

Electrospun Al-MOF fibers as D4 Siloxane adsorbent: Synthesis, environmental impacts, and adsorption behavior

S. Pioquinto-García, J.R. Álvarez, A.A. Rico-Barragán, Sylvain Giraudet,

J.M. Rosas-Martínez, M. Loredo-Cancino, E. Soto-Regalado, V.M.

Ovando-Medina, T. Cordero, J. Rodríguez-Mirasol, et al.

▶ To cite this version:

S. Pioquinto-García, J.R. Álvarez, A.A. Rico-Barragán, Sylvain Giraudet, J.M. Rosas-Martínez, et al.. Electrospun Al-MOF fibers as D4 Siloxane adsorbent: Synthesis, environmental impacts, and adsorption behavior. Microporous and Mesoporous Materials, 2023, 348, pp.112327. 10.1016/j.micromeso.2022.112327. hal-03932166

HAL Id: hal-03932166 https://hal.science/hal-03932166

Submitted on 25 Jan 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

¹ Electrospun Al-MOF Fibers as D4 Siloxane

² Adsorbent: Synthesis, Environmental Impacts,

³ and Adsorption Behavior.

- 4 Sandra Pioquinto-García,[†] J. Raziel Álvarez, [†] Alan A. Rico-Barragán, [†] Sylvain Giraudet, [‡]
- 5 Juana María Rosas-Martínez,[§] Margarita Loredo-Cancino,[†] Eduardo Soto-Regalado,[§]
- 6 Tomás Cordero,[§] José Rodríguez-Mirasol^{*§} and Nancy E. Dávila-Guzmán^{*†}
- 7
- 8 [†]Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Av.
- 9 Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León 66455, Mexico
- 10 [‡] Ecole Nationale Supérieure de Chimie de Rennes, 11 Allée de Beaulieu, 35708 Rennes,

11 France

- 12 [§]Departamento de Ingeniería Química, Universidad de Málaga, Andalucia Tech., Campus
- 13 de Teatinos s/n, 29010, Málaga, Spain
- 14 Contact information for the corresponding author (*)
- 15 Nancy Elizabeth Dávila-Guzmán, Ph. D.
- 16 Universidad Autónoma de Nuevo León
- 17 Email: nancy.davilagz@uanl.edu.mx

18 ABSTRACT

19	Here, we unveil the great potential of metal-organic framework (MOF) composite fibers
20	produced by the electrospinning method to remove D4 siloxane from gaseous solutions.
21	The fibers are based on polyacrylonitrile (PAN) and a microporous aluminum-based MOF
22	known as DUT-4. The electrospinning configuration and DUT-4:PAN ratio in the precursor
23	solutions play an important role in the textural properties of the fibers. Characterizations of
24	morphology and textural properties demonstrated that the best dispersion on the fiber
25	surface was achieved using coaxial electrospinning with a relationship of 1:1.4 of DUT-
26	4:PAN. The Al-MOF fiber composite was evaluated as a D4 siloxane adsorbent, reaching over
27	85% of the D4 siloxane uptake capacity of individual DUT-4 crystals but with faster adsorption
28	kinetics (effective diffusion coefficient 3.31 times higher). In addition, the synthesis of the
29	composite showed a lower environmental impact and better thermal stability than that observed
30	for DUT-4. This work shows the novel DUT-4 fibers have an outstanding potential for
31	siloxane removal from biogas streams.
32	
33	Keywords: Electrospun, metal-organic frameworks, biogas, octamethylcyclotetrasiloxane
34	
35	1. Introduction
36	The negotiations to reduce the risks and the impacts of global climate change began in
37	1988 with the creation of the Intergovernmental Panel on Climate Change (IPCC) under the
38	auspices of the World Meteorological Organization (WMO) and the United Nations.
39	Nowadays, each country voluntarily determines what measures are willing to take against
40	climate change and announces them to the rest of the world at the Conference of the Parties

41	(COP).[1] Following the line of sustainable development, the transition from fossil fuels to
42	non-conventional energies (e.g., wind, solar, wave, tidal, or biomass) has been promoted
43	worldwide. One type of renewable energy widely spread is biogas, which can be generated
44	for the anaerobic degradation of residual organic materials by the activity of
45	microorganisms.[2]
46	The biogas is a mixture of methane (55-70%), carbon dioxide (30-45%), moisture,
47	hydrogen sulfide, and volatile organic compounds (VOCs), which may be present in small
48	amounts.[3] Siloxanes can also be formed during the anaerobic fermentation of sewage
49	sludge and organic waste.[4] Siloxanes are a group of Si-based impurities that are
50	considered essential pollutants to remove from biogas.[5] The most abundant siloxanes in
51	biogas are hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), and
52	octamethylcyclotetrasiloxane (D4).[6] They adversely affect biogas combustion systems
53	because they are converted mainly into formaldehyde (CH2O) and orthosilicic acid
54	(H4SiO4), both chemical reagents contribute to abrasion, metal friction, and component
55	failures in machinery.[7]

The concentration of siloxanes in biogas from landfills and wastewater treatment plants covers a wide range between 10 mg m⁻³ and a maximum value of up to 2,000 mg m⁻³.[8] There is no standard specifying the maximum concentration of siloxanes in biogas, but a standard general limit of 15 mg m⁻³ is recommended.[9] The necessity to remove siloxane from biogas is also a priority in order to enhance biogas' energy recovery potential. Current technologies for siloxane removal from biogas include adsorption, absorption, cryogenics, separation by membranes, and biological processes.[10] However, solid-gas adsorption

63 technology has a huge potential due to its low cost, high selectivity, and simple

64 operation.[11]

65 Although solid adsorbents such as activated carbon (AC) or zeolites have been used for 66 siloxane removal, metal-organic frameworks (MOFs) remain promising candidates for this 67 challenging task.[12] MOFs are porous crystalline structures of metal groups joined 68 together by organic ligands. They have high selectivity and feasible recycling/regeneration 69 for biogas purification, [13] mainly due to their large surface area and versatile tunability of 70 their pore environments.[14–16] However, there is still a lack of research attention on using 71 MOFs as platforms for siloxane removal.[17] Mito-oka and coworkers [12] employed three different microporous compounds for 72 73 siloxane, including DUT-4 (DUT = Dresden University of Technology). DUT-4 is a 3D aluminum-based MOF constructed from a rigid linear 2,6-naphthalenedicarboxylate (2,6-74 75 NDC) ligand (Fig. 1). This MOF has the empirical formula C₄₈H₂₈O₂₀Al₄, crystallizes in 76 the orthorhombic space group Pnna.[18] Its hydrophobic behavior and large BET surface 77 area make DUT-4 an ideal choice for siloxane removal, with a maximum adsorption capacity of 0.5 g g⁻¹.[17] Nevertheless, its poor thermo-mechanical stability, like many 78 79 other MOFs, is the main obstacle for any real large-scale application. To overcome this 80 problem, several supports have been employed to immobilize powder MOFs with small 81 particle sizes,[19] among which fibers have stood out due to their remarkable properties. In

