N
N

N

HAL

open science

AMAQC: attention-based multi-agent cooperation for
smart load balancing

Omar Houidi, Sihem Bakri, Djamal Zeghlache, Julien Lesca, Pham Tran Anh

Quang, Jérémie Leguay, Paolo Medagliani

» To cite this version:

Omar Houidi, Sihem Bakri, Djamal Zeghlache, Julien Lesca, Pham Tran Anh Quang, et al..
AMAC: attention-based multi-agent cooperation for smart load balancing. 2023 IEEE/IFIP Net-
work Operations and Management Symposium (NOMS 2023), May 2023, Miami, FL, United States.
10.1109/NOMS56928.2023.10154214 . hal-03931985

HAL Id: hal-03931985
https://hal.science/hal-03931985
Submitted on 10 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03931985
https://hal.archives-ouvertes.fr

AMAC: Attention-based Multi-Agent Cooperation
for Smart Load Balancing

Omar Houidi*, Sihem Bakri*, Djamal Zeghlache*,
Julien Lescaf, Pham Tran Anh Quang!, Jérémie Leguay’, Paolo Medaglianif
*Telecom SudParis, Samovar-Lab, Institut Polytechnique de Paris, France
THuawei Technologies Ltd., Paris Research Center, France

Abstract—In cooperative multi-agent reinforcement learning
(MARL), efficient communication among agents requires the
reduction of excessive message exchange at run-time to make it
practical for real-world applications. This paper proposes a novel
communication scheme, Attention-based Multi-Agent Cooperation
(AMAC), that reduces overhead and shared information by
exchanging only relevant messages across agents to coordinate
decision-making and improve load balancing in networks. Ex-
periments show that AMAC can significantly lower inter-agent
communications overhead and learning complexity at the net-
work controller level without degrading performance. The results
demonstrate that our method actually outperforms multiple
MARL benchmarks in Key Performance Indicators KPIs (such
as throughput, delay, jitter), and Key Quality Indicators KQIs
(such as QoE, average video bitrate, stalling).

Index Terms—Multi-Agent, Reinforcement Learning, Smart
Load Balancing, QoE Optimization, Overhead reduction.

I. INTRODUCTION

Load balancing (LB) plays a key role in enhancing Qual-
ity of Service (QoS) by using more efficiently network re-
sources [1]. The most popular load balancing mechanism,
i.e. Unequal Cost Multipath routing (UCMP), splits traffic
aggregates evenly over candidate paths between source and
destination pairs. In Software-Defined Networking [2] archi-
tectures, a network controller is responsible for adjusting load
balancing weights over time. Centralized methods such as
Niagara [3] have been proposed to control the split of traffic
so as to minimize a linear routing cost or the Maximum
Link Utilization (MLU). However, these proposals are not
explicitly trying to improve QoS metrics such as the end-
to-end latency. An alternative to these traditional approaches
consists in tackling the load balancing problem through a
model-free approach that can learn and reinforce its decisions
over time. Even if network calculus or queuing models can
estimate latency, packet loss, and jitter, the associated models
remain quite complex and difficult to integrate in global
load balancing solutions. Model-free reinforcement learning
approaches have been proposed as a promising solution to
optimize QoS [4]. However, the presence of a centralized
control entity may not be desirable for scalability reasons and
can yield a high overhead. Indeed, the execution of a unique
reinforcement learning model requires the exchange of a large
amount of data in a timely manner.

To address this limitation on scalability, this paper studies
semi-distributed solutions based on cooperative Multi-Agent
Reinforcement Learning (MARL) that has achieved remark-
able success in a variety of challenging areas including intel-
ligent traffic signal control, autonomous driving, and sensor
networks [5]. In MARL, multiple agents interact at run-time
in a shared environment to realize distributed and cooperative
decision-making. Each agent has access to partial environment

observations and makes local decisions based on messages
received from other agents. This work aims to reduce the over-
head of semi-distributed multi-agent RL-based load balancing
solutions without degrading accuracy and performance. This
is realized by using attention mechanisms and limiting agent
cooperation to most relevant neighbors so that agents can learn
to select valuable observations and exclude others. Our goal
is to show that focusing only on what contributes most to
learning, convergence, and stability and ignoring less useful
data leads to significant overhead reduction and complexity
reduction without sacrificing performance.

A widely used MARL paradigm known as Centralized
Training and Decentralized Execution (CTDE) [6], [7], learns
agent policies centrally and executes the derived policies
decentrally. Several CTDE learning approaches have been
proposed, including both policy gradient and value-based
methods [8] shown to achieve reasonably good performance
in challenging tasks. Despite its success, the execution of fully
decentralized policies suffers from limitations, particularly
when agents have partial observability in a stochastic envi-
ronment. In fact, during decentralized sequential execution, an
agent’s uncertainty about the states and actions of other agents
can be aggravated and lead to sub-optimal policies. To address
this limitation, some works enable inter-agent communication
[9], [10]. This exchange of messages between agents enhances
local observations, and improves decision policies leading to
better actions. However, in complex settings, frequent inter-
agent communication leads to poor performance as it causes
higher learning complexity, higher overhead, and expands the
agents’ local policy spaces.

Motivated by these observations, we design AMAC, a
novel deep MARL architecture that can significantly improve
inter-agent communication efficiency at the agent-level by
exchanging only relevant messages for cooperation without
impacting accuracy. AMAC combines multi-head attention
[11] and a QMIX [12] adapted mixing network that results in
an attention-based value-mixing network that transforms the
individual agent Q-values (); into a global value Q)+, instead
of directly summing up all the local Q-values. AMAC makes
decisions on load balancing weights in a semi-distributed
fashion, by learning a centralized joint action-value function
Qio+ and by using it to guide the optimization of semi-
decentralized policies at each agent. The agents select actions
locally (in our case selecting a path among candidate paths at
an origin node for improved load balancing), based on Q;.¢,
Q; and their individual local observations. The controller takes
as input the most important summarized information returned
by agents to produce the joint and global value function Q.

