 0 ].
In fact, we may assume that these properties hold for a sequence (δ n ) → δ. However, for the simplicity of notation, we still use δ instead of δ n to denote an element of such a sequence. We only consider the case δ = 0; the case δ > 0 follows similarly. Without loss of generality, one may assume that (v δ ) converges to v 0 strongly in L 2 (Ω) and weakly in H 1 (Ω) for some v 0 ∈ H 1 (Ω). Then, by (2.6),

div(A 0 ∇v 0 ) + k 2 Σ 0 v 0 = 0 in Ω, A∇v 0 • ν -ikv 0 = 0 on ∂Ω.
(2.7)

It follows from the uniqueness that v 0 = 0 in Ω. Since

v δ → v 0 in L 2 (Ω), it follows that lim δ→0 v δ L 2 (Ω) = 0. (2.8)
Multiplying the equation of v δ by vδ and integrating by parts, we obtain

- Ω A δ ∇v δ , ∇v δ + k 2 Ω Σ δ |v δ | 2 + ∂Ω ik|v δ | 2 = Ω g δ vδ .
(2.9)

Considering the imaginary part of (2.9) and using (2.6), we have lim v δ H 1 (Ω) = 0 : which contradicts (2.6). The proof is complete.

δ→0 ∇v δ L 2 (D) + v δ L 2 (D) + v δ L 2 (∂Ω) = 0, ( 2 
Remark 1. In the case k = 0, the result in Lemma 1 also holds for zero Dirichlet boundary condition in which g ∈ H -1 (Ω), the dual space of H 1 0 (Ω). Moreover, the constant C depends only on the ellipticity of A, and on δ 0 , D, and Ω. The proof follows the same lines.

The following standard result is repeatedly used in this paper:

Lemma 2. Let d = 2, 3, k ≥ 0. Let D, V, Ω be smooth bounded connected open subsets of R d such that D ⊂⊂ Ω, ∂D ⊂ V ⊂ Ω.
Let A be a matrix-valued function and Σ be a complex function, both defined in Ω, such that

A is uniformly elliptic in Ω and Σ ∈ L ∞ (Ω) with (Σ) ≥ 0 and (Σ) ≥ c > 0, for some constant c. Assume that A ∈ C 1 (Ω \ D) and A ∈ C 1 (V ∩ D). Let g ∈ L 2 (Ω) and in the case k = 0 assume in addition that Ω g = 0. There exists a unique solution v ∈ H 1 (Ω) if k > 0 (respectively v ∈ H 1 m (Ω) if k = 0) to the system div(A∇v) + k 2 Σv = g in Ω, A∇v • ν -ikv = 0 on ∂Ω. Moreover, v H 1 (Ω) ≤ C g L 2 (Ω) and v H 2 (V \D) ≤ C g L 2 (Ω) , (2.12) 
for some positive constant C independent of f .

Proof. The existence, the uniqueness, and the first inequality of (2.12) follow from the Fredholm theory by the uniform ellipticity of A in Ω and the boundary condition used. The second inequality of (2.12) can be obtained by Nirenberg's method of difference quotients (see, e.g., [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]) using the smoothness assumption of A and the boundedness of Σ. The details are left to the reader.

A toy problem

In this section, we consider a toy problem for tuned superlensing using HMMs, in which the geometry is rectangular. Given three positive constants l, L and T , we define

3 R = [-l, L] × [0, 2π], R l = [-l, 0] × [0, 2π], R c = [0, T ] × [0, 2π], R r = [T, L] × [0, 2π]. Denote Γ := ∂R, Γ c,0 = {0} × [0, 2π], and Γ c,T = {T } × [0, 2π].
Let a be a uniformly elliptic matrix-valued function defined in R l ∪ R r . We set

a δ = 1 -iδ 0 0 -1 -iδ ,
and define

A δ = a in R l ∪ R r , a δ in R c ,
so that the superlensing device occupies the region R c . For f ∈ L 2 (R) with supp f ∩ R c = Ø, let u δ ∈ H 1 0 (R) be the unique solution to the equation

div(A δ ∇u δ ) = f in R. (2.13)
Assume that u δ H 1 (R) is bounded as δ → 0. Then, up to a subsequence, u δ converges weakly to some

u 0 ∈ H 1 0 (R). It is clear that u 0 is a solution to div(A 0 ∇u 0 ) = f in R. (2.14) More precisely, u 0 ∈ H 1 0 (R) satisfies (2.14) if and only if u 0 satisfies the elliptic-hyperbolic system div(a∇u 0 ) = f in R l ∪ R r and ∂ 2 x 1 x 1 u 0 -∂ 2 x 2 x 2 u 0 = 0 in R c ,

and the transmission conditions

u 0 R l = u 0 Rc ∂ x 1 u 0 R l = ∂ x 1 u 0 Rc , on Γ c,0 and u 0 Rr = u 0 Rc ∂ x 1 u 0 Rr = ∂ x 1 u 0 Rc , on Γ c,T .
This problem is ill-posed: in general, there is no solution in H 1 0 (R), and so, u δ H 1 (R) → +∞, as δ → 0. Nevertheless, for some special choices of T , discussed below, the problem is well-posed and its solutions have peculiar properties.

To describe them, we introduce an "effective domain"

R T = [-l, L -T ] × [0, 2π] and Â(x 1 , x 2 ), f (x 1 , x 2 ) = a(x 1 , x 2 ), f (x 1 , x 2 ) in R l a(x 1 + T, x 2 ), f (x 1 + T, x 2 ) in R T \ R l .
In what follows, we assume that  ∈ C 2 (R T ).

Proposition 1. Let 0 < δ < 1, f ∈ L 2 (R)
, and u δ ∈ H 1 0 (R) be the unique solution of (2.13). Assume that T ∈ 2πN + and sup f ∩ R c = Ø. Then

u δ H 1 ≤ C f L 2 (R) and u δ → u 0 strongly in H 1 (R), (2.15) 
where u 0 ∈ H 1 0 (R) is the unique solution of (2.13) with δ = 0 and C is a positive constant independent of δ and f . We also have

u 0 (x 1 , x 2 ) = û(x 1 , x 2 ) in R l , û(x 1 -T, x 2 ) in R r ,
where û ∈ H 1 0 (R T ) is the unique solution to the equation

div( Â∇û) = f in R T , (2.16) 
Remark 2. It follows from Proposition 1 that u 0 can be computed as if the structure in R c had disappeared. This phenomenon is similar to that in the Veselago setting: superlensing occurs.