82 fact, several previous studies have revealed that fibrous structures facilitate the adsorption

83 or catalytic processes.[20–22]

84	Despite all the possible methods currently available for the fabrication of complex fibers,
85	the electrospinning technique remains a simple, versatile, and cost-effective method to
86	manufacture them.[23] Ostermann et al. [24] prepared fibers of MOF for the first time by
87	electrospinning, obtaining a hierarchical MOF fiber with a high surface area and easy
88	accessibility. On top of that, the thermal decomposition temperature was enhanced after
89	incorporating the electrospun fibers in a Cr-MOF.[25] Bearing these considerations in
90	mind, functionalized fibers with MOF could be a viable option to remove siloxanes because
91	of their selectivity in wet conditions, renewability at low temperatures (< 300 °C), and
92	reusability. However, to the best of our knowledge, studies of electrospun fibers for
93	applications in biogas purification processes using MOF have not been reported before. For
94	this reason, the present work presents the preparation of DUT-4 electrospun fibers by
95	dissolution methods to improve their adsorption properties of siloxane D4.

96 2. Materials and methods

97 2.1. Preparation of electrospun solutions

The Al-MOF fibers were prepared using DUT-4, N, N-dimethylformamide (DMF), and 98 99 polyacrylonitrile (PAN, M_w ~ 150,000 g/mol) solutions. DUT-4 was synthesized according 100 to the procedures previously described [26]; DMF and PAN were purchased from Sigma-101 Aldrich and used as received without further purification. The solutions were sonicated for 102 up to 4 h to obtain a homogeneous DUT-4 dispersion on the surface of electrospun fibers 103 and MOF particles smaller than 100 nm. The homogeneous suspensions for uniaxial 104 electrospinning were composed of solutions 1 and 2 (see Table 1). Previously, each 105 solution was prepared at 350 rpm for about 1 h but held at different temperatures (solution

106	1 at 80 °C and solution 2 at room temperature). Additionally, solution 2 was sonicated for
107	40-50 min. Preparation conditions of the homogeneous suspensions for the coaxial
108	electrospinning process (detailed in ESI) were the same as the uniaxial solutions 1 and 2,
109	but without mixing them.

110 *2.2. Fiber electrospinning*

111 Purpose-built electrospinning equipment was employed for fibers preparation (see ESI). 112 The solution in the shell (solution 2, electrospinning coaxial), which contained the DUT-4, 113 had to carry PAN to give it greater viscosity and prevent the particles from being projected 114 toward the collector. Milliliter by milliliter was also spun to prevent the particles from 115 precipitating into the syringe. In the uniaxial conditions, the needle was set at 20 cm from 116 the aluminum plate with a flow rate of 2.2 mL/h. The applied electrical potential difference 117 to produce fibers was 20 kV (tips at +10 kV and collector potential at -10 kV). The coaxial 118 conditions for both syringes were a flow rate of 0.9 mL/h, a distance of 23 cm, and an 119 electrical potential difference was 20 kV. The fibers were stabilized at 120 °C.

120 2.3. Characterization of the Fibers

121 The surface area and porosity of DUT-4 powders and fibers were determined by N₂

adsorption-desorption at -196 °C (77 K), performed in a Micromeritics ASAP 2020

123 apparatus. Samples were outgassed at 150 °C for at least 8 h. From the N₂ isotherm, the

124 apparent surface area (SBET) was determined by applying the Brunauer, Emmett, and Teller

- 125 (BET) equation.[27] In addition, micropore volume (V_{mp}) and external surface area (S_t)
- 126 were calculated by the *t*-plot method; [28] mesopore volume (V_{mes}) was obtained as the
- 127 difference between the pore volume (V_p) assessed at a relative pressure close to unity (P/P_0)

128 ≈ 0.995) and the micropore volume.[29] To estimate the amount of DUT-4 in grams

129 accessible into the fibers from the S_{BET}, the following equation was used:[30]

130
$$m_{DUT-4 \text{ on fiber}} = \frac{S_{BET}(DUT-4+fiber) - S_{BET}(PAN \text{ fiber})}{S_{BET}(DUT-4)}$$
1

131 Scanning electron microscopy (SEM) images were obtained using a JEOL JSM-6490LV 132 microscope with acceleration voltage from 0.3 to 30 kV and a thermionic electron gun with 133 W filament. Fourier transform infrared (FTIR) spectra were obtained from a Bruker Tensor 134 27 using a Golden Gate single-reflection diamond attenuated total reflection (ATR) cell to identify the functional groups on the fibers' surface, a standard spectral resolution of 4 cm⁻¹ 135 in the spectral range of 4000 to 500 cm⁻¹, were carried out. Powder X-ray diffraction 136 137 (PXRD) patterns were collected in Bragg-Brentano geometry with Cu-K_{α} ($\lambda = 1.54060$ Å) 138 monochromatized radiation on a PANalytical X'Pert PRO diffractometer operating with an 139 intensity of 40 mA and a tension of 45 kV. The instrument was equipped with an 140 X'Celerator RTMS (real-time multiple-strip) detector, and the sample patterns were 141 recorded from 5 to 80° (2 θ). Thermogravimetric analysis (TGA) was performed with a 142 TGA 500 (TA Instruments Ltd., UK) using sample sizes of 7 to 14 mg at a heating rate of 143 20 °C/min from room temperature to 800 °C under an N2 atmosphere. 144 2.4. Green Assessment

145 To quantitatively assess the greenness of DUT-4 and 70DUT-4@PAN, the free web-

146 based DOZNTM 2.0 evaluator by MilliporeSigma was employed.[31] The software

147 calculates the environmental impact by taking a count of the properties of raw materials,

such as chemicals and solvents, including system values, such as temperature and

pressure.[32] The data was recollected using the UN's Globally Harmonized System of
Classification and Labelling of Chemicals (GHS) and Security Data Sheet (SDS). The input
data of temperature, time, pressure, and raw materials used for DOZNTM 2.0 are listed in
ESI.

