N
N

N

HAL

open science

A combinatorial characterisation of d-Koszul and
(D,A)-stacked monomial algebras that satisfy (Fg)
Ruaa Jawad, Nicole Snashall, Rachel Taillefer

» To cite this version:

Ruaa Jawad, Nicole Snashall, Rachel Taillefer.

591. hal-03932213v3

HAL Id: hal-03932213
https://hal.science/hal-03932213v3

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A combinatorial characterisation of d-Koszul and
(D,A)-stacked monomial algebras that satisfy (Fg). Publicacions Matematiques, 2024, 68 (2), pp.559-


https://hal.science/hal-03932213v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Publ. Mat. 68 (2024), 559-591
DOI: 10.5565/PUBLMAT6822409

A COMBINATORIAL CHARACTERISATION OF d-KOSZUL AND
(D, A)-STACKED MONOMIAL ALGEBRAS THAT SATISFY (Fg)

RuaA JAWAD, NICOLE SNASHALL, AND RACHEL TAILLEFER

Abstract: Condition (Fg) was introduced in [6] to ensure that the theory of support varieties of a
finite-dimensional algebra, established by Snashall and Solberg, has some similar properties to that of
a group algebra. In this paper we give some easy-to-check combinatorial conditions that are equivalent
to (Fg) for monomial d-Koszul algebras. We then extend this to monomial (D, A)-stacked algebras.
We also extend the description of the Yoneda algebra of a d-Koszul algebra in [10] to (D, A)-stacked
monomial algebras.
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Introduction

Let A be an indecomposable finite-dimensional algebra over a field K. Support
varieties for modules over A were introduced by Snashall and Solberg in [23], as a
geometric tool to study the representation theory of A, using the Hochschild coho-
mology HH*(A). It was then proved in [6] that many of the properties of support
varieties for group algebras have analogues in this more general case, provided some
finiteness conditions hold. These are now known as (Fg) and can be expressed in the
following way. Let t be the Jacobson radical of A and let E(A) = Ext) (A/r,A/t) be
its Yoneda algebra. Then Condition (Fg) states that:

(Fg) there is a commutative Noetherian graded subalgebra H of HH*(A)
with H? = HH°(A) such that E(A) is a finitely generated H-module.

In particular, it was shown in [6] that if A satisfies Condition (Fg), then A is nec-
essarily Gorenstein, that the variety of a module is trivial if and only if the module
has finite projective dimension, and that periodic modules can be characterised up
to projective summands as those whose support variety is a line. Moreover, the con-
verse of the first result mentioned was proved for monomial algebras in [4], that is, a
Gorenstein monomial algebra satisfies (Fg).

Support varieties for group algebras have been very effective in the study of the
representations of these algebras. Therefore Condition (Fg) has been much studied as
it ensures a similarly useful theory of support varieties for finite-dimensional algebras.
For instance, Condition (Fg) is invariant under various constructions, such as derived
equivalence or singular equivalence of Morita type; see [16, 22, 19]. Condition (Fg)
has been studied or shown to hold for large families of algebras in [24, 26, 25, 5|
among others, and support varieties have been studied for algebras that satisfy (Fg);
see for instance [8, 20].

Some of these results formed part of the first author’s PhD thesis at the University of Leicester,
which was supported by The Higher Committee For Education Development in Iraq (HCED) Ref-
erence D1201116.

(©2024 by the author(s) under Creative Commons Attribution 4.0 License (CC BY 4.0).



560 R. JAwAD, N. SNASHALL, R. TAILLEFER

Since Hochschild cohomology is generally very difficult to compute, Condition (Fg)
can be difficult to establish for a given algebra. It is therefore useful to have necessary,
sufficient or equivalent conditions for (Fg) to hold for a given algebra. One such result
was proved by Erdmann and Solberg in [7], where they showed that if (Fg) holds
for A, then the graded centre Zg, (E(A)) of the Yoneda algebra is a Noetherian algebra
and E(A) is a finitely generated Zg,(E(A))-module; moreover, they proved that this is
an equivalence when the algebra A is Koszul. For monomial algebras, (Fg) was proved
in [4] to be equivalent to the related condition that the A-centre Zo(E(A)) is a
Noetherian algebra and E(A) is a finitely generated Zo, (E(A))-module. We note that
if A has finite global dimension, then both E(A) and HH*(A) are finite-dimensional
as vector spaces, and A has (Fg). Thus we are particularly interested in algebras of
infinite global dimension.

The aim of this paper is to prove that a number of conditions are equivalent
to (Fg) for a large category of algebras, namely finite-dimensional d-Koszul, and
more generally (D, A)-stacked, monomial algebras. This is motivated in particular by
a result of the first author in her PhD thesis [15], a result that provides a sufficient
and not-difficult-to-check condition for d-Koszul monomial algebras to satisfy (Fg);
this result is Theorem 2.7 in this paper.

Berger introduced d-Koszul algebras in [3] as a natural generalisation of Koszul
algebras (which occur as 2-Koszul algebras). They are the algebras such that the
n-th projective module in a minimal projective resolution of A/t as a A-module is
generated in a specific degree denoted by §(n) (with é(n) = n if d = 2). Moreover,
they were characterised in [10] as the algebras A that are d-homogeneous (that is,
their ideal of relations can be generated by a set of homogeneous elements of degree d)
and such that E(A) is generated in degrees 0, 1, and 2. The (D, A)-stacked monomial
algebras, where D > 2 and A > 1 are integers, were introduced by Green and Snashall
in [13], and those of infinite global dimension were characterised by the same authors
in [12] as the monomial algebras such that the n-th projective module in a minimal
projective resolution of A/t as a A-module is generated in precisely one degree and
such that E(A) is finitely generated (in which case E(A) is generated in degrees 0, 1,
2, and 3). In particular, when A = 1, a (D, 1)-stacked monomial algebra is D-Koszul.
Thus (D, A)-stacked monomial algebras are natural generalisations of d-Koszul and
indeed Koszul monomial algebras.

In this paper, we consider Condition (Fg) for d-Koszul monomial algebras and
more generally for (D, A)-stacked monomial algebras. We introduce some combina-
torial conditions in 2.4 (in the d-Koszul case) and in 3.6 (in the (D, A)-stacked case)
that are easy to check in terms of a minimal set of relations for the algebra A, and
we prove that they are equivalent to (Fg) when K is algebraically closed. This gives
a very practical way of checking whether a monomial d-Koszul or (D, A)-stacked al-
gebra satisfies (Fg), because it is easy to check that a monomial algebra is d-Koszul
using [10, Theorem 10.2] (recalled in Property 2.1) or (D, A)-stacked using [13, Sec-
tion 3] (recalled in Property 3.2).

To summarise, if A is a finite-dimensional monomial algebra over an algebraically
closed field K, which is d-Koszul with d > 2 or (D, A)-stacked with D # 2A when-
ever A > 1, then the following conditions are equivalent:

(C1) A satisfies (Fg).

(C2) A satisfies some combinatorial conditions defined in Condition 2.4 when A is
d-Koszul monomial and in Condition 3.6 when A is (D, A)-stacked monomial
(this follows from Theorems 2.8 and 3.10).
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(C3) Zg(E(A)) is Noetherian and E(A) is a finitely generated Zg, (E(A))-module
(by [7] and Theorems 2.8 and 3.10).

(C4) E(A) is a finitely generated Zg, (E(A))-module (again by Theorems 2.8 and 3.10).

(C5) Zo(E(A)) is Noetherian and E(A) is a finitely generated Z.,(F(A))-module
(by [4]).

(C6) A is Gorenstein (by [4]).

The assumption that K is algebraically closed is needed for the implication (C1) =

(C3) of [7], which we use in our proof of (C1) = (C2); however, (C2) implies (C1)

without this assumption.

The paper is organised as follows. In Section 1 we give some background on mono-
mial algebras and the notion of overlaps, as well as on the Yoneda algebra and the
Hochschild cohomology of a monomial algebra. Section 2 is devoted to the proof of the
implications (C2) = (C1) and (C4) = (C2) for d-Koszul monomial algebras, which
completes the equivalence of all the conditions above. The first implication relies on
a presentation of the Hochschild cohomology for (D, A)-stacked monomial algebras
from [13] and the second one uses a description of the Yoneda algebra E(A) of a
d-Koszul algebra A as a graded subspace of the Koszul dual algebra ‘A from [10].
In Section 3, we extend these results to (D, A)-stacked monomial algebras, where
D # 2A whenever A > 1. Here again, we use a description of F(A) as a subspace of
an analogue %A of the Koszul dual of A; this description is detailed and proved in the
appendix, and is a generalisation of the corresponding result of [10] to (D, A)-stacked
monomial algebras.

General assumptions. Throughout the paper, A is an indecomposable finite-dimen-
sional algebra over a field K with char(K) # 2 that is not necessarily algebraically
closed. Moreover, we assume that A = KQ/I, where Q is a finite quiver (it has a finite
number of vertices and arrows) and I is an admissible ideal in KQ. If A = KQ/I is
also a monomial algebra, then I is generated by a minimal set p of paths (monomials)
and A is graded by the length of the paths; we denote by #¢(p) the length of a path p.
Note that paths in any algebra given by quiver and relations are written from left to
right. For any j > 0, we shall denote by Q; the set of paths of length j in Q.

In order to use the results in [13], we shall need to assume that gldimA > 4.
However, if A is a monomial algebra with finite global dimension, all the condi-
tions (C1)—(C6) hold for A (we note that Condition (C2) is necessarily empty in this
case). Therefore we do not lose any generality in making this assumption.

1. Some background on monomial algebras and their cohomology

1.1. Overlaps. Keeping the above assumptions, let A = KQ/I be a monomial al-
gebra so that A = @i>0 A; is a graded algebra with the length grading. We denote
by v = €D, A; the radical of A. An arrow « starts at the vertex o(a) and ends at the
vertex t(a). If p = ayag - -y, is a path with a1, a9, ..., a, in 91, then o(p) = o(a1)
and t(p) = t(ay).

A path p is a prefiz of a path ¢ if there is some path p’ such that ¢ = pp’; if an
arrow « is a prefix of ¢, then we say that g begins with «. A path p is a suffiz of a
path ¢ if there is some path p’ such that ¢ = p’p; if an arrow « is a suffix of ¢, then
we say that q ends with a.

We use the concept of overlaps of [9] and [14] to describe the minimal projective
resolution of Ag = A/t over A, and to describe the minimal projective resolution of A
over A¢, where A° is the enveloping algebra AP @), A of A. We recall the relevant
definitions here using the notation of [13].
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Definition 1.1. (1) A path ¢ overlaps a path p with overlap pu if there are paths u
and v such that pu = vg and 1 < £(u) < ¢(q). We illustrate the definition with
the following diagram.

fLﬁ <l

p

overlap pu

Note that we allow £(v) = 0 here.
(2) A path g properly overlaps a path p with overlap pu if ¢ overlaps p and ¢(v) > 1.
(3) A path p has no overlaps with a path ¢ if p does not properly overlap ¢ and ¢
does not properly overlap p.

We now define sets R"™ recursively. Let
R = Qu, the set of vertices of Q;
R = Qy, the set of arrows of Q;

R? = p, the minimal generating set for I.
For n > 3, the construction is as follows.

Definition 1.2. (1) For n > 3, we say that R? € R? maximally overlaps R"~! €
R ! with overlap R® = R" 1w if
(a) R"~! = R"2p for some path p;
(b) R? overlaps p with overlap pu;
(c) there is no element of R? which overlaps p with overlap being a proper
prefix of pu.
We may also say that R" is a maximal overlap of R? € R? with R»~! ¢ R*~1.
The construction of R" is illustrated in the following diagram.
R2
Rt e
{ \

L J D u
B2

(2) For n > 3, the set R™ is defined to be the set of all overlaps R™ formed in this
way.

We also recall from [14] that if R?'p = R}q, for R}, Ry € R™ and paths p, ¢, then
" = RY and p = ¢. Any element R"™ in R"™ may be expressed uniquely as R?flaj
and as kazfl for some R;-kl, RZfl in R"~! and paths a;, by. We say that the

elements R;-“l and RZfl occur in R™.