Proof. The proof of Proposition 1 is in the spirit of the approach used by the second author in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] to deal with negative index materials. The key point is to construct the unique solution u 0 to the limiting problem appropriately and then estimate u δ by studying the difference u δ -u 0 . We first construct a solution u 0 ∈ H 1 0 (R) to (2.13) with δ = 0. Since  ∈ C 2 (R T ) and since f ∈ L 2 (R), the regularity theory for elliptic equations (see, e.g., [11, 3.2

.1.2]) implies that û ∈ H 2 (R) and û H 2 (R) ≤ C f L 2 (R) . (2.17) 
Here and in what follows in this proof, C denotes a positive constant independent of f and δ.

It follows that û(0, x 2 ) ∈ H 1 (Γ c,0 ) and ∂ 1 û(0, x 2 ) ∈ L 2 (Γ c,0 ). Interpretting x 1 and x 2 as respectively time and space variables in the rectangle R c , we seek a solution v ∈ C [0, T ]; H 1 0 (0, 2π) ∩ C 1 ([0, T ]; L 2 (0, 2π)) of the wave equation

∂ 2 x 1 x 1 v -∂ 2 x 2 x 2 v = 0 in R c , (2.18) 
with zero boundary condition, i.e., v = 0 on Γ ∩ ∂Ω c , and with the following initial conditions

v(0, x 2 ) = û(0, x 2 ) and ∂ x 1 v(0, x 2 ) = ∂ x 1 û R l (0, x 2 ).
Existence and uniqueness of v follow from the standard theory of the wave equation by taking into account the regularity information in (2.17). We also have, for 0

≤ x 1 ≤ T , 2π 0 |∂ x 1 v(x 1 , x 2 )| 2 + |∂ x 2 v(x 1 , x 2 )| 2 dx 2 = 2π 0 |∂ x 1 v(0, x 2 )| 2 + |∂ x 2 v(0, x 2 )| 2 dx 2 = 2π 0 |∂ x 1 û R l (0, x 2 )| 2 + |∂ x 2 û(0, x 2 )| 2 dx 2 . (2.19) Furthermore, one can represent v in R c in the form v(x 1 , x 2 ) = ∞ n=1 sin(nx 2 ) a n cos(nx 1 ) + b n sin(nx 1 ) , (2.20) 
where a n , b n ∈ R are determined by the initial conditions satisfied by v at x 1 = 0. Since T ∈ 2πN, it follows from this representation that

v(0, •) = v(T, •) and ∂ x 1 v(0, •) = ∂ x 1 v(T, •) in [0, 2π], (2.21) 
for any initial conditions, and hence for any f with supp f ∩ R c = Ø. Define

u 0 (x 1 , x 2 ) =        û(x 1 , x 2 ) in R l , v(x 1 , x 2 ) in R c , û(x 1 -T, x 2 ) in R r .
( 

u 0 H 1 (R) ≤ C f L 2 (R) . (2.23) 
We next establish the uniqueness of u 0 . Let w 0 ∈ H 1 0 (Ω) be a solution to (2.13) with δ = 0. Since w 0 can be represented as in (2.20) in R c , we obtain

w 0 (0, •) = w 0 (T, •) and ∂ x 1 w 0 (0, •) = ∂ x 1 w 0 (T, •) in [0, 2π].
We can thus define for (

x 1 , x 2 ) in R T ŵ(x 1 , x 2 ) = w 0 (x 1 , x 2 ) in R l , w 0 (x 1 -T, x 2 ) otherwise,
which is a solution to (2.16). By uniqueness for this elliptic equation, it follows that ŵ ≡ û in R T , and (2.22) shows that w 0 ≡ u 0 in R.

Finally, we establish (2.15). Define

v δ = u δ -u 0 in R. (2.24)
We have

div(A δ ∇v δ ) = div(A δ ∇u δ ) -div(A δ ∇u 0 ) = div(A δ ∇u δ ) -div(A 0 ∇u 0 ) + div(A 0 ∇u 0 ) -div(A δ ∇u 0 ) in R. It follows that v δ ∈ H 1 0 (Ω) is the solution to div(A δ ∇v δ ) = div(iδ1 Rc ∇u 0 ) in R. (2.25)
As in (2.4) in Lemma 1, we obtain from (2.23) that

v δ H 1 (R) ≤ C δ δ∇u 0 L 2 (Rc) ≤ C f L 2 (R) ; (2.26)
which implies the first inequality of (2.15). It follows that a subsequence of v δ converges weakly to some v 0 , solution to (2.14) with f = 0. Uniqueness shows that v 0 = 0, and that the whole sequence v δ converges weakly to 0. As in (2.3) in Lemma 1, we deduce from (2.23), (2.25), and (2.26) that

u δ -u 0 2 H 1 (R) = v δ 2 H 1 (R) ≤ C Rc i∇u 0 ∇v δ → 0, (2.27) 
as v δ converges weakly to 0 in H 1 (R). The proof is complete.

Tuned superlensing using HMMs in the quasistatic regime. Proof of Theorem 1

The proof is in the spirit of that of Proposition 1: the main idea is to construct u 0 and then estimate u δ -u 0 . We have û

H 1 (Ω) ≤ C f L 2 (Ω) . (2.28) 
Using (1.16) and applying Lemma 2, we derive that u ∈ H 2 (Ω \ B r 2 ) and By considering (2.30) as a Cauchy problem for the wave equation with periodic boundary conditions, in which r and θ are seen as a time and a space variable respectively, the standard theory shows that there exists a unique such v(r, θ) ∈ C [r 1 , r 2 ]; H 1 per (0, 2π) ∩ C 1 ([r 1 , r 2 ]; L 2 (0, 2π)). We also have, for