153 *2.5. Adsorption experiments*

The adsorption experiments were carried out at 450 mg/Nm³ of initial concentration of 154 155 D4, 100 mg of adsorbent material, and room temperature. The mixtures were stirred at 700 156 rpm for 6–9 h to ensure equilibrium. The D4 concentration of samples was determined by 157 gas chromatography with a flame ionization detector (GC-FID) using a Shimadzu Nexis 158 GC-2030 (Shimadzu Corp., Kyoto, Japan). A Shimadzu SH-Rxi-5ms capillary column 159 (15 m x 0.25 mm inner diameter x 0.25 µm film thickness) was employed. The GC-FID 160 operational conditions were oven temperature at 110 °C; detector temperature, 250 °C; inlet 161 temperature, 150 °C (at 83.3 kPa); carrier gas, He at a flow rate of 1.5 mL min⁻¹; splitting 162 ratio, 5.0. An injection volume of 0.5 mL was employed with a total method duration of 1.4 163 min. The adsorption capacity was calculated using the mass balance in the following way:

$$q_e = \frac{(C_0 - C_e)V}{m}$$

where q_e is the adsorption capacity (mg/g), C_0 and C_e represent the initial and equilibrium concentration of D4 (mg/Nm³), V is the volume of D4 solution (m³), and m is the mass of the adsorbent (g).

168 *2.6. Kinetic modeling*

- 169 It is generally known that the adsorption kinetics of porous materials is controlled by
- 170 intraparticle diffusion.[33] The homogeneous solid diffusion model (HSDM) is a typical
- 171 intraparticle diffusion model, the equation is as follows:

172
$$\frac{\partial q}{\partial t} = \frac{D}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial q}{\partial r} \right)$$
 3

Crank gave an exact solution to the HSDM model for the case of constant concentration
at the surface (known as "infinite bath"), negligible external film resistance, and spherical
adsorbent particles initially free of solute.[34] Crank's model is as follows:

176
$$\frac{q}{q_e} = 1 - \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{\left(-\frac{Dn^2 \pi^2 t}{R^2}\right)}$$

177 where q and q_e are the adsorption capacity at any time and at equilibrium, respectively 178 (mg/g); D is the effective diffusion coefficient (m²/h), t is the time (h), and R is the particle 179 radius (m). This model was used to describe the kinetics of D4 siloxane onto DUT-4

- 180 powder and DUT-4 fibers and to obtain the effective diffusion coefficients.
- In addition, well-known adsorption kinetics models, the pseudo-first-order model (PS-1) and the pseudo-second-order model (PS-2), were tested for the D4 siloxane adsorption, and the equations are presented as follows:

184
$$q = q_e(1 - e^{-K_1 t})$$
 5

185
$$q = \frac{K_2 q_e^2 t}{1 + K_2 q_e t}$$
 6

186 where *q* and *q_e* are the adsorption capacity at any time and equilibrium, respectively 187 (mg/g); *K₁ and K₂* are the rate constants for the PS-1 and PS-2 models (h⁻¹), respectively,

- 188 and *t* is the time (h). The kinetic model parameters were obtained by non-linear regression
- 189 minimizing the standard error (Eq. 7) using the Solver add-in tool of Microsoft Excel®.
- 190 The goodness of fitting results was determined by the coefficient of determination (R^2) .

191
$$SE = \sqrt{\frac{\sum_{i=1}^{n} (q_{exp} - q_{cal})^2}{n-k}}$$
 7

192 **3. Results and discussion**

193 *3.1. Textural properties of the fibers*

194 The BET surface area of activated DUT-4 was estimated to be 1,655 m^2/g (ESI) and falls 195 well with previously reported data for this MOF.[17] The nitrogen adsorption-desorption 196 isotherms obtained at -196 °C of the different DUT-4 fibers prepared by electrospinning are 197 type I, associated with microporous solids, independently of the electrospinning 198 configuration used (Fig. 2). These isotherms are characterized by a significant nitrogen 199 uptake at very low relative pressures. In the case of uniaxial configuration, the low volume 200 of nitrogen adsorbed at relative pressures below 0.1 shows only a limited increase of this 201 compared to the volume of nitrogen adsorbed by the PAN fiber without DUT-4. In contrast, 202 using a coaxial configuration considerably increases the volume of nitrogen adsorbed, and 203 this adsorption is directly related to the amount of DUT-4 added to the spinnable solution. 204 In addition, this coaxial configuration can also show a significant increase in the volume of 205 nitrogen adsorbed at high relative pressures, evidencing the further presence of larger 206 mesopores. Therefore, this configuration can produce DUT-4 fibers with a hierarchical 207 bimodal porous structure.

208	Table 2 collects the corresponding textural properties derived from the nitrogen
209	adsorption-desorption isotherms obtained at -196 °C of the DUT-4 fibers prepared by
210	electrospinning at different configurations and experimental conditions. The coaxial
211	configuration allowed to include not only higher amounts of DUT-4 but also reached
212	continuous fibers with apparent surface areas as high as ~300 m ² /g. In this sense, S_{BET}
213	values increased from 37 to 293 m^2/g as the ratio of DUT-4 to PAN enhanced; meanwhile,
214	pore volumes, mainly associated with mesopore volumes, varied from 0.1 to 0.36 cm^3/g ,
215	suggesting the dual formation of micro and large mesopores.
216	The use of other solvents different than DMF was also analyzed. The calculated S_{BET} was
217	lower for the fibers prepared with DMSO. Specifically, S_{BET} was halved with uniaxial
218	electrospinning, while in coaxial electrospinning, SBET was reduced up to four times using
219	DMSO, so its use was discarded. Finally, it is important to highlight that although the
220	specific surface area increases with the amount of DUT-4 added to the solution, SEM
221	images (vide infra) showed DUT-4 particles of sizes larger than 1 mm on the surface of the
222	fibers, so to optimize the dispersion of the DUT-4 particles, the use of solutions with DUT-
223	4 percentages higher than 70% were not advisable.
224	From equation 1, the mass of DUT-4 accessible by nitrogen was calculated. For fibers

obtained by coaxial electrospinning, the $m_{DUT-4 \text{ on fiber}}(g)$ increases following the next