1.2. The Ext algebra E(A). The Ext algebra E(A) is given by E(A) =Ext(Ag,Ao) =
@n>0 Ext (Ao, Ag) with the Yoneda product. In the terminology of overlaps, the n-th
projective module in a minimal projective A-resolution of Ag is @pngn t(R")A. Then
Ext}{ (Ao, Ao) has a basis indexed by R" and E(A) has a basis indexed by J,5,R"
(see [14, 9]). We identify R} € R™ with the corresponding element of Exty (Ao, Ao),
that is, with the map @ z.cpn (R")A = Ag given by

t(RM)A +t if R" = R™;

H{R™M)A — .
0 otherwise.
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1.3. The Hochschild cohomology ring HH*(A). Let (P*,0*) be the minimal
projective A°-resolution of A from [1]. We write ® for ), throughout. Then

Pr= P Ao(R")®tR")A.
RTLGRH
The maps are given as follows. In odd degrees, if R***! = R3"a; = by R} € R*"1,
then §?n+1: p2ntl  P2n ig given by

o(R?MH1) @ t(R*H1) — o(R2") @ a; — by @ t(RF"),

where the first tensor lies in the summand corresponding to RJQ.” and the second tensor
lies in the summand corresponding to R2".

For even degrees, any element R?" in R?" may be expressed in the form Dj Rf-”flqj
for some R?"fl € R?"~! and paths p;, ¢; with n > 1. Let R?" = lefT‘*lql =
-+ = p.R?""1g, be all expressions of R?" which contain some element of R?>"~! as a
subpath. Then, for R?" € R?", the map 9°": P> — P?"~! is given by

o(R?") @ t(R?") b— ij & q;,

Jj=1

where the tensor p; ® g; lies in the summand of P?"~! corresponding to R?”_l.

If not specified, then it will always be clear from the context in which summand of
a projective module our tensors lie.

The Hochschild cohomology ring HH*(A) of A is given by

HH"(A) = Ext}. (A, A) = @D ExtR. (A, A)

n=0

with the Yoneda product.

2. Characterisations of d-Koszul monomial algebras that
satisfy (Fg)

2.1. Notation and properties of d-Koszul monomial algebras. Let A = KQ/I
be a monomial algebra, where Q is a finite quiver and I is an admissible ideal in K Q
generated by a minimal set p of paths. Recall that the algebra A = @i>0 A; is graded
by the length of the paths. We can express A as a quotient A = Tp,(A1)/I of the
tensor algebra, where A/t =2 Ag = KQp and A; = KQ; and I is an ideal generated
by a minimal set p of monomials. The algebra Ao = K/90! is isomorphic to a finite
product of copies of the base field K it is therefore a semisimple and commutative
K-algebra. We denote by e; the idempotent in Ay corresponding to the vertex i.

Let d > 2 be an integer. We assume that A is a d-Koszul algebra, that is, for any
minimal projective right A-module resolution of Ay, the n-th projective module is
generated in degree d(n), where

g if n is even;
§(n) = 2
o —1
n2 d+1 if nis odd.

It follows that A is d-homogeneous (that is, p consists of paths of length d).
The monomial d-Koszul algebras can be characterised as follows.
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Property 2.1 ([10, Theorem 10.2]). A finite-dimensional d-homogeneous monomial
algebra A = KQ/I is d-Koszul if, and only if, p is d-covering, that is, for any
paths p, q, and r in Q,

(pq € p,qr € p,£(q) = 1) => (all subpaths of pqr of length d are in p).

Note that this condition is always satisfied if d = 2; it is indeed well known that all
finite-dimensional quadratic monomial algebras are Koszul; see [14] and [18, Corol-
lary 2.4.3].

Example 1. Let A = KQ/I, where Q is the quiver

X
2

B
e D

and the ideal I has minimal generating set p = {a®,v17273, 727371, 737172 }. Then
A is a 3-Koszul monomial algebra.

From now on, we assume that A = K'Q/I is a finite-dimensional d-Koszul monomial
algebra with d > 2.
We have the following consequences of Property 2.1.

Consequence 2.2 ([15, Proposition 7.13]). Let R} be an element in R™. Then all
subpaths of R} of length d are in p.

Proof: The result is proved by induction. It is clear when n = 2. Moreover, if n = 3,
since R € R? is a maximal overlap of two elements in R?, it follows from Property 2.1.

Now let n > 4 be an integer and take R} € R"™. Then R} is a maximal overlap
of R? € R? with R}~ € R™ ! so that R} = Ry 'u for some path u, and Ry~ is
a maximal overlap of RZ € R? with R}~ € R"~2 so that Ry ~' = R} 2u’ for some
path «/. This can be illustrated as follows:

Ry
I
R}
e
RQ

| P

| |l< >

Rn—Z '
4

Moreover, £(u'u) = £(R}) —£(R}™?) = 6(n) —6(n—2) = d so u'u = R?. By induction,
every subpath of R;kl of length d is in p. Any other subpath of length d of R} is
either uw'u = R? € R? or a proper subpath of R3u; therefore it is in p by Property 2.1.
We have proved the induction step. O

A trail in Q is a path T = a7 -, with n > 1 such that the arrows «; are all
distinct. We say that the trail is closed when t(a;,) = o(a). A path ¢ is said to lie
on the closed trail T if ¢ is a subpath of T for some m > 1. We say that two trails
are distinct if neither lies on the other.

We now have a second consequence of Property 2.1.

Consequence 2.3 ([15, Proposition 7.14]). Suppose that T = aq -+ -y is a closed
trail in Q and that d > n+ 1. Then all paths of length d that lie on the closed trail T
are in p.
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(=)
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Proof: Since A is finite-dimensional, there is a path Ry € p that lies on T. Now,
(Ry) = d and d > n + 1 so, without loss of generality, we may suppose that Ry =
(1ag - - ap)™a1ay - - a for some 1 < s <n withd=nm+sand m > 1. Let p =
(vrag - -ap)™, g =aias - ag, and 7 = (Qgq1 - - apay -+ - ag)™. Then pg = Re = gr
and we can apply Property 2.1 so that all subpaths of pgr of length d are in p. Now,
any path of length d that lies on the closed trail T is a subpath of pgr and hence is
in p. O

We now introduce Condition 2.4. Jawad showed in her PhD thesis [15] that this
condition is sufficient for A to satisfy (Fg); we give a proof in Theorem 2.7 below.

Condition 2.4 ([15, Theorems 7.11 and 7.15]). We say that a d-Koszul monomial
algebra A satisfies Condition 2.4, or (C2), when the following properties (1) and (2)
both hold:

(1) Let a be a loop in Q1. Then a? € p but there is no path in p of the form a?~13
or Bat~! where 8 is an arrow that is distinct from a.

(2) Let T = a1 -+, be a closed trail in Q with n > 1 and «; € Q5 for all 4 and
such that pr = {a1 - g, @2 @gagyr, ... ,anaq -~ ag-1} C p. Then there
are no elements in p \ pr which begin or end with the arrow «;, for all i.

Remark 2.5. If T = a7+« is a closed trail, then the subscript 7 of «; is taken
modulo n within the range 1 < ¢ < n. Thus pp is the set of all paths of length d that
lie on the closed trail T

Remark 2.6. Suppose that Condition 2.4 is non-empty, that is, there is a loop or a
closed trail with the given properties. Then the description of the projective modules
in Subsection 1.2 using overlaps shows that Ay has infinite projective dimension as a
A-module, and hence A has infinite global dimension.

2.2. Condition 2.4 is sufficient for A to satisfy (Fg). The proof of Theo-
rem 2.7 uses the description of the Hochschild cohomology ring modulo nilpotence of a
(D, A)-stacked monomial algebra from [13, Theorem 3.4]. We recall the definition of a
(D, A)-stacked monomial algebra in Subsection 3.1. The Hochschild cohomology ring
modulo nilpotence is the quotient HH*(A) /N, where N is the ideal of HH*(A) that is
generated by the homogeneous nilpotent elements. It is well known that HH*(A) is a
graded commutative ring, so, since char(K) # 2, every homogeneous element of odd
degree squares to zero. Moreover, A is the set of all nilpotent elements of HH"(A).
Our calculations involving HH*(A) use the minimal projective A®-resolution (P*,9*)
of A from [1]; see Subsection 1.3.

Noting that a d-Koszul monomial algebra is a (d, 1)-stacked monomial algebra
(see [13]), we apply [13, Theorem 3.4] in the special case where D = d and A =
1, and this simplifies the hypotheses. Specifically, if there is a closed path C' in Q
with CP/4 € p, then C% € p and it is immediate that C' has length 1 and is necessarily
a loop.

Theorem 2.7 ([15, Theorems 7.11 and 7.15]). Let A = KQ/I be a finite-dimensional
d-Koszul monomial algebra with d > 2. Assume that A satisfies Condition 2.4. Then
A satisfies (Fg).

Proof: We keep the notation of Condition 2.4.

Let aq,...,a, be the loops in the quiver Q, and suppose that «; is a loop at the
vertex v;. Since A is a finite-dimensional d-Koszul monomial algebra, o is necessarily
in the minimal generating set p. By Condition 2.4(1), for each i = 1,..., u, there are
no elements in p of the form af_l B or Baf_l, where ( is an arrow that is distinct
from «;.
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We need to show that there are no overlaps of a¢ with any element of p\ {a¢}. This
is immediate if d = 2, so suppose that d > 3. If R € p\{af} and R overlaps af, then
either R = ofb or R = baj, where 1 < s < d—1 and b is a path of length d — s which
does not begin (respectively, end) with the arrow «;. Suppose first that R = «fb.
Then R overlaps af with overlap of length 2d — s as follows:

This is a maximal overlap since «; is not the first arrow of b and thus gives an
element R} € R3. However, {(R3}) = d+1 since A is d-Koszul. Thus 2d —s = d+1 and
s0 5 = d—1. But then R = a?~'b and b is an arrow distinct from «;, which contradicts
our hypothesis. The case where R = ba; is similar. So there are no overlaps of a¢ with
any element of p \ {a¢}. Moreover, as A is a finite-dimensional monomial algebra, it
follows that the vertices vq,...,v, are distinct.

Let Ty41, ..., be the distinct closed trails in @ such that all paths of length d
that lie on these closed trails are contained in p. For each i = u +1,... 7, we write
T; = o1 - - 0 m,, Where the «; ; are arrows, and set

pr = {1 Qid, 02 Qg s Q1 QG d—1 )

Then pr, is contained in p. By Condition 2.4(2), for each closed trail T; (i = u +

1,...,7), there are no elements in p \ pr, which begin or end with the arrow «; ;, for

all j =1,...,m;. So no arrow «; ; has overlaps with any element in p \ pr,.
Fori=u+1,...,r,let T, 1,...,T; ., be defined by

Tii =T, = 0j1052 - Qi m,,

Tio = ;03 0 m, 01,

Ti,mi =0 m; 01 O my -
Then the paths T} 1,...,T; , are all of length m; and lie on the closed path 7.

We now describe a commutative Noetherian graded subalgebra H of HH*(A) with
H® = HH°(A). As noted above, A is a (d,1)-stacked monomial algebra. Moreover,
Condition (Fg) is always satisfied if the global dimension of A is finite; therefore we
may assume that gldim A > 4. Hence we can apply [13, Theorem 3.4], which gives
HH*(A)/N = K21, .., 2| /{zqxp for a # b), where

e for ¢ = 1,...,u, the vertices vy,...,v, are distinct and the element x; corre-

sponding to the loop «; is in degree 2 and is represented by the map P? — A,

where for R? € R?,
o(R?) @ t(R?) b= 00 1
0 otherwise

e and for i = u+1,...,r, the element x; corresponding to the closed trail T; =
Q1 Qm, is in degree 2, such that pu; = m;/ ged(d, m;) and is represented
by the map P2* — A, where for R%*: ¢ R?H:,

o(T; ) if R%i = ﬂdéng(d’mi) forall k=1,...,m;;

o(R?M) @ t(R*M) —
( ) ( ) {0 otherwise.
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Let H be the subring of HH*(A) generated by Z(A) and {z1,...,z,}. Since Z(A) =
HH’(A) and HH*(A) is graded commutative, it follows that

H=Z\)[z1,...,z.]/(xqxp for a # b)

and so H is a commutative ring. Moreover, Z(A) is finite-dimensional so is a commu-
tative Noetherian ring. Thus H is a Noetherian ring (see [21, Corollary 8.11]).

The rest of this proof shows that A satisfies (Fg), with the algebra H that we
have just described. Following the discussion in Subsection 1.2, we identify Un>0 R"
with a basis of F(A). The action of a homogeneous element z € HH"(A) on E(A)
is then given by left multiplication by > j R, where the sum is over all j such that
z(o(R})@H(R})) # 0. Thusifz; € HH?(A) corresponds to the loop «;, then the action
of z; on E(A) is given by left multiplication by af. And if z; in degree 2; corresponds
to the closed trail T;, then the action of z; on E(A) is given by left multiplication
by 221:11 Tf}é gcd(d,mi).