û H 2 (Ω\Br 2 ) ≤ C f L 2 (Ω) . (2.29) Define a function v in B r 2 \ B r 1 by ∂ 2 rr v -∂ 2 θθ v = 0, v is periodic with respect to θ, (2.30 
r 1 ≤ r ≤ r 2 , 2π 0 |∂ r v(r, θ)| 2 + |∂ θ v(r, θ)| 2 dθ = 2π 0 |∂ r v(r 2 , θ)| 2 + |∂ θ v(r 2 , θ)| 2 dθ = 2π 0 r 2 2 |∂ r û+ (r 2 , θ)| 2 + |∂ θ û(r 2 , θ)| 2 dθ; (2.32) which yields, by (2.29), v H 1 (Br 2 \Br 1 ) ≤ C f L 2 (Ω) . (2.33)
Moreover, v can be represented in the form

v(r, θ) = a 0 + b 0 r + ∞ n=-∞ n =0 ± a n,± e i(nr±nθ) in B r 2 \ B r 1 , (2.34) 
where a 0 , b 0 , a n,± ∈ C. Since û+ is harmonic in Ω \ B r 2 , we have

b 0 = 1 2π 2π 0 ∂ r v(r 2 , θ) dθ = 1 2π 2π 0 r 2 ∂ r û+ (r 2 , θ) dθ = 1 2π ∂Br 2 ∂ r û+ (x) dx = 1 2π ∂Ω ∂ ν û(x) dx = 0. Since r 2 -r 1 ∈ 2πN + , it follows that v(r 1 , θ) = v(r 2 , θ) and ∂ r v(r 1 , θ) = ∂ r v(r 2 , θ) for θ ∈ [0, 2π]. (2.35) Set u 0 =        û in Ω \ B r 2 , v in B r 2 \ B r 1 , û r 2 • /r 1 in B r 1 .
( 

u 0 H 1 (Ω) ≤ C f L 2 (Ω) . (2.37) 
We also have div(A

0 ∇u 0 ) = f in Ω \ (∂B r 1 ∪ ∂B r 2 ). (2.38) 
On the other hand, from (1.7), (2.31) and the definition of A 0 , we have

[A 0 ∇u 0 • e r ] = ∂ r u + 0 - 1 r 2 ∂ r u - 0 = ∂ r u + 0 - 1 r 2 ∂ r v = 0 on ∂B r 2 (2.39)
and from (2.35) and the definition of Â, we obtain

[A 0 ∇u 0 • e r ](x) = 1 r 1 ∂ r u + 0 (x) -A 0 ∇u - 0 • e r (x) = 1 r 1 ∂ r v(x) - r 2 r 1 a(x)∇û -(r 2 x/r 1 ) • e r = 1 r 1 ∂ r v(r 2 x/r 1 ) - r 2 r 1 Â(r 2 x/r 1 )∇û + (r 2 x/r 1 ) • e r = 0 on ∂B r 1 . (2.40)
A combination of (2.38), (2.39), and (2.40) yields that div(A 0 ∇u 0 ) = f in Ω; which implies that u 0 is a solution to (1. [START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF]) with δ = 0.

We next establish the uniqueness of u 0 . Let w 0 ∈ H 1 (Ω) be a solution to (1.19) with δ = 0. Since w 0 can be represented as in (2.34) in B r 2 \ B r 1 , we have

w 0 (r 1 , θ) = w 0 (r 2 , θ) and ∂ r w 0 (r 1 , θ) = ∂ r w 0 (r 2 , θ) for θ ∈ [0, 2π]. (2.41) Define ŵ(x) = w 0 (x) in Ω \ B r 2 , w 0 r 1 x/r 2 in B r 2 .
It follows from (2.41) that ŵ ∈ H 1 (Ω). One can verify that ŵ is a solution of (1.21). Hence ŵ = û; which yields w 0 = u 0 .

We next establish the inequality in (1.20). Set

v δ = u δ -u 0 in Ω. (2.42) Then v δ ∈ H 1 (Ω) and satisfies div(A δ ∇v δ ) = div(iδ1 Br 2 \Br 1 ∇u 0 ) in Ω and ∂ ν v δ = 0 on ∂Ω.
Applying (2.4) of Lemma 1, we obtain from (2.37) that

v δ H 1 (Ω) ≤ C ∇u 0 L 2 (Ω) ,
which implies the inequality in (1.20). Applying (2.3) of Lemma 1, we derive from (2.37) that

u δ -u 0 2 H 1 (Ω) = v δ 2 H 1 (Ω) ≤ C Br 2 \Br 1 i∇u 0 ∇v δ → 0 as δ → 0,
which completes the proof.

Tuned superlensing using HMMs in the finite frequency regime

In this section we consider variants of Theorem 2 in the finite frequency regime. Assume that the region B r 1 to be magnified is characterized by a pair (a, σ) of a matrix-valued function a and a complex function σ such that a satisfies the standard conditions mentioned in the introduction (a is uniformly elliptic in B r 1 and (1.16) holds) and σ satisfies the following standard conditions σ ∈ L ∞ (B r 1 ), with (σ) ≥ 0 and (σ) ≥ c > 0, (2.43) for some constant c. Assume that the lens without loss is characterized by a pair (A H , Σ H ) in B r 2 \ B r 1 . Taking loss into account, the overall medium is characterized by

A δ , Σ δ =        I, 1 in Ω \ B r 2 , A H -iδI, Σ H + iδ in B r 2 \ B r 1 , a, σ in B r 1 , (2.44) 
Given a (source) function f ∈ L 2 (Ω) and given a frequency k > 0, standard arguments show that there is a unique solution u δ ∈ H 1 (Ω) to the system

div(A δ ∇u δ ) + k 2 Σ δ u δ = f in Ω, ∂ ν u δ -iku δ = 0 on ∂Ω.
(2.45)

We first consider the three dimensional finite frequency case. The superlens in B r 2 \ B r 1 is defined by

(A H , Σ H ) = 1 r 2 e r ⊗ e r -(e θ ⊗ e θ + e ϕ ⊗ e ϕ ), 1 4k 2 r 2 in B r 2 \ B r 1 .
(2.46)

Note that Σ H also depends on k. We have Theorem 3. Let d = 3, k > 0, 0 < δ < 1, and let Ω be a smooth bounded connected open subset of R 3 and let 0 < r 1 < r 2 be such that r 2 -

r 1 ∈ 4πN + and B r 2 ⊂⊂ Ω. Let f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 2 and let u δ ∈ H 1 (Ω)
be the unique solution of (2.45) where (A H , Σ H ) is given by (2.46). We have

u δ H 1 (Ω) ≤ C f L 2 (Ω) and u δ → u 0 strongly in H 1 (Ω), ( 2 

.47)

where u 0 ∈ H 1 (Ω) is the unique solution to (2.45) with δ = 0 and C is a positive constant independent of f and δ. Moreover, u 0 = û in Ω \ B r 2 where û is the unique solution to the system

div( Â∇û) + k 2 Σû = f in Ω, ∂ ν û -ikû = 0 on ∂Ω, where Â, Σ =      I, 1 in Ω \ B r 2 , r 1 r 2 a r 1 r 2 • , r 3 1 r 3 2 σ r 1 r 2 • in B r 2 .
(2.48)

From the definition of (A H , Σ H ) in (2.46), one derives that if u is a solution to the equation div(

A H ∇u) + k 2 Σ H u = 0 in B r 2 \ B r 1 then ∂ 2 rr u -∆ ∂B 1 u + 1 4 u = 0 in B r 2 \ B r 1 .
This equation plays a similar role as the wave equation in (1.9).