226 order: 20DUT-4@PAN (0.016) < 70DUT-4@PAN (0.062) < 100DUT-4@PAN (0.073) <

227 140DUT-4@PAN (0.170). However, these values represent a fraction of the initial amount

of MOF on the electrospinning solution. For example, for 70DUT-4@PAN fiber, only 25%

229	of the initial DUT-4 mass is accessible by nitrogen suggesting the MOF is highly
230	embedded into fibers with the formation of a thin PAN barrier coating DUT-4 particles.[35]
231	3.2. SEM images
232	Scanning electron microscopy was used to select the type of fibers that presented the best
233	distribution of DUT-4 on the fiber surface. In Fig. 3, it can be observed that the diameters
234	of the fibers obtained by coaxial electrospinning showed smaller diameters than those
235	obtained by uniaxial electrospinning. The diameters for 20DUT-4@PAN, 70DUT-4@PAN,
236	100DUT-4@PAN, and 140DUT-4@PAN fibers were from 0.125 µm to 0.5 µm. In these
237	types of fibers, it shows that as the amount of DUT-4 increased in the spinnable solution
238	(<i>i.e.</i> , 20DUT-4@PAN < 70DUT-4@PAN < 100DUT-4@PAN < 140DUT-4@PAN), more
239	particles were seen on the surface of the fiber. Furthermore, at higher DUT-4 loading
240	fractions, particle agglomeration was observed. As a result, DUT-4 agglomerates (with an
241	overall size >1.0 μ m) were trapped between a set of fibers. Therefore, the fibers generated
242	by 70DUT-4@PAN coaxial electrospinning had the best dispersion on the fiber surface
243	without trapping problems.
244	3.3. Thermal and structural characterization of the electrospun fibers
245	FTIR studies of fibers are an important characterization technique to identify the

246 functional groups on the surface material, which could be useful to explain the adsorption

247 process on the adsorbent material. In Fig. 4, the FTIR spectra of 70DUT-4@PAN and PAN

fibers are shown, the band observed at 1617.33 cm⁻¹ corresponds to asymmetric stretching

249 vibrations of the group v_{as} (C–O),[36] the band at 991.40 cm⁻¹ is associated with the

250 bending of bridging groups $\delta(OH)$,[37] besides the 792.08 cm⁻¹ band is related to flexions

251	into the aromatic plane; [38] the bands at 1440.69 and 1364.55 cm ⁻¹ can be assigned to the
252	symmetric $v_s(OCO)$ stretching vibration of carboxylate group while the observed bands
253	from 570.48 to 502.26 cm ⁻¹ could be associated to the stretching vibrations of the Al–O
254	bond, in good agreement with previously reported data.[36]
255	
255	To investigate the relation between PAN and DUT-4 particles in the electrospun
256	composite fibers, PXRD measurements were performed (Fig. 5). The PXRD pattern of an
257	as-synthesized sample of DUT-4 showed three characteristic reflections for this MOF ($2\theta =$
258	6.9, 13.9, and 21.0°) corresponding to the hkl Miller index (101), (011), and (303). For
259	polyacrylonitrile (PAN) fibers, the PXRD pattern shows an intense reflection (110) plane at
260	$2\theta = 16.8^{\circ}$ and a weak one located at $2\theta = 29.3^{\circ}$ due to the (020) lattice plane of PAN.[39]
261	On the other hand, the broad reflection at $2\theta \approx 25^{\circ}$ was related to the (002) planes. These
262	reflections are in agreement with a hexagonal chain packing of electrospun PAN-based
263	fibers.[40] Finally, in the PXRD of 70DUT-4@PAN fibers, the characteristic diffraction
264	peaks of both PAN and DUT-4 were observed. Therefore, the successful introduction of
265	DUT-4 into PAN fibers can be confirmed. The two most intense reflections of DUT-4,
266	which are related to the inorganic portion of the framework (<i>i.e.</i> , Al^{3+} distorted octahedral
267	positions), were superimposed on the broad reflection and uneven baseline of PAN,
268	suggesting that DUT-4 exists as crystalline material in the 70DUT-4@PAN composite.
269	Fig. 6(a) and 6(b) show the TGA thermograms and their derivatives of PAN fiber and
270	70DUT-4@PAN. respectively. For pure PAN fibers, a lower amount of absorbed water is
271	observed at 100 $^{\circ}\mathrm{C}$ (approximately 2.5%), and then two important weight losses can be
272	seen. The first between 200 and 310 °C, centered at 282 °C with 30% of weight loss, and

273	the second change between 312 and 500 °C, centered at 430 °C representing 32% of weight
274	loss, giving a total weight loss of 68% at 800 $^{\circ}\mathrm{C}$ (excluding absorbed water). The TGA
275	curve of PAN fibers has the typical thermal stability and weight loss percentages for this
276	polymer. It has been reported that thermal changes of PAN fibers depend on the thermal
277	processing during its manufacture (<i>i.e.</i> , stabilization temperature and processing time). If
278	PAN was stabilized for short periods and at relatively low temperatures, a change is usually
279	observed at 300 °C, indicating cyclization reactions with volatile gases coming out. At
280	higher temperatures, between 320 and 480 °C, a second thermal change is typically
281	observed and is related to a dehydrogenation reaction. Finally, in the last stage, until
282	700 °C, the total weight loss decreased monotonously to approximately 63%.[41] On the
283	other hand, the sample of 70DUT-4@PAN presented higher thermal stability than alone
284	PAN fibers with the observed changes for PAN fibers but with shifting at higher
285	temperatures due to the presence of DUT-4, hindering chain mobility, with the first change
286	centered at 321 °C and the second to 532 °C. However, a new change was detected at 600
287	°C ascribed to partial degradation of DUT-4, to give a total degradation up to 800 °C of
288	~64% (<i>i.e.</i> , 4% less than alone PAN fibers).

