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 and were confirmed experimentally by Shelby, Smith, and Schultz in [45]. Mathematically, the study of negative index materials faces two difficulties. Firstly, the equations describing the phenomenon have sign changing coefficients, hence the ellipticity and the compactness are lost in general. Secondly, the localized resonance, i.e., the field explodes in some regions and remains bounded in some others as the loss goes to 0, might appear. In this survey, we discuss recent mathematics progress in understanding properties of negative index materials and their applications. The topics are reflecting complementary media, superlensing and cloaking using complementary media, cloaking a source via anomalous localized resonance, the limiting absorption principle and the well-posedness of the Helmholtz equation with sign changing coefficients.

Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago in [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. The existence of such materials was confirmed by Shelby, Smith, and Schultz in [START_REF] Shelby | Experimental Verification of a Negative Index of Refraction[END_REF]. The study of NIMs has attracted a lot attention in the scientific community thanks to their many possible applications such as superlensing and cloaking using complementary media, and cloaking a source via anomalous localized resonance (ALR). Mathematically, the study of NIMs faces two difficulties. Firstly, the equations describing the phenomena have sign changing coefficients, hence the ellipticity and the compactness are lost in general. Secondly, the localized resonance, i.e., the field explodes in some regions and remains bounded in some others as the loss goes to 0, might appear.

In this survey, we present recent mathematics progress in understanding properties of NIMs and their applications. The following five topics are discussed: reflecting complementary media, superlensing using complementary media, cloaking using complementary media, cloaking a source via ALR, and the limiting absorption principle and the well-posedness of the Helmholtz equations with sign changing coefficients. The choice of these topics is related to the author's expertise for which he has made contribution in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF][START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance. A connection between the localized resonance and the blow up of the power for doubly complementary media[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF][START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF][START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] and in his joint work with L. Nguyen in [START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF][START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF]. An interesting topic of NIMs, the construction of NIMs via various processes of homogeneization, is completely ignored; concerning this aspect, the reader can consult [START_REF] Bouchitté | Homogenization near resonances and artificial magnetism from dielectrics[END_REF][START_REF] Bouchitté | Homogenization of maxwell's equations in a split ring geometry[END_REF][START_REF] Guenneau | Homogenization of 3d finite chiral photonic crystals[END_REF][START_REF] Kohn | Magnetism and homogenization of microresonators[END_REF][START_REF] Pendry | Magnetism from conductors and enhanced nonlinear phenomena[END_REF] and references therein.

The outline of the paper is as follows. Reflecting complementary media is discussed in Section 2. To motivate this concept, we first illustrate peculiar properties of NIMs by presenting an interesting result due to Nicorovici, McPhedran, and Milton in [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF]. We then discuss its nontrivial extension in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] via the concept of reflecting complementary media using the reflecting technique introduced there. Superlensing using complementary media is presented in Section 3. Superlensing using complementary media was suggested by Veselago in [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF], Nicorovici, McPhedran, and Milton in [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF], Pendry in [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF][START_REF] Pendry | Perfect cylindrical lenses[END_REF], and Ramarkrishna and Pendry in [START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF]. Concerning this topic, we first present a class of superlensing schemes, which is a subclass of schemes given in [START_REF] Nguyen | Superlensing using complementary media[END_REF], and is inspired on one hand by the suggestion of superlenses in [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Pendry | Perfect cylindrical lenses[END_REF][START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] and on another hand by the study of reflecting complementary media in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. We then provide the proof of superlensing for this class. The proof presented here uses the results in Section 2 and is simpler than the first one given in [START_REF] Nguyen | Superlensing using complementary media[END_REF]. Cloaking using complementary media is given in Section 4. This was suggested by Lai et al. in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. Concerning this topic, we present a cloaking scheme, which is related to [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF], and the first proof of cloaking using complementary media from [START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF] where the removing localized singularity technique was introduced to handle the localized resonance. This technique was inspired by the influential work of Bethuel, Brezis, and Hélein on the Ginzburg Landau equation in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF]. Cloaking a source via ALR is discussed in Section 5. This was discovered by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF] for a constant radial symmetric plasmonic structure in the two dimensional quasi-static regime. Section 5, which is based on [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], is on various properties on cloaking a source via ALR for doubly complementary media, a subclass of reflecting complementary media introduced there. As an application of these properties, one can construct a cloaking device to cloak a general source concentrate on a manifold of codimension 1 in an arbitrary medium. The limiting absorption principle and the well-posedness of the Helmholtz equations with sign changing coefficients are given in Section 6 and based on [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]. Concerning this topic, we discuss various conditions on the coefficients for which the limiting absorption principle holds and the equation is well-posed. The unique solution which might not be in L2 loc is obtained from the limiting absorption principle. The results presented here extend largely known results using the integral method, the pseudo differential operator theory, and the T-coercivity approach. From Section 2 to Section 5, we mainly concentrate on the quasi-static regime in a bounded domain, even thought the results in the finite frequency regime are also mentioned. In the last section, we consider the finite frequency regime in the whole space for which the uniqueness can be established without imposing further assumptions.
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Reflecting complementary media

Let 0 < r 1 < r 2 < R, and f ∈ L 2 (B R ) 1 . Set r 3 = r 2 2 /r 1 . Assume that R > r 3 and supp f ∩ B r 3 = Ø. Let u δ ∈ H 1 0 (B R ) be the unique solution to the equation div(ε δ ∇u δ ) = f in B R , (2.1) 
where, for δ ≥ 0, 2

ε δ (x) = -1 -iδ if r 1 < |x| < r 2 , 1 otherwise. 
(2.2)

Physically, the imaginary part of ε δ is the loss of the medium. In [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF], Nicorovici, McPhedran, and Milton obtained, by separation of variables, the following interesting result:

u δ → û for |x| > r 3 , (2.3) 
where û ∈ H1 0 (B R ) is the unique solution to the equation ∆û = f in B R .

The surprising fact of this result is that (2.3) holds for any f with supp f ∩ B r 3 = Ø. From (2.3), one might say that the region {r 2 < |x| < r 3 } is canceled by the one in {r 1 < |x| < r 2 } and the total system is effectively equivalent to the free space; invisibility appeared. From (2.3), one might as well say that the shell B r 2 \ B r 1 magnifies r 3 /r 1 = r 2 2 /r 2 1 times the core B r 1 to make it like B r 3 : superlensing is revealed.

Under condition (2.2), property (2.3) does not hold in three dimensions and its natural extension for the finite frequency regime is not valid in two dimensions. In [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF], we extended the above results for quite general settings in two and three dimensions both in the quasistatic and the finite frequency regimes using a completely different approach. This is given in the next two subsections. In the first one, we present an heuristic argument for (2.3) and in the second one, we discuss new results inspired from the heuristic argument.

An heuristic argument for Nicorovici, McPhedran, and Milton's result

In this subsection, we assume that u δ → u 0 ∈ H 1 (B R ) as δ → 0 and present an heuristic argument to obtain (2.3) from [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. From the assumption,

u 0 ∈ H 1 0 (B R ) is a solution to the equation div(ε 0 ∇u 0 ) = f in B R . Let F : B r 2 \ {0} → R 2 \ Br 2 be the Kelvin transform with respect to ∂B r 2 , i.e., F (x) = r 2 2 x/|x| 2 . Define u 1,0 (x) = u 0 • F -1 (x) in R 2 \ B r 2 .
From the transmission conditions on ∂B r 2 , we have

u 1,0 = u 0 and ∂ r u 1,0 r→r 2+ = ∂ r u 0 r→r 2+ on ∂B r 2 . (2.4) Since F is a Kelvin transform and supp f ∩ B r 3 = Ø, it follows that div(ε 0 ∇u 1,0 ) = 0 in R 2 \ B r 2 , where ε0 (x) = 1 in B r 3 \ B r 2 , -1 in R 2 \ B r 3 .
Note that F maps ∂B r 1 into ∂B r 3 . By the unique continuation principle, we have

u 1,0 = u 0 in B r 3 \ B r 2 . (2.5) 
Let G : R 2 \ Br 3 → B r 3 be the Kelvin transform with respect to ∂B r 3 , i.e., G(x

) = r 2 3 x/|x| 2 . Define u 2,0 (x) = u 1,0 • G -1 (x) in B r 3 .
Similar to (2.4), we have

u 2,0 = u 1,0 and ∂ r u 2,0 r→r 3-= ∂ r u 1,0 r→r 3-on ∂B r 3 .
It follows from (2.5) that u 2,0 = u 0 and ∂ r u 2,0

r→r 3- = ∂ r u 0 on ∂B r 3 . (2.6) 
We also have ∆u

2,0 = 0 in B r 3 , (2.7) 
by the property of the Kelvin transforms and the definition of u 2,0 . Define

û(x) = u 0 (x) if B R \ B r 3 , u 2,0 (x) in B r 3 . Since ∆u 0 = f in B R \ Br 3 , it follows from (2.6) and (2.7) that ∆û = f in B R .
Therefore, we obtain (2.3).

Remark 2.1.