Proof. We have, by Lemma 2, that

û H 1 (Ω) ≤ C f L 2 (Ω) and û H 2 (Ω\Br 2 ) ≤ C f L 2 (Ω) .
Set

u 0 =        û in Ω \ B r 2 , v in B r 2 \ B r 1 , û r 2 • /r 1 in B r 1 , (2.49) where v ∈ H 1 (B r 2 \ B r 1 ) is the unique solution of ∂ 2 rr v -∆ ∂B 1 v + 1 4 v = 0 in B r 2 \ B r 1 , (2.50) v = û on ∂B r 2 and ∂ r v = r 2 2 ∂ r û+ on ∂B r 2 .
(2.51)

For n ≥ 0 and -n ≤ m ≤ n, let Y m n denote the spherical harmonic function of degree n and of order m, which satisfies

∆ ∂B 1 Y m n + n(n + 1)Y m n = 0 on ∂B 1 .
Since the family Y m n is dense in L 2 (∂B 1 ), v can be represented in the form

v(x) = ∞ n=0 n m=-n ± a nm,± e ±iλnr Y n m (x), x ∈ B r 2 \ B r 1 , (2.52) 
where λ n = (n + 1/2), r = |x| and x = x |x| . Note that the 0-order term in (2.50) has been chosen in B r 2 \ B r 1 so that the dispersion relation writes

λ 2 n = n(n + 1) + 1 4 = (n + 1 2 ) 2 ,
which implies that all the terms e ±iλnr in (2.52), and thus v, are 4π-periodic functions of r.

Since

r 2 -r 1 ∈ 4πN + , it follows that v(r 1 x) = v(r 2 x) and ∂ r v(r 1 x) = ∂ r v(r 2 x) for x ∈ ∂B 1 . (2.53)
We have, by (2.51),

[A 0 ∇u 0 • e r ] = ∂ r û+ - 1 r 2 2 ∂ r v = 0 on ∂B r 2 (2.54)
and, by (2.51) and (2.53),

[A 0 ∇u 0 • e r ](x) = 1 r 2 1 ∂ r v(x) - r 2 r 1 a(x)∇û -(r 2 x/r 1 ) • e r = 1 r 2 1 ∂ r v(r 2 x/r 1 ) - r 2 2 r 2 1 Â(r 2 x/r 1 )∇û -(r 2 x/r 1 ) • e r = 1 r 2 1 ∂ r v(r 2 x/r 1 ) - r 2 2 r 2 1 ∂ r û+ (r 2 x/r 1 ) = 0 on ∂B r 1 . (2.55)
As in the proof of Theorem 1, one can check that u 0 is the unique solution of (2.45) with δ = 0 where (A H , Σ H ) is given by (2.46). Moreover,

u δ -u 0 H 1 (Ω) ≤ C f L 2 (Ω)
and

u δ → u 0 in H 1 (Ω).
The proof of these facts is the same as in the proof of Theorem 1.

We next deal with a variant of Theorem 1 in the two dimensional finite frequency regime.

Set (A H , Σ H ) = ( 1 r e r ⊗ e r -re θ ⊗ e θ , 0) in B r 2 \ B r 1 .
(2.56)

The following theorem describes the superlensing property of the device defined by (2.56).

Theorem 4. Let d = 2, k > 0, 0 < δ < 1, and let Ω be a smooth bounded connected open subset of R 2 . Let 0 < r 1 < r 2 be such that r 2 -r 1 ∈ 2πN + and B r 2 ⊂⊂ Ω. Let f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 2 and let u δ ∈ H 1 (Ω) be the unique solution of (2.45) where (A H , Σ H ) is given by (2.56). We have

u δ H 1 (Ω) ≤ C f L 2 (Ω) and u δ → u 0 strongly in H 1 (Ω) as δ → 0, (2.57)
where u 0 ∈ H 1 (Ω) is the unique solution to (2.45) with δ = 0 and C is a positive constant independent of f and δ. Moreover,

u 0 = û in Ω \ B r 2 , where û ∈ H 1 (Ω \ B r 2 ) is the unique solution to the system                  div( Â∇û) + k 2 Σû = f in Ω, ∂ ν û -ikû = 0 on ∂Ω, [ Â∇û • ν] = 0 on ∂B r 2 , [û] = c ∂Br 2 Â∇û • ν on ∂B r 2 , (2.58) 
where

Â(x), Σ(x) =      I, 1 in Ω \ B r 2 , a r 1 r 2 x , r 2 1 r 2 2 σ r 1 r 2 x in B r 2 ,
and c = r 2 -r 1 2πr 2 .
Since f is arbitrary with support in Ω \ B r 2 , it follows from the definition of ( Â, Σ) that the object in B r 1 is magnified by a factor r 2 /r 1 .

Proof of Theorem 4. The proof is in the spirit of Theorem 1. The main difference is the fact that in the representation (2.64) below, the term b 0 does not vanish in general. The solution to the wave equation in the lens B r 2 \ B r 1 is thus the sum of a periodic function and a linear term (in r). The constant c in the second transmission condition of (2.58) accounts precisely for the latter. The well-posedness of (2.58) is established in Lemma 3 below. From this Lemma it follows that û

H 1 (Ω\∂Br 2 ) ≤ C f L 2 (Ω) . (2.59) 
Applying Lemma 3, we derive that u ∈ H 2 (Ω \ B r 2 ) and