Set N = max{3,|z1],...,|x|,|Q1]}. We show that ngo R™ is a generating set
for E(A) as a left H-module and thus E(A) is finitely generated as a left H-module.

Let R € R™ with n > N. Then ¢(R) = §(n) > 2d and we can write R =
ajaz - -+ sy, where the a; are in @;. From Consequence 2.2, all subpaths of R of
length d are in p, so we may illustrate R with the following diagram:

(G1az - g Gd+1 0 A5(n)—d+1 " As(n)

Now, n > N > |Q;| so there is some repeated arrow. Choose j, k with k& minimal
and k£ > 1 such that a; is a repeated arrow, a;,...,a;4r—1 are all distinct arrows
and a4 = a;. Write

R=(a1--aj-1)(a; aj+r—1)(aj@j 1541 A5(n))-
There are two cases to consider.

Case (1): k= 1. Then a; = aj4+1 and so a; is a loop. It follows that

R=(a1---aj-1)(aja;)(ajt2 - asen))-

Suppose first that j < d — 1. Then j +d — 1 < §(n), so from Consequence 2.2,

a?aj+2 - @j4d—1 is in p. But a? € p and we have already shown that there are
no overlaps of af with any element of p\ {af}. Thus a; = aj42 = -+ = ajia1.

Inductively we see that R = (aq - - - aj,l)aj(")fjﬂ_ Similarly, a; - - - aj,la?_jﬂ isin p
and d — j +1 > 2. Again, there are no overlaps of af with any element of p\ {a¢} so
aj =a1 =+ =0aj—1- Thus R = a,j(n)

Now suppose that j >d. Then j—d+1 > 1, so by Consequence 2.2, a;_q41 - Gj—16;
is in p. As there are no overlaps of a‘} with any element of p\ {a?}, it follows that

aj_gi1 = - = a;_1 = a;, and inductively R = a’"'(a;,o- “+Qg(n))- Using Conse-

J
_ - . s
;-l 1aj+2 is in p so a; = a;j42. Inductively, we have R = a’™.

quence 2.2 again, a ]

Hence, for all j,

sn) (a;l)(”/Q) if n is even;
(@)@ =D/Da; if n s odd.
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Let z; be the generator in H corresponding to the loop a;, so 1 < ¢ < u and
|z;| = 2. Then z; acts on E(A) as left multiplication by a?. Hence

R (z:)™?o(a;)  if n is even;
| (@)= D/2g; if pis odd

with z; € H, o(a;) € R°, and a; € R', so that o(a;) and a; are in |J~_, R™.

Case (2): k > 1. We note by our choice of j, k that a;---a;y,—1 is a closed trail of
length k, which we denote by T'. Let pr be the set of all paths of length d which lie
onT.

The first step is to show that pp is contained in p. If d > k + 1, then this follows
from Consequence 2.3. So, suppose that d < k. Recall that

R=(a1--aj_1)(a; aj+r—1)(aj@j 1541 A5(n))-
Then:

Ajaj41 """ Qjtd—1,

Aj4+1Q5+42 - Aj+d,

Ajtk—dAj+k—d+1 """ Cj+k—1,
Aj+k—d+10j4+k—d+2 """ Aj+k—10j

are all paths of length d which are subpaths of R, and so, by Consequence 2.2, are
in p.

Now a;aj41 - Gjyd—1 OVerlaps ajik—d41Gj4k—d+2 - Gj+k—1a;. S0 there is an el-
ement Rf € p such that Rf maximally overlaps a;jyx—d+10j4+k—d+2 " Gj+k—1a; With
maximal overlap of length d + 1. Then we have that

2
R = ajyk—d42Qj1k—dy3 Qj4k—105Q511
. . . _ 2
and this maximal overlap is (@j4{k—d+1@j4h—d+2 " Cjtk—125)Qjy1 = Gjrh—d+1 R

Continuing in this way, aj41a42 - - - aj4+4 overlaps R2. So there is an element R3 € p
such that RZ maximally overlaps R? with maximal overlap of length d + 1. So

R% = Qj4+k—d+3Aj+k—d+4 " " Aj+k—1050541054+2
and this maximal overlap is Rfaﬂ_g = aj+k_d+2R§. Inductively, we see that every
path of length d on the closed trail T is in p. Hence pp is contained in p.

It follows from Condition 2.4(2), that there are no paths in p \ pr which begin or
end with any of the arrows a;,a;41,...,6545—1-

Next we show that R can be written in the form R = p1Tp,, where p; is a suffix
of T"and p» is a prefix of T'. If d = 2, then a;ja;11+1 is a subpath of R of length 2 and
hence is in p. By Condition 2.4(2), a;aj4+x+1 must be in pr and s0 aj1x+1 = Gj41.
Then aj4k410j4k+2 = @j+10j+k+2 and is a subpath of R of length 2, so we must
have that a;iry2 = ajyo. Inductively, we see that R lies on the closed trail 7. So
R = p1 Ty, where p; is a suffix of T" and ps is a prefix of T.

Solet d >3, and suppose first that d<k. Then a;;—q4+2" - Gj4r—10;0; k1 iS asub-

path of R of length d which begins with the arrow a;jx—a4+2€{a;j,aj41,...,0j45-1}-
So, by Consequence 2.2 and Condition 2.4(2), this path is in pr and hence
aj+k+1 = ajy1. Inductively, we have ajir12 = @j42,0 4443 = aj13,... Similarly,

@j_10; - aj+4—2 is a subpath of R of length d which ends with the arrow a;q—2 €
{aj,aj4+1,...,aj45—1}. So this path is in py and hence a;_1 = aj+x—1. Inductively,
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we have aj_9 = aj4r—2, Gj—3 = Aj1k—3,... S0 we may write R = p;T9p,, where p;
is a suffix of T and ps is a prefix of T'.

Now suppose that d > k + 1 (with d > 3). We consider j < d — 1 and j > d sepa-
rately. Let ] < d—1. Then _] +d < 5(n), SO Aj41Q542 " Qj4k—1AjQj4k+41 " Aj4d is a
subpath of R of length d and starts with the arrow a;11 € {a;,aj41,...,¢j45-1}. So
by Consequence 2.2 and Condition 2.4(2), this path is in pr and hence a; 11 = aj41,
Qjikt2 = Qjt2,... S0, inductively, we may write R = (ai---aj_1)T9ps, where
p2 is a prefix of T. Now ajaz---a;j_1---aq is a subpath of R of length d and ends
with the arrow aq € {aj,a;41,...,aj45-1}. So by Condition 2.4(2), this path is
in pr and hence a;_1 = ajtr—1, Gj—2 = Gj4k—2,... Thus R = pT9,, where
p1 is a suffix of T and po is a prefix of T. Finally, suppose j > d. Then, we
know that ajix—q---aj-1a;---aj4r—1 is a subpath of R of length d and ends
with the arrow a;jyrx—1 € {aj,aj41,.-.,6j45-1}. So by Consequence 2.2 and Con-
dition 2.4(2), this path is in pr and hence a;_1 = aj4k-1,0j—2 = ajyk—2,... Also
Qjtk—d+2 " 0j—10;5 - Qjrk+1 is & subpath of R of length d and starts with the ar-
rOW @jyk—d42. But we have just shown that ajir—at2 € {a;,aj41,...,aj45-1}. So
again, this path is in pr and hence a;yr41 = aj41. Inductively, ajyri2 = aj40,...
Thus R = p1T%ps, where p; is a suffix of T and ps is a prefix of T

So, in all cases, R = p1T9py, where T' = a; - - - aj4+r—1, p1 is a suffix of T" and py is
a prefix of T

Without loss of generality, relabel the trail 7" and write R = T9p, where T =
ay---ag, pis a prefix of T, §(n) = kq + ¢(p), and we choose ¢(p) in the range 1 <
£(p) < k. Note that R has a repeated arrow so ¢ > 1, and if ¢ = 1, then 4(p) > 1;
moreover, if £(p) = k, then p =T and R = T9+!.

Let z; be the generator in H corresponding to this closed trail T, so u+1 < i < r.
Let

Ty =T =aiaz---ag,

T2 = azas - - - agaq,

Tk =arar - ap—1.
The action of x; on E(A) is left multiplication by
T;l{ ged(d,k) + T,;lé ged(d, k) 4ot 7—,;1]/C ged(d, k)

and |z;| = 2k/ged(d, k). Consequently, N > 2k/gcd(d, k). Now R = T with 1 <

0(p) < k. Write ¢ = MC—FM with 0 < w < m—l. Then

R= (Td/ gcd(d,k))c(Twp).

Moreover, from the construction of R as a maximal overlap, we see that T%p is also
constructed as a maximal overlap and so corresponds to a basis element of E(A). We
have £(T"p) = kw + £(p) < k(g — 1) +k = kd/ ged(d, k) = 6(2k/ ged(d, k). So
T%p corresponds to a basis element of E(A) of degree at most 2k/ ged(d, k), that is,
T%p is in R™ for some m < N.

Let 2 < | < k; we show that Yfl/ng(d’k)(Twp) = 0 in E(A). We have T;; =
ajaj41 - agay a1, T = ajag---ag, and p = araz - - agpy with 1 < £(p) < k. If

Ti,l/ng(d’k)(T“’p) represents a non-zero element in E(A), then t(a;—1) = 0(a1) so that
ay---aj—1 is a closed trail. But [ — 1 < k, so this contradicts the minimality of k.
Hence Tldl/ ged(d.k) (T¥p) =01in E(A) for 2 <1< k.
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A similar argument also shows that
k

ZTd/gcd dk)) Z d/gcd dk)
( 1=1
Thus
k c
R = (T Bed(dk))e oy — Z(Td/ ged(d)yc (Z Td/ god(d, k)) (Tp).
1=1
Hence R = z$(T"p) with z; in H, and T"p € R™ for some m < N.

Hence each R € R™ with n > N can be written in the form hr for some h € H and
r e Ufj:o R™. It follows that UfLO R™ is a generating set for E(A) as a left H-module.
Thus we conclude that A has (Fg). O

Example 2. We return to Example 1. Condition 2.4 is satisfied: the only closed trails
that are not loops are the cycles of length 3 (whose arrows are the -, ); for all of these
closed trails T, we have pr = p\ {a?}. Hence by Theorem 2.7 the algebra A = KQ/I
satisfies (Fg).

2.3. Conditions equivalent to (Fg) for a d-Koszul monomial algebra. Our
aim is now to prove the converse, and more precisely, the following theorem.

Theorem 2.8. Let A be an indecomposable finite-dimensional d-Koszul monomial
K-algebra with d > 2. Consider the following statements:
(C1) A satisfies (Fg).
(C2) Condition 2.4 holds for A.
(C3) Zg(E(A)) is Noetherian and E(A) is a finitely generated Zg(E(A))-module.
(C4) E(A) is finitely generated as a module over Zg (E(A)).
Then (C4) implies (C2), which in turn implies (C1).

Moreover, if the field K is algebraically closed, then the four statements are equiv-
alent.

We shall need the description of the Ext algebra F(A) from [10], which we recall
here.

Let Q°P be the opposite quiver of Q, so that Q" = Qy and Q¥ = {a:j — i |
there is a: i — j in Q1 }.

Now consider ‘A = KQ°P/J with J = (+p), where the orthogonal is taken with
respect to the natural bilinear form KO3 x KQ, — K, that is, (B, 81,1 - o)
is equal to 1 if a3 ---ag = B1--- B4 and is equal to 0 otherwise. (Recall that, for
anyn >0, Q, denotes the set of paths of length n in Q.)

Ifd =2 set B="'A and if d > 3, let B = @n>0 B,, be the algebra defined as
follows:

o B, ="'Aj(n);

e for x € B,, and y € B,,, define z -y € B,,41, by

0 if n and m are odd;
Ty =
Y xy (in'A) if n or m is even.

Note that if n or m is even, d(n) + é(m) = §(n + m), so that this defines a graded
algebra B.
Then by [11, 2, 10], the algebras E(A) and B are isomorphic (for d > 2).
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Since A is monomial it is easy to see that the algebra 'A is d-homogeneous monomial
and that the set o of paths @, - @ € Q3 such that aq---aq € Qg is not in p is
a minimal generating set for J consisting of paths of length d. There is a basis By
of 'A consisting of all paths 7 in Q°P such that no subpath of p is in o. It follows from
Consequence 2.2 that no subpath of length d of R; is in o. Therefore R, € Biy.

As we mentioned in Subsection 1.2, there is a basis of E(A) indexed by [J,,5oR"

-n

that corresponds, via the isomorphism with the algebra B, to the set of paths R;

1

for n > 0 and R} € R™. We then have an embedding of the basis |, 5 R" of B
into B, where R" = {R, | R* € R"}; denote by Bp its image, which is a basis of B.