If supp f ∩ B r 3 \ B r 2 = Ø and supp f ∩ B r 2 = Ø.
Then, instead of (2.5), one has

∆w 1 = f in B r 3 \ B r 2 , w 1 = ∂ r w 1 = 0 on ∂B r 2 ,
where

w 1 = u 1,0 -u 0 in B r 3 \ B r 2 .
In general, this Cauchy problem does not have a solution in H 1 (B r 3 \ Br 2 ) or even in L 2 (B r 3 \B r 2 ). In fact, one can easily see from the heuristic argument that there are two Cauchy problems in this context, another one is related to (2.7). The non-existence mentioned here is the origin of the concept of compatibility in Definition 2.2.

Reflecting complementary media

Motivated by the heuristic argument in Section 2.1 and the change of variables for the Helmholtz equations (Lemma 2.1 below), in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF], we introduced the concept of reflecting complementary media and extended (2.3) to this class. Let k ≥ 0 and Ω 1 ⊂⊂ Ω 2 ⊂⊂ Ω be smooth connected bounded open subsets of R d (d = 2, 3). Let A be a measurable matrix function and Σ be a measurable real function defined in Ω. Here and in what follows, we always assume that

1 Λ |ξ| 2 ≤ A(x)ξ, ξ ≤ Λ|ξ| 2 ∀ ξ ∈ R d , (2.8) 
for a.e. x ∈ Ω and for some 0 < Λ < +∞, and

0 < ess inf Ω Σ ≤ ess sup Ω Σ < +∞. (2.9) 
Set

s δ (x) = -1 -iδ if x ∈ Ω 2 \ Ω 1 , 1 otherwise. 
(2.10)

In [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF], we were interested in the behavior of the unique solution u δ ∈ H 1 0 (Ω) to the equation

div(s δ A∇u δ ) + k 2 s 0 Σu δ = f in Ω, (2.11) 
as δ → 0, under the condition that (A, Σ) in Ω 3 \ Ω 2 is reflecting complementary to (-A, -Σ) in Ω 2 \ Ω 1 for some Ω 2 ⊂⊂ Ω 3 ⊂⊂ Ω. To motivate the definition of reflecting complementary media, let us recall the change of variables for the Helmholtz equation, which follows from [27, Lemma 2]:

Lemma 2.1. Let D 1 ⊂⊂ D 2 ⊂⊂ D 3 be smooth bounded open subsets of R d , T be a diffeomor- phism from D 2 \ D1 onto D 3 \ D2 such that T (x) = x on ∂D 2 , a ∈ [L ∞ (D 2 \ D 1 )] d×d , and σ ∈ L ∞ (D 2 \ D 1 ). Let u ∈ H 1 (D 2 \ D 1 ) and set v = u • T -1 . Then div(a∇u) + σu = f in D 2 \ D 1 , for some f ∈ L 2 (D 2 \ D 1 ), if and only if div(T * a∇v) + T * σv = T * f in D 3 \ D 2 .
(2.12)

Moreover, v = u and T * a∇v • ν = -a∇u • ν on ∂D 2 . (2.13)
Here and in what follows, we use the standard notations:

T * a(y) = DT (x)a(x)DT T (x) J(x) , T * σ(y) = σ(x) J(x) , and 
T * f (y) = f (x) J(x) , (2.14) 
where x = T -1 (y) and

J(x) = | det DT (x)|.
We are ready to give [27, 

F * A(x) = A(x), F * Σ(x) = Σ(x) for x ∈ Ω 3 \ Ω2 , (2.15) 
F (x) = x on ∂Ω 2 , (2.16) 
and the following two conditions hold:

1. There exists a diffeomorphism extension of F , which is still denoted by F , from

Ω 2 \{x 1 } → R d \ Ω2 for some x 1 ∈ Ω 1 .
2. There exists a diffeomorphism G :

R d \ Ω3 → Ω 3 \ {x 1 } such that 3 G(x) = x on ∂Ω 3 , (2.17) 
and

G • F : Ω 1 → Ω 3 is a diffeomorphism if one sets G • F (x 1 ) = x 1 .
(2.18) Some comments on the definition are useful. If k = 0, then the condition on Σ is irrelevant in Definition 2.1. Condition (2.15) implies that (A, Σ) in Ω 3 \ Ω 2 and (-A, -Σ) in Ω 2 \ Ω 1 are complementary in the "usual sense"4 . The term "reflecting" in the definition comes from (2.16) and the assumption Ω 1 ⊂ Ω 2 ⊂ Ω 3 . Conditions (2.15) and (2.16) imply that u 0 (the solution for δ = 0 if it exists) and u 1,0 := u 0 • F satisfy the same equation in Ω 3 \ Ω 2 and the same Cauchy data on ∂Ω 2 by Lemma 2.1; hence the reflecting technique in Section 2.1 can be used. Conditions (2.15) and (2.16) are the key assumptions. Conditions 1) and 2) are mild ones. Introducing G makes the analysis more accessible (see also Sections 3,[START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]. In general it is not easy to verify condition (2.15). However, given (A, Σ) in Ω 3 \ Ω 2 , it is easy to obtain (-A, -Σ) in Ω 2 \ Ω 1 such that (2.15) holds by choosing an arbitrary diffeomorphism

F : Ω 2 \ Ω1 → Ω 3 \ Ω 2 and defining (A, Σ) in Ω 2 \ Ω 1 by (F -1 * A, F -1 * Σ).
This process was repeatedly used in various applications of NIMs (see Sections 3, 4, and 5).

Remark 2.2. The definition given here simplifies lightly the one introduced in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF] and suffices for various applications of NIMs discussed later.

Here and in what follows in this section, we confine ourselves to the quasi-static regime: k = 0. The finite frequency regime (k > 0) can be proceeded similarly, see [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. The following result follows from [27, 

as δ → 0. Moreover, u 0 = û in Ω \ Ω 3 where û ∈ H 1 0 (Ω) is the unique solution of div( Â∇û) = f in Ω where  := A in Ω \ Ω 3 , G * F * A in Ω 3 .
(2.20) b) Case 2: f is not compatible. We have

lim δ→0 u δ H 1 (Ω) = +∞. (2.21) 
In the statement of Theorem 2.1, we use the following definition [27, Definition 2]:

Definition 2.2 (Compatibility condition). Assume that A in Ω 3 \ Ω 2 and -A in Ω 2 \ Ω 1 are reflecting complementary. Then f ∈ L 2 (Ω) with supp f ∩ Ω 3 = Ø is said to be compatible if and only if ∃V ∈ H 1 (Ω 3 \ Ω2 ) satisfies        div(A∇V ) = 0 in Ω 3 \ Ω2 , V = û ext on ∂Ω 3 , A∇V • ν = A∇û • ν ext on ∂Ω 3 , (2.22) 
where û is defined in (2.20).

Here and in what follows, for a smooth bounded open subset D ⊂ R d , on ∂D, ν denotes the outward unit normal vector.

The proof of Theorem 2.1 is quite straightforward from the definition of reflecting complementary media and the heuristic argument presented in Section 2.1. We first assume u 0 exists. As in Section 2.1, define

u 1,0 = u 0 • F in R d \ Ω 3 and u 2,0 = u 1,0 • G in Ω 3 . Set û := u 0 in Ω \ Ω 3 u 2,0 in Ω 3 .
Then u 1,0 = u 0 in Ω 3 \ Ω 2 and û satisfies div( Â∇û) = f by Lemma 2.1. It follows that V = u 0 in Ω 3 \ Ω2 . Therefore the compatibility condition holds and u 0 is uniquely given by

u 0 =              û in Ω \ Ω 3 , V in Ω 3 \ Ω 2 , V • F in Ω 2 \ Ω 1 , û • G • F in Ω 1 .
(2.23)

Assume that the compatibility condition holds. Define u 0 by (2.23). One can verify that

u 0 ∈ H 1 0 (Ω) is a solution of (2.19) (see [27, Section 3.2.2]
for the details). To prove that u δ → u 0 weakly as δ → 0 in this case, we proceed as follows. Define

v δ = u δ -u 0 in Ω. Then div(s δ A∇v δ ) = div (s δ -s 0 )A∇u 0 in Ω.
Multiplying the equation by vδ , the conjugate of v δ , considering the real part and the imaginary part, we have (see [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]Lemma 1])

v δ H 1 (Ω) ≤ Cδ -1 div (s δ -s 0 )A∇u 0 H -1 (Ω) ≤ C, for some positive constant C independent of δ. Hence (u δ ) is bounded in H 1 (Ω). Since u 0 is unique, a standard compactness argument yields that u δ → u 0 weakly in H 1 (Ω) and strongly in L 2 (Ω).
It remains to prove Case 2. The proof is based on a contradiction argument. Assume that (2.21) does not hold. It follows that u δn → u 0 weakly in H 1 (Ω) for some (δ n ) → 0 + . Then V = u 0 in Ω 3 \ Ω 2 and f is compatible. We have a contradiction.