This paper addresses the problem of finding the relevant

subset of neighbors an agent can cooperate with and iden-
tifying the most useful information to exchange between
agents. The idea is to avoid using a fixed adjacency matrix
representing the allowed communication between agents. In
addition, we avoid using a fixed number of neighboring
nodes and instead select the subset of neighboring agents
most conducive to successful training steps. In summary we
propose a new smart load balancing approach using multi-
head attention mechanisms combined with a multi-agent value
decomposition [13] that decomposes the global shared multi-
agent Q-value Q. into individual Q-values Q; to guide the
behavior of the local agents. We intend to adopt a semi-
distributed (i.e., where decentralized policies are learned cen-
trally) and cooperative multi-agent approach that generates
less overhead than purely centralized and semi-distributed
approaches, by reducing the amount of data treated by the
controller and at the same time does not suffer from the
performance limitation of fully distributed approaches. Our
objective is to strike a balance between cooperation overhead
and performance by conducting most of the reinforcement
learning locally at the agent-level and sending only the relevant
local Q-value updates to the controller. In parallel, we rely on a
scoped and circumscribed cooperation between the distributed
agents to reduce the amount of data shared with neighboring
agents. This is realized by using the attention mechanism
and the identification of significant neighbors, as well as the
pruning out of less influential agents in the local decisions. The
net result is the clustering of neighbors (using the neighbor
matrix weight values) in subgroups that have a significant
impact on the local decisions. Furthermore, using an attention
mechanism, we reduce the complexity of the controller by
transforming the agent Q-values into a weighted Q-value that
simplifies the processing of a mixing network.

To evaluate the performance of our approach, we consider
networks conveying video flows whose QOE needs to be
optimized. This use case is relevant for RL-based methods
since the impact of load balancing decisions on QoS and
QoE has to be learned. In addition, since collecting QoE
at the clients is often unfeasible, we instead rely only on
network-level collected KPIs to make decisions and derive
load balancing policies.

Section II provides an overview of traditional LB and
MARL methods. Section III formulates the problem and
section V describes the proposed model. Section VI reports
the performance evaluation results in simulations and section
VII summarizes the main findings.

II. RELATED WORK

Equal-Cost Multi-Path routing (ECMP) [14] or UCMP have
been extended to perform path selection based on the least uti-
lized path so as to better balance traffic according to target load
balancing weights. However, these traditional schemes base
decision only on their knowledge of network conditions for a
given short period of time when long-term variation knowledge
is actually required to provide more relevant solutions. They
also cannot optimize end-to-end QoS parameters as they
cannot predict the impact of their decisions. To address these
issues, model-free approaches based on Machine Learning
(ML) and Artificial Intelligence (AI) have recently emerged as
candidate solutions to optimize Quality of Experience (QoE) as
well as correctly predicting future conditions [4].Deep multi-

agent reinforcement learning (Deep-MARL) [8] approaches
have achieved outstanding results in recent years and shown
superior performance in many real-world tasks where multiple
agents learn to cooperate despite their private observations
and limited communication ability. Therefore, the cooperation
between agents in a MARL environment has been adopted by
several research papers including DGN [15], RILNET [16],
and QMIX [12] to improve the overall performance of value-
based multi-agent methods.

A relevant MARL-based approach is DGN [15], which
primarily tackled the more general routing problem in net-
works. DGN proposes a multi-agent cooperation algorithm
based on convolutional graph reinforcement learning suitable
for capturing the dynamics of the multi-agent underlying envi-
ronment connectivity graph. DGN uses a deep-Q-network and
shares weights among all agents. DGN abstracts the mutual
interplay between agents by relation kernels, extracts latent
features by convolution, and induces consistent cooperation
by temporal relation regularization. Unlike DGN, which uses a
fixed number of neighboring nodes and a fixed set of adjacency
matrices, our proposed algorithm AMAC finds the relevant
subset of neighbors an agent can cooperate with and identifies
the most useful information to exchange between agents. Here,
we also solve a different problem from the routing in packet
switching networks.

Some previous works such as RILNET (Relnforcement
Learning NETworking) [16] integrate Reinforcement Learning
(RL) in their approach, aiming at load balancing for data-
center networks. The RL algorithm used in RILNET is Deep
Deterministic Policy Gradient (DDPG) [17], which is a model-
free, off-policy actor-critic algorithm that uses deep function
approximations that can learn policies in continuous action
spaces. The reward used in the agent learning phase is the
Maximum Link Utilization (MLU). The used architecture is
based on a centralized framework, where the critic and the
agent control and know the entire network state. However,
these methods do not include communication between agents
nor any reduction of overhead in their policy optimization.

Given the success of the centralized training and decentral-
ized execution CTDE paradigm, the value function decompo-
sition method has been proposed to improve agent learning
performance. In Value Decomposition Network (VDN) [13],
the joint Q-value is defined as the sum of the individual
agent Q-values. VDN does not make use of additional state
information during training and can represent only a limited
class of centralized action-value functions. QMIX [12] sheds
some light on VDN, and uses a neural network with non-
negative weights to estimate the joint Q-value using both
individual Q-values and the global state information.

All the aforementioned methods assume no communication
between the agents during the execution. However, when
the environment is stochastic and the agent observation is
partial, the fully decentralized execution is considerably less
efficient. As a result, recent studies have shown that introduc-
ing communication between agents can significantly improve
overall performance in cooperative multi-agent reinforcement
learning. Authors of TMC [18] propose a Temporal Message
Control (TMC) framework that applies a temporal smoothing
technique to drastically reduce the amount of information ex-
changed between agents. In [19], the authors propose Variance
Based Control (VBC), a simple approach to achieve efficient

communication among agents in MARL, by constraining the
variance of the exchanged messages during the training phase.
In [10], the authors propose a framework named Multi-Agent
Incentive Communication (MAIC), which adopts incentive
communication to enhance coordination.