We now define several gradings on A, ‘A, and B.

There are natural gradings on A and on ‘A given by the lengths of the paths; denote
the length by £ for both algebras. The degree of a homogeneous element z in B will be
denoted by |z|, so z € IA(;(W) or, in other terms, |z| = k if, and only if, £(z) = §(k).

The algebra ‘A is also multi-graded by N€: for each path 7 in Q°P, we define an
element 3(p) = (04(P))aco, € N as follows:

o if {(p) = 0, then d(p) = (0)aco,;
o if {(p) > 0, then ?,(P) is the number of occurrences of o in p (it is 0 if @ does
not occur in p).

Since 'A is monomial, the ideal J is homogeneous with respect to this multi-degree
and therefore 'A is multi-graded. In B, if # and y are homogeneous and |z| or |y| is
even, then 0, (zy) = 0,() 4+ 04 (y), but if both degrees are odd, then ?,(xy) = 0.

Let Z := Zy (B) be the graded centre of B. It is generated as a subring of B by the
homogeneous elements z € B such that, for all homogeneous y € B, zy = (—1)¥/12lyz.
Note that Z C @eego eBe; therefore Z is generated by elements that are linear
combinations of (non-zero) cycles in Q°P.

Moreover, it can be checked easily that the graded centre Z of B is generated
by elements z that are homogeneous with respect to the grading | - | and the multi-
degree 0 and such that, for any element y € B that is homogeneous with respect to
the grading | - |, we have zy = (—1)/1#lyz2.

Remark 2.9. If d = 2, then B = E(A) is generated in degrees 0 and 1, so in order
to check that an element of B is in Z, it is sufficient to check that it is a linear
combination of cycles and that it commutes or anti-commutes with all arrows in Q°P.

If d > 3, then B = E(A) is generated in degrees 0, 1, and 2. Therefore, when
checking that an element is in Z, we need to check that it is a linear combination of
cycles and that it commutes or anti-commutes with paths of degrees 1 and 2, that is,
arrows and (non-zero) paths of length d in Q°P.

The proof of Theorem 2.8 relies on some preliminary results. These are Lemma 2.10,
Proposition 2.11, and Lemma 2.13. For the first of these, we start with the following
observation about loops. Suppose « is a loop in Q;. Since A is finite-dimensional,
there is some integer N such that oV € I; therefore oV has a subpath of length d
that is in p and so a? € p. Therefore @ ¢ o and it follows that @ # 0 in 'A for
all j > 0 and that @) #01in B for all j > 0.

Lemma 2.10. Let a be a loop in Q1 and let n > 2. Then

(1) if d=2, @™ € Z if, and only if, n is even and « satisfies Condition 2.4(1);
(2) ifd >3, @™ € Z if, and only if, a satisfies Condition 2.4(1).
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Proof: First note that if n is odd, then

o ifd=2 a"a=a"t" # (—1)"aa"”, therefore @™ =a" ¢ Z;
e if d >3, @™ anti-commutes with all arrows since the products are 0 in B.

Therefore we may assume that n > 2 is an even integer and that @®™ € Z. Set e =
o(a).
Let 8 be an arrow ending at e with 5 # «. Then, in B,

aé(n)%»dflﬁ — a&(n) . adflg — adflg . 66(71) _ adflgaé(n)

(the element @13 is in degree 2). Therefore we have an equality admt+d=13 —
a?=1Ba’(™) between two paths in the monomial algebra 'A, so that both paths are
zero. In particular, @™ +9=15 contains a subpath in o, and since @® ¢ o, we must
have @?~ '3 € o. Tt follows that Sad~! & p.
Similarly, if 3 is an arrow that starts at e with 8 # «, then a?~13 ¢ p.
Therefore « satisfies Condition 2.4(1).

Conversely, assume that o satisfies Condition 2.4(1).

Let 8 # a be an arrow and let n > 2. By assumption, a? ' ¢ p and pa?"! & p.
It follows that fa?"! = 0 = @? 'f in 'A (either in o or not composable) and therefore
that @B = 0 = ga’™ since d(n) > §(2) > d — 1. The path @™ anti-commutes
with all elements of degree 1.

In particular, if d = 2 and n is even, then @™ € Z.

Now assume that d > 3 and consider commutation with elements in By. As a vector
space, Bs is generated by the paths p of length d such that p € p. Let p = 51 --- 84
be a path in p. Since P has degree 2 in B, products of elements in B with p in B and
in'A are equal

If p = a?, then clearly @®(™p = pa’™.

If p # a? ,setj—mm{z|1<z<d,6i7éa} andk‘:max{i|l i<d, B # al.
By assumption, a®~'8; & p and Bra?"! & p, therefore f;a%"! = 0 and @~
in 'A. We have assumed that n > 2, so §(n) > d and therefore @5 = 0 = pa®™
in 'A and in B, and @’ anti-commutes with elements of degree 2.

Finally, we have proved that @’ is in Z whenever d = 2 and n > 2 is even
ord>3andn > 2. O

For the next result, we need some more terminology for closed trails. Let n > 2 and
let T = -+ ay be a closed trail in Q with pr = {a; -+ @j4q-1 | 1<i<n}Cp. A
subcycle of T is a cycle of the form ¢ = «; - ozj with 1 < i< j<nand{(q) <{T).
We say that T" has a repeated vertex if T' = -+ q;—1vQ; - - Qi p—1VQ1f - - - @y fOr
some %, k, and vertex v such that the paths «; - -- @ 4x—1 and Qitk - - Q- QG
are non-trivial paths in K Q.

We make the following assumptions that we use in Proposition 2.11 and Lem-
ma 2.13. The reason for these specific assumptions becomes clear in the proof of
Theorem 2.8.

(i) None of the «; are loops.
(ii) No subcycle of T satisfies the same assumptions as T' (that is, there is no sub-
cycle q of T of length at least 2 with p, C p).

Proposition 2.11. Let T = oy -+ - ay, be a closed trail with n > 2, pr C p, and such
that assumptions (i) and (ii) hold Let p be a path of length d such that 9(p) = 0 if
B &{a1,...,an}t and which does not lie on T. Then p & p.
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Proof: Let p = ---v4 with v; € {aq,...,a,} for i =1,...,d. The path p is a non-
zero path in K'Q so t(7;) = o(v;41) for all 4. Suppose that v1 = a; so p = ajy2 -+ Ya
and v2 € {ai,...,a,} with t(a;) = o(a;41) = 0(y2). If T does not have a repeated
vertex, then necessarily a;41 = 2. Inductively, p = oja41 - j1q—1 and hence
p lies on the trail T'. This contradicts our hypothesis. Hence T has a repeated vertex.

Suppose that v is a repeated vertex so that T" has a proper subpath ¢ of length &
with ¢ = vqu for some k; thus 2 < k < n — 1 since T does not have any loops and ¢ is
a closed trail. We claim that k& > d. Indeed, if we had k < d, then by Consequence 2.3
every path of length d that lies on ¢ would be in p, that is, p, C p, with £(q) < £(T).
But this contradicts assumption (ii). Hence k > d.

Now suppose for contradiction that p € p. As above, let o; be the first arrow in p.
We know that p does not lie on T" and that T has a repeated vertex, so we may write

p:aj“'aj+’l“71’y7‘+1“.,yd7

where 7 > 1, ypq1,...,7a € {a1,...,a0}, Hajir—1) = o(ajsr) = 0(Yr41), and
Vr+1 7# @jqr. Then there is some ¢ such that 7,41 = o and t # j + r (mod n).
Moreover, t(o;—1) = 0(a¢) = o(a;4r). We may illustrate this as follows:

—_— .

%‘%

Qjtr—1

T L\yl
623

(We make no assumption as to whether 7,19 is or is not equal to a;11.) We note that
the path oy, - a1 - 0¢ - ajyr—1 is a cyclic permutation of T' and has length n.
Moreover, from the previous part of this proof, both a4, - ;-1 and oy - - aj1r—1
are paths of length at least d.

Let S = atayy1 - ajyr—1. Then S is a closed path in KQ of length at least 2
and is a subcycle of T. There is an overlap ajir—q-- ;- @j1r—1 With p so
the subpath a;ir—g41- - aj4r—10¢ must also be in p. Then we have an overlap
of ajpr—dy1 - Ojpr—10¢ With ayopq1 -+~ erq—1; by Property 2.1, all subpaths of
length d of the path

Qjtppr—d41 " Ojppr—_ 104 Q41 * - g d—1

must also be in p. Thus every path of length d that lies on S is in p. Hence ps C p.
So S is a subcycle of T' that satisfies the same assumptions as 7', and this contradicts
assumption (ii). Hence p & p. O

Remark 2.12. We keep the assumptions and notation of Proposition 2.11. Then T and
all the paths lying on T are in the basis B:, since none of their subpaths of length d
are in o; those of length 6(k) for some k > 0 are in the basis Bp.

Set CTZ = Q- pQy s Qy—1 SO that Ti =Q—1 01Oy O € IA for all ¢. Then
for any 7 > 1 we have

Tla,£0 < k=i—1,

aﬁf#o — k=1
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Lemma 2.13. Let T' = a1~y be a closed trail with n > 2 and pr C p that
satisfies assumptions (i) and (i) and set z; = S0 T} with nj = d(u) for some
integer u > 2 and with nj = v even if d = 2. Then z; € Z if, and only if, T' satisfies
Condition 2.4(2).

Moreover, if T does not satisfy Condition 2.4(2), then no element in B that is
homogeneous with respect to | - | and 0 (when viewed in 'A) and that is a linear
combination of non-trivial cycles that lie on T is in Z.

Proof: First assume that z; € Z. Fix an integer ¢ and let e = t(a;). Suppose for
contradiction that there is a path p of length d —1 starting at e such that a;p € p and
D # Qg1 Qirg—1. By Remark 2.12; at least one arrow in p is not in {ay,...,ay},
therefore p@; is not a subpath of any of the paths that occur in z; (note that ¢(z;) >
§(2) = d > £(p)). The relation @;pz; = z;a;p in B becomes, in ‘A,

pail = zpa;.

Since 'A is monomial, it follows that f)&iTZ contains a subpath in o, that is, there
is a subpath of length d of Tij a;p that is not in p. It cannot be a subpath of Tij «;
because we have assumed that pr C p. Moreover, we have assumed that a;p € p. We
also have a;_g41---;—1; € pr C p and p is d-covering (Property 2.1); therefore
every subpath of length d of a;_g41 - ;—1;p is also in p and so is every subpath
of length d of T Z] a;p, and we have obtained a contradiction. Therefore T satisfies
Condition 2.4(2).

Conversely, assume that T satisfies Condition 2.4(2). We prove that, for all j > 1
such that nj = §(u) for some integer u > 2, and such that nj = u is even if d = 2, we
have z; € Z.

o First note that if d > 3 and |z;| is odd, then z; anti-commutes with all arrows

(the products are 0 in B). Therefore assume that |z;| is even and that d > 2,
and let 8 be an arrow. . ,

If 3 = oy for some k, then opz; = akﬁ and z;op, = Tiﬂak using Re-
mark 2.12, and these paths are indeed equal, so that sz = sz = (71)‘21‘”‘2]-3.

If B¢ {ai,...,an}, then BT, = 0 =T, for all i by assumption; therefore
Bzj =0= (_1)\21\%\2],3

e Now assume that d > 3 (and |z;]| is still even) and consider commutation with

elements in By. As a vector space, By is generated by the paths p of length d
such that p € p. Let p = (1 --- B4 be a path in p with ; € Q; for all 7. Since D
has degree 2 in B, products of elements in B with p in B and in 'A are equal.

If p lies on T, then p = a, - - - g +q—1 for some k, and it is easy to check that
pzj = 20 = (—1)1%1Pl2,5 (as for commutation with an arrow).

If p does not lie on T, then by Condition 2.4(2), the first and last arrows in p
are not in {ay, ..., a,}. Moreover, for all i, we have o; 31 - - - Bq—1 & p; it follows
that pz; = 0. Similarly, for all 4, we have 35 --- Sqc;; & p (since it ends with o
and is not in pr), therefore z;p = 0. Finally, pz; = z;p = (—1)‘21”5'2']@.

We have proved that z; € Z.