The compatibility condition is not easy to verify in general. Nevertheless, we have [27, Corollary 2]

Proposition 2.1. Let d = 2, 3, δ > 0, f ∈ L 2 (Ω). Assume that A in Ω 3 \ Ω 2 and -A in Ω 2 \ Ω 1 are reflecting complementary for some Ω 2 ⊂⊂ Ω 3 ⊂⊂ Ω, and G * F * A = A in Ω 3 \ Ω 2 . Then f ∈ L 2 (Ω) with supp f ∩ Ω 3 = Ø is compatible. Proposition 2.1 is a consequence of the fact V = û in Ω 3 \ Ω 2 since  = A in Ω 3 \ Ω 2 .
Its applications on superlensing and cloaking a source via ALR are given in Sections 3 and 5 respectively. It is clear that the setting of Nicorovici, McPhedran, and Milton satisfies Proposition 2.1 with Ω j = B j with j = 1, 2, 3, and F and G are the Kelvin transforms used in the heuristic argument in Section 2.1.

Superlensing using complementary media

The construction of a superlens using NIMs was first suggested by Veselago in [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF] for a slab lens. The superlensing property of the slab lens was also studied by Veselago via the ray theory in [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. Later, the study of cylindrical lenses in the two dimensional quasistatic regime, the Veselago slab, cylindrical lenses, and spherical lenses in the finite frequency regime were considered by Nicorovici,McPhedran,and Milton in [39], Pendry in [START_REF] Pendry | Negative refraction makes a perfect lens[END_REF][START_REF] Pendry | Perfect cylindrical lenses[END_REF], and Pendry and Ramakrishna in [START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] respectively for some constant isotropic objects.

Let us describe how to magnify m-times the region B r 0 , for some r 0 > 0 and m > 1, in the quasistatic regime in which the medium is characterized by a matrix-valued function a using complementary media. This has roots from [START_REF] Nguyen | Superlensing using complementary media[END_REF]. The assumption on the geometry of the object by all means imposes no restriction since any region can be placed in such a ball provided that the radius and the origin are appropriately chosen. The idea suggested in [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Pendry | Perfect cylindrical lenses[END_REF][START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] is to put a lens in B r 2 \ B r 0 whose medium is characterized by matrix -b with r 2 2 /r 2 0 = m. Here b = I, the identity matrix, in two dimensions and b = r 2 2 /|x| 2 I in three dimensions. Our class of superlenses is slightly different from the suggestion mentioned above and motivated from the reflecting complementary media in Section 2. Let α > 1 and define

F : B r 2 \ {0} → R d \ Br 2 by F (x) = r α 2 x/|x| α . (3.1)
Our lens contains two parts. The first one is given by

-F -1 * I in B r 2 \ B r 1 (3.2)
and the second one is

m d-2 I in B r 1 \ B r 0 . (3.3) 
Here r 1 and r 2 are such that

mr 0 = r 2 and r 3 /r 1 = m where r 3 := r α 2 /r α-1 1 . (3.4) 
With the loss, the medium is characterized by s δ A where

A =              F -1 * I in B r 2 \ B r 1 , m d-2 I in B r 1 \ B r 0 , a in B r 0 , I otherwise,
and

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise. 
(3.5)

5 Let Ω be a smooth open subset of R d (d = 2, 3) such that B r 3 ⊂ Ω. Given f ∈ L 2 (Ω), let u δ , û ∈ H 1 0 (Ω) be respectively the unique solution to div(s δ A∇u δ ) = f in Ω, (3.6) 
and

div( Â∇û) = f in Ω where  = m 2-d a(x/m) in B mr 0 , I otherwise. (3.7)
We have

Theorem 3.1. Let d = 2, 3, f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 3 .
We have * I (the red region) in

u δ → û weakly in H 1 (Ω \ B r 3 ) as δ → 0. (3.8) -F -1 * I r 2 r 1 r 0 -F -1 * I I m d-2 I
B r 2 \ B r 1 is the complement of I in B r 3 \ B r 2 . The second part (the green region) is m d-2 I in B r 1 \ B r 0 . The magnified region is B r 0 .
For an observer outside B r 3 , the object a in B r 0 would act like m 2-d a(x/m) in B mr 0 by (3.8): one has a superlens whose magnification is m.

We next give some comments on the lens construction and explain how to obtain Theorem 3.1 from Theorem 2.1 and Proposition 2.1. The first part of the lens with α = 2 is the same as the known superlens constructions mentioned. Given r 1 , one requires that r 3 /r 1 = m since a superlens of m times magnification is considered as in [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Pendry | Perfect cylindrical lenses[END_REF][START_REF] Ramakrishna | Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry[END_REF] and the comments for (2.3) (see also (3.7) and Theorem 3.1). Let G :

R d \ Br 3 → B r 3 \ {0} be defined by G(x) = r β 3 x/|x| β , where β = α/(α -1). Then G • F : B r 1 → B r 3 satisfies G • F (x) = mx in B r 1 . (3.9) This implies, since A = m d-2 I in B r 1 \ B r 0 and r 2 = mr 0 , G * F * A = I in B r 3 \ B r 2 . (3.10)
This is the place where the second part of the construction plays its role. From (3.9) and (3.10), one has

F * A = G * F * A = A = I in B r 3 \ B r 2 .
Theorem 3.1 is now a direct consequence of Theorem 2.1 and Proposition 2.1.

A more delicate analysis implies that (3.8) holds for every f ∈ L 2 (Ω) with supp f ∩ Br 2 = Ø (see Theorems 5.1 and 5.3). Theorem 3.1 can be easily extended for the finite frequency regime using the concept of reflecting complementary media since Theorem 2.1 and Proposition 2.1 also hold in this regime (see [START_REF] Nguyen | Superlensing using complementary media[END_REF] for the original proof). Remark 3.1. In [START_REF] Nguyen | Superlensing using complementary media[END_REF], the condition mr 0 = r 2 in (3.4) is replaced by mr 0 ≤ √ r 2 r 3 . Taking the advantage of (3.10), the proof of Theorem 3.1 follows easily from Section 2. The first original proof of superlensing in the acoustic setting was given in [START_REF] Nguyen | Superlensing using complementary media[END_REF] in both quasistatic and finite frequency regimes. It is based on the removing singularity technique introduced in [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF]. The proof of superlensing in the electromagnetic setting is given in [START_REF] Nguyen | Reflecting complementary and superlensing using complementary media for electromagnetic waves[END_REF] in the same spirit of the proof given here. The removing singularity technique is discussed in the next two sections where cloaking using complementary media and cloaking a source via ALR are dealt with. This section ends with the following question on the necessity of the second layer in the lens construction:

Open question 1. Does Theorem 3.1 hold where A is given in (3.5) with r 1 = r 0 ?

4 Cloaking using complementary media Cloaking using complementary media was suggested by Lai et al. in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. The idea is to cancel the effect of the object by its complementary medium. The study of this problem faces two difficulties. Firstly, this problem is unstable since the equations describing the phenomenon have sign changing coefficients, hence the ellipticity and the compactness are lost in general. Secondly, the localized resonance might appear.

Let us describe how to cloak the region B 2r 2 \ B r 2 for some r 2 > 0 in the quasistatic regime in which the medium is characterized by a matrix a using complementary media. The assumption on the cloaked region by all means imposes no restriction since any bounded set is a subset of such a region provided that the radius and the origin are appropriately chosen. The idea suggested by Lai et al. in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF] (in two dimensions) is to construct a complementary media in B r 2 \ B r 1 for some 0 < r 1 < r 2 . Inspired by their idea, in [START_REF] Nguyen | Superlensing using complementary media[END_REF], we constructed cloaking devices in two and three dimensions and gave the first proof of cloaking using complementary media. Our cloak consists of two parts. The first one, in B r 2 \ B r 1 , makes use of reflecting complementary media to cancel the effect of the cloaked region and the second one (the new one), in B r 1 , is to fill the space which "disappears" from the cancellation by the homogeneous medium. For the first part, we modified the strategy in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF]. Instead of B 2r 2 \ B r 2 , we consider B r 3 \ B r 2 for some r 3 > 0 as the cloaked region in which the medium is given by the matrix

b = a in B 2r 2 \ B r 2 , I in B r 3 \ B 2r 2 .
We will assume that

b ∈ C 1 ( Br 3 \ B r 2 ). (4.1)
The complementary medium in B r 2 \ B r 1 is given by -F -1 * b, where F : B r 2 \ Br 1 → B r 3 \ Br 2 is the Kelvin transform with respect to ∂B r 2 . Concerning the second part, the medium in B r 1 is given by

r 2 3 /r 2 2 d-2 I. (4.2) 
The reason for this choice is the condition

G * F * A = I in B r 3 , (4.3) 
where G is the Kelvin transform with respect to ∂B r 3 since the homogeneous medium is filled (see Theorem 2.1 and (2.20)). The cloaking scheme is illustrated in Figure 2. In two dimensions, the medium in B r 1 is I, as used in [START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF], while it is not I in three dimensions. With the loss, the medium is characterized by s δ A where

A =                b in B r 3 \ B r 2 , F -1 * b in B r 2 \ B r 1 , r 2 3 /r 2 2 d-2 I in B r 1 , I otherwise,
and

s δ = -1 -iδ in B r 2 \ B r 1 , 1 otherwise. 
(4.4) For an observer outside B r 3 , the medium in B r 3 looks as the homogeneous one by (4.7): one has cloaking.