In our previously published work [4], a QoS-aware load
balancing approach was proposed. It uses a Deep Reinforce-
ment Learning (DRL) algorithm with a constrained policy
optimization that learns the reward parameters to meet QoS
requirements with the main objective of controlling load
balancing weights over a set of pre-computed paths for the
multiple access devices. We resort to an actor-critic ap-
proach that uses CTDE and relies on a Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) [20] philosophy
to realize robust and improved load balancing performance.
For cooperation, the MARL framework has been improved
by introducing Differentiable Inter-Agent Learning (DIAL)
[9] mechanism, a technique to pass messages through pre-
established communication channels. DIAL passes messages
to improve training and execution. While it use useful to have
trainable message protocols. However, it does not provide
much insight or useful interpretation on how agents coopera-
tively ought to perform tasks. AMAC shows that applying an
attention mechanism and using teammate modeling to enhance
coordination without enlarging policy spaces, can significantly
improve the performance of multi-agent systems and realize
efficient and selective cooperation.

III. PROBLEM FORMULATION

To model the cooperative multi-agent environment, we
use the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) [21] allowing the coordination and
decision-making among the multiple agents.

A Dec-POMDP can be defined by a tuple expressed as:
M= (N8, AT R,Q,O,7), where:

o N ={1,...,n} is the set of agents,

o S is a set of global states,

o A is the set of actions,

e T is a set of transition probabilities between states,
T(s,a,s") = P(s’ | s,a), which defines the probability
distribution over possible next states,

e R(s,a):S x A— R is the reward function,

e We consider a partially observable setting, where
each agent i receives an individual partial observation
o0; € {2 according to the observation probability function
O(o; | s,a;), where s € S is the global state, and a; is
an action made by agent 1.

e v € [0,1) is the discount factor.

In practice, each agent is in charge of load balancing traffic be-
tween an origin-destination pair. The states are the amount of
traffic (average throughput, number of flows) over each path.
The local agent action a; is about selecting load balancing
weights over a set of candidate paths.

At each time step, each agent i € A chooses an action
a; € A, and can only acquire the individual partial observa-
tion o; € () according to the observation probability function
O(o; | s,a;) where s € S. The joint action a = (ay, ..., a,)
leads to next state s’ ~ P(s'|s,a) and the global reward
R(s,a). The formal objective is to find a joint policy 7 (7, a),
where T is the joint agent action-observation history, to max-

imize the joint/global value function:
Qi (1.a) =Eg o[> o gV R(st, ab) | so = s*, a9 = a*, 7.

Although training is centralized, execution is decentralized,
i.e., the learning algorithm has access to all local action-
observation histories 7 € 7 and global state s € S, but each
agent’s learnt policy can condition only on its own action-
observation history 7;, where 7; represents action-observation
history of agent ¢, and 7 is the action-observation history of
all the agents.

IV. BACKGROUND

A. OMIX-based Value Decomposition Networks

QMIX [12] is a popular Q-learning algorithm for coop-
erative MARL in the centralized training and decentralized
execution paradigm. QMIX methodology relies on the Value
Decomposition Networks (VDN) [13] approach but with a
much enhanced class of action-value functions. Value Decom-
position Networks (VDN) [13] aim to learn an optimal linear
value-decomposition by back-propagating the total Q-gradient
through deep neural networks representing the individual
component value functions. Since the implicit value function
learned by each agent depends only on local observations, it is
more easily learned. Value decomposition consists in decom-
posing the value function for each agent and measuring their
impact on the observed joint reward. The joint action-value
function @y, is (additively) decomposed into N Q-functions
for N agents, in which each Q-function only relies on the
local state-action history. Each agent observes its local state,
obtains the Q-values for its action, and selects an action. The
sum of Q-values for the selected actions of all agents then
provides the total problem Q-value. Using the shared reward
and the total Q-value, the loss is calculated and the gradients
are then back propagated into the networks of all agents. QMIX
[12] aims at overcoming VDN’s limitations. QMIX uses a
gradient mixing network to estimate joint action-values as a
non-linear combination of per-agent values that depend on
local observations. Besides, QMIX imposes a monotonicity
constraint on the relationship between Q:,; and each @,
which allows computationally tractable maximization of the
joint action-value in off-policy learning. But QMIX performs
an implicit mixing of @); while regarding the mixing process
as a black-box. Besides, when mixing individual Q;s to Q.
QMIX uses weights directly produced from global features
instead of accurately modeling the individual impact to the
whole system at a per-agent level.

One of the key benefits of QMIX is the insight that the full
factorization of VDN is not necessary to extract decentralized
policies fully consistent with their centralized counterpart.
Instead, for consistency, it only needs to ensure that a global
argmax performed on @, leads to the same result as a set
of individual argmax operations performed on each Q).

B. Attention Mechanism

In recent years, the attention mechanism [11] has been
widely used in various research fields and more and more
works rely on the idea of the attention to deal with challenges
in MARL. An attention function can be described as mapping
a query and a set of key-value pairs to an output, where the
queries Vg, the keys V., the values, and the output are all
vectors. In our case, the queries, keys, and values refer to
vectors that represent the states, the actions, and the Q-values,
respectively. 7 refers to the index of the head which represents

the attention layers. The output is computed as a weighted
sum of values, where the weight w; assigned to each value
is computed by a compatibility function f(Vg, V) of the
query with the corresponding key. In our case, the attention
aims to measure the importance (i.e., weight), given to relevant
neighbors for cooperation.

v — o (Va, Vie))
T Epeanp(f(Vo, VE)

where f(Vg, V) is the compatibility function to measure the
importance of the corresponding value. The mechanism of
scaled, multiplicative, dot-product attention is just a matter
of concretely calculating the attentions and re-weighting the
values. In practice, multi-head attention is usually employed
to allow the model to jointly handle information (queries,
keys and values) from different representation sub-spaces at
different positions. With a single-head attention, averaging
inhibits this joint management process.