Now let z be an element in Z that is homogeneous with respect to |- | and 9 and
that is a linear combination of cycles that lie on 7. Assume that £(z) > 0; by (i) z is
not a linear combination of arrows so |z| > 2. Put z = >, \j¢; with A\; € K and
the ¢; cycles in Q°P that lie on T. Since z is homogeneous with respect to | - | and 9
and the ¢; lie on T, the ¢; are cyclic permutations of ¢;. Up to relabelling, we may

. i1 _ .
write ¢; = TZ Q@i—1 - Q;_g for some fixed s with 1 < s < n (and m = n).
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We first consider the case where |z| is even. Then we must have ajz = zay, for
. _ =il _ i1 _ .
all k, that is, > 1 oD @iq - Qims = >0 NI @1+ @—sy. Using Re-

mark 2.12, this is equivalent to

e — il T
ATy Qg1 Qs = Mot 1T g4 10kt s - 10

Therefore Ay = 0 = Agyss1 or k+ s =k (mod n) (that is, s = n), and A\ = Agy1-

This is true for all k, so if z # 0, then z = A1 z; with nj = £(z) = §(|z|).

We now consider the case where |z| is odd.

If d = 2, then the same reasoning as in the even case shows that Ay = (—1)1*I\;
for all k with1 <k <n—1and \; = (—1)|Z|)\n; therefore A\ = (—1)”|Z|)\1 = -\
(because nj = £(z) = |z| is odd, hence n is odd) so that Ay = 0 for all ¥ and
finally z = 0.

Now assume that d > 3. Since z € Z, we have Qx4q—1 - Oz = 20)4dq—1 - - - O for
all k, that is,

n n

_ Y Rk S _ i1 — _
E NilQpd—1- Ty Qg s = E ATy @ Qs Qg1 O
=1 i=1

Using Remark 2.12, this is equivalent to
1

M@ Ty @ Thes = MosordDops o g e
EQk+d—1" Okl Qp—1"" Ok—s = Akts+dd g4s+d¥k+s+d—1 """ Qk+d¥k+d—1 " Ok-

Therefore A\ =0 = Agystqaor k+s+d—1=k+d—1 (mod n) (that is, s = n), and
)\k = )\k+d.

When s = n, we have nj = £(z) = 0(|]z]) = ‘Z‘gld + 1, therefore n and d are
coprime. It follows that if z # 0, then all the A; are equal so that z = A1 z;.

We have proved that if z is a non-zero element in Z that is homogeneous with
respect to | - | and  and which is a linear combination of non-trivial cycles that lie
on T, then if d = 2, we must have |z| even, and for all d > 2, z is then a non-zero
scalar multiple of z;. Therefore z; is in Z and by the first part of the proof, T" satisfies
Condition 2.4(2). O

We now have all the tools we need for the proof of Theorem 2.8.

Proof of Theorem 2.8: The fact that (C2) implies (C1) is Theorem 2.7. The impli-
cation (C3) = (C4) is clear, and if in addition K is algebraically closed, then the
implication (C1) = (C3) follows from [7].

We now prove that (C4) implies (C2). Suppose that (C2) does not hold, that is,
Condition 2.4 does not hold. Assume for contradiction that B is a finitely generated
Z-module, generated by elements g,,...,g, that are homogeneous with respect to
both the grading | - | and the multi-grading 0.

We first assume that Condition 2.4(1) does not hold, so that there is a loop « that
does not satisfy this condition. Then for all j > 2, @) ¢ Z by Lemma 2.10.
Now consider @®) € B for some even integer k > 2. Then

05(65(’“)) _ {5(k) if B = Q;

0 if 8 # «
and |65(k)| = k. By assumption, and using the fact that @), d1,---, 0, are homoge-
neous with respect to | - | and 0, there exist elements Egk) in Z, 1 < < t, that are

homogeneous with respect to | - | and 9, such that @®*) = 22:1 ﬂgk)gi.
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Since @®®) is homogeneous with respect to | - | and 9, we can assume that for

all 7 we have |ﬂ£k)§i\ =k and 2(u") + 2(g;) = o(ag’“)gi) =o(@®). If 8 # «, then

Dlg(ﬂl(-k)) +03(g;) = 0s0 Dg(ﬂgk)) = 0 and 03(g;) = 0. It follows that Hgk) and g, are
powers of @; since Hgk) € Z, we must have \uz(-k)| =0 or 1 by assumption. If |ﬂ£k)| =1,

then [g;| = k — 1 is odd and hence, in B, we have ﬂgk)@- = 0. Therefore we may

assume that ﬂz(-k) € Z° = K. Tt follows that the sum contains only one term and that
g, is a (non-zero) scalar multiple of @) so that @®*) € spang{g,,...,7;}.

We have shown that {@®®) | k > 1, k even} C spang{g,,...,J,}. However, using
the grading | - |, we see that the a®®) |k > 1, are linearly independent over K: we
have reached a contradiction.

Therefore the Yoneda algebra F(A) = B is not finitely generated as a Z-module
when Condition 2.4(1) does not hold.

We now assume that Condition 2.4(2) does not hold, so that there is a closed
trail T' = a1 -+ a,, with n > 2 and pr C p that does not satisfy this condition. We
can make the following assumptions (and therefore use Proposition 2.11):

(i) None of the a; are loops. Indeed, if «; is a loop, then the paths a1 -+ Qipa—1
and af are in p and properly overlap, hence af_laiH is in p because p is
d-covering, therefore v does not satisfy Condition 2.4(1), and in this case we
already know that F(A) is not a finitely generated Z-module.

(ii) No subcycle of T satisfies the same hypotheses as T' (otherwise replace T' with
the shortest such subcycle).

We have seen in Lemma 2.13 that no linear combination of non-trivial cycles that

lie on T, that is homogeneous with respect to | - | and 0, is in Z.
. =5 (k .
Now consider zs) =1, Ti( ) € B for some even integer k£ >2. Then |z5(x)| =nk

and

0(k) if s T
05(2s0) = {o( ) ﬁ,gzgi Z,j

Since z5(y) and the g; are homogeneous with respect to | - | and 9, by assumption
there exist elements Hgk) in Z, 1 < i< t, that are homogeneous with respect to | - |

and 9, such that zs5) = Z§=1 ﬂgk)yi. Note that Z C @D, o, e'Ae, therefore the

_(k . o
uz(- ) are linear combinations of cycles.

Fix an integer j with 1 < j < n. Then @j4q4—1-- -ajfj(k) = Qjqrd—1" QjZ50k) =
Zt . .. .*,*(k)*.
i=1 Qj+d—1"" " QAU 5ng
Since Qjyrd—1°" 'ajTj( )
. —(F) | = _ — (k) _ _
for all i we have 2+ [@"| +1g,| = (@ 1a-1 - @G| = @) a1 Tzs)| = nk+2

_ _ . _ _ _(k)— _ _ =0i(k
and (@ g1+ @) (@) 40(G;) =0(Wyra—1 - a7V G) =0(@jar - ijTi( )

is homogeneous with respect to |-| and 9, we can assume that

(Ajpa—1- @) + D(Tf(k)), and therefore the only arrows that occur in Hgk)gi are
the @;, 1 < j < n. Moreover, Proposition 2.11 and the fact that the ﬂl(-k) are linear
combinations of cycles show that the ﬂgk) must be linear combinations of cycles lying
on T (otherwise, one at least of these cycles has a subpath of length d that does
not lie on T, hence that is in o, and this cycle vanishes in B and does not occur

(k)). Our assumption shows that these cycles must be trivial (of length 0), and

m u;
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(k)

i

—5(k) . . .
€ K. Therefore & 1q—1 - -ajTj( ) is a linear combina-
. _ _ _ _ sk )
tion of the @jiq—1---@;7;, hence {@j4q4-1 - --ajTj( ) |[1<j<nk>1keven} C

spang {@jra—1-0;9; | 1 <j<n, 1<i<t}

since Z% = K we see that @

The set {@j4q—1-- ~EJT(SJU€) | 1 < j<n, k=2 keven} is linearly independent
over K (using the grading | - |), therefore we have reached a contradiction.

Therefore the Yoneda algebra F(A) = B is not finitely generated as a Z-module
when Condition 2.4(2) does not hold. Hence (C4) = (C2). O

Remark 2.14. In the case where K is algebraically closed, we have extended the
equivalence between (C1) and (C3), already known for Koszul algebras from [7], to
d-Koszul monomial algebras with d > 3. In particular, we have the following corollary.

Corollary 2.15. Let A be a d-Koszul monomial algebra over an algebraically closed
field with d > 2. Assume that E(A) is a finitely generated Zg (E(A))-module. Then
the algebra Zg, (E(A)) is Noetherian.

3. Extension to (D, A)-stacked monomial algebras

3.1. Notation and properties of (D, A)-stacked monomial algebras. Let A =
KQ/I be a monomial algebra with the length grading as before. Let D and A be
integers with D > A > 1. From [13, Definition 3.1], A is then a (D, A)-stacked
monomial algebra if, for any minimal projective right A-module resolution of Ag, the
n-th projective module is generated in degree d4(n), where

n ifn=0o0rn=1,;
da(n) = gD if n > 2 is even;
n—1

D+ A ifn>3isodd.

When A = 1, we retrieve the definition of a D-Koszul algebra, so that a (D, 1)-stacked
monomial algebra is a D-Koszul monomial algebra.

It was shown in [13, Proposition 3.3] that if gldim A > 4, then A divides D; in
particular, D > 2A. If the global dimension of A is finite, then Condition (Fg), and in
fact all the conditions (C1)—(C6) stated in the introduction, are satisfied by A. There-
fore we shall assume throughout this section that A is a (D, A)-stacked monomial
algebra with gldim A > 4 and set d = %. We define

n ifn=0orn=1;
1)
o(n) gd = Af(ln) if n > 2 is even;
";1d+1=5A(") if n >3 is odd.

Definition 3.1. For A > 1, we define an A-path as a non-zero path p = ay -+ -y,
where all the «; are paths of length A (that is, o; € Q4 for all 4). An A-trail is an
A-path in which all the «; are distinct. An A-cycle is a closed A-path and finally an
A-loop is an A-cycle of length A.

Given an A-path p as above, an A-subpath of p is an A-path of the form «; - - - a;
with 1 < ¢ < 7 < n (note that not every A-path that is a subpath of p is an
A-subpath of p). An A-subcycle of p is a closed A-subpath of one of the non-zero
A-paths a; - - apaq - ;1 with 1 <i < n.
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We also define the A-length £4(p) of an A-path p = a1 - -, where the «; are
paths of length A, as £4(p) = n, that is, £(p) = Als(p).
We will need the following result from [13].
Property 3.2 ([13, Section 3]). Let A = KQ/I be a finite-dimensional monomial
algebra. Then A is (D, A)-stacked if, and only if, p = R? has the following properties:
(1) every path in p is of length D;
(2) if R3 € R? properly overlaps R? € R? with overlap R3u, then ((u) > A and
there exists R3 € R? which properly overlaps R} with overlap R¥u/, ((u') = A,
and v’ is a prefiz of u.

R}
Therefore p consists of paths of length D, and if A is (D, A)-stacked with gldim A >
4, we view p as a set of A-paths of A-length d.

Example 3. We include first an example from [8, Example 3.2]. Let A = KQ/I,
where Q is the quiver

and the ideal I has minimal generating set p = {afvydaf,véaBvd}. Then A is a
(6, 2)-stacked monomial algebra.
The closed 2-trails are all the paths of length 4.

Example 4. Now we give an example where, as well as closed A-trails, there are
A-loops. Let A = KQ/I, where Q is the quiver

Va4 B1 B2

5

.
72

and the ideal I has minimal generating set p = {(a1a2)?, (y172)(7374), (7374) (V172) }-
Then A is a (4, 2)-stacked monomial algebra.

The closed 2-trails are the paths of length 4 whose arrows are the -; and the 2-loops
are ayag and aary.

Example 5. Finally, we give an example in which an arrow, namely (2, occurs both
in closed A-trails and in A-loops. Let A = KQ/I, where Q is the quiver

) B3 ) Ba ) Bs ) Be )
Qs
4 A
TR B1 . Bo . Bs .

and the ideal I has minimal generating set

p = {(a1B202)?, (81B285)(B1Bs56), (BaB586) (B7Bs o), (B7sB) (B1B23) }-

Then A is a (6, 3)-stacked monomial algebra.
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The closed 3-trails are all the cycles of length 9 whose arrows are the 3; and the
3-loops are aqfsaa, asai Pa, and Boasas.

We have the following consequences of Property 3.2.

Consequence 3.3. We keep the notation of Property 3.2, with D = dA. Then the
length of u must be a multiple of A, so that R?u is an A-path, and every A-subpath
of A-length d of R3u is in p. Moreover, no other subpath of length D of R3u is in p.