û H 2 (Ω\Br 2 ) ≤ C f L 2 (Ω) . (2.60) Let v defined in H 1 (B r 2 \ B r 1 ) be the unique solution of ∂ 2 rr v -∂ 2 θθ v = 0, v is periodic with respect to θ, (2.61) 
and v(r 2 , θ) = û(r 2 , θ) and ∂ r v(r 2 , θ) = r 2 ∂ r û+ (r 2 , θ) for θ ∈ [0, 2π]. (2.62) As in (2.33), we have v H 1 (Br 2 \Br 1 ) ≤ C f L 2 (Ω) . (2.63) 
Moreover, v can be represented in the form

v(r, θ) = a 0 + b 0 r + ∞ n=-∞ n =0 ± a n,± e i(nr±nθ) in B r 2 \ B r 1 , (2.64) 
where

a 0 , b 0 , a n,± ∈ C. Since r 2 -r 1 ∈ 2πN + , it follows that, for θ ∈ [0, 2π], v(r 2 , θ) -v(r 1 , θ) = b 0 (r 2 -r 1 ), and ∂ r v(r 1 , θ) = ∂ r v(r 2 , θ). (2.65) 
It is clear that

∂Br 2 ∂ r v(x) dx = 2πb 0 r 2 .
Set

u 0 =        û in Ω \ B r 2 , v in B r 2 \ B r 1 , û r 2 • /r 1 in B r 1 .
(2.66)

We have, by (2.62),

[u 0 ] = û+ -v = 0 on ∂B r 2
and the definition of c together with (2.62) and (2.65) yields

[u 0 ](r 1 , θ) = v(r 1 , θ) -û-(r 2 , θ) = v(r 2 , θ) -b 0 (r 2 -r 1 ) -û+ (r 2 , θ) -2πb 0 r 2 r 2 -r 1 2πr 2 = 0 for θ ∈ [0, 2π].
We derive from (2.59) and (2.63) that

u 0 H 1 (Ω) ≤ C f L 2 (Ω) . (2.67) 
We also have div(A

0 ∇u 0 ) + k 2 Σ 0 u 0 = f in Ω \ (∂B r 1 ∪ ∂B r 2 ). (2.68) 
As in (2.39) and (2.40) in the proof of Theorem 1, we have

[A 0 ∇u 0 • e r ] = 0 on ∂B r 2 and [A 0 ∇u 0 • e r ] = 0 on ∂B r 1 . (2.69) 
A combination of (2.68) and (2.69) yields that div(A

0 ∇u 0 ) + k 2 Σ 0 u 0 = f in Ω;
which implies that u 0 is a solution to (2.45) with δ = 0.

The proof of the uniqueness of u 0 and the convergence of u δ to u 0 in H 1 (Ω) are the same as in the proof of Theorem 1.

The following lemma is used in the proof of Theorem 4. Lemma 3. Let d = 2, 3, and k > 0. Let D, V, Ω be smooth bounded connected open subsets of R d such that D ⊂⊂ Ω, ∂D ⊂ V ⊂ Ω. Let A be a bounded, piecewise C 1 , matrix-valued function defined in Ω which is assumed to be uniformly elliptic in Ω and let Σ be a bounded complexvalued function, such that

Im(Σ) ≥ 0 in Ω. Assume that A ∈ C 1 (Ω \ D) and A ∈ C 1 (V ∩ D). Let g ∈ L 2 (Ω) and c ∈ R. There exists a unique solution v ∈ H 1 (Ω \ ∂D) to the system                div(A∇v) + k 2 Σv = g in Ω \ ∂D, A∇v • ν -ikv = 0 on ∂Ω, [A∇v • ν] = 0 on ∂D, [v] = c ∂D A∇v • ν on ∂D.
(2.70)

Moreover, v H 1 (Ω\∂D) ≤ C g L 2 (Ω) and v H 2 (V \D) ≤ C g L 2 (Ω) , (2.71) 
for some positive constant C independent of g.

Proof. The existence of v can be derived from the uniqueness of v by using the limiting absorption principle. We now establish the uniqueness for (2.70). Let v ∈ H 1 (Ω \ ∂D) be a solution to (2.70) with g = 0. Multiplying the equation by v, integrating over Ω \ D and over D, yields

Ω A∇v • ∇v -k 2 Σ|v| 2 + c ∂D A∇v • ν 2 -ik ∂Ω |v| 2 = 0. (2.72) 
Taking the imaginary part, we obtain that v = 0 on ∂Ω. The boundary condition in (2.70) then implies A∇v • ν = 0 on ∂Ω. It thus follows from the unique continuation principle that v = 0 in Ω \ D, and in particular v + = A∇v + • ν = 0 on ∂D. From the transmission conditions of v on ∂D in (2.70), it follows hat v -= A∇v -• ν = 0 on ∂D as well. We conclude from the unique continuation principle that v ≡ 0 in D. The proof of uniqueness is complete.

We next establish the first inequality of (2.71) by contradiction. Assume that there exists a sequence g n ∈ L 2 (Ω) which is square integrable near ∂Ω, and an associated sequence of solutions

(v n ) ⊂ H 1 (Ω \ ∂D) to (2.70) such that lim n→+∞ ||g n || [H 1 (Ω)] * = 0 and ||v n || H 1 (Ω\∂D) = 1.
(2.73)

Extracting a subsequence, we may assume that v n converges weakly in H 1 (Ω \ ∂D) and strongly in L 2 (Ω) to some v ∈ H 1 (Ω \ ∂D) which is a solution to (2.70) with right-hand side 0. By uniqueness, v = 0 in Ω and thus v n converges to 0 weakly in H 1 (Ω \ ∂D) and strongly in L 2 (Ω). Similar to (2.72), we have

Ω A∇v n • ∇v n -k 2 Σ|v n | 2 + c ∂D A∇v n • ν 2 -ik ∂Ω |v n | 2 = Ω g n v n ,
By considering the real part, using (2.73), and noting that

c ∂D A∇v n • ν = [v n ] on ∂D and [v n ] → 0 in L 2 (∂D),
we derive that ∂Ω A∇v n • ∇v n → 0 as n → +∞.

Hence v n → 0 in H 1 (Ω \ ∂D). This contradicts (2.73).

The second inequality of (2.71) can be obtained by Nirenberg's method of difference quotients (see, e.g., [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]) using the smoothness assumption of A and the boundedness of Σ. The details are left to the reader.

Superlenses using HMMs via complementary property

In this section, we consider a lens with coefficients (A H , Σ H ) in B r 2 \B r 1 in the finite frequency regime of the form

(A H , Σ H ) =      1 r d-1 e r ⊗ e r -r 3-d (I -e r ⊗ e r ), 1 r 2 in B r 2 \ B rm , - 1 r d-1 e r ⊗ e r + r 3-d (I -e r ⊗ e r ), - 1 r 2 in B rm \ B r 1 , (3.1) 
where r m = (r 1 + r 2 )/2.