Given f ∈ L 2 (Ω), let u δ , û ∈ H 1 0 (Ω)
Proof. We only consider the two dimensional case; the proof in three dimensions follows similarly. Multiplying (3.6) by ūδ , integrating in Ω, considering first the imaginary part and then the real part, we have

u δ 2 H 1 (Ω) ≤ C δ u δ L 2 (Ω\Br 3 ) f L 2 . (4.8)
Here and in what follows in the proof, C denotes a positive constant independent of δ and f . As in section 2, define

u 1,δ ∈ H 1 loc (R 2 \ B r 2 ) and u 2,δ ∈ H 1 (B r 3 ) as follows u 1,δ = u δ • F -1 in R 2 \ B r 2 and u 2,δ = u 1,δ • G -1 = u δ • F -1 • G -1 in B r 3 . Applying Lemma 2.1, we have div(b∇u δ ) = div(b∇u 1,δ ) = 0 in B r 3 \ B r 2 .
Fix 1/2 < α < 1. Applying [31, Lemma 1.1] (a three spheres inequality), we have, for large enough,

N (u 1,δ -u δ , 3r 2 ) 2 ≤ CN (u 1,δ -u δ , r 2 ) 2α N (u 1,δ -u δ , r 3 ) 2(1-α) , (4.9) 
where

N (v, r) := v H 1/2 (∂Br) + ∂ r v H -1/2 (∂Br) . (4.10) 
This implies

N (u 1,δ -u δ , 3r 2 ) 2 ≤ Cδ 2α-1 u δ L 2 (Ω\Br 3 ) f L 2 , (4.11) 
Applying Lemma 2.1 again, we obtain

∆u δ = ∆u 1,δ = ∆u 2,δ = 0 in B r 3 \ B 3r 2 .
(4.12)

u 2,δ = u 1,δ and ∂ r u 2,δ = (1 + iδ)∂ r u 1,δ int on ∂B r 3 . (4.13) 
From (4.12), one can represent u 1,δ , and u 2,δ of the forms

u 1,δ = c 0 + d 0 ln r + ≥1 ± (c ,± r + d ,± r -)e ±i θ in B r 3 \ B 3r 2 , (4.14) 
u 2,δ = e 0 + f 0 ln r + ≥1 ± (e ,± r + f ,± r -)e ±i θ in B r 3 \ B 3r 2 , (4.15) 
for c 0 , d 0 , e 0 , f 0 , c ,± , d ,± , e ,± , f ,± ∈ C ( ≥ 1). Since, by (4.8),

u 1,δ 2 
H 1/2 (∂B 3r 2 ) + ∂ r u 1,δ 2 H -1/2 (∂B 3r 2 ) + u 1,δ 2 
H 1/2 (∂Br 3 ) + ∂ r u 1,δ 2 
H -1/2 (∂Br 3 ) ≤ C δ f L 2 u δ L 2 (Ω\Br 3 ) ,
we obtain

|c 0 | 2 + |d 0 | 2 + ≥1 ± |c ,± | 2 r 2 3 + |d ,± | 2 (3r 2 ) -2 ≤ C δ f L 2 u δ L 2 (Ω\Br 3 ) , (4.16) 
From (4.13), (4.14), and (4.15), a straightforward computation gives e 0 = c 0 -iδd 0 ln r 3 ,

f 0 = (1 + iδ)d 0 .
and

     e ,± = 2 + iδ 2 c ,± - iδ 2 d ,± r -2 3 , f ,± = - iδ 2 c ,± r 2 3 + 2 + iδ 2 d ,± ,
for ≥ 1. (4.17)

A combination of (4.14), (4.15), and (4.17) yields, in

B r 3 \ B 3r 2 , u 1,δ -u 2,δ =iδd 0 (ln r 3 -ln r) - iδ 2 ≥1 ± (c ,± -d ,± r -2 3 )r e ±i θ + iδ 2 ≥1 ± (c ,± r 2 3 -d ,± )r -e ±i θ . (4.18) Set ûδ =        u δ in x ∈ Ω \ B r 3 , u δ -ûδ,rem B r 3 \ B 3r 2 , u 2,δ in x ∈ B 3r 2 , (4.19) 
where ûδ,rem = iδd 0 (ln r 2 -ln r 3 ) + iδ 2

≥1 ± c ,± r 2 3 -d ,± r -e ±i θ for x ∈ B r 3 \ B r 2 . (4.20)
It is clear from the definition of ûδ that ûδ ∈ H 1 Ω \ (∂B r 3 ∪ ∂B r 1 ) , div( Â∇û δ ) = f in Ω \ (∂B r 3 ∪ ∂B 3r 2 ) and ûδ = 0 on ∂Ω.

We claim that

[û δ ] 2 H 1/2 (∂Br 2 ) + [ Â∇û δ • x/|x|] 2 H -1/2 (∂Br 2 ) + [û δ ] 2 H 1/2 (∂Br 3 ) + [ Â∇û δ • x/|x|] 2 H -1/2 (∂Br 3 ) ≤ Cδ ûδ L 2 (Ω\Br 3 ) f L 2 . (4.22)
Here and in what follows [•] denotes the jump of a quantity across the boundary. Admitting this, we derive from (4.21) that

ûδ H 1 Ω\(∂Br 3 ∪∂B 3r 2 ) ≤ C f L 2 ,
as δ is small. Without loss of generality, one may assume that ûδ → u weakly in H 1 Ω \ (∂B r 3 ∪ ∂B r 1 ) . It is clear that u ∈ H 1 0 (Ω) and div( Â∇u) = f in Ω and hence u = û. Since the limit is unique, the convergence holds for the whole family (û δ ). The conclusion follows in two dimensions.

It remains to prove (4.22). In fact, it is a consequence of (4.8), (4.11), (4.16), and the definition of ûδ . The proof is complete. Remark 4.1. In the proof, we remove ûδ,rem , the singular part of ûδ , from ûδ in B r 3 \ B r 2 . The function ûδ,rem becomes more and more singular as r is smaller and smaller and behaves smoothly for large r. This is the idea of the removing localized singularity technique which was introduced in [START_REF] Nguyen | Superlensing using complementary media[END_REF][START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF]. The removing term ûδ,rem is in the same spirit with the removing term of "infinite" energy in the theory of Ginzburg-Landau equations proposed by Bethuel, Brezis, and Hélein in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF] and was inspired by their work. In [START_REF] Bethuel | Progress in Nonlinear Differential Equations and Their Applications[END_REF], after removing the infinite energy term, one obtained the renormalized energy introduced there. Here, after removing the bad term, the gluing function ûδ satisfies a standard elliptic equation which characterizes the reflecting medium.

Remark 4.2. Theorem 4.1 hods if A in B r 2 is chosen such that F * A = b in B r 3 \ B r 2 and G * F * A = I in B r 3
for some F and G as in Definition 2.1 with Ω j = B r j for j = 1, 2, 3. This means

A = F -1 * b in B r 2 \ B r 1 , F -1 * G -1 * I in B r 1 , (4.23) 
for such a pair (F, G). In particular, Theorem 4.1 hods if A in B r 2 is given in (4.4) in which F (x) := r α 2 x/|x| α for some α > 1 (see also Section 3).

Remark 4.3. The method presented here was extended for the Helmholtz equation in [START_REF] Nguyen | Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations[END_REF] in joint work with L. Nguyen. To this end, we established new type of three spheres inequalities for the Helmholtz equations in which no condition of the smallness of radii is imposed.

We have the following question on the necessity of the layer I in B r 3 \ B 2r 2 :

Open question 2. Does Theorem 4.1 hold where A is given in (3.5) with r 3 = 2r 2 ?

Remark 4.4. Cloaking can also be achieved via transformation optics or a changes of variables.

Resonance might also appear in this context see [START_REF] Kohn | Cloaking via change of variables for the Helmholtz equation[END_REF][START_REF] Nguyen | Cloaking via change of variables for the Helmholtz Equation in the whole space[END_REF][START_REF] Nguyen | Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking[END_REF][START_REF] Nguyen | Vogelius Full range scattering estimates and their application to cloaking[END_REF]. It is shown in [START_REF] Nguyen | Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking[END_REF] that in the resonance case cloaking might not be achieved and the field inside the cloaked region can depend on the field outside. Cloaking can also be achieved in the time regime via change of variables, see [START_REF] Nguyen | Approximate cloaking for the wave equation via change of variables[END_REF][START_REF] Nguyen | Approximate cloaking for the full wave equation: a study of the Lorentz model[END_REF].

Cloaking a source via anomalous localized resonance

Cloaking a source via ALR was discovered by Milton and Nicorovici in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF] for constant radial symmetric plasmonic structures in the two dimensional quasi-static regime. Their work has root from [START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF] (see also [START_REF] Milton | A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance[END_REF]) where the localized resonance was observed and established for such a setting. More precisely, in [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF], the authors studied the setting (2.1) and (2.2). They showed that a dipole is not seen by an observer away from the core-shell structure hence it is cloaked, if and only if the dipole is within distance r * := r 3 2 /r 1 of the shell; moreover, the power E δ (u δ ) of the field u δ , which is roughly speaking δ u δ 2 H 1 , blows up. Two key features of this phenomenon are:

1) the localized resonance, i.e., the fields blow up in some regions and remain bounded in some others as the loss goes to 0.

2) the connection between the localized resonance and the blow up of the power as the loss goes to 0.