(D

V. SYSTEM MODEL

As mentioned earlier, the proposed smart LB mechanism
is based on the MARL paradigm. The applied policy is
Centralized Training and Decentralized Execution (CTDE).
Our proposed methodology is structured on two main levels,
namely (i) the controller-level, where the centralized learning
occurs. The controller properly captures the effects of the
agents’ actions, using a centralized action-value function Q.
(using the mixing network) that depends on the global state
s¢ and the joint action a;. When the ¢, function is learned,
it offers a way to extract decentralized policies that allow
each agent to select only an individual action based on an
individual observation with respect to its local @Q;, and (ii)
the agent-level, where intelligently scoped communication be-
tween only relevant cooperating agents enhances coordination
and addresses fully decentralized execution limitations.

AMAC guarantees consistency between the centralized
learned policies (derived by the controller based on Qi0)
and the decentralized executed policies (where agents select
actions according to their @;). Fig. 1 summarises the proposed
method with the two levels.

A. Controller-level

The purpose of the controller-level is to decide the estimated
weights assigned to the candidate routing paths and derive
the best load balancing policies. Hence, the output of the
controller-level is the estimated weight of each path. The
inputs are the agent-level Q-values as described in more
details in the ensuing subsection. The controller uses the
mixing network of the QMIX to combine the Q-values of
each agent in a non-linear fashion into Q,:. To reduce the
processing complexity at this level we adopt the dot-product
attention [11]. By adding, the dot-product attention, the mixing
network mixes the relevant features instead of mixing the
global features, this reduces information exchange, and mostly
complexity at the controller.

1) Multi-head attention: In fact, all states, actions, and
Q-values are not directly integrated into the mixing network,
the Dot-Product transforms them into one weighted value Q"
thereby reducing also the complexity of the mixing network
at the controller-level during the training phase.

N
Q"= i x Qi(ri,a;) 2
i=1

where p; is the head coefficient. For each h, the in-
ner weighted sum operation can be implemented using the
differentiable key-value memory model to approximate the
coefficients and establish the relations from the individuals
to the global. The differentiable key-value memory paradigm
provides powerful function approximation capability. We use
multiple attention heads to implement the approximations of
different orders of partial derivatives. The multi-head attention
structure allows the model to jointly attend to information from
different representation sub-spaces at different positions. By
summing up the head Q-values Q" from different heads, we

get:

H
Quot =c(s) + > _ Q" 3)
h=1

where H is the number of attention heads, and the first term
¢(s) in Eq. 3 could be learned by a neural network with the
global state s as the input. QMIX [12] uses weights directly
produced from global features instead of accurately modeling
the agent’s individual impact on the whole system at a per-
agent level. In our model, Q" is fed then into the mixing
network to produce Q;,;. AMAC mixes the weighted Q; (Q")
produced from the attention model. In this way, only relevant
features are mixed instead of mixing all features.

2) Mixing network: Our mixing network is a feed-forward
neural network that mixes the Q" monotonically, producing
the values of Q¢ The weights of the mixing network are
produced by separate hyper-networks. Each hyper-network
takes the state s as input and generates the weights of one
layer of the mixing network. Each hyper-network consists of a
single linear layer, followed by an absolute activation function,
to ensure that the mixing network weights are restricted to be
non-negative.

Besides, QMIX does not explicitly consider the agent-level
impact of individuals on the whole system when transforming
individual @;s into Q;.:. In our case, we derive a general
formula of Q4 in terms of);, which allows us to implement
a multi-head attention formation to approximate Q.¢, leading
to not only a refined representation of Qy,; with an agent-
level attention mechanism, but also a tractable maximization
algorithm of decentralized policies. When converting individ-
ual);s to (Q;,; Within a multi-head attention structure, AMAC
uses the key-value memory operation to explicitly measure the
relevance of each agent to the entire system. Using attention,
AMAC measures agents with different weights for mixing @;s
into Q¢,; according to each agent’s individual properties.

B. Agent-level

The agent-level, with relevant communication between
agents, sets for each agent the Q-values used then as input
to the previously described controller-level. The Q-value is
the maximum expected reward an agent can reach by taking
a given action from the state. After an agent has learned the
Q-value of each state-action pair, the agent at a given state
maximizes its expected reward by choosing the action with the
highest expected reward. For decentralized decision-making,
each agent takes its current obtained observation and last

During training, the global Q-value Q,, guides the optimization of decentralized policies at each agent through the monotonicity r

‘ Q“"T Controller-level

relu

Controller

S

relu

b:
[Weighted ‘42 -

St

Teammate Message

F

Modeling Generator
A \ LI E[Softmax ‘
T
/ N\ T Lo
T l i kij
| Encoder | i [re] [Fe)
A S SO S S M Agenti | 1 __><
4 4 o o Ei

i ~1

Qu(tn)
‘ p -
my; i"’/T 0}tz)| imnT tottenan

St ar Qi(ri, ai)

Agent it Agentn

Agentn !

Agent-level

[mMLP]

Policy decision: Each agent decides about load balancing weights

Fig. 1: AMAC structure diagram.

action as input and feeds them into a gating mechanism called
Gated Recurrent Units (GRU) [22] cell to get a representation
of historical information that will help improve the current
system decision-making.

We further use this historical representation to generate local
Q-values Q'°°(1;,a;) via a Multi-Layer Perceptron (MLP).
The local network of each agent also contains a teammate
modeling network (i.e., neighbor relevance assessment), where
a teammate is a selected neighbor/retained relevant neighbor.

The agent uses a sampled representation from teammate
models to generate sparse communication weights and tailored
message contents. The processed messages are then fed to the
policies of other agents in an incentive manner, resulting in
efficient and sparse/infrequent communication. As depicted in
Fig. 1, the agent-level system consists of the following blocks:

1) MLP network block: A multi-layer perceptron to obtain
a local Q-value Q'°(7;,a;) of agent a;.

2) The decentralized teammate modeling block: To guide
the intentions of certain agents, this block learns targeted team-
mates models, which can infer the action selection of these
agents in a partially observable manner. To obtain a teammate
model from agent ¢ to agent j, the system takes as input local
information 7; that represents the action-observation history
of agent ¢, and a specific teammate ID d;. The teammate
model is represented by a multivariate Gaussian distribution
whose parameters are computed by an encoder with multiple
fully-connected layers. The output of this part is a sampled
representation of the teammate z;; for agent j, which will
be fed afterward into the message generator block to guide
the message generation process of agent 7. As the simple
MLP cannot guarantee the anticipation of teammate models,
an explicit regularization mechanism has been introduced at
this block to guide the teammate modeling.

We expect the learned teammate models to be responsive to
the action selection of every specific teammate, as the selected
actions can intuitively exhibit the coordination relation among
agents. We optimize the teammate models by maximizing
the Mutual Information (MI) between the action a; taken by

agent j and the random variable z;; of the teammate model
distribution conditioned on agent ¢’s local action-observation
history 7; (that contains the current local observations oﬁ, and
the last action af_l), and the specific teammate ID d;. We can
express MI via the entropy H(z;;|7;,d;) and the conditional
entropy H(z;;|7i,a;,d;) as follows:

(zij, ajlmi, dj) = H(zij|7i, dj) — H(zij|7i;05,d;) - (4)

Maximizing MI between each pair of agents is equivalent to
minimizing the uncertainty about the learned teammate model
conditioned on the agent’s local information, enabling agent
i to acquire a powerful teammate representation z;; when
modeling agent j.

The agent learns a targeted teammate model for every other
agent from its local observation. This teammate model, which
maximizes a Mutual Information (MI) regularizer to associate
learned models with opponent intention anticipation, can help
each agent dynamically generate tailored incentive messages
to specific teammates without enlarging policy spaces.

The teammate model is used to design a novel message
generator to produce messages with prominent communication
weights. The emergence of significant communication weights
addresses interaction sparsity, a commonly existing and useful
structure in multi-agent systems, realized by pruning/removing
messages with minor communication weights.

3) The message generator block: As the agent can ex-
tract targeted teammate information from learned teammate
models, this representation can be utilized to generate tailored
messages for different agents. Especially, the system maintains
a local Q-network to compute the local Q-values Q'°¢(7;, a;)
for each action a; € A. The message generator contains an
MLP value v;; = F,,(7;, zi;), whose input includes the local
action-observation history 7; of agent 7 as well as the teammate
representation z;; for agent j. The output v;; has the same
dimension as the local Q-network, which is the dimension
of the action space. The teammate representation can also
help communicate in a more targeted manner, as unnecessary

information may confuse the receiver. The agent will calculate
communication weights for all other agents by taking the
teammate representation as input.

At the same time, for a better combination of the representa-
tion and the agent’s own information, a Dot-Product attention
mechanism [11] is applied to compute the query ¢; from the
agent’s action-observation history 7; and the key k;; from the
representation of teammate j. Both g; and k;; are computed by
simple linear functions. Then, by applying a Softmax function,
the query ¢; and the key £;; are normalized and used to provide
the communication weight o;; between agents ¢ and j. The
communication weight «;;, which defines the weight to agent
J for agent 7’s communication, is normalized to make all o;
from agent ¢ produce an explicit categorical distribution:

exp(—o X g; X k;j)
> s €2P(—0 X Gi X ki)

&)

Q5 =

Where 0 € R* is the temperature parameter to scale the
magnitude of the input. We select the best value for o (i.e.,
ox) empirically. Equation Eq.5 is related to Eq.1. The final
message from agent ¢ to agent j is calculated by the product:

Mij = Q5 X Vg5 (6)

As the message is already represented in an effective and
targeted way, the final message will be used to favor the other
agent’s Q-values as an incentive, because this approach would
not explicitly enlarge the policy space of every agent.

The Q-value of each agent Q,;(7;,a;) is then formulated as:

Qi(ri, ai) = + mys (7)
J#i

Q1 (71,)

where Q;(7i,a;) and Q¢(7;,a;) indicate the corresponding
Q-value vector for every action a;.

4) Sparse and infrequent communication between agents:
Despite the fact that we can generate communication weights
for different teammates, the neural network itself cannot
force agents to produce sparse weights, resulting in uniform
communication weights for different agents. In order to learn
a sparse but effective communication, we further introduce
a sparsity regularization, which optimizes the entropy of the
category distribution formed by communication weights:

ZH Qi)

where 6. are the parameters of the message generator and H
is the Shannon entropy, as defined in [23]. By minimizing
this entropy loss, we can obtain communication weights with
lower uncertainty. Furthermore, it is also possible to elimi-
nate useless and ineffective communication links and reduce
redundant information through the communication weight.
The regularization facilitates action taking by adopting a
cooperative behavior providing coherent actions in the long-
term in order to maximize the final reward.

Z ij % log v (8)

C. States, actions and rewards

We use 1 agent for each Origin-Destination (OD) pair. Each
agent is in charge of selecting paths for incoming flows over
a set of pre-computed paths. The path selection policies are

derived in our case to optimize the QoE in a video network
using HTTP adaptive streaming.

1) States: The states are the amount of traffic (average
throughput) and the number of active flows on each outgoing
path (route).

2) Actions: For the policy decisions, each agent positioned
at the source node decides about load balancing weights for
the P paths towards the destination. Each time a new flow
arrives, the path is selected accordingly. Due to the discrete
nature of RL algorithms, we choose to discretize the decision-
making process for the agents: at each time step/period P a
new policy is selected and new flows arriving between the
current time ¢ and ¢ + P will follow the same policy (i.e. set
of load balancing weights).

3) Rewards: We explore the use of QoS metrics collected
in the network as an alternative to QoE-based DRL methods
as QoE factors are difficult to retrieve at the network layer (or
at the clients) in practice. Equation 9 presents the reward ex-
pression used for comparisons in the performance evaluation.

R = Throughput — X\ X c(s,a) 9

where ¢(s,a) = |Referencepeiay — Current peiay(s, a)|

As shown in Eq. 9, we introduce constrained reward expres-
sions to penalize decisions if the experienced flow delivery
delay violates a tolerable bound, called the Reference Delay
(arbitrarily set to 0.5s in our case). Recall that our goal is to
use only network KPIs in the smart load balancing algorithms
to intelligently distribute traffic to optimize QoE. The reward
expression is well known from previous work [24], and em-
beds throughput that has a direct impact on the average video
bitrate and also latency that impacts stalling. The constrained
rewards use parameter \ to penalize actions violating the flow
delivery delay limit. While algorithms like RCPO [25] can
be implemented to find optimal A values (i.e. Lagrangian
multipliers), in our case, we performed an iterative search
for simpler implementation. The next section presents the
evaluation methodology and performance assessment results.

VI. PERFORMANCE EVALUATION
A. Simulation environment

The topology used for the performance evaluation is the
Abilene [26] topology and for this set of results the clients
generate video flows using the LibDASH library [27] in the
ns-3 simulator [28] coupled with a PyTorch environment for
the machine learning framework where the approaches have
been implemented and used to conduct the evaluation.

Our simulation platform, from [4], is based on the Adaptive
Multimedia Streaming Simulator Framework (AMust) [29]
in ns-3, which implements an HTTP client and server for
LibDASH, one of the reference software of ISO/IEC MPEG-
DASH standard. As streaming content, we have chosen a
representative open movie commonly used for testing video
codecs and streaming protocols: Big Buck Bunny (BBB).
More specifically, the following simulation scenario have been
used for the reported results:

« Topology: Abilene [26] (11 nodes, 14 links).

o Traffic type: video streams use DASH [27] that adjusts

video encoding according to perceived bearer conditions
sensed at the application level in the clients.

o The selected MLP configuration: consists of 1 hidden
layer with 16 neurons, a batch size for experience replay
sampling set to 32.

e Test duration: 300 time units (seconds).

o Training duration: 10 000 steps.

o Medium and High load scenarios: for the medium
load scenario, the link bandwidth capacities are randomly
generated between 5 Mbps and 20 Mbps. For the high
load scenario, the link bandwidth capacities are within 1
Mbps and 4 Mbps. We stress the system by setting less
total available bandwidth.

We generated 3 paths for each source/destination pair, using
a k-maximally disjoint shortest path algorithm. The traffic
is randomly generated at the beginning of the experiment
following these characteristics:

e The duration of flows is 40s with 10 Origin-Destination
(OD) pairs active per simulation.

o The inter-arrival time of flows follows a Poisson distri-
bution with heterogeneous parameters for each origin-
destination pair. The global average arrival rate is 1.1
new streams per second.

1) Metrics and performance indicators: The metrics to

assess performance are illustrated in the following paragraph:

o Delay (s): Average end-to-end delay at network layer
(constrained).

o Throughput (Mbps): Average throughput of video flows
(to maximize).

e QoE: A normalized index of the average video bitrate
of DASH representations. Depends on screen resolution
adaptation by DASH. Average on all downloaded chunks
of a normalized quality index indicating to which rep-
resentation they belong. It evolves between O and 1 for
™" (min video bitrate of DASH representations) and
r™* (max representations bitrate), respectively (see [30]
for more details) (to maximize).

o Video Stalling (ms): Average duration of freezing times
over each video session duration (to minimize).

o Jitter (s): The variation of the video segment retrieval
time (the time it takes to download a video segment)
(should be kept as close to zero as possible).

TABLE I: AMAC parameters

Learning rate 10—2
Batch size 32
7 delayed network update rate 0.1
v discount factor 0.9
Number of hidden layers 1
Dimension of hidden layers 16
Policy refreshing period (time period) | 10s

2) Simulation conditions and settings: The simulation
conditions and hyper-parameters used for performance eval-
vation of all network load scenarios are specified in Table I.
The scenario served for comparison with relevant state-of-the-
art solutions with similar hyper-parameters. The policy (load
balancing weights decision) is updated every 10s.

B. Training Loss

We analyze the training loss to assess the performance of
AMAC by comparing with other MARL based algorithms that
address smart load balancing using centralized training and

54 QMIX
—— Semi-Th+D
— DGN
— AMAC

Training Loss

o 2000 4000 6000 8000 10000

Number of Training Episodes

Fig. 2: The loss as a function of training steps.

distributed policy execution. Fig. 2 depicts the loss function
for the AMAC algorithm that stabilizes after 1000 training
episodes and converges to a state leading to a stable out-
put policy for smart load balancing. AMAC is faster than
the semi-distributed MADDPG actor-critic-based approach
“Semi-Th+D” [4] that uses DIAL [9] for the communication
and cooperation across agents. AMAC also outperforms the
other semi-distributed algorithms such as DGN [15] and
QMIX [12]. Besides confirming that AMAC converges to-
wards stable policies, we will also show that it outperforms
all other algorithms in key metrics in the evaluation sections.

C. AMAC inter-agent cooperation overhead

AMAC is sufficiently robust to remove useless communi-
cations, and by elimination of redundant messages promotes
good coordination and reduces overhead. The system searches
for and keeps only the optimal weights for all possible com-
munications between two nodes. For a topology with N nodes,
in the worst case, if all nodes communicate with each other,
we have N (N — 1) interconnections corresponding to O(N?)
complexity. Since, the focus on useful and highest weights
enables lowering down the number of relevant neighbors.
Often the attention matrix and the communication weights
of different agent pairs contain many elements with very
low entropy for cooperation, only a subset with significant
values is relevant and useful for cooperation. By filtering these
low values, we reduce the amount of messages exchanged
between the agents. In general, the communication load can
be evaluated in terms of bandwidth consumption using:

th x s x BW|[bps] (10)
t

where x; is the total number of communicating agents at
time t € T where «;; > 6. Variable s is the message size.
The threshold § can be used to disable communications with
agents whose attention communication weight o;; (defined
in Eq. 5) is below 4, a value that needs to be high enough
to contribute usefully to the cooperation and action taken
by each agent. This can help filter all agents that do not
contribute substantially to the decisions, that is, have little or
no influence on the agent’s action. This filtering or pruning
can help reduce the load on the system due to limited inter-

TABLE II: Medium load scenario

Algorith
) gorithm | o MP [14] | RILNET [16] | Cen-Th+D [4] || Semi-Th+D [4] | DGN [15] | QMIX [12] amac
Metric (6=0.8)
Reference aolay < 0.5s | 0359 0351 0282 0278 0274 0286 0261
Throughput (Mbps) 7.03 773 997 1021 936 927 10.46
QoE 0413 0.442 0.464 0465 0.463 0451 0483
Video Stalling (ms) 71162 68776 54927 52074 518.13 56922 41542
Jitter (5) 0.065 0051 0038 00375 0037 0039 0019
TABLE III: High load scenario
Algorith
) BOrhM | ECMP [14] | RILNET [16] | Cen-Th+D [4] || Semi-Th+D [4] | DGN [15] | QMux [12] | AMAC
Metric (6=0.8)
Reference aoly < 0.5s | 0585 0562 0507 0.498 0495 0504 0.483
Throughput (Mbps) 1453 1541 1788 1797 1808 1798 1827
QoE 0267 0289 0323 0325 0326 0314 0342
Video Stalling (ms) 1673.61 139224 984.61 976.17 947.12 98367 | 88675
Jitter (5) 0161 0.145 0.139 0.136 0115 0.122 0.103

agent communications and cooperation. Note that the «;;’s
are normalized and their sum is consequently equal to 1.
The threshold 6 € [0,1] is known as the message sparsity
threshold. We select the best value for § (i.e., §*) empirically
(i.e., based on observation and experience), but this coefficient
can be found formally and mathematically via a Lagrangian
or a Bayesian optimization. For the rest of the paper, we kept
6 = 0.8. The bandwidth, BW is the amount of bandwidth
needed to send 1 bit of message. In practice, one float of a
message needs 4 bytes (32 bits) to be stored. There is one
exchange of messages between the most relevant neighboring
agents every 10 seconds (i.e., policy refreshing period). The
message size s measured in bytes is expressed in bits in the
expression.

TABLE IV: Inter-agent communication overhead
AMAC agents

Algorithms Overhead (kbps) exchange gains
AMAC (where § = 0.8) 4.28 0%
AMAC (where 6 = 0.7) 6.41 33.23%
DGN [15] 12.72 66.35%
Semi-Th+D [4] (using DIAL [9]) 16.63 74.26%
All-to-all communication 70.4 93.92%

As depicted in Table IV, AMAC produces around an order
of magnitude lower communication overhead compared with
the all-to-all communication algorithm that does not limit inter
agent message transmission (i.e., § = 0). QMIX [12] is not
included in the communication overhead evaluation because
agents work independently without direct communication.

D. Performance Evaluation Results

We present results of AMAC, ECMP, RILNET, Constrained
Reinforcement Learning (Cen-Th+D and Semi-Th+D from
[4]), DGN, and QMIX algorithms in Tables II and III. The
tables report the medians of average delay, throughput, QoE,
video stalling, and jitter over a test episode of 300 time units
(seconds), with a policy refreshing period of 10 seconds (i.e.,
update frequency of load balancing weights). The comparisons
correspond to medium and high load conditions and to scenar-
ios where all links have enough capacity to serve the demand
as well as for situations where links are typically congested
compared with the load of the end-to-end networking requests.
Results depicted in Tables II and III show that the AMAC

algorithm achieves best overall trade-off across jointly ana-
lyzed performance metrics. Under high load, where links are
typically congested, the AMAC algorithm continues to provide
good results for all the metrics. Note that AMAC outper-
forms QMIX and DGN with a QoE of 0.34 versus 0.3 QoE
performance and, more significantly, when compared with
ECMP, whose QoE is lower with a value of 0.27. Furthermore,
AMAC achieves slightly better results in all metrics when
compared with throughput-based reward maximization and
delay constrained policy optimization algorithms, centralized
and semi-distributed (Cen-Th+D and Semi-Th+D, from [4],
in Tables II and III). This confirms that AMAC can reduce
agent cooperation messages load while not penalizing overall
performance. The performance improves slightly by focusing
only on key neighbors and neglecting less relevant agents that
affect negatively training and convergence to the best policies.

VII. CONCLUSIONS

The AMAC algorithm proposed to limit the information
exchanged between agents in cooperative MARL approaches
for improving load balancing in networks. It is shown not
to degrade the performance of cooperative learning. This is
achieved by exchanging only information between neighboring
agents that usefully contribute to joint learning. Exchanging
information between all or too many agents, especially those
that do not contribute significantly to joint learning, is not
recommended. It is more beneficial to cooperate with agents
that contribute most to joint knowledge and learning. AMAC
results in the dynamic creation of cooperating agent clusters
based on the importance of the communication or cooperation
weights (c;;, see Eq. 5) between agents. AMAC outperforms
state-of-the-art load balancing techniques and reduces the
load induced by cooperation in distributed machine learning
algorithms by up to an order of magnitude. This is realized
without affecting performance in all key indicators. Further,
it outperforms approaches where too many agents cooperate,
since a lot of secondary disturbing and spurious information
comes into play in the learning process. AMAC confirms
that it is essential to cooperate only with the most relevant
neighboring agents and focus on identifying them dynamically.
To reduce complexity at controller-level, instead of mixing
the global features, AMAC mixes only the relevant extracted
features for training that also speeds up convergence.