289 *3.4. Quantitative Green Chemistry Evaluation*

290 In addition to all physicochemical analyses, a comprehensive assessment of the

291 environmental impact of fiber fabrication was conducted. According to green chemistry,

292 the ideal chemical synthesis or manufacturing eliminates or reduces the waste generated,

uses a negligible amount of energy, and produces no harmful products.[31] Herein, an open

- 294 software (DOZNTM) was used to assess the compliance with green chemistry principles
- 295 (GCP) of DUT-4 and 70DUT-4@PAN (Fig. 7). Values near 0 express a minimal effect on

nces
СР 1
CP 1
CP 1
ile,
as a
), and
The
0,
ding
ne

309 *3.5. Siloxane Adsorption Performance*

The adsorption experiments were carried out at an initial concentration of 450 mg/Nm³ of siloxane D4 at room temperature. This concentration was used to be consistent with the values found in real biogas streams (*i. e.*, at low loadings). The kinetics for the adsorption of D4 was rapid, reaching equilibrium at about $3\sim3.5$ h (Fig. 8). The adsorption capacity of the PAN fibers was tiny, 0.86 mg/g at the equilibrium concentration of 403.27 mg/m³. The adsorption capacity for the coaxial electrospun fibers was increased from 4.13 to 8.42 mg/g at an equilibrium concentration of 256.85 to 61.26 mg/m³, respectively.

317 In this sense, the fibers with the highest siloxane adsorption capacity were those

318 electrospun coaxially, which are the fibers with the highest DUT-4 powder load and,

319	therefore, the highest SBET. Although, the relationship between the siloxane adsorption
320	capacity and the specific surface area was not linear (Fig. S4). The materials obtained by
321	coaxial electrospinning achieved slight differences in the adsorption capacity. In addition,
322	the adsorption capacities obtained by coaxial fibers were only 15% lower than the DUT-4
323	powder. However, the diffusion of D4 onto coaxial fibers 20DUT-4@PAN and 70DUT-
324	4@PAN was 2.9 and 3.31-fold higher than on DUT-4 powder, based on the effective
325	diffusion coefficients obtained from Crank's model (Fig. 9). These results indicate that
326	MOF particles are fully accessible inside the polymeric fibers and that the particle
327	distribution on coaxial fibers favors the contact between the D4 siloxane and MOF
328	particles.
329	The kinetic data were fitted by the pseudo-first-order model (PS-1), pseudo-second-order
330	model (PS-2), and Crank model. The calculated model parameters and their suitability to
331	represent experimental data are shown in Table 3. Based on the high determination
332	coefficient (R ²), the kinetic adsorption of D4 on DUT-4 nanofibers can be best represented
333	by the Crank model, a well-known kinetics model based on intraparticle diffusion. These
334	results suggest that the adsorption of D4 on DUT-4 nanofibers is controlled by internal
335	mass transfer resistance, which is the common rate-limiting step for porous adsorbent
226	

Finally, the adsorption cyclability of D4 siloxane from 70DUT-4@PAN fibers by thermal treatment was evaluated (see Fig. S6). For this material, a low regeneration time (~4 h) was employed. Although the fibers kept their adsorption capacity showing good repeatability, the complete regeneration of material under mild conditions was not achieved. This behavior can be attributed to the strong interaction between D4 siloxane and

342	the composite fibers. The FTIR spectra of 70DUT-4@PAN before and after D4 siloxane
343	adsorption were performed to clarify some aspects of the adsorption processes (Fig. S7).
344	The methyl groups of the voluminous D4 molecule are expected to be mainly responsible
345	for the adsorption complex formation. Due to this, the δ (Si–CH ₃) band shifts to higher
346	wavenumbers up to 1290 cm ⁻¹ . On the other hand, the Si–O–Si stretching band shifts to
347	1142 cm ⁻¹ . In comparison with pure D4 siloxane,[44] the position of absorption bands
348	suggests a confinement effect. Due to the adsorption process, the material shows absorption
349	bands with greater intensities than the original spectrum of 70DUT-4@PAN. This behavior
350	could be attributed to the increase in the bond polarity of the functional groups of DUT-4 as
351	a result of the strong interaction with D4 siloxane.

352 4. Conclusions

In summary, a novel composite from PAN and Al-MOF was successfully synthesized via 353 354 electrospinning and can be used as an adsorbent to remove D4 siloxane for biogas 355 purification applications. The coaxial electrospinning technique produced fibers with a 356 hierarchical bimodal porous structure and superior textural characteristics compared to the 357 uniaxial technique. Furthermore, the Al-MOF particles were well dispersed by coaxial 358 electrospinning and were fully accessible inside the polymeric fibers. For this reason, fast 359 adsorption kinetics was achieved (3.5 h), and the diffusion of D4 siloxane molecules was 360 enhanced compared to DUT-4 powder. Moreover, the production of PAN fibers with DUT-361 4 by coaxial electrospinning had lower environmental impacts than the synthesis of the 362 DUT-4 powder due to its low Al-MOF loadings. Taking advantage of the low environmental burden of the electrospun PAN@DUT-4 fibers and its fast kinetics, the 363

novel composite proposed could be of interest for the removal of D4 siloxane from gaseoussolutions.

- 366 CRediT authorship contribution statement
- 367 Sandra Pioquinto-García: Conceptualization, Formal analysis, Data curation,
- 368 Investigation. J. Raziel Álvarez: Formal analysis, Data curation, Writing review &
- 369 editing. Alan A. Rico-Barragán: Data curation, Formal analysis. Sylvain Giraudet:
- 370 Formal analysis, Writing review & editing. Juana María Rosas-Martínez:
- 371 Methodology, Formal Analysis. Margarita Loredo-Cancino: Validation, Formal analysis.
- 372 Eduardo Soto-Regalado: Writing review & editing, Formal analysis. Tomás Cordero:
- 373 Formal analysis, Methodology. José Rodríguez-Mirasol: Conceptualization, Project
- 374 administration, Funding acquisition. Nancy E. Dávila-Guzmán: Conceptualization,
- 375 Writing review & editing, Resources, Project administration, Funding acquisition.
- 376 Declaration of Competing Interest
- 377 The authors declare that they have no known competing financial interests or personal
- 378 relationships that could have appeared to influence the work reported in this paper.

379 Acknowledgments

- 380 This research was supported by Facultad de Ciencias Quimicas and Consejo Nacional de
- 381 Ciencia y Tecnologia de Mexico (Scholarship number 781451). J. R. Á. acknowledges
- 382 CONACYT for the postdoctoral fellowship ("Estancias Posdoctorales por México-2021");
- thanks also to J. J. Romero and R. M. Romero for many valuable discussions.