Their work has attracted many investigations, see [START_REF] Ammari | Anomalous localized resonance using a folded geometry in three dimensions[END_REF][START_REF] Ammari | Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance[END_REF][START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF][START_REF] Bruno | Superlens-cloaking of small dielectric bodies in the quasistatic regime[END_REF][START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF][START_REF] Milton | Solutions in folded geometries, and associated cloaking due to anomalous resonance[END_REF][START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF] in which special structures were considered due to the use of the separation of variables or the blow up of the power was investigated. An important class of NIMs in which the localized resonance might appear is the class of reflecting complementary media in Section 2 (see also Section 3 and 4). Nevertheless, the complementary property is not enough to ensure that cloaking a source via ALR takes place and there is no connection between the blow up of the power and the localized resonance in general as discussed in [START_REF] Nguyen | Complete resonance and localized resonance in plasmonic structures[END_REF] (joint work with L. Nguyen).

In [START_REF] Nguyen | Cloaking via anomalous localized resonance. A connection between the localized resonance and the blow up of the power for doubly complementary media[END_REF][START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], we investigated CALR for a source for a subclass of complementary media called the class of doubly complementary media for a core-shell structure. Let d = 2, 3, and Ω be a smooth open bounded subset of R d , and let 0 < r 1 < r 2 be such that B r 2 ⊂⊂ Ω. Set, for δ ≥ 0,

s δ := -1 -iδ in B r 2 \ B r 1 , 1 otherwise. 
(5.1) 7 Let A be a symmetric uniformly elliptic matrix-valued function defined in Ω. The definition of doubly complementary media [30, Definition 1.2] is:

Definition 5.1. The medium s 0 A is said to be doubly complementary if for some r 3 > 0 with B r 3 ⊂⊂ Ω, A in B r 3 \ B r 2 and -A in B r 2 \ B r 1 are reflecting complementary, and

F * A = G * F * A = A in B r 3 \ B r 2 , (5.2) 
for some F and G coming from Definition 2.1 with Ω j = B r j for j = 1, 2, 3.

Remark 5.1. Roughly speaking, the shell B r 2 \B r 1 is not only reflecting complementary to a part of the matrix but also to a part of the core. Indeed,

-A in B r 2 \ B r 1 is not only complementary to A in B r 3 \ B r 2 but also to A in (G • F ) -1 (B r 3 \ B r 2 ) (a subset of B r 1 ); see Figure 3.
Let f ∈ L 2 (Ω) with supp f ∩ B r 2 = Ø and let u δ ∈ H 1 0 (Ω) be the unique solution to div(s δ A∇u δ ) = f in Ω.

(5.

3)

The power E δ (u δ ) is defined by (see, e.g., [START_REF] Milton | On the cloaking effects associated with anomalous localized resonance[END_REF])

E δ (u δ ) = δ Br 2 \Br 1 |∇u δ | 2 .
Using the fact that u δ = 0 on ∂Ω, one has8 

Ω (|∇u δ | 2 + |u δ | 2 ) ≤ C Br 2 \Br 1 |∇u δ | 2 + f 2 L 2 , (5.4) F * A -A K * A F K r 1 r 2 r 3 K= F -1 o G -1 o F Figure 3: s 0 A is doubly complementary: -A in B r 2 \ B r 1 (the red region) is complementary to A = F * A in B r 3 \ B r 2 (the grey region) and A = K * A with K = F -1 • G -1 • F in K(B r 2 \ B r 1 )
(the blue grey region).

for some positive constants C independent of f and δ ∈ (0, 1). Let v δ ∈ H 1 0 (Ω) be the unique solution to div(s δ A∇v δ ) = f δ in Ω.

(5.5)

Here f δ = c δ f and c δ is the normalization constant such that

δ Br 2 \Br 1 |∇v δ | 2 = 1. (5.6)
In what follows in this section, we assume that

A ∈ [C 3 (B r 3 \ B r 2 )] d×d . (5.7)
The equivalence between the blow up of the power and cloaking a source via ALR for doubly complementary media can be derived from the following result [30, Proposition 4.1]:

Theorem 5.1. Let d = 2, 3, let (δ n ) → 0, (g n ) ⊂ L 2 (Ω) with supp g n ⊂ Ω \ B r 2 , and let v n ∈ H 1 0 (Ω) be the unique solution to div(s δn A∇v n ) = g n in Ω.
Assume that s 0 A is doubly complementary, g n → g weakly in L 2 (Ω), for some g ∈ L 2 (Ω), and lim n→∞ δ n ∇v n L 2 (Br 2 \Br 1 ) = 0.

(5.8)

Then v n → v weakly in H 1 (Ω \ B r 3 ) where v ∈ H 1 0 (Ω) is the unique solution to div( Â∇v) = g in Ω.
Here, as usual,

 := A if x ∈ Ω \ B r 3 , G * F * A if x ∈ B r 3 ,
The equivalence between the blow up of the power and the cloaking a source via ALR can be obtained from Theorem 5.1 as follows. Suppose that the power blows up, i.e., lim

n→∞ δ n ∇u δn 2 L 2 (Br 2 \Br 1 ) = +∞.
Then, by Theorem 5.1, v δn → 0 in Ω \ B r 3 . The source α δn f is not seen by observers far away from the shell: the source is cloaked. Note that the localized resonance happens in this case since (5.6) takes place. If the power of u δn remains bounded, then u δn → û weakly in H 1 (Ω \ B r 3 ), where û ∈ H 1 0 (Ω) is the unique solution to div( Â∇û) = f in Ω, the source is not cloaked. We next present the proof in the case A = I in B r 3 \ B r 2 in two dimensions to highlight the use of the removing localized singularity technique. This situation is already non-trivial and the standard separation of variables is out of reach since A can be arbitrary outside B r 3 .

Sketch of the proof of Theorem 5.1 (under the additional assumption that A = I in B r 3 \B r 2 and d = 2). Using (5.4), we derive from (5.8) that

lim n→∞ δ n v n H 1 (Ω) = 0.
(5.9)

Define v 1,n = v n • F -1 in R 2 \ B r 2 and v 2,n = v 1,n • G -1 in B r 3 .
Since A = I in B r 3 \ B r 2 , it follows from (5.2) and Lemma 2.1 that

∆v 1,n = ∆v 2,n = 0 in B r 3 \ B r 2 .
(5.10)

and v 1,n = v 2,n and ∂ r v 1,n = 1 1 + iδ n ∂ r v 2,n on ∂B r 3 . (5.11) 
From (5.10), v 1,n and v 2,n can be represented as follows

v 1,n = c 0 + d 0 ln r + ≥1 ± (c ,± r + d ,± r -)e ±i θ in B r 3 \ B r 2 , v 2,n = e 0 + f 0 ln r + ≥1 ± (e ,± r + f ,± r -)e ±i θ in B r 3 \ B r 2 ,
for c 0 , d 0 , e 0 , f 0 , c ,± , d ,± , e ,± , f ,± ∈ C ( ≥ 1). Using (5.11), as in the proof of Theorem 4.1, there exists vn,rem

∈ H 1 (B r 3 \ B r 2 ) such that ∆v n,rem = 0 in B r 3 \ B r 2 ,
and

N (v n,rem , r 3 ) 2 + N (v 2,n -v 1,n -vn,rem , r 2 ) 2 ≤ Cδ n v n L 2 (Ω\Br 3 ) f L 2 ,
where N (•, r) is defined in (4.10). The conclusion now follows as in the proof of Theorem 4.1. Define

vn =        v n in x ∈ Ω \ B r 3 v n -vn,rem B r 3 \ B r 2 , v 2,n in x ∈ B r 2 , (5.12) 
Then vn → v weakly in H 1 Ω \ (∂B r 2 ∪ ∂B r 3 ) . The proof is complete.

To develop the approach presented above for a general core-shell structure, in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], we introduced and implemented the separation of variables technique to solve Cauchy problems in a general shell. The main idea behind the method is to find an appropriate dense set of solutions to the equation div

(A∇u) = 0 in B r 3 \ B r 2 ,
to replace r e ±i θ and r -e ±i θ in the case A = I and d = 2. Indeed, from [30, Proposition 4.2], there exist two families (v ) ≥1 and (w ) ≥1 such that

div(A∇w ) = div(A∇v ) = 0 in B r 3 \ B r 2 , (5.13) 
w = v on ∂B r 3 , and A∇w • x |x| = -A∇v • x |x| on ∂B r 3 . (5.14) and v , w ; ≥ 0 is dense in v ∈ H 1 (B r 3 \ B r 2 ) div(A∇v) = 0 .
Here

v 0 = 1 in B r 3 \ B r 2 and w 0 ∈ H 1 (B r 3 \ B r 2 ) is the unique solution to div(A∇w 0 ) = 0 in B r 3 \ B r 2 , w 0 = 1 on ∂B r 3 , and w 0 = 0 on ∂B r 2 .
More properties on the behaviors of (w ) and (v ) are required in the proof of Theorem 5.1; see [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]Proposition 4.2] for the details. Properties (5.13) and (5.14) are very suitable for the use of removing localized singularity technique. Due to the lack of the orthogonality of v and w , the implement of this technique in the general case is more delicate.

In [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], we also showed that the power blows up if the source is located "near" the shell even for reflecting complementary media [30, Theorem 2].

Theorem 5.2. Let d = 2, 3, f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 2 , and let u δ ∈ H 1 0 (Ω) be the unique solution to div(s δ A∇u δ ) = f in Ω.
Assume that A in B r3 \ B r 2 and -A in B r 2 \ B r1 are reflecting complementary for some r 1 ≤ r1 < r 2 < r3 , with B r3 ⊂⊂ Ω. There exists a constant r * ∈ (r 2 , r3 ), independent of δ and f such that if there is no w ∈ H 1 (B r * \ B r 2 ) with the properties

div(A∇w) = f in B r * \ B r 2 , w = 0 on ∂B r 2 , and 
A∇w • ν = 0 on ∂B r 2 , (5.15) 
then lim sup δ→0 δ 1/2 ∇u δ L 2 (Br 2 \Br 1 ) = +∞. (5.16)
Assume in addition that A = I in B r3 \ B r 2 , then r * can be taken by any number less than r3 r 2 .

(5.17)

Proof. We will sketch the proof in the case r3 = r 3 and A = I in B r 3 \ B r 2 . The proof in the general case follows by the same approach via three spheres inequalities. The proof is again based on the use of reflection. Define

u 1,δ = u δ • F -1 and set w δ = u δ -u 1,δ in B r 3 \ B r 2 . We have ∆w δ = f in B r 3 \ B r 2 , w δ = 0 on ∂B r 2 , ∂ r w δ = iδ 1 + iδ ∂ r u δ on ∂B r 2 .
We prove by contradiction that lim sup

n→+∞ δ n w δn 2 H 1 (Br 3 \Br 2 ) + ∂ r u δn 2 
H -1/2 (∂Br 2 ) = +∞, (5.18) 
where δ n = 2 -n . Assume that

m := δ n w δn 2 H 1 (Br 3 \Br 2 ) + ∂ r u δn 2 
H -1/2 (∂Br 2 ) < +∞. (5.19) 
We claim that (w δn ) is a Cauchy sequence in H 1 (B r * \ B r 2 ). Indeed, set

W n = w δ n+1 -w δn in B r 3 \ B r 2 .
It follows from (5.19),

∆W n = 0 in B r 3 \ B r 2 , W n = 0 on ∂B r 2 , ∂ r W n H -1/2 (∂Br 2 ) ≤ Cmδ -n/2 .
In this proof, C denotes a constant independent of n. Using the following standard three spheres inequality:

ϕ H 1 (B R ) ≤ C ϕ α H 1 (B R 1 ) ϕ 1-α H 1 (B R 2 ) , where α = ln(R 2 /R)/ ln(R 2 /R 1 ) if ∆ϕ = 0 in B R 2 and 0 < R 1 < R < R 2 , one can prove W n H 1 (Br * \Br 1 ) ≤ Cm2 -n(2α-1)/2 ,
where α = ln(r 3 /r * )/ ln(r 3 /r 2 ) > 1/2. Thus (w n ) is a Cauchy sequence in H 1 (B r * \ B r 2 ). Let w be the limit of

w n in H 1 (B R * \ B R 1 ). Then ∆w = f in B r * \ B r 2 , w = 0 on ∂B r 2 , ∂ r w = 0 on ∂B r 2 .
This contradicts the non-existence of w. Hence (5.18) holds. The proof is complete. Remark 5.2. Theorem 5.2 implies the result in [START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF] on the blow up of the power.

Concerning the boundedness of the power, we can establish the following more general result: is given in [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]Theorem 3]. The proof in this case is based on a kind of removing singularity technique. The proof of the result stated here follows similalry. One just needs to replace the constant ξ defined in [30, (3.10)] by δ α (r 3 /r 0 ) . The details are left to the reader.

Using Theorems 5.1 and 5.2, we can construct a cloaking device to cloak a general source concentrate on a manifold of codimension 1 in an arbitrary medium (see [START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF]Section 5] for the details).

Limitting absorption principle and well-posedness of the Helmholtz equation with sign changing coefficients

Let k > 0 and let A be a (real) uniformly elliptic symmetric matrix defined on R d (d ≥ 2), and Σ be a bounded real function defined on R d . Assume that9 

A(x) = I in R d \ B R 0 and A is piecewise C 1 , and Σ(x) = 1 in R d \ B R 0 , for some R 0 > 0. Let D ⊂⊂ B R 0 be a bounded open subset in R d of class C 2 . Set, for δ ≥ 0, s δ (x) = -1 -iδ in D, 1 in R d \ D.
In [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF], we studied the well-posedness of the following equation

div(s 0 A∇u 0 ) + k 2 s 0 Σu 0 = f in R d , (6.1) 
under various conditions on A and Σ. To make sure that physics solutions are considered, we also study the limiting absorption principle associated with (6.1), i.e., the convergence of u δ to u 0 (in an appropriate sense). Here

u δ ∈ H 1 (R d ) is the unique solution of the equation div(s δ A∇u δ ) + k 2 s 0 Σu δ + iδu δ = f in R d . (6.2) Recall that a solution v ∈ H 1 loc (R d \ B R ) of the equation ∆v + k 2 v = 0 in R d \ B R ,
for some R > 0, is said to satisfy the outgoing condition if

∂ r v -ikv = o(r -d- 1 
2 ) as r = |x| → +∞.

Denote Γ = ∂D,

We recall Definition 6.1 (Agmon, Douglis, Nirenberg [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]). Two constant positive symmetric matrices A 1 and A 2 are said to satisfy the (Cauchy) complementing condition with respect to direction e ∈ ∂B 1 if and only if for all ξ ∈ R d e,0 \ {0}, the only solution (u 1 (x), u 2 (x)) of the form e i y,ξ v 1 (t), e i y,ξ v 2 (t) with x = y + te where y ∈ R d e,0 and t = x, e , of the following system div(A

1 ∇u 1 ) = div(A 2 ∇u 2 ) = 0 in R d e,+ , u 1 = u 2 and A 1 ∇u 1 • e = A 2 ∇u 2 • e on R d e,0 ,
which is bounded in R d e,+ is (0, 0).

Here and in what follows, for a unit vector e, the following notations are used To our knowledge, Corollary 6.1 is new and cannot be obtained by the known approaches mentioned above. It is in the same spirit of the one of Bonnet-Ben Dhia, Chesnel, and Ciarlet in [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]; nevertheless, A + and A -are not assumed to be isotropic here.

We next discuss briefly the proof of Theorem 6.1. We recall Lemma 6.1 (Agmon, Douglis, and Nirenberg [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]). Let D be a smooth bounded open subset of R d , and A 1 and A 2 be two symmetric uniformly elliptic matrices defined in

D of class C 1 ( D). Let f 1 , f 2 ∈ L 2 (D) and let u 1 , u 2 ∈ H 1 (D) be such that -div(A 1 ∇u 1 ) = f 1 and -div(A 2 ∇u 2 ) = f 2 in D, (6.6 
)

u 1 = u 2 and A 1 ∇u 1 • ν = A 2 ∇u 2 • ν on ∂D. ( 6 

.7)

Assume that A 1 and A 2 satisfy the (Cauchy) complementing condition with respect to direction ν(x) for all x ∈ Γ. We have

(u 1 , u 2 ) H 2 (D) ≤ C (f 1 , f 2 ) L 2 (D) + (u 1 , u 2 ) L 2 (D) . (6.8) 
We confine ourselves to the case δ = 0 and give the ideas of the proof of (6.5). Note that the uniqueness of u 0 can be obtained as in the standard setting where the coefficients are positive by Rellich's lemma. Define F : D -τ → D τ as follows

F (x Γ + tν(x Γ )) = x Γ -tν(x Γ ) ∀ x Γ ∈ Γ, t ∈ (-τ, 0). (6.9) Let v 0 be the reflection of u 0 through Γ by F , i.e., v 0 = u 0 • F -1 in D τ . By Lemma 2.1, div(F * A∇v 0 ) + k 2 F * Σv 0 = F * f in D τ , and v 0 -u 0 D = 0, F * A∇v 0 • ν -A∇u 0 D • ν = 0 on Γ.
Note that A + and A -satisfy the complementing condition on Γ if and only if F * A -and A + satisfy the complementing condition on Γ by Proposition 6.1. Applying Lemma 6.1 and using the outgoing condition, one obtains

u 0 H 1 (B R ) ≤ C R u 0 L 2 (B R 0 ) + f L 2 .
The conclusion now follows from the uniqueness via a standard compactness argument (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Section 2] for the details). One can verify that if F * A + = A -on Γ, then the complementing condition is not satisfied (Proposition 6.1). To deal with this situation, in [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] we developed a second approach to obtain a priori estimates for the Cauchy problems. This is a variational approach and based on the Dirichlet principle. Using this approach, we established [33, Theorem 2] Theorem 6.2. Let f ∈ L 2 (R d ) with supp f ⊂ B R 0 and let u δ ∈ H 1 (R d ) (0 < δ < 1) be the unique solution of (6.2). Assume that there exists a reflection F from U \ D onto D τ for some τ > 0 and for some smooth open set U ⊃⊃ D, i.e., F is diffeomorphism and F

(x) = x on Γ, such that either A -F * A ≥ c dist(x, Γ) α I or F * A -A ≥ c dist(x, Γ) α I, (6.10) 
on each connected component of D τ , for some c > 0 and 0

< α < 2. Set v δ = u δ • F -1 in D τ . Then u δ L 2 (B R ) + u δ -v δ H 1 (Dτ ) + Dτ (A -F * A)∇u δ , ∇u δ 1/2 ≤ C R f L 2 (R d ) . (6.11) Moreover, u δ → u 0 weakly in H 1 loc (R d \ Γ) and strongly in L 2 loc (R d ) as δ → 0, where u 0 ∈ H 1 loc (R d \ Γ) ∩ L 2 loc (R d )
is the unique outgoing solution of the equation (6.1) such that the LHS of (6.12) is finite where v

0 = u 0 • F -1 in D τ . Consequently, u 0 L 2 (B R ) + u 0 -v 0 H 1 (Dτ ) + Dτ (A -F * A)∇u 0 , ∇u 0 1/2 ≤ C R f L 2 .
(6.12)

Here C R denotes a positive constant independent of f and δ.