Proof: Write ¢(u) = gA + r with ¢ > 1 and 0 < r < A. We prove the result by
induction on gq.

If ¢ = 1, then the path R3 € p overlaps R% € p with overlap R3us for some path ug.
If this overlap is a proper overlap (that is, R3 # R3), then f(u) = £(u) + £(u3) =
A+ £(us) so that £(uz) = (¢g—1)A+r =r and 0 < r < A. Therefore by Property 3.2
we have a contradiction. It follows that R3 = R% and u = «’ has length A and that R?
and R3 are the only A-subpaths of A-length d of R?u and they are in p. Moreover,
any other subpath of length D of R?u is a proper overlap of R? of length strictly
smaller than D + A, which is impossible by Property 3.2.

Let ¢ > 1 be such that £(u) = ¢A + r with 0 < r < A and assume that the result
is true for any proper overlap of a path in p of length D + ¢’A + v’ with ¢’ < ¢
and 0 < 7’ < A. The path R3 € p properly overlaps R3 € p with overlap R3ug for
some path ug with £(u) = £(u') + €(u3) = A+ £(u3) so that £(uz) = (¢ —1)A+r
and the overlap R3us has length D + (¢ — 1)A + r. By induction, £(u3) is a multiple
of A, therefore r = 0 and ¢(u) is a multiple of A. Any A-subpath of A-length d of R3u
is either R} or an A-subpath of A-length d of R3uz. Again by induction, they are
all in p. Finally, a subpath of length D of R?u which is not an A-subpath either is a
subpath of length D of RZus3 that is not an A-subpath, therefore not in p by induction,
or properly overlaps R? with overlap R2u"”’ with 0 < ¢(u") < A, which is impossible
by Property 3.2. O

Consequence 3.4. Suppose that D = dA. Let n > 2 and let R} be an element
of R™. Write R} = a1 ---as(,), where each «; is a path of length A. Then for all i
with 1 < i < d(n) —d+ 1, the path o -+ ajpq—1 @8 in p, that is, all the A-subpaths of
A-length d of R} are in p. Moreover, no other subpath of R} of length D is in p.

Proof: The result is proved by induction. It is clear when n = 2. Moreover, if n = 3,
since R} € R? is a maximal overlap of two elements in R?, it follows from Property 3.2
and using the notation therein that R? = R3u’ = v'R3, where v’ is the prefix of R? of
length A. By Consequence 3.3, the only subpaths of length D of R? that are in p = R?
are R} and RZ.

Now let n > 4 and take R? € R™. Then R} is a maximal overlap of R? € R?
with R '€ R"! so that R = Ry~ 'u for some path u. Write Ry~ = ay - a(n—1)
with ¢(a;) = A for all i. By the induction assumption, we have a; - - @j1q-1 € R?
for all i with i +d — 1 < §(n — 1). In particular, R} := A§(n—1)—d+1 """ X5(n—1) 18
in R2. Since R? overlaps R3 with overlap R%u, by Property 3.2 we have £(u) = A and
A§(n—1)—d+2 " " As(n—1)U = R? € R2. Since R? = Rg_lu, we have proved the first
part of the result for R7.

Now let p be another subpath of R} of length D. We already know by induction
that if p is a subpath of Rg_l, then p is not in R2. Therefore p is a subpath of R2u
which is neither R3 nor R?. By Consequence 3.3, p is not in p. We have proved that
p & R? and the induction step is complete. O
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Consequence 3.5. Suppose that D = dA. Let T = ay - - - a, be a closed A-trail in Q
with a; € Q4 for all i and suppose that d > n + 1. Assume also that T is the prefix
of an A-path in p and the suffix of an A-path in p. Then all A-subpaths of A-length d
of powers of the closed trail T are in p.

Proof: By assumption, there exist A-paths T’ and T" such that T'T € p and TT" € p.
Since A is finite-dimensional, there is a path Ry € p that lies on T, and ¢(R) = D =
dA > {(T) = nA. Therefore Ry is a subpath of length D of TV = (ay---ay)V
for some N > 2. If Ry = T™ is a power of T with m > 2 (and d = nm), then
R, overlaps itself with overlap 72™~! and the result follows using Consequence 3.3
(every A-subpath of A-length d of a power of T'is an A-subpath of T?™~1). Otherwise,
TT" overlaps Ry or Ry overlaps T'T and we can use Consequence 3.3 again to prove
that Ry is an A-subpath of 7V and then that every A-subpath of A-length d of the
overlap is in p; since every A-subpath of A-length d of a power of T is one of these,
we obtain the result. O

3.2. Characterisations of (D, A)-stacked monomial algebras that satisfy
(Fg). We now give our combinatorial condition for (D, A)-stacked monomial alge-
bras A.

Condition 3.6. We say that a (D, A)-stacked monomial algebra A satisfies Condi-
tion 3.6, or (C2), when the following properties (1) and (2) both hold:

(1) Let ¢ be an A-loop in Q4. Write ¢ = ay---aa with a; € Q; for all ¢ and
¢j=aj---aaar---a;_1 for j € {1,..., A}. Then there exists j such that c;l Ep
but there is no path in p of the form c;-i*lB or ﬂc?il, where 3 is a path of
length A that is distinct from c;.

(2) Let T = a1 - - ay, be a closed A-trail in Q with n > 2 and a; € Q4 for all ¢ and
such that pr = {a1 - ag, a2 @gds1,y ..., Qnay - ag—1} C p. Then there
are no elements in p \ pr which begin or end with the path «;, for all .

Remark 3.7. In part (1) of the condition, there is exactly one j such that c;»l € p.

Indeed, if C;l and ci were in p, they would overlap with an overlap of length at
d _
4 =

Remark 3.8. If A =1, then Condition 3.6 is equivalent to Condition 2.4.

most D + A — 1, hence by Property 3.2 we must have ¢ ¢ and therefore j = k.

We first prove that this condition is sufficient for A to satisfy (Fg).

Theorem 3.9. Let A = KQ/I be a finite-dimensional (D, A)-stacked monomial
algebra. Assume that A satisfies Condition 3.6. Then A satisfies (Fg).

Proof: The case D > 2 and A = 1 corresponds to d-Koszul monomial algebras
(with D = d) and is proved in Theorem 2.7. Therefore we assume that A > 1 so
that necessarily D > 2. If gldim A is finite, then A satisfies (Fg) (and Condition 3.6
is empty), so we also assume that gldim A > 4 so that D = dA.

The structure of this proof follows that of Theorem 2.7 by replacing each arrow
in Q; with a path of length A in Q4. We do not give all the details here, but indicate
those places where we need to provide additional arguments.

The first part of the proof is to show that the hypotheses of [13, Theorem 3.4]
hold.

Let ci,...,c, be the A-loops in Q such that ¢! € p for i = 1,...,u. (We remark
that, in the terminology of [13], these are precisely the closed paths in Q such that
for each ¢; we have ¢; # p]* for any path p; with 7; > 2 and ¢ € p. Firstly, cdep
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implies that £(c;) = A. Then, if ¢; = p;* for some path p; with r; > 2, we have
1< 4(p;) < A. Now pf” is in p and pf” overlaps itself with overlap pf”“, so there is
a maximal overlap in R? of length < D + £(p;) < D + A. But this is a contradiction
since A is a (D, A)-stacked monomial algebra. So ¢; # p;'.) By Condition 3.6(1), for
each i = 1,...,u, there are no elements in p of the form cf_lﬂ or ﬂcf‘l, where (3 is
a path of length A that is distinct from c¢;.

We need to show that there are no overlaps of ¢¢ with any element of p\ {c¢}. If
R € p\ {cd} and R overlaps c¢, then, by Consequence 3.3, either R = c{b or R = bc§,
where 1 < s < d—1 and b is an A-path with £4(b) = d — s and that does not begin
(respectively, end) with the path ¢;. Suppose that R = ¢fb. Then R overlaps cfii with
overlap of length A(2d — s). By Consequence 3.3, this is a maximal overlap since ¢; is
not a prefix of b and thus gives an element R} € R3. However, {(R}) = D + A =
(d+1)A. Thus 2d —s =d+ 1 and so s = d — 1. But then R = ¢/ "'b and b is a path
of length A distinct from c¢;, which is a contradiction. The case R = bc] is similar. So
there are no overlaps of ¢! with any element of p \ {c¢}.

Let Tyt1,-- ., T be the distinct closed A-trails in Q@ with £4(7;) > 1 such that the
sets pr, of Condition 3.6(2) are contained in p. For each i = u + 1,...,r, we write
T, = 1 Qm,, where the o ; are in Q4 so that £4(T;) = m; > 1 and

pr, = {1 Qids Qig - Qidg1, - Qi X1+ g1} € -
By Condition 3.6(2), for each closed A-trail T; (i = u+1,...,7), there are no elements

in p\ pr, which begin or end with the path «; ;, for all j = 1,...,m,. So no path a; ;
of length A has overlaps with any element in p \ pr,.

The next step is to describe a commutative Noetherian graded subalgebra H
of HH*(A) with H° = HH°(A). Applying [13, Theorem 3.4] gives HH*(A)/N =
Klzy,...,2.]/{zezp for a # b), where

e for ¢ = 1,...,u, the vertices vy,...,v, are distinct and the element x; corre-

sponding to the A-loop c¢; is in degree 2 and is represented by the map P? — A,
where for R? € R?,

v; if R? = ¢

0(R?) @ t{(R?) —
(7°) (F%) {O otherwise

e and fori =wu+1,...,r, the element x; corresponding to the closed A-trail T; =
Qi1 Qm, is in degree 2, such that pu; = m;/ ged(d, m;) and is represented
by the map P — A, where for R?* € R2Mi,

o(Tix) if R = T 5™ for all k =1,...,my;

o(R?M) @ t( R —
( ) ( ) 0 otherwise.

Let H be the subring of HH*(A) generated by Z(A) and {x1,...,2,}. As in Theo-
rem 2.7, H is a commutative Noetherian ring.

Now we show that A satisfies (Fg) with this algebra H. Again, we identify Un>o R™

with a basis of E(A). Set N = max{3, |z1],...,|z|,|Qa|}. We show that UQ{:o R™ is
a generating set for E(A) as a left H-module and thus F(A) is finitely generated as
a left H-module.

Let R € R™ with n > N. Then £4(R) = d(n) > 2d and we can write R =
aiag - - as(y), where the a; are in Q4. The proof now follows that of Theorem 2.7
by replacing each arrow with a path of length A, and with extensive use of Conse-
quences 3.3, 3.4, and 3.5, and Condition 3.6. Thus we conclude that A has (Fg). O
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Example 6. We return to Examples 3, 4, and 5. In all these examples, Condition 3.6
is satisfied and therefore (Fg) holds for A.

For instance, in Example 3, the only closed 2-trails T" such that pr C p are afvd
and vdaf and, in both cases, pr = p. In Example 5, the closed 3-trails T' such
that pr C p are those that start with 5y, B4, and 7, in all cases we have pp =
p\ {(a1B202)?} and (a1 8202)? does not start or end with a 3;.

By [6, Theorem 2.5], it follows that A is Gorenstein in each case. Moreover, it was
proved in [8] that the algebra in Example 3 has injective dimension 2.

Our aim is now to prove the following theorem, and in particular the converse of
Theorem 3.9.

Theorem 3.10. Let A be an indecomposable finite-dimensional (D, A)-stacked mono-
mial algebra. Suppose that D # 2A whenever A > 1. Consider the following state-
ments:
(C1) A satisfies (Fg).
(C2) Condition 3.6 holds for A.
(C3) Zg(E(A)) is Noetherian and E(A) is a finitely generated Zg(E(A))-module.
(C4) E(A) is finitely generated as a module over Zg (E(A)).
Then (C4) implies (C2), which in turn implies (C1).

Moreover, if the field K is algebraically closed, then the four statements are equiv-
alent.

We shall need, as in the d-Koszul case, a description of the Ext algebra of A. We
give the details of this in the appendix, and we briefly describe it here. Since we have
already proved Theorem 3.10 when A is d-Koszul, we assume here that D > A > 1
and, in addition, that D # 2A.

Let I" be the quiver with the same vertices as Q and whose set of arrows corresponds
to the set of paths of length A in Q, that is, 'y = {&: i — j | there exists o € Q4,
a: j — i}. Let - p be the orthogonal of p for the bilinear form KT yx K(Qa)q — K de-
fined on paths of length d in T" and A-paths of A-length din Q by (@g - @1, 51 - fa) =
1if ag---aq = B1---Bq and 0 otherwise, where the a; and [5; are in Q4. Set
“%A = KT/.J, where J = (+p); it is a monomial algebra and the ideal .J has a minimal
generating set o given by all the paths @, - - - @; such that the A-path a; --- a4 is not
in p.

Let B = @n20 B,, be the algebra defined as follows:

e B, = t1AtS(n)7

o for x € B, and y € B,,, define x -y € By, by

0 if n and m are odd;
z-y=<0 ifnormisequaltol andn>1, m> 1,

zy in %A otherwise.

Observe that if n or m is even and both are larger than 1, §(n)+d(m) = d(n+m), so
that the algebra B is a graded K-algebra, generated in degrees 0, 1, 2, and 3. Note
that this is also true of E(A) by [12]. Moreover, we prove in the appendix that the
algebras E(A) and B are isomorphic, generalising the description given in [10] when
A is a d-Koszul algebra. This isomorphism uses the assumption that D # 2A.

There is a basis B:, of "A consisting of all paths p in T’ such that no path in o is a
subpath of p, and basis Bg of B contained in Bs, consisting of all Rzn forall m > 0
and all Rj* € R™.

We now define several gradings, on A and on B.
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There is a natural grading on "A given by the length ¢ of the paths. Note that
if p is an A-path in Q, then £(p) = £4(p). The degree of a homogeneous element x
in B will be denoted by |z|, so x € hA5(|w\) or, in other terms, |z| = k if, and only if,
L(z) = (k).

The algebra 9A is also multi-graded by N<t: for each path 7 in T, we define an
element 3(p) = (04(P))aco, €N as follows: write the A-path pin Qasp = a; - -+ ay,
where each «; is in Q4;

o if {(p) =0, then 3(p) = (0)aco;;
e if {(p) > 0, then 0, (P) is the number of «; that are equal to « (it is 0 if none of
the «; are equal to «).

Note that even if « is a subpath of p, we can have 9, (p) = 0 (if « is not one of the ay,
that is, p = qar, where ¢ and r are paths in Q whose lengths are not multiples of A).

Since 1A is monomial, the ideal .J is homogeneous with respect to this multi-degree
and therefore “A is multi-graded. In B, if  and y are homogeneous and |z| or |y|
is even with both degrees at least 2, then 0, (zy) = 04(z) + 04(y), but 04(zy) = 0
otherwise.

Let Z := Z4(B) be the graded centre of B. As in the d-Koszul case, it is generated
by elements z that are homogeneous with respect to the grading |- | and the multi-
degree and such that, for any element y € B that is homogeneous with respect to the
grading | - |, we have zy = (—1)/l2lyz.

Remark 3.11. Recall that B = E(A) is generated in degrees 0, 1, 2, and 3 and that the
product of an element of degree 1 with any other element vanishes. Therefore when
checking that an element is in Z, we need to check that it is a linear combination of
cycles and that it commutes or anti-commutes with paths of degrees 2 and 3, that is,
(non-zero) paths of length d and of length d + 1 in I

The proof of Theorem 3.10 relies on some preliminary results, namely Lemma 3.12,
Proposition 3.13, and Lemma 3.15. We start with some comments on A-loops in O 4.
Let ¢ be an A-loop in Q4. Since A is finite-dimensional, there exists an integer N
such that ¢V = 0 in A and therefore there is some j such that c;l € p. To simplify
notation and without loss of generality, write ¢ = ¢;. Then ¢t € p, therefore ¢ ¢ o
and it follows that ¢~ # 0 in BA for all k > 0 and that ¢®*) #0in B for all £ > 0.

Lemma 3.12. Let ¢ be an A-loop in Q4 and let n > 2 be an integer. Then o ey
if, and only if, ¢ satisfies Condition 3.6(1).

Proof: The proof is very similar to that of Lemma 2.10, using A-paths and Re-
mark 3.11. O

We shall now consider part (2) of Condition 3.6.

Let T = a1+, be a closed A-trail in @ with «; € Q4 for all i. Assume that
n > 2 and that pr = {a; - @jrq-1 |1 <i<n} Cp. Then T and all the paths lying
on T are in B, (none of their subpaths of length d are in o); those of length §(k) for
some k > 0 are in Bpg.

In a similar way to Subsection 2.3, we make the following assumptions.

(i) None of the a; are A-loops.
(ii) No A-subcycle of T satisfies the same assumptions as T (that is, there is no
A-subcycle ¢ of T of A-length at least 2, and pg C p).
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Proposition 3.13. Let T = ay -+ ay, be a closed A-trail with n > 2, pr C p, and
such that assumptions (i) and (i) hold. Let p be an A-path of A-length d such that
03(P) =04f B € Qa\{a1,...,an} and which is not an A-subpath of a power of T.
Then p & p.

Proof: The proof is very similar to that of Proposition 2.11, replacing paths with
A-paths and using Consequence 3.5 in the proof that d > k. O

Remark 3.14. We keep the assumptions and notation of Proposition 3.13. Set T; =
;- anpar---a;_1. Then for any j > 1, we have

Ta, #0 = k=i—1,
aka £0 = k=i.
Lemma 3.15. Let T = a1 -ay, be a closed A-trail that satisfies assumptions (i)
and (i) and set zj = S0, T with nj = 8(u) for some u > 1. Then z; € Z if, and
only if, T satisfies Condition 3.6(2).
Moreover, if T does not satisfy Condition 3.6(2), then no element in B that is

homogeneous with respect to | - | and d (when viewed in °A) and that is a linear
combination of non-trivial cycles lying on T is in Z.

Proof: The proof is very similar to that of Lemma 2.13, replacing paths with A-paths,
again using Remark 3.11, replacing the d-covering property with Consequence 3.3 and
Proposition 2.11 with Proposition 3.13. Note also that, for the proof of the last part,
testing commutation with paths in By gives s = n and Ay = A\i4q for all k£ and hence
the result if |z| is odd; and if |z| is even, we must use the fact that z commutes with
elements in Bs in a similar way to obtain, in addition, that A\ = Agyq41 for all k£ and
hence that A\, = Ag4q for all k. O

Proof of Theorem 3.10: We note first that if gldim A is finite, then A satisfies (Fg)
and Condition 3.6 is empty. The implication (C2) = (C1) is Theorem 3.9. Again, the
implication (C3) = (C4) is clear, and if in addition K is algebraically closed, then the
implication (C1) = (C3) follows from [7]. It remains to prove that (C4) implies (C2).
The proof is similar to that of Theorem 2.8, again replacing paths with A-paths (we
need not assume that the integers k are even). O

Remark 3.16. Suppose that K is algebraically closed. We have now extended the
equivalence between (C1) and (C3), already known for Koszul algebras from [7], as
well as d-Koszul monomial algebras by Theorem 2.8, to (D, A)-stacked monomial
algebras with D # 2A whenever A > 1.

In particular, we can extend Corollary 2.15 to (D, A)-stacked monomial algebras.

Corollary 3.17. Let A be a (D, A)-stacked monomial algebra over an algebraically
closed field with D # 2A whenever A > 1. Assume that E(A) is a finitely generated
Zg(E(A))-module. Then the algebra Zg(E(A)) is Noetherian.

Appendix A. The Ext algebra of a (D, A)-stacked monomial
algebra

Leader and Snashall gave in [17] a presentation of the Yoneda algebra E(A) of a
(D, A)-stacked monomial algebra by quiver and relations. However, in our proof of
Theorem 2.8 that (C4) implies (C2) for d-Koszul monomial algebras, we used the
description from [10, Sections 8 and 9] of E(A) as an algebra contained, as a graded
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vector space, in the Koszul dual 'A. In this appendix, we generalise this description
to (D, A)-stacked monomial algebras.

Throughout this section, A=K Q/I is a (D, A)-stacked monomial algebra with D =
dA and d > 2, where [ is an ideal generated by a set p of A-paths of A-length d = %.
We view A as a quotient of the tensor algebra: A = Ty, (A1)/1.

All tensor products are taken over Ag and we write @ for &, . The subspace & =
I N (APP) = span(p) of T = Ty, (A1) is a Ag-Ag-submodule of A®P; it is finite-
dimensional over K. For an element x € T, write T for its image in A. Note that for
O<i<DwehaveAl-:A?i.

A.1. Generalised Koszul complex of S. Define spaces Hs,,) C T}, (A1) as fol-
lows:
HO = Ao, Hl = Al and, fOI' n 2 2, H(;(n) = ﬂ (A§1)®8®(A§j)
i+j=06(n)—d
For n > 0, let P be the right A-module defined by P" = Hs(,,)®@A; it is projective.
We have H§(1) = A1 = H(;(O)@Al, H5(2) =S - A?D = H(;(l)@/\?D_l, and, for
any n > 3, Hs(y C H(g(n,l)@Af(‘;(n)*&(n*l)). Indeed, for any k£ > 1,

kd kd
Hsopy2)=Hrnya = [ (AS"@SEAG) € () AG*))@sa(Ay)
j=0 j=d—1
(k—1)d+1 . _ _
= () AEESEAR)BAL ) = HaoemBAL ),
j=0
kd+1  kd+l B
Hyoks1) = Hrar1 = ﬂ (Ai)((kfl)djtlfj))@S@(A%j)g ﬂ (Af((kfl)dJrlfj))@S@(A%j)
Jj=0 j=A
kd o ) _
= AL EVNBSBAL)EAA = Hyor DA
j=0

It follows that tEe maps F! :7A1@A — Ag@A = A, F?: Agd@[\ — A ®A, and,
forn >3, F": A?g(”)@A — A%é(nfl)QA defined by
FY 21 ®N\) = 21,
FX(2,®---®2p®N) = 2182 - - - TpA,
F'" (1@ @Ysn) @A) = 110+ QYs(n—1)@Ys(n—1)+1 " " Ys(n) A,

where z; € A; and y; € A4 for all 4, induce maps b”: P® — P"~!. More specifically,
for all £ > 1,

FPH (R DyYra10N) = 1@ - - - @Ypa®@yYras1 A if n = 2k + 1 is odd;
F2k+2(y1®' . '®y(k+1)d®>\) =R QYkdr1QYrdr2 * 'y(k+1)d)\ if n=2k+2 is even.

Define also b°: P® = Ag®A =2 A — Ay, which identifies with the natural projection.
Moreover, for n > 3 we have

Hyuin) C Hé(n)®A§(6(n+l)—6(n))
C HynyyBATOOI =S D)g 7B )=0m) _ 57
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and Hy(i1) € AP "VES, we have Hynary € (A" VES) N (Hs(nony@AGY) =

Hs(,—1)®S (all the spaces involved are finitely generated and projective over Ag),

hence b™ o b1 = 0. It is easy to check that b™ o b"*! = 0 when n =1, 2, or 3.
Therefore we have a complex (P™,b") of projective right A-modules.

Theorem A.1. Let A = KQ/I be a monomial algebra with I generated in degree D =
dA with d > 2. Then A is (D, A)-stacked monomial if, and only if, (P*,b%) is a
minimal projective right A-module resolution of Ag.

Proof: By construction, P™ is generated in degree 6(n). Therefore, if (P*,5®) is a min-
imal projective right A-module resolution of Ag, then A is a (D, A)-stacked monomial
algebra.

Conversely, assume that A is a (D, A)-stacked monomial algebra. We already have
a complex (P*,b*) of right A-modules such that P™ is generated in degree 6(n). The

beginning P! v opo Ao — 0 is exact.

We prove exactness at P2"*1 for n > 1 (the proof of exactness at P2 and at P!
is similar, without the need for Consequence 3.3).

First note that v T2(P2"+2) is generated in degree §(2n+2) = (n+1)D in P27 +1,

Let z = Y Tpat1,:® - Qx1,;®A; be an element in Ker b2t with xji € Aa
and \; € A for all 4, j. Then ), £pa11,:® - @22,®21,;A; is in T®I. It follows that
Ai € @k>D_A Ay, and that Ker 5"+ is generated in degrees at least (n+1)D. There-
fore z can be rewritten as z = ), Tnd+1,i® - - @1, QYa—1, - - Y1,:A\; with y;,;, € Ag
and X, € A for all 4, j, with the y;; right uniform and t(y;;) # t(y1,x) when i # k.
Write A; = 3050\, with A, € A, for all 4, [, and A;j = t(y1,:). Then each
of the Y, #pa11,i® - @1, ®Ya—1,i -~ y1,4\;,; is in Kerb> ™! so in particular 2’ :=
> Tnd41,i® - BT @Yd—1,i - Y1,; € Ker b2, B

Consider 2" = >, Zpa41,,® - @21,0Yd—1,Q - QU1 QY1) € Af(("ﬂ)d)@A.
We show that 2" € P?"2; this will imply that 2’ = b2"*2(2”) € Imb?"*2. Since A
is monomial and b2"*1(z') = 0, we may assume that, for all 4, T1iYd—1,4°" Y1, 15 &
path; since it is in I and has degree D, it is in p = R?. By definition of P2"*+!, we
may assume that z is written so that, for each 4, x4;---21,; is a pathin p = R2. The
path 21 ,;Yq—1,: - - - Y1,; properly overlaps x4 ;- - - x1 4, therefore using Consequence 3.3
it follows that for all £ with 1 < £ < d —1 we have Ty ;- - T1:Yd—1,i" Yk € P
and hence 2" € ﬂz;i(Af("d_kﬂ))@S@(Af(k_l))®/\. Finally, using the fact that
z € Pt = H,3 1 ®A, we get 2’ € H(,q1)4®A = P?"*2. We have proved that
(Ker b 1) (1 1)q C Im b?"+2,

Since Im b?" 12 is generated in degree (n+1)d and Ker 62"+ is generated in degrees
at least (n + 1)d, it follows that Ker b>"Tt C Imb?"*2 and lastly that Ker b?"+! =
Im 2712,

Finally, since Im " is generated in degree §(n + 1) and P" is generated in de-
gree §(n) < 6(n+ 1), Imb™*! C ¢P" for all n and therefore the resolution is mini-
mal. O

A.2. The Ext algebra.

A.2.1. Some duality results. We recall without proof some results stated in [2].
All modules are finitely generated Ag-Ag-bimodules. All claims are easily checked for
bimodules that are free and finitely generated as left or as right Ag-modules, and follow
for arbitrary finitely generated modules (since Ag is semisimple, all the Ag-modules
(left or right) are projective).
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For any bimodules V and W, define V*=Hom,,_ (V,Ag) and *W =Hom_ 5, (W,Ao);
they are Ag-Ag-bimodules, for the actions given for all e, €’ in Ag, a € V*, 8 € *W,
andv eV, weW, by:

(eae’)(v) = a(ve)e’ and (efe’)(w) = eB(e'w).

There are natural isomorphisms of Ag-Ag-bimodules A§ = Ay = *Ag which we view
as identifications.

There are also natural bimodule isomorphisms V' = *(V*) and W = (*W)* of
bimodules.

If V3 C V (respectively Wy C W), define Vit = {a € V* | a(V4) = 0} (respec-
tively YWy = {8 € *W | (W) = 0}). If Vi (respectively W) is a sub-bimodule,
then they are sub-bimodules of V* and *W respectively.

Fix a Ag-Ag-bimodule V. Then:

(i) if W is another Ag-Ag-bimodule, then there is an isomorphism of Ag-Ag-bimod-
ules pyw: *V&*W — *(WRV) given for all « € *V, g € *W, v € V, and
w € W by ovw(a®8)(w®v) = o(B(w)v). There is a similar isomorphism with
right duals, which sends a®p to the map w®v — S(wa(v));
(ii) if U and W are sub-bimodules of V, then ~(U + W) = tU N+W and (U +
W)t =Uutnwt;
(iii) if U is a sub-bimodule of V, then (V/U)* = U+ and *(V/U) = U,
(iv) if W is a sub-bimodule of V, then for any idempotents e;, e; with (i,j) € O2
we have e;*We; = *(e;We;);
(v) if U is a sub-bimodule of V, then for all i, j in Qy we have dime;*Ue; =
dime;Ve; —dime;Ue; = dim erLei;
(vi) if U is a sub-bimodule of V, then under the identification of V' with *(V*) we
have 1 (U+) and under the identification of V with (*V)* we have (+U)+;
(vil) if U is a sub-bimodule of V and W and Z are Ap-Ap-bimodules, there are bimod-
ule isomorphisms H(WRU®Z)=2*Z@+U*W and (WRURZ)*+ = Z*QULaW™

A.2.2. Description of the Ext algebra. From the above, there is a natural iso-
morphism *(A%") = (*A4)®?, which we view as an identification. We also view S as

a subspace of AS? (rather than A®P). We may then consider ~8 = {f € (*A4)®? |
f(z) = Oforallz € S}. The dual algebra of A is then A = Ty, (*Aa)/(+S).

It is a graded d-homogeneous algebra since +S is contained in (*A4)®?, therefore
A = @n)() Ay

In terms of quivers, we have Ag = K Qg and Ay = KQ4, the vector space whose
basis is the set Q4 of paths of length A in Q; moreover, *A4 = K QY using (iv).

Then ?A is isomorphic to KT'/(+p), where T is the quiver with the same vertices
as Q and whose set of arrows is I'1 = {@: i — j | there exists @ € Q4, a: j — i}
and where 1 p is the left orthogonal of the set p viewed as a set of A-paths, for the
bilinear form KTy x K(Q4)q — K defined on paths of length d in T' and A-paths of
A-length d in Q by (qg---a@1,81--Ba) =1if ag---ag = B+ Bq and 0 otherwise,
where the «; and §; are paths of length A.

The algebra KT'/(*p) is monomial, and the ideal (+p) has a minimal generating
set o given by all the paths @, ---a; such that the A-path aq---ag is not in p. In
particular, if ¥ = @, ... @3 is a path in T, with a; € Q4 for all 4, then 7 ¢ (o) if, and
only if, for each ¢ with 1 < i < r—d+ 1, the path ;- - @;14—1 is in p (we use the
fact that A is monomial here).

Lemma A.2. There is an isomorphism (hA(g(n))* = Hs(n)-
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: iti h _ (A 4B
Proof: By definition, A, = Ef‘:’g)_d(*AA)@“(:)*d*i)@Ls@(*AA)@' Therefore we have
i = . _ 1
(hA(;(n))* o~ ( Z (*AA)®(5(TL)dz)®J_S®(*AA)®Z>
=0
6(n)—d B .
= ﬂ ((*AA)®(5(")7d*1)@l8@(*AA)®z)
1=0
8(n)—d B . B
= () (CA)T) BES) B((*Aa) Ty
=0
§(n)—d - B .
~ () AFESBAGEM D)
=0

This isomorphism takes x = ) 21® -+ ®xs(,) € Hs(,) to the map g : hA(;(n) — Ag
defined by

9 (Vsm @ @m) = Y Vs(m) Vo)1 - (2 (71 (21)22) - . )T () 1) T5(m))s
where the x; are in Ay and the ~; are in *Ay4. O
Lemma A.3. There is an isomorphism 1): uA(;(n) — Homy (P™, Ag) given by

V() (@1® - 25y @A) = f5m) (fs(n—1) (- - (f1(21)) - - - T5(n)=1) Ts(n) ),

where f = fsrm®@---®f1 € hAg(n) with f; € *Ay for alli, x; € Ay for alli and X € A.

Proof: The isomorphism ) is the composition of the following isomorphisms:
° hA(;(n) — Hom_AO((“A(;(n))*, M), which sends f to the map [g — g(f)];
° Hom_AD((“Acg(n))*,Ao) — Hom_ 4, (Hs(n), Ao), which sends a map h to the
map [x — h(g,)], where g, is as in the proof of Lemma A.2;
e Hom_ 5, (Hs(ny, Ao) — Hom_ 5 (Hsn)®A, Ag), which sends a map k to the map

[z@A — E(x)A].

Applying these isomorphisms to f gives the expression in the statement. O

Let B be the vector space B = @n>0 B,,, where B,, = t‘A(;(n). Define a multipli-
cation on B as follows: for x € B,, and y € B,,, set

0 if n and m are odd;
zy=40 ifnormisequaltol andn>1m > 1;

xzy in 'A otherwise.

The algebra B is a graded K-algebra generated in degrees 0, 1, 2, and 3.
We want to prove that E(A) =2 B when A > 1 and D # 2A. We first need a
description of the Yoneda product.
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Proposition A.4. Let A be a (D, A)-stacked monomial algebra with A > 1, D = dA,
and d > 3. The Yoneda product of f, € Homp(P™, Ag) and fn, € Homy (P™, Ag) is
given by

0 if n and m are odd;

0 ifn>21l,m>=21 andn=1orm=1

Infm= ZTE1® : '@l‘&(n)v%(m)@)\ — fn (Z Jm(21®-- '®$5(m)®1)x5(m)+1

L s(m)+28 -+ ®$5(m)+5(n)®)\> otherwise,

where the x; are all in A 4.

Proof: If m and n are odd or if m > 1 or n > 1 is equal to 1, then, under the assump-
tion that A > 1 and D # 2A, the Yoneda products vanish by [17, Theorem 3.4]. We
now assume that m or n is even and that m # 1 and n # 1.

Let 0: Ag — A be the natural inclusion.

Consider fm: P™ — Ag; it lifts to f) = oo f,,: P™ — A. We now define further
liftings fi : P™*% — P for i > 1 as follows:

’"L

S (@1 @51y BA) = [ (210 -+ @25 BL) T 5(10) 41T 5 (m) 42 * * To(m41) i

FGa® - @Ys(mrn @A) = fo (1@ -+ BYs(m) @1 Y5 (m) +1@ * * - DY (i) DA
if mori>2is even;

o @ BYsmriy @A) = fo (Y18 @Ys(m) @) Ys(m)+1@ * ** Ys(mri—1)+1
if m and ¢ > 2 are odd,

where the z; are in A; and the y; are in A4. The proof that (f%);>o is a family of
liftings of f,,, that is, fi=tob™™™ = bio fi for alli > 1, is tedious but straightforward.
Finally, if n or m is even and n > 2, m > 2, then

Fnfm (1@ -+ @Ys(m)+5(n) @A) = fn 0 fr(Y1@ -+ @Ys(mn) @A)
= Fu(S0 (@ -+ BYs () D L)Ys () +1OYs(m) 2@ * * * DY (m)+5(n) ON)
= fu(fmn (1@ - BYs(m) 1) Ys(m)+1@VYs(m)+2® « - OYs(m)+5(n)@A). O
Theorem A.5. If A is a (D, A)-stacked monomial algebra, with A > 1, D = dA,

and d > 3, then E(A) and B are isomorphic as graded algebras. In particular,
Ext} (Ao, Ag) is isomorphic to FAs(,).

Proof: We use the isomorphisms in Lemma A.3 and the cup product described in
Proposition A4. If f = f5)®@---®f1 € By and § = g5(m)@ - - ®g1 € By, where m
or n is even and both are at least 2, then

V()Y@ 1@ - BYs(m)+6(n) D)
=YW@ AR DYs(m)@L)Ys(m)+1@ * * - DYs(m-+n) D)
= fom) (fsmy—1 (- (f2(f1 (@) (1@ - - - @Ys(m) D) Ys(m)+1)Ys(m)+2) - - - )
“Ys (m4n)— 1)yé(m+n))
= fon)(fsmy—1(- - (f2(f1(g50m) (- - - (91(Y1)) - - - Ys(m) U5 (m)+1)Ys(m)+2) - -
: yé(m+n)71)y6(m+n))x
=Y(f9) (1 ® - - BYs(m)+5(n) DA)
=[N ® - BYsm)+5(n) DN,
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therefore ¢(f -g) = 1(f)1(g) and we have proved that v is an isomorphism of graded
algebras. O

Remark A.6. Recall from Subsection 1.2 that the m-th projective in a minimal
projective right A-module resolution of Ag is L™ = @ pmcpm t(R")A. By Conse-
quence 3.4, 7" € P™. We then have an isomorphism P — L™ which is determined
by R — t(R}") for all 7.

As we mentioned in Subsection 1.2, the authors of [14] also gave a basis of E(A),
namely the set {g;" € Homy (L™, Ao) | R]* € R™}, where g ({(R")) = t(R}") if j =i
and 0 otherwise. The element g/ corresponds to a map in Homa (P, Ag) which we
denote again by g;" and that is defined by g;"(R}") = t(R]") if j = i and 0 otherwise.

We have isomorphisms KQ4 = KT'; and KQ4 = *Ay = *(KQ4). Combining
them, we obtain an isomorphism which associates to @ € I'; the linear form f,
on KQ4 that sends § € Q4 to t(a) if § = « and to 0 otherwise. This extends to an
isomorphism between the algebras KT'/(c) and A that sends a path 7 of length n to
the class of the linear map f, € (*A4)®" defined on A-paths by f,(q) =t(p) if ¢ =p
and 0 otherwise.

Now consider R]" = aq - as(n) with a € Q4 for all @ and Ezn = Qs(m) " a1
in KT'/(0). It is easy to check that g;" = ¥(fay(,., @+ ®fa,) so that it corresponds,

via the isomorphism above, to R; .
Therefore we have a basis Bg = {R; | Ri* € R"™} of B.
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