384 Appendix A. Supplementary data

|--|

- 386 Details of the electrospinning setup, precursor solutions, BET plots and t-plots of fibers
- 387 samples, and the relationship between BET surface area and D4 adsorption capacity (PDF).
- 388 Input and output data from global greenness evaluation using DOZNTM (XLSX).

389 **References**

- 390 [1] S.N. Seo, Beyond the Paris Agreement: Climate change policy negotiations and
- 391 future directions, Reg. Sci. Policy Pract. 9 (2017) 121–140.
- 392 https://doi.org/10.1111/rsp3.12090.
- 393 [2] K. Obileke, N. Nwokolo, G. Makaka, P. Mukumba, H. Onyeaka, Anaerobic
- 394 digestion: Technology for biogas production as a source of renewable energy—A
- 395 review, Energy Environ. 32 (2021) 191–225.
- 396 https://doi.org/10.1177/0958305X20923117.
- 397 [3] O.W. Awe, Y. Zhao, A. Nzihou, D.P. Minh, N. Lyczko, A Review of Biogas
 398 Utilisation, Purification and Upgrading Technologies, Waste and Biomass
- 399 Valorization. 8 (2017) 267–283. https://doi.org/10.1007/s12649-016-9826-4.
- 400 [4] G. Wang, Z. Zhang, Z. Hao, Recent advances in technologies for the removal of
- 401 volatile methylsiloxanes: A case in biogas purification process, Crit. Rev. Environ.
- 402 Sci. Technol. 49 (2019) 2257–2313.
- 403 https://doi.org/10.1080/10643389.2019.1607443.

404	[5]	X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane
405		gas separation technologies for biogas upgrading, RSC Adv. 5 (2015) 24399-24448.
406		https://doi.org/10.1039/C5RA00666J.
407	[6]	L. Ghorbel, R. Tatin, A. Couvert, Relevance of an organic solvent for absorption of
408		siloxanes, Environ. Technol. 35 (2014) 372–382.
409		https://doi.org/10.1080/09593330.2013.828778.
410	[7]	J. Álvarez-Flórez, E. Egusquiza, Analysis of damage caused by siloxanes in
411		stationary reciprocating internal combustion engines operating with landfill gas, Eng.
412		Fail. Anal. 50 (2015) 29–38. https://doi.org/10.1016/j.engfailanal.2015.01.010.
413	[8]	T. Jiang, W. Zhong, T. Jafari, S. Du, J. He, YJ. Fu, P. Singh, S.L. Suib, Siloxane
414		D4 adsorption by mesoporous aluminosilicates, Chem. Eng. J. 289 (2016) 356-364.
415		https://doi.org/10.1016/j.cej.2015.12.094.
416	[9]	M. Schweigkofler, R. Niessner, Removal of siloxanes in biogases, J. Hazard. Mater.
417		83 (2001) 183–196. https://doi.org/10.1016/S0304-3894(00)00318-6.
418	[10]	M. Ajhar, M. Travesset, S. Yüce, T. Melin, Siloxane removal from landfill and
419		digester gas – A technology overview, Bioresour. Technol. 101 (2010) 2913–2923.
420		https://doi.org/10.1016/j.biortech.2009.12.018.
421	[11]	W. Xing, Q. Liu, J. Wang, S. Xia, L. Ma, R. Lu, Y. Zhang, Y. Huang, G. Wu, High
422		Selectivity and Reusability of Biomass-Based Adsorbent for Chloramphenicol
423		Removal, Nanomaterials. 11 (2021) 2950. https://doi.org/10.3390/nano11112950.

424	[12]	Y. Mito-oka, S. Horike, Y. Nishitani, T. Masumori, M. Inukai, Y. Hijikata, S.
425		Kitagawa, Siloxane D4 capture by hydrophobic microporous materials, J. Mater.
426		Chem. A. 1 (2013) 7885–7888. https://doi.org/10.1039/c3ta11217a.
427	[13]	A. Peluso, N. Gargiulo, P. Aprea, F. Pepe, D. Caputo, Nanoporous Materials as H2S
428		Adsorbents for Biogas Purification: a Review, Sep. Purif. Rev. 48 (2019) 78-89.
429		https://doi.org/10.1080/15422119.2018.1476978.
430	[14]	T. Saeed, A. Naeem, I. Ud Din, M.A. Alotaibi, A.I. Alharthi, I. Wali Khan, N. Huma
431		Khan, T. Malik, Structure, nomenclature and viable synthesis of micro/nanoscale
432		metal organic frameworks and their remarkable applications in adsorption of organic
433		pollutants, Microchem. J. 159 (2020) 105579.
434		https://doi.org/10.1016/j.microc.2020.105579.
435	[15]	M. Sánchez-Serratos, J.R. Álvarez, E. González-Zamora, I.A. Ibarra, Porous
436		Coordination Polymers (PCPs): New Platforms for Gas Storage, J. Mex. Chem.
437		Soc. 60 (2016) 43–57.
438	[16]	L. Öhrström, Let's talk about MOFs-Topology and terminology of metal-organic
439		frameworks and why we need them, Crystals. 5 (2015) 154–162.
440		https://doi.org/10.3390/cryst5010154.
441	[17]	E. Gulcay, P. Iacomi, Y. Ko, J.S. Chang, G. Rioland, S. Devautour-Vinot, G.
442		Maurin, Breaking the upper bound of siloxane uptake: metal-organic frameworks as
443		an adsorbent platform, J. Mater. Chem. A. 9 (2021) 12711-12720.
444		https://doi.org/10.1039/D1TA02275J.

445	[18]	I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W. Böhlmann, S. Kaskel,
446		New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc
447		= 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4'-biphenyl
448		dicarboxylate), Microporous Mesoporous Mater. 122 (2009) 93-98.
449		https://doi.org/10.1016/j.micromeso.2009.02.020.
450	[19]	J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Insight Studies on Metal-Organic
451		Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal
452		Ions Removal from Aqueous Solution, ACS Appl. Mater. Interfaces. 10 (2018)
453		18619–18629. https://doi.org/10.1021/acsami.8b01454.
454	[20]	KL. Chiu, F. Kwong, D.H.L. Ng, Enhanced oxidation of CO by using a porous
455		biomorphic CuO/CeO2/Al2O3 compound, Microporous Mesoporous Mater. 156
456		(2012) 1–6. https://doi.org/10.1016/j.micromeso.2012.02.015.
457	[21]	KL. Chiu, D.H.L. Ng, Synthesis and characterization of cotton-made activated
458		carbon fiber and its adsorption of methylene blue in water treatment, Biomass and
459		Bioenergy. 46 (2012) 102–110. https://doi.org/10.1016/j.biombioe.2012.09.023.
460	[22]	Z. Zhang, J. Li, F. Sun, D. H. L. Ng, F. Kwong, S. Liu, Preparation and
461		Characterization of Activated Carbon Fiber from Paper, Chinese J. Chem. Phys. 24
462		(2011) 103-108. https://doi.org/10.1088/1674-0068/24/01/103-108.
463	[23]	D. Han, A.J. Steckl, Coaxial Electrospinning Formation of Complex Polymer Fibers
464		and their Applications, Chempluschem. 84 (2019) 1453-1497.
465		https://doi.org/10.1002/cplu.201900281.