[1

—

[2

—

[3

=

[4]

[5]
[6

—

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

REFERENCES

Ning Wang, Kin Hon Ho, George Pavlou, and Michael Howarth. An
overview of routing optimization for internet traffic engineering. /EEE
Communications Surveys & Tutorials, 10(1):36-56, 2008.

Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14-76, 2014.

Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and
Jennifer Rexford. Efficient traffic splitting on commodity switches.
In Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, CONEXT 15, New York, NY, USA,
2015. Association for Computing Machinery.

Omar Houidi, Djamal Zeghlache, Victor Perrier, Pham Tran Anh Quang,
Nicolas Huin, Jérémie Leguay, and Paolo Medagliani. Constrained Deep
Reinforcement Learning for Smart Load Balancing. In 2022 IEEE 19th
Annual Consumer Communications & Networking Conference (CCNC),
pages 207-215. IEEE, 2022.

Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement
learning: a survey. Artificial Intelligence Review, 55(2):895-943, 2022.
Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and
approximate Q-value functions for decentralized POMDPs. Journal of
Artificial Intelligence Research, 32:289-353, 2008.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neurocomputing,
190:82-94, 2016.

Afshin Oroojlooyjadid and Davood Hajinezhad. A review of cooperative
multi-agent deep reinforcement learning. ArXiv, abs/1908.03963, 2019.
Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon
Whiteson. Learning to Communicate with Deep Multi-Agent Reinforce-
ment Learning. In Advances in Neural Information Processing Systems,
December 5-10, 2016, Barcelona, Spain, pages 2137-2145, 2016.

Lei Yuan, Jianhao Wang, Fuxiang Zhang, Chenghe Wang, Zongzhang
Zhang, Yang Yu, and Chongjie Zhang. Multi-Agent Incentive Commu-
nication via Decentralized Teammate Modeling. 2022.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N,
Kaiser £, , and Polosukhin I. Attention is all you need. NeurlPS’17,
pp. 5998-6008, 2017.

Tabish Rashid, Mikayel Samvelyan, Christian Schroder de Witt, Gregory
Farquhar, Jakob N. Foerster, and Shimon Whiteson. QMIX: Mono-
tonic Value Function Factorisation for Deep Multi-Agent Reinforcement
Learning. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmdissan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 4292-4301, 2018.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czar-
necki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas
Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-Decomposition
Networks For Cooperative Multi-Agent Learning. arXiv preprint
arXiv:1706.05296, 2017.

Christian Hopps. Analysis of an Equal-Cost Multi-Path Algorithm.
Technical report, RFC 2992, November, 2000.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph
Convolutional Reinforcement Learning. In International Conference on
Learning Representations, 2020.

Qinliang Lin, Zhibo Gong, Qiaoling Wang, and Jinlong Li. Rilnet:
A reinforcement learning based load balancing approach for datacenter
networks. In MLN, 2018.

T. Lillicrap, Jonathan J. Hunt, A. Pritzel, N. Heess, T. Erez, Yuval
Tassa, D. Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. CoRR, abs/1509.02971, 2016.

Sai Qian Zhang, Qi Zhang, and Jieyu Lin. Succinct and Robust Multi-
Agent Communication With Temporal Message Control. Advances in
Neural Information Processing Systems, 33:17271-17282, 2020.

Sai Qian Zhang, Qi Zhang, and Jieyu Lin. Efficient Communication
in Multi-Agent Reinforcement Learning via Variance Based Control.
Advances in Neural Information Processing Systems, 32, 2019.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor
Mordatch. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In Advances in Neural Information Processing Systems,
4-9 December 2017, Long Beach, CA, USA, pages 6379-6390, 2017.
Frans A Oliehoek and Christopher Amato. A concise introduction to
decentralized POMDPs. Springer, 2016.

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Ma-
chine Translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, pages 1724—-1734, 2014.

(23]
[24]

[25]
[26]

(27]

(28]

[29]
[30]

Claude Elwood Shannon. A mathematical theory of communication.
The Bell system technical journal, 27(3):379-423, 1948.

Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, and
Mérouane Debbah. Predicting qoe factors with machine learning. In
2018 IEEE International Conference on Communications (ICC), pages
1-6. IEEE, 2018.

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward Con-
strained Policy Optimization. CoRR, abs/1805.11074, 2018.

Anukool Lakhina, Konstantina Papagiannaki, Mark Crovella, Christophe
Diot, Eric D Kolaczyk, and Nina Taft. Structural analysis of network
traffic flows. In Proceedings of the joint international conference on
Measurement and modeling of computer systems, pages 61-72, 2004.
Christian Kreuzberger, Daniel Posch, and Hermann Hellwagner. A
scalable video coding dataset and toolchain for dynamic adaptive
streaming over http. In Proceedings of the 6th ACM Multimedia Systems
Conference, page 213-218, 2015.

George F Riley and Thomas R Henderson. The ns-3 network simulator.
In Modeling and tools for network simulation, pages 15-34. Springer,
2010.

C Kreuzberger, D Posch, and H Hellwagner. Amust framework-adaptive
multimedia streaming simulation framework for ns-3 and ndnsim, 2016.
Giacomo Calvigioni, Ramon Aparicio-Pardo, Lucile Sassatelli, Jeremie
Leguay, Paolo Medagliani, and Stefano Paris. Quality of experience-
based routing of video traffic for overlay and ISP networks. In Proc. of
IEEE INFOCOM, 2018.