It will be clear below, that the choice Σ H = 1/r 2 in B r 2 \ B rm and -1/r 2 in B rm \ B r 1 is just a matter of simplifying the presentation. Any real-valued pair (σ

1 /r 2 , σ2 /r 2 ) ∈ L ∞ (B rm \ B r 1 ) × L ∞ (B r 2 \ B rm ) which satisfies σ2 (x) = -σ 1 (|x| -r m )x/|x|
is admissible. The superlensing property of the device (3.1) is given by the following theorem:

Theorem 5. Let d = 2, 3, k > 0, Ω be a smooth bounded connected open subset of R d , and let f ∈ L 2 (Ω). Fix 0 < r 1 < r 2 and assume that B r 2 ⊂⊂ Ω and supp f ⊂ Ω \ B r 2 . Let u δ ∈ H 1 (Ω) (0 < δ < 1) be the unique solution to (2.45) where (A H , Σ H ) is given by (3.1). We have

u δ H 1 (Ω) ≤ C f L 2 (Ω) and u δ → u 0 strongly in H 1 (Ω), (3.2) 
where u 0 ∈ H 1 (Ω) is the unique solution of (2.45) where (A H , Σ H ) is given by (3.1) corresponding to δ = 0 and C is a positive constant independent of f and δ. Moreover,

u 0 = û in Ω \ B r 2 ,
where ûδ is the unique solution to the system

div( Â∇û) + k 2 Σû = f in Ω, ∂ ν û -ikû = 0 on ∂Ω, (3.3) 
where

Â(x), Σ(x) =      I, 1 in Ω \ B r 2 , r d-2 1 r d-2 2 a r 1 r 2 x , r d 1 r d 2 σ r 1 r 2 x in B r 2 .
Since f is arbitrary with support in Ω \ B r 2 , it follows from the definition of  that the object in B r 1 is magnified by a factor r 2 /r 1 . We emphasize again that no condition is imposed on r 2 -r 1 .

Proof. Again, the proof mimics that of Theorem 1. We have

û H 1 (Ω) ≤ C f L 2 (Ω) , (3.4) 
and, by (1.16) and Lemma 2, û

H 2 (Ω\Br 2 ) ≤ C f L 2 (Ω) . (3.5) Define v in B r 2 \ B rm as follows ∂ 2 rr v -∆ ∂B 1 v + k 2 v = 0 in B r 2 \ B rm (3.6) and, on ∂B r 2 , v = û and ∂ r v = r d-1 2 ∂ r û+ . (3.7) 
We consider (3.6) and (3.7) as a Cauchy problem for the wave equation defined on the manifold ∂B 1 for which r plays the role of the time variable. By the standard theory for the wave equation, there exists a unique such

v ∈ C [r m , r 2 ]; H 1 (∂B 1 ) ∩ C 1 ([r m , r 2 ]; L 2 (∂B 1 )
). We also have

∂B 1 |∂ r v(r, ξ)| 2 + |∇ ∂B 1 v(r, ξ)| 2 + k 2 |v(r, ξ)| 2 dξ = ∂B 1 |∂ r v(r 2 , ξ)| 2 + |∇ ∂B 1 v(r 2 , ξ)| 2 + k 2 |v(r 2 , ξ)| 2 dξ = ∂B 1 r 2(d-1) 2 |∂ r û+ (r 2 , ξ)| 2 + |∇ ∂B 1 û(r 2 , ξ)| 2 + k 2 |û(r 2 , ξ)| 2 dξ. (3.8) It follows that v ∈ H 1 (B r 2 \ B rm ) and v H 1 (Br 2 \Br m ) ≤ C f L 2 (Ω) . (3.9) Let v R ∈ H 1 (B rm \ B r 1 ) be the reflection of v through ∂B rm , i.e., v R (x) = v (r m -|x|)x/|x| in B rm \ B r 1 . (3.10) 
Define

u 0 =              û in Ω \ B r 2 , v in B r 2 \ B rm , v R in B rm \ B r 1 , û(r 2 • /r 1 ) in B r 1 .
Then u 0 ∈ H 1 (Ω) and div(A

0 ∇u 0 ) + k 2 Σ 0 u 0 = f in Ω \ (∂B r 1 ∪ ∂B r 2 ). (3.11)
On the other hand, from the definition of u 0 and v, we have

[A 0 ∇u 0 • e r ] = ∂ r û+ - 1 r d-1 2 ∂ r v = 0 on ∂B r 2 , (3.12) 
The properties of the reflection and the definition of A H garantee that the transmission conditions also hold on ∂B rm , and from the definition of  and (3.7), we obtain

[A 0 ∇u 0 • e r ](x) = - 1 r d-1 1 ∂ r v R (x) - r 2 r 1 a(x)∇û -(r 2 x/r 1 ) • e r = 1 r d-1 1 ∂ r v(r 2 x/r 1 ) - r d-1 2 r d-1 1 Â(r 2 x/r 1 )∇û -(r 2 x/r 1 ) • e r = 1 r d-1 1 ∂ r v(r 2 x/r 1 ) - r d-1 2 r d-1 1 ∂ r û+ (r 2 x/r 1 ) = 0 on ∂B r 1 . (3.13)
A combination of (3.11), (3.12), and (3.13) yields that u 0 ∈ H 1 (Ω) and satisfies

div(A 0 ∇u 0 ) + k 2 Σ 0 u 0 = f in Ω;
which implies that u 0 is a solution for δ = 0. We also obtain from (3.4), (3.5), (3.8), and (3.9)

that u 0 H 1 (Ω) ≤ C f L 2 (Ω) . (3.14) 
We next establish the uniqueness of u 0 . Let w 0 ∈ H 1 (Ω) be a solution for δ = 0. Note that w 0 is fully determined in B r 2 \ B rm from the Cauchy data w 0 (r 2 x), ∂ r w 0 (r 2 x), x ∈ ∂B 1 . Given the form of the coefficients A H , w must also have the symmetry

w 0 (x) = w 0 (r m -|x|)x/|x| in B rm \ B r 1 .
It follows that for x ∈ ∂B 1 w 0 (r 2 x) = w 0 (r 1 x) and ∂ r w 0 (r 2 x) = ∂ r w 0 (r 1 x).