466	[24]	R. Ostermann, J. Cravillon, C. Weidmann, M. Wiebcke, B.M. Smarsly, Metal-
467		organic framework nanofibers via electrospinning, Chem. Commun. 47 (2011) 442-
468		444. https://doi.org/10.1039/c0cc02271c.
469	[25]	J. Ren, N.M. Musyoka, P. Annamalai, H.W. Langmi, B.C. North, M. Mathe,
470		Electrospun MOF nanofibers as hydrogen storage media, Int. J. Hydrogen Energy.
471		40 (2015) 9382–9387. https://doi.org/10.1016/j.ijhydene.2015.05.088.
472	[26]	S. Pioquinto-García, J.M. Rosas, M. Loredo-Cancino, S. Giraudet, E. Soto-
473		Regalado, P. Rivas-García, N.E. Dávila-Guzmán, Environmental assessment of
474		metal-organic framework DUT-4 synthesis and its application for siloxane removal,
475		J. Environ. Chem. Eng. 9 (2021) 106601. https://doi.org/10.1016/j.jece.2021.106601.
476	[27]	S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers,
477		J. Am. Chem. Soc. 60 (1938) 309-319. https://doi.org/citeulike-article-
478		id:4074706\rdoi: 10.1021/ja01269a023.
479	[28]	W.D. Harkins, G. Jura, Surfaces of Solids. XIII. A Vapor Adsorption Method for the
480		Determination of the Area of a Solid without the Assumption of a Molecular Area,
481		and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid,
482		J. Am. Chem. Soc. 66 (1944) 1366–1373. https://doi.org/10.1021/ja01236a048.
483	[29]	M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J.
484		Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the
485		evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure
486		Appl. Chem. 87 (2015) 1051–1069. https://doi.org/10.1515/pac-2014-1117.

487	[30]	G.W. Peterson, D.T. Lee, H.F. Barton, T.H. Epps, G.N. Parsons, Fibre-based
488		composites from the integration of metal-organic frameworks and polymers, Nat.
489		Rev. Mater. 6 (2021) 605-621. https://doi.org/10.1038/s41578-021-00291-2.
490	[31]	A. DeVierno Kreuder, T. House-Knight, J. Whitford, E. Ponnusamy, P. Miller, N.
491		Jesse, R. Rodenborn, S. Sayag, M. Gebel, I. Aped, I. Sharfstein, E. Manaster, I.
492		Ergaz, A. Harris, L. Nelowet Grice, A Method for Assessing Greener Alternatives
493		between Chemical Products Following the 12 Principles of Green Chemistry, ACS
494		Sustain. Chem. Eng. 5 (2017) 2927–2935.
495		https://doi.org/10.1021/acssuschemeng.6b02399.
496	[32]	C. Brambila, P. Boyd, A. Keegan, P. Sharma, C. Vetter, E. Ponnusamy, S. V.
497		Patwardhan, A Comparison of Environmental Impact of Various Silicas Using a
498		Green Chemistry Evaluator, ACS Sustain. Chem. Eng. 10 (2022) 5288–5298.
499		https://doi.org/10.1021/acssuschemeng.2c00519.
500	[33]	J. Liu, H. Cao, Y. Shi, P. Jiang, Enhanced Methane Delivery in MIL-101(Cr) by
501		Means of Subambient Cooling, Energy & Fuels. 35 (2021) 6898–6908.
502		https://doi.org/10.1021/acs.energyfuels.1c00617.
503	[34]	J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, 1979.
504		https://books.google.com.mx/books?id=eHANhZwVouYC.
505	[35]	M. Armstrong, P. Sirous, B. Shan, R. Wang, C. Zhong, J. Liu, B. Mu, Prolonged
506		HKUST-1 functionality under extreme hydrothermal conditions by electrospinning
507		polystyrene fibers as a new coating method, Microporous Mesoporous Mater. 270

508	(2018)	34–39. htt	ps://doi.org	g/10.1016/	j.micromeso.	2018.05.004.
	() -		C		J	

- 509 [36] J.F. Kurisingal, Y. Li, Y. Sagynbayeva, R.K. Chitumalla, S. Vuppala, Y. Rachuri, Y.
- 510 Gu, J. Jang, D.-W. Park, Porous aluminum-based DUT metal-organic frameworks
- 511 for the transformation of CO2 into cyclic carbonates: A computationally supported
- 512 study, Catal. Today. 352 (2020) 227–236.
- 513 https://doi.org/10.1016/j.cattod.2019.12.038.
- 514 [37] H. Embrechts, M. Kriesten, M. Ermer, W. Peukert, M. Hartmann, M. Distaso, In situ
- 515 Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al)
- 516 and MIL-53(Al), RSC Adv. 10 (2020) 7336–7348.
- 517 https://doi.org/10.1039/C9RA09968A.
- 518 [38] E. Pretsch, P. Bühlmann, M. Badertscher, IR Spectroscopy, in: Struct. Determ. Org.

519 Compd., Springer-Verlag, Berlin, Heidelberg, 2009: pp. 1–67.

- 520 https://doi.org/10.1007/978-3-540-93810-1_7.
- 521 [39] Y. Zhang, N. Tajaddod, K. Song, M.L. Minus, Low temperature graphitization of
- 522 interphase polyacrylonitrile (PAN), Carbon N. Y. 91 (2015) 479–493.
- 523 https://doi.org/10.1016/j.carbon.2015.04.088.
- 524 [40] X. Hu, D.J. Johnson, J.G. Tomka, Molecular Modelling of the Structure of
- 525 Polyacrylonitrile Fibres, J. Text. Inst. 86 (1995) 322–331.
- 526 https://doi.org/10.1080/00405009508631337.
- 527 [41] S. Lee, J. Kim, B.-C. Ku, J. Kim, H.-I. Joh, Structural Evolution of Polyacrylonitrile
 528 Fibers in Stabilization and Carbonization, Adv. Chem. Eng. Sci. 02 (2012) 275–282.