The unique solution, which is obtained by the limiting absorption principle, might not be in H 1 loc (R d ) in this case. The definition [33, Definition 2] is Definition 6.2. Let f ∈ L 2 (R d ) with compact support and let F be a reflection from U \ D to D τ for some τ > 0 (small) and for some open set D ⊂⊂ U , i.e., F is diffeomorphism and

F (x) = x on Γ. A function u 0 ∈ H 1 loc (R d \ Γ) ∩ L 2 loc (R d
) such that the LHS of (6.12) is finite is said to be a solution to (6.1) if div(s .14) and lim Once the uniqueness is obtained, the stability is based on a compactness argument. The requirement α < 2 is required in the compactness argument (see Lemma [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Lemma 7]); we do not know if this condition is necessary. As a consequence of Theorem 6.2, one can prove [33, Corollary 2] Corollary 6.2. Let f ∈ L 2 (R d ) with supp f ⊂ B R 0 , and let u δ ∈ H 1 (R d ) (0 < δ < 1) be the unique solution of (6.2). Assume that A • F -1 (x) or A(x) is isotropic for x ∈ D τ , and either A • F -1 (x) -A(x) ≥ cI or A(x) -A • F -1 (x) ≥ cI (6.16) in each connected component D τ for some small τ > 0 and for some c > 0, where F is given by (6.9). Then

0 A∇u 0 ) + k 2 s 0 Σu 0 = f in R d \ Γ, (6.13) u 0 -v 0 = 0 and (F * A∇v 0 -A∇u 0 D ) • ν = 0 on Γ. ( 6 
t→0 + ∂Dt\Γ F * A∇v 0 • ν v0 -A∇u 0 • ν ū0 = 0. ( 6 
u δ H 1 (B R ) ≤ C R f L 2 .
Moreover, u δ → u 0 weakly in H 1 loc (R d ) as δ → 0, where u 0 ∈ H 1 loc (R d ) is the unique outgoing solution of (6.1) and

u 0 H 1 (B R ) ≤ C R f L 2 .
Remark 6.2. Applying Corollary 6.2 for the isotropic case, one rediscovers and extends the result obtained by Bonnet Ben-Dhia, Chesnel, and Ciarlet in [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF].

We next present another consequence of Theorem 6.2 for the case α = 1. The following notation is used. Definition 6.3. The boundary Γ of D is called strictly convex if all its connected components are the boundary of strictly convex sets.

We are ready to present [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Corollary 2]. Corollary 6.3. Let d ≥ 3 and D be of class C 3 . Let f ∈ L 2 (R d ) with supp f ⊂ B R 0 and let u δ ∈ H 1 (R d ) (0 < δ < 1) be the unique solution of (6.2). Assume that A is constant in each connected component of a neighborhood of Γ and Γ is strictly convex. There exist c > 0, τ > 0, a smooth open subset U ⊃⊃ D, a reflection F : U → D τ such that F * A -A ≥ c dist(x, Γ)I or A -F * A ≥ c dist(x, Γ)I on each connected component of D τ . Then (6.11) holds. Moreover, u δ → u 0 weakly in H 1 loc (R d ) as δ → 0, where u 0 ∈ H 1 loc (R d ), u 0 satisfies (6.12), and u 0 is the unique outgoing solution of (6.1). Remark 6.3. The reflection F in Corollary 6.3 is not given by (6.9). Its choice is quite subtle and depends on the fundamental form of Γ (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Proof of Corollary 2]). Corollary 6.3 does not hold in two dimensions. The strict convexity of Γ is necessary in three dimensions. In four or higher dimensions, the strict convexity of Γ can be relaxed (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Remark 10]).

We next return to the proof of Theorem 6.2. An important step in the proof is to obtain estimate for the Cauchy problem. A result of this type is the following lemma which is somehow a replacement of Lemma 6.1 in this context and a special case of [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Lemma 5]. The proof is based on the Dirichlet principle. Proof. By considering the real part and the imaginary part separately, without loss of generality, one may assume that all functions in Lemma 6.2 are real. Set

M = (f 1 , f 2 ) 2 L 2 (D) + (u 1 , u 2 ) 2 L 2 (D) .
Multiplying the equation of u j by u j (for j = 1, 2) and integrating on D, we have Similar conclusion holds in the case F * A = A in D τ under additional assumptions on Σ -F * Σ dist(•, Γ) β in D τ for some β > 0 (see [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Theorem 3] for a more general result). The unique solution in this case is not even in L 2 loc (R d ). As far as we know, [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Theorem 3] is the first result on the limiting absorption principle and the well-posedness of the Helmholtz equations with sign changing coefficients where the conditions on the coefficients contains the zero order term Σ. Remark 6.4. The results mentioned here showed that the complementary property of media is necessary for the occurrence of the resonance. In [33, Proposition 2], we showed that even in the case (F * A, F * Σ) = (A, Σ) in B ∩D τ for some open set B with B ∩Γ = Ø, the system is resonant in the following sense: There exists f with supp f ⊂⊂ B R 0 \Γ such that lim sup δ→0 u δ L 2 (K) = +∞ for some K ⊂⊂ B R 0 \ Γ. This implies the optimality of the results mentioned above. The proof of [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF]Proposition 2] is inspired from the one of Theorem 5.2.

D A j ∇u j , ∇u j = D f j u j + ∂D A j ∇u j • ν u j . ( 6 

Figure 1 :

 1 Figure 1: The lensing device contains two parts. The first part -F -1 * I (the red region) in B r 2 \ B r 1 is the complement of I in B r 3 \ B r 2 . The second part (the green region) is m d-2 I in B r 1 \ B r 0 . The magnified region is B r 0 .

Figure 2 :

 2 Figure 2: The cloaking device contains two parts. The first part -F -1 * b (the red and orange regions) in B r 2 \ B r 1 is the complement of b which consists of a (grey and blue grey regions) in B 2r 2 \ B r 2 and I in B r 3 \ B r 2 . The second part (the blue region) (r 2 3 /r 2 2 ) d-2 I is to fill the space which disappears by the cancelation.

6 ) 6 Theorem 4 . 1 .

 6641 be respectively the unique solution todiv(s δ A∇u δ ) = f in ΩWe established [31, Theorem 1] Let d = 2, 3, f ∈ L 2 (Ω) with supp f ⊂ Ω \ B r 3 .There exists > 0, depending only on r 2 , and the ellipticity and the Lipschitz constants of b such that if r 3 > r 2 then u δ → û weakly in H 1 (Ω \ B r 3 ) as δ → 0.(4.7)

Theorem 5 . 3 .. 20 )Remark 5 . 3 .

 532053 Let d = 2, 3, f ∈ L 2 (Ω), and let u δ ∈ H 1 0 (Ω) be the unique solution to (5.3). Assume that s 0 A is doubly complementary and supp f ∩ B r 3 = Ø. Thenlim sup δ→0 u δ H 1 (Ω) < +∞. (5Assume in addition that A = I in B r 3 \ B r 2 . If there exists w ∈ H 1 (B r 0 \ B r 2 ) for some r 0 > r α 2 r 1-α 3 with the properties div(A∇w) = f in B r 0 \ B r 2 , w = 0 on ∂B r 2 , and A∇w • ν = 0 on ∂B r 2 ,for some 0 < α < 1, then lim supδ→0 δ α u δ H 1 (Ω) < +∞. (5.21) The first part (5.20) is from Theorem 2.1. The second part (5.21) with α = 1/2

Proposition 6 . 1 .Corollary 6 . 1 .

 6161 R d e,+ = {ξ ∈ R d ; ξ, e > 0} and R d e,0 = {ξ ∈ R d ; ξ, e = 0}. and •, • denotes the Euclidean scalar product in R d . An algebraic characterization of the complementing condition is [33, Proposition 1]: Two constant positive symmetric matrices A 1 and A 2 are said to satisfy the complementing condition with respect to direction e ∈ ∂B 1 if and only ifA 2 e, e A 2 ξ, ξ -A 2 e, ξ 2 = A 1 e, e A 1 ξ, ξ -A 1 e, ξ 2 ∀ ξ ∈ P \ {0}, where P := ξ ∈ R d ; ξ, e = 0 .In particular, if A 2 > A 1 then A 1 and A 2 satisfy the complementing boundary condition for all e ∈ ∂B 1As a consequence of Theorem 6.1 and Proposition 6.1, we obtained [33, Corollary 1] Let f ∈ L 2 (R d ) with supp f ⊂⊂ B R 0 , and let u δ ∈ H 1 (R d ) (0 < δ < 1) be the unique solution of (6.2). Assume thatA + := A R d \ D ∈ C 1 ( D-τ ) and A -:= A D ∈ C 1 ( Dτ )for some τ > 0, and A + (x) > A -(x) or A -(x) > A + (x) for all x ∈ Γ. Then the conclusion of Theorem 6.1 holds.

Lemma 6 . 2 .(A 1 -

 621 Let D be a smooth bounded open subset of R d , and A 1 and A 2 be two symmetric uniformly elliptic matrices defined inD. Let f 1 , f 2 ∈ L 2 (D) and let u 1 , u 2 ∈ H 1 (D) be such that -div(A 1 ∇u 1 ) = f 1 and -div(A 2 ∇u 2 ) = f 2 in D,(6.17)u 1 = u 2 and A 1 ∇u 1 • ν = A 2 ∇u 2 • ν on ∂D.(6.18)Assume thatA 1 ≥ A 2 in D. (6.19) Then D A 2 )∇u 1 , ∇u 1 ≤ C (f 1 , f 2 ) 2 L 2 (D) + (u 1 , u 2 ) 2 L 2 (D) . (6.20) 

  Definition 1] Definition 2.1 (Reflecting complementary media). Let Ω 1 ⊂⊂ Ω 2 ⊂⊂ Ω 3 be smooth connected bounded open subsets of R d . The media (A, Σ) in Ω 3 \ Ω 2 and (-A, -Σ) in Ω 2 \ Ω 1 are said to be reflecting complementary if there exists a diffeomorphism F : Ω 2 \ Ω1 → Ω 3 \ Ω2 such that

  Theorems 1 and 2]Assume that A in Ω 3 \ Ω 2 and -A in Ω 2 \ Ω 1 are reflecting complementary and supp f ∩ Ω 3 = Ø for some Ω 2 ⊂⊂ Ω 3 ⊂⊂ Ω.

	Theorem 2.1. Let d = 2, 3, δ > 0, f ∈ L 2 (Ω) and let u δ ∈ H 1 0 (Ω) be the unique solution to
	equation (2.11):	
	div(s δ A∇u δ ) = f in Ω.	
	We have	
	a) Case 1: f is compatible (see Definition 2.2). Then (u δ ) converges weakly in H 1 (Ω) and
	strongly in L 2 (Ω) to u 0 ∈ H 1 0 (Ω) the unique solution of	
	div(s 0 ∇u 0 ) = f in Ω.	(2.19)

  .15) Remark 6.1. Since the LHS of (6.12) is finite, it follows that u 0 -v 0 ∈ H 1/2 (Γ) and (F * A∇v 0 -A∇u 0 D ) • ν ∈ H -1/2 (Γ). Hence requirement (6.14) makes sense. It is clear that the definition of weak solutions in Definition 6.2 coincides with the standard definition of weak solutions when α = 0 by Lemma 2.1. Requirements in (6.14) and (6.15) can be seen as generalized transmission conditions.

  .[START_REF] Lai | Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell[END_REF] Using (6.17) and (6.18), we derive from (6.21) thatD A 1 ∇u 1 , ∇u 1 -A 2 ∇u 2 , ∇u 2 ≤ CM. (6.22)Here and in what follows, C denotes a positive constant independent of f j , h, u j for j = 1, 2. By the Dirichlet principle, we have1 2 D A 2 ∇u 2 , ∇u 2 -A 2 ∇u 2 • ν u 1 . (6.23)A combination of (6.17), (6.18), and (6.23) yieldsD A 2 ∇u 2 , ∇u 2 -A 2 ∇u 1 , ∇u 1 ≤ CM.(6.24)Adding (6.22) and (6.24), we obtain the conclusion.

	f 2 u 2 -		A 2 ∇u 2 • ν u 2
	D	∂D	
		≤	1 2 D	A 2 ∇u 1 , ∇u 1 -

D f 2 u 1 -∂D

Here and in what follows, for r > 0, Br denotes the ball centered at the origin and of radius r.

In[START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF], ε δ is given by -1 + iδ instead of -1 -iδ for r1 < |x| < r2; nevertheless, this point is not essential.

In (2.16) and (2.17), F and G denote some diffeomorphism extensions of F and G in a neighborhood of ∂Ω2 and of ∂Ω3.

In fact, complementary media had not been defined precisely, the property mentioned here appeared in various known examples.

In[START_REF] Nguyen | Superlensing using complementary media[END_REF], s δ = -1 + iδ in Br 2 \ Br 1 ; nevertheless this point is not essential.

In[START_REF] Nguyen | Cloaking using complementary media in the quasistatic regime[END_REF], s δ = -1 + iδ in Br 2 \ Br 1 ; nevertheless this point is not essential.

In[START_REF] Nguyen | Cloaking via anomalous localized resonance for doubly complementary media in the quasi static regime[END_REF], s δ = -1 + iδ in Br 2 \ Br 1 ; nevertheless this point is not essential.

One way to obtain this inequality is to multiply (5.3) by ūδ , integrate on Ω, and consider the real part.

The smoothness assumption of A is mainly required for the use of the unique continuation principle. It can be omitted in two dimensions.

and, for τ > 0, set

3)

The well-posedness of the Helmholtz equation with sign changing coefficients was first established by Costabel and Stephan in [START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF]. They proved, by the integral method, that (6.1) is well-posed if A = I in R d \D and A = λI in D provided that λ is positive constant not equal to 1. Later, Ola in [START_REF] Ola | Remarks on a transmission problem[END_REF] proved, using the integral method and the pseudo-diiferential operators theory, that (6.1) is well-posed in three and higher dimensions if the interface Γ is strictly convex and connected even though λ = 1, i.e., A = I in R d . His result was extended for the case where Γ has two connected components by Kettunen, Lassas, and Ola in [START_REF] Kettunen | On absence and existence of the anomalous localized resonance without the quasi-static approximation[END_REF]. Recently, the well-posedness was extensively studied by Bonnet-Ben Dhia, Ciarlet, and their coauthors in [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | T-coercivity for the Maxwell problem with sign-changing coefficients[END_REF][START_REF] Bonnet-Ben Dhia | Two-and three-field formulations for wave transmission between media with opposite sign dielectric constants[END_REF][START_REF] Bonnet-Ben Dhia | A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF]] by the T-coercivity approach. This approach was introduced by Bonnet-Ben Dhia, Ciarlet, and Zwölf in [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] and is related to the (Banach-Necas-Babuska) inf-sup condition. The sharpest condition for the acoustic setting in this direction, obtained by Bonnet-Ben Dhia, Chesnel, and Ciarlet in [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF], is that (6.1) is well-posed in the Fredholm sense (this means that compactness holds), if A is isotropic, i.e., A = aI for some positive function a, and the contrast of a is not 1 on each connected component of Γ.

The starting point in [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF] is to use reflections to obtain Cauchy's problems from the Helmholtz equations with sign changing coefficients as previously discussed in various contexts. The use of reflections to study NIMs was also considered by Milton et al. in [START_REF] Milton | Solutions in folded geometries, and associated cloaking due to anomalous resonance[END_REF] and by Bonnet-Ben Dhia, Ciarlet, and their coauthors in their T-coercivity approach (see, e.g., [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF] and references there in). However, there is a difference between the use of reflections in [START_REF] Milton | Solutions in folded geometries, and associated cloaking due to anomalous resonance[END_REF] and [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF] and in our work. In [START_REF] Milton | Solutions in folded geometries, and associated cloaking due to anomalous resonance[END_REF], the authors used reflections as a change of variables to obtain a new simple setting from an old more complicated one and hence the analysis of the old problem becomes simpler. In [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF], the authors used a standard reflection to build test functions for the inf-sup condition to obtain an a priori estimate for the solution. Our use of reflections is to derive Cauchy problems. This can be done in a very flexible way via a change of variables formula stated in Lemma 2.1 as observed in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients[END_REF]. The limiting absorption principle and the well-posedness of (6.1) are then based on a priori estimates for these Cauchy problems.

In [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF], we introduced three approaches to obtain a priori estimates for the Cauchy problems. The first one follows from a priori estimates for elliptic systems imposing implementing boundary conditions. This is based on the classic work of Agmon, Douglis, and Nirenberg in [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions[END_REF]. Applying their result, we proved [33, Theorem 1]

for some τ > 0, and A + (x), A -(x) satisfy the (Cauchy) complementing condition with respect to direction ν(x) for all x ∈ Γ. Then

Moreover, u δ → u 0 weakly in H 1 loc (R d ) and strongly in L 2 loc (R d ), as δ → 0, where u 0 ∈ H 1 loc (R d ) is the unique outgoing solution of (6.1). Consequently,

(6.5)

Here C R denotes a positive constant independent of f and δ.