Thus the function ŵ defined by ŵ

(x) = w 0 (x) x ∈ Ω \ B r 2 , w 0 (r 1 x/r 2 ) x ∈ B r 2 ,
is a solution to (3.3). By uniqueness for this elliptic equation, ŵ0 = û, which in turn implies that w 0 = u 0 and uniqueness of u 0 follows.

Finally, we establish (3.2). Set

v δ = u δ -u 0 in Ω. (3.15)
It is easy to see that v δ ∈ H 1 0 (Ω) and that it satisfies

div(A δ ∇v δ ) + k 2 Σ δ v δ = div(iδ1 Br 2 \Br 1 ∇u 0 ) -iδk 2 1 Br 2 \Br 1 u 0 in Ω.
Note that since periodic functions converge weakly* to their average in L ∞ , one can easily compute the L ∞ weak-* limits

b 1,H,δ := w * -lim ε→0 (b 1,ε,δ ) -1 -1 and b 2,H,δ := w * -lim ε→0 b 2,ε,δ , (4.2) 
and in particular we have in

B r 2 \ B rm    b 1,H,δ (x) = 2(1 + iδ) r 2 (2 + 3iδ) = 1 -iδ/2 + O(δ 2 ) /r 2 , b 2,H,δ (x) = (-1 -iδ/2), (4.3) 
and in

B rm \ B r 1    b 1,H,δ (x) = -2/3 -2iδ r 2 (2/3 -iδ) = -1 -9iδ/2 + O(δ 2 ), b 2,H,δ (x) = (1 -iδ/2). (4.4) Set a ε,δ (x) = b 1,ε,δ (r)e r ⊗ e r + b 2,ε,δ (r) (e θ ⊗ e θ + e ϕ ⊗ e ϕ ) . (4.5) 
Let a be a uniformly elliptic matrix-valued function and define

A ε,δ (x) =        I in Ω \ B r 2 , a ε,δ in B r 2 \ B r 1 , a in B r 1 , (4.6) 
and

A H δ (x) =        I in Ω \ B r 2 , b 1,H,δ e r ⊗ e r + b 2,H,δ (e θ ⊗ e θ + e ϕ ⊗ e ϕ ) in B r 2 \ B r 1 , a in B r 1 . (4.7) 
We have Proposition 2. Let 0 < r 1 < r 2 , and let Ω be a smooth bounded connected open subset of

R 3 such that B r 2 ⊂⊂ Ω. Given f ∈ L 2 (Ω) with supp f ∩ B r 2 = Ø, let u ε,δ ∈ H 1 0 (Ω) be the unique solution to div(A ε,δ ∇u ε,δ ) = f in Ω,
where A ε,δ is given by (4.6). Then, as ε → 0, u ε,δ converges weakly in H 1 (Ω) to u H,δ ∈ H 1 0 (Ω) the unique solution of the equation

div(A H δ ∇u H,δ ) = f in Ω,
where A H δ is defined by (4.7).

Remark 3. Materials given in (4.5) could in principle be fabricated as a laminated composite containing anisotropic metallic phases with a conductivity described by a Drude model. Also note that the imaginary part of A H δ has the form -iδM , where M is a diagonal, positive definite matrix, and is not strictly equal to -iδI as in the hypotheses of Theorem 2. Nevertheless, its results hold for this case as well.

Proof. For notational ease, we drop the dependance on δ in the notation. By Lemma 1 (see also Remark 1), there exists a unique solution

u ε ∈ H 1 0 (Ω) to div(A ε ∇u ε ) = f in Ω, (4.8) 
which further satisfies

||u ε || H 1 (Ω) ≤ C ||f || L 2 (Ω)
, with C independent of ε (it may depend on δ though). We may thus assume, that up to a subsequence, u ε converges weakly in H 1 (Ω) to some u H ∈ H 1 (Ω). Standard results in homogenization [START_REF]Topics in mathematical modelling of composite materials[END_REF] show that u H ∈ H 1 0 (Ω) solves an equation of the same type as (4.8):

div(A H ∇u H ) = f in Ω, ( 4.9) 
where the tensor of homogenized coefficients A H has the form

A H (x) =        I for x ∈ Ω \ B r 2 , a H (x) for x ∈ B r 2 \ B r 1 , a(x) for x ∈ B r 1 .
To identify the tensor a H , set

σ 1,ε = r 2 b 1,ε ∂ r u ε in B r 2 \ B r 1 . (4.10) Using spherical coordinates in B r 2 \ B r 1 , we have div(A ε ∇u ε ) = 1 r 2 ∂ r (r 2 b 1,ε ∂ r u ε ) + b 2,ε r 2 ∆ ∂B 1 u ε in B r 2 \ B r 1 ,
where ∆ ∂B 1 denotes the Laplace-Beltrami operator on ∂B 1 . This implies, since supp f ∩B r 2 = Ø,

∂ r σ 1,ε = -∆ ∂B 1 b 2,ε (r)u ε in B r 2 \ B r 1 ,
since b 2,ε only depends on r for a fixed ε. Consequently, σ 1,ε and ∂ r σ 1,ε are uniformly bounded with respect to ε in L 2 r 1 , r 2 , L 2 (∂B 1 ) and in L 2 r 1 , r 2 , H -1 (∂B 1 ) respectively. Invoking Aubin compactness theorem as in [START_REF]Topics in mathematical modelling of composite materials[END_REF], we infer that up to a subsequence, σ 1,ε converges strongly in L 2 r 1 , r 2 , H -1 (∂B 1 ) to some limit σ 1,H ∈ L 2 (B r 2 \ B r 1 ). Rewriting (4.10) as Since periodic functions weakly-* converge to their average in L ∞ one easily checks that in fact the whole sequence u ε converges to the unique H 1 0 -solution to (4.11).

Stability of HMMs

Both the mechanisms for superlensing, that we propose in this paper, rely on the ability to transport the Cauchy data without alteration (or barely) from one interface of the lens to the other. In this section, we investigate the sensitivity of these results to the constraints on the design, namely to the conditions r 2 -r 1 ∈ 2πN + or r m = r 2 + r 1 2 that are assumed in the previous sections. To this end, let l > 0 and L > 0, and consider R = (-l, L) × (0, 2π), R l = (-l, 0) × (0, 2π), R L = (0, L) × (0, 2π).

We also set Γ = ∂R, and Γ - lat = {-l} × (0, 2π), Γ + lat = {L} × (0, 2π), Γ tb = (-l, L) × {2π} ∪ (-l, L) × {2π} .

Let A δ denote the conductivity defined in R by

A δ (x) =    I x ∈ R l , 1 -iδ 0 0 -1 -iδ x ∈ R L .
Let f ∈ H 1/2 0,0 (Γ - lat ) 4 and for δ > 0 denote u δ ∈ H 1 (R) the unique solution to

             div(A δ ∇u δ ) = 0 in R, u δ = 0 on Γ tb , u δ = f on Γ - lat , u δ = 0 on Γ + lat .
(5.1)

This configuration corresponds to that of Section 2.2, where only the left half of the domain (cut through the middle of the hyperlens) is considered. Note that one could equally study the configuration where a homogeneous Neumann boundary condition is imposed on Γ + lat .

The transmission conditions on x 1 = 0 read u δ (0 -, x 2 ) = u δ (0 + , x 2 ) and ∂ x 1 u δ (0 -, x 2 ) = ∂ x 1 u δ (0 + , x 2 ), 0 < x 2 < 2π.

Using the same arguments as in Section 2, one can show that if there exists a solution u 0 ∈ H 1 (R) of (5.1) with δ = 0 then the problem is stable in the sense that (u δ ) remains bounded in H 1 (R).

Otherwise, there exists a sequence (δ n ) → 0 such that u δn H 1 (R) → +∞ as n → +∞. We now compute such a possible solution u 0 . If u 0 solves (5.1) with δ = 0, then it must have the form and construct a formal solution to (5.1) when δ = 0. The requirement that u 0 ∈ H 1 (R) however imposes conditions on the growth of the d n 's.

Assume that L/π is irrational and Diophantine of class r ∈ N + , i.e., there exists ε > 0 such that

∀ (p, q) ∈ Z × Z * L π - p q > ε q r .

) and v(r 2

 2 , θ) = û(r 2 , θ) and ∂ r v(r 2 , θ) = r 2 ∂ r û+ (r 2 , θ) for θ ∈ [0, 2π].(2.31)

r 2 b

 2 1,ε -1 σ 1,ε = ∂ r u ε ,and letting ε → 0, yieldsσ 1,H = w * -lim(r 2 b 1,ε ) -1 -1 ∂ r u H = r 2 w * -lim(b 1,ε ) -1 ∂ r u H . On the other hand, since u ε → u H strongly in L 2 (Ω), it follows that b 2,ε (r)u ε → w * -lim b 2,ε (r)u H in L 2 . We derive that ∂ r r 2 b 1,H ∂ r u H + ∆ ∂B 1 b 2,H u H = 0 in B r 2 \ B r 1 , (4.11) where b 1,H = w * -lim(b 1,ε ) -1 -1 and b 2,H = w * -lim b 2,ε . We can then identify a H = b 1,H e r ⊗ e r + b 2,H (e θ ⊗ e θ + e ϕ ⊗ e ϕ ) , which, given (4.3-4.4), has the form considered in (3.1).

u 0 (x 1 , x 2 4 × 4

 1244 nx 2 ) (a n e nx 1 + b n e -nx 1 ) -l < x < 0 n≥1 sin(nx 2 ) (α n cos(nx 1 ) + β n sin(nx 1 )) 0 < x < L,where a n , b n , α n , β n ∈ R. Assume that the Dirichelt data on Γ - lat decomposes asf (-l, x 2 ) = ∞ n=1 f n sin(nx 2 ),for some f n ∈ C. Expressing the transmission on x 1 = 0, and the boundary conditions on Γ ± lat yields n := e -nl [cos(nL) -sin(nL)] -e nl [cos(nL) + sin(nL)] . Under the condition d n = 0 for n ≥ 1 we can solve for the coefficients n [cos(nL) -sin(nL)] -f n [cos(nL) + sin(nL)] -2f n sin(nL) 2f n cos(nL)

  .22) It follows from (2.16), (2.18), and (2.21) that u 0 ∈ H 1 0 (Ω) and that it is a solution to (2.13) with δ = 0. Moreover, by (2.17) and (2.19),

It seems to us that in their proposal these constants can be chosen quite freely.

Letters c, l, r stand for center, left, and right.

The closure of C ∞ c (Γ - lat ) in H 1/2 (Γ - lat ).
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Applying (2.4) of Lemma 1, we derive from (3.14) that

which implies the uniform bound in (3.2) and, as in the proof of Theorem 1, that v δ converges weakly to 0 in H 1 (Ω). Applying (2.3) of Lemma 1 and using (3.14) and (3.16), we obtain

since v δ converges weakly to 0, which completes the proof.

Proof of Theorem 2. The proof of Theorem 2 is similar to the above proof and is left to the reader.

Constructing hyperbolic metamaterials

In this section, we show how one can design the type of hyperbolic media used in the previous sections, by homogenization of layered materials. We restrict ourselves to superlensing using HMMs via complementary property in the three dimensional quasistatic case, in order to build a medium A H δ that satisfies, as δ → 0,

such as that considered in (1.13). Recall that r m = (r 1 + r 2 )/2. The argument can easily be adapted to tuned superlensing using HMMs in two dimensions and to superlensing using HMMs via complementary property in two dimensions and to the finite frequency regime. Our approach follows the arguments developped by Murat and Tartar [START_REF]Topics in mathematical modelling of composite materials[END_REF] for the homogenization of laminated composites.

For a fixed δ > 0, let θ = 1/2 and let χ denote the characteristic function of the interval (0, 1/2). For ε > 0, set, for

Let p ∈ N be such that πp + π/4 < nL < π(p + 1) + π/4. Then one has for n large enough

and there exists a solution u 0 ∈ H 1 (R) to (5.1).

Assume now that L = 4p + 3 4q for some p, q ∈ N, q = 0. Then cos(nL) + sin(nL) vanishes for an infinite number of n's, for which

) is not converging. In this case, there is no solution in H 1 (Ω) to (5.1).

Given the dense character of Diophantine numbers, we see that, as the dissipation parameter tends to 0, the solution operator is clearly not continous with respect to the geometry of the HMMs region (see also [START_REF] Bourgin | The Dirichlet problem for a vibrating string equation[END_REF][START_REF] John | The Dirichlet problem for a hyperbolic equation[END_REF] for related questions concerning the Dirichlet problem for the wave equation).