- 529 https://doi.org/10.4236/aces.2012.22032.
- 530 [42] P. Sharma, C. Vetter, E. Ponnusamy, E. Colacino, Assessing the Greenness of
- 531 Mechanochemical Processes with the DOZN 2.0 Tool, ACS Sustain. Chem. Eng. 10
- 532 (2022) 5110–5116. https://doi.org/10.1021/acssuschemeng.1c07981.
- 533 [43] J. Kärger, D.M. Ruthven, D.N. Theodorou, Sorption Kinetics, in: Diffus.
- 534 Nanoporous Mater., Wiley, 2012: pp. 143–189.
- 535 https://doi.org/10.1002/9783527651276.ch6.
- 536 [44] V.T.L. Tran, P. Gélin, C. Ferronato, J. Chovelon, L. Fine, G. Postole, Adsorption of
- 537 linear and cyclic siloxanes on activated carbons for biogas purification: Sorbents
- 538 regenerability, Chem. Eng. J. 378 (2019) 122152.
- 539 https://doi.org/10.1016/j.cej.2019.122152.
- 540
- 541

542 Tables

Notation		Solut	tion 1	S	Solution 2	Electrospinning	
		PAN (g)	DMF (g)	DUT-4 (g)	DMF (g)	PAN (g)	operational mode
	PAN	0.3	3.0	N/A ^a	N/A	N/A	Uniaxial
	20DUT-4/PAN	0.5	2.0	0.1	3.0	N/A	Uniaxial
	20DUT-4@PAN	0.4	2.5	0.1	2.5	0.1	Coaxial
	70DUT-4@PAN	0.25	3.0	0.25	3.0	0.1	Coaxial
	100DUT-4@PAN	0.25	3.0	0.35	3.0	0.1	Coaxial
	140DUT-4@PAN	0.25	3.0	0.50	3.0	0.1	Coaxial
	ANI/A						

543 **Table 1.** Details of each electrospinning solution employed.

544 ^aN/A: not applicable

545

- 546 Table 2. Textural properties derived from the nitrogen adsorption-desorption isotherms
- 547 obtained at -196 °C of the DUT-4 fibers.

Fiber notation	S_{BET} (m ² /g)	V _{mp} (cm ³ /g)	$S_t (m^2/g)$	V _{mes} (cm ³ /g)	V _p (cm ³ /g)
PAN	11	0.002	6	0.025	0.027
20DUT-4/PAN	20	0.004	10	0.055	0.059
20DUT-4@PAN	37	0.010	13	0.090	0.100
70DUT-4@PAN	113	0.033	33	0.188	0.221
100DUT-4@PAN	131	0.040	35	0.120	0.160
140DUT-4@PAN	293	0.100	51	0.264	0.363

548

549 **Table 3.** Kinetic model parameters for siloxane D4 adsorption.

Adsorbent	PS-1		P	S-2	Crank	
	K ₁ (h ⁻¹)	R ²	K₂ (h⁻¹)	R ²	D (m²/h)	R ²
DUT-4	1.14	0.9456	0.22	0.9231	1.76x10 ⁻⁸	0.9768
20DUT-4/PAN	6.43	0.9917	2.13	0.9977	4.22x10 ⁻⁸	0.9921
20DUT-4@PAN	5.87	0.9671	1.18	0.9840	5.12x10 ⁻⁸	0.9780
70DUT-4@PAN	5.33	0.8810	0.76	0.9736	5.82x10 ⁻⁸	0.9530
100DUT-4@PAN	2.59	0.9692	0.61	0.9463	3.32x10 ⁻⁸	0.9823

		Dra	nro	
ouri.	lai		FUIU	

140DUT-4@PAN	2.59	0.9460	0.38	0.9860	3.32x10 ⁻⁸	0.9936

552 Figure captions

- 553 Fig. 1. Crystal structure of DUT-4. (A) the aluminum octahedra are linked by NDC groups,
- (B) view of the rectangular tunnels $(9 \text{ Å} \times 9 \text{ Å})$ along the [010] direction. Color code: gray,
- 555 C; red, O; blue polyhedral, Al.
- 556 Fig. 2. Nitrogen adsorption-desorption isotherms obtained at -196 °C of the DUT-4 fibers
- 557 prepared by uniaxial (a) and coaxial (b) electrospinning configuration at different
- 558 experimental conditions.
- 559 Fig. 3. SEM micrographs of electrospun fibers: (A) PAN, (B) 20DUT-4/PAN, (C) 20DUT-
- 560 4@PAN, (D) 70DUT-4@PAN, (E) 100DUT-4@PAN, (F) 140DUT-4@PAN.
- 561 Fig. 4. ATR-FTIR spectra of the pristine DUT-4 and the fibers (PAN and 70DUT-562 4@PAN).
- 563 Fig. 5. PXRD patterns of (a) simulated DUT-4, (b) as-synthesized DUT-4 powders, (c)
- 564 electrospun DUT-4 powders-embedded fibers (70DUT-4@PAN), and (d) PAN fibers. The
- insert presents the chain packing of PAN in [110] direction.
- 566 Fig. 6. (A) TGA and (B) DTG curves of PAN and 70DUT-4@PAN fibers.
- 567 **Fig. 7.** Green Assessment of DUT-4 and 70DUT-4@PAN.
- 568 Fig. 8. Adsorption kinetics profiles of electrospun DUT-4 fibers at room temperature and
- 569 initial D4 concentration of 450 mg/Nm³.
- Fig. 9. Effective diffusion coefficients for D4 siloxane adsorption at 450 mg/Nm³ and room
 temperature.

573 Figure 1

575 Figure 2

- Aluminum-based MOF/PAN composite fibers were prepared by electrospinning
- Coaxial electrospun fibers show superior textural characteristics
- The fibers can be used to adsorb siloxane D4 at low concentrations
- 70DUT-4@PAN has the best relation between adsorption kinetics/environmental impact

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: