

Optimization of the Synthetic Jet to improve aerodynamic efficiency of the Next Generation Civil Tilt Rotor Aircraft

Dinh Hung Truong, Abderahmane Marouf, Yannick Hoarau, Alain Gehri, Jan

B. Vos

▶ To cite this version:

Dinh Hung Truong, Abderahmane Marouf, Yannick Hoarau, Alain Gehri, Jan B. Vos. Optimization of the Synthetic Jet to improve aerodynamic efficiency of the Next Generation Civil Tilt Rotor Aircraft. TSAS2022 Towards Sustainable Aviation Summit, Toulouse, France 2022, Oct 2022, Toulouse, France. hal-03931905

HAL Id: hal-03931905 https://hal.science/hal-03931905v1

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Association Aéronautique et Astronautique de France

Optimization of the Synthetic Jet to improve aerodynamic efficiency of the Next Generation Civil Tilt Rotor Aircraft

<u>Hung TRUONG</u>, A. Marouf, J.B. Vos, A. Gehri, and Y. Hoarau ICUBE laboratory, University of Strasbourg, France CFS Engineering, EPFL Innovation Park, Lausanne, Switzerland

Computational Fluids & Structures Engineering

Optimization of the ZNMF to improve performance of the NGCTR

Introduction

Numerical methods

- > NSMB solver and Meshing
- Modeling of ZNMF devices

Results

- Critical Flow Conditions
- Configuration 1 with horizontal nacelle
- Configuration 2 with tilted nacelle
- Configuration 3 with deflected aileron
- Conclusions and Perspectives

Optimization of the ZNMF to improve performance of the NGCTR

Introduction

- Numerical methods
 - NSMB solver and Meshing
 - Modeling of ZNMF devices
- Results
 - Critical Flow Conditions
 - Configuration 1 with horizontal nacelle
 - Configuration 2 with tilted nacelle
 - Configuration 3 with deflected aileron
- Conclusions and Perspectives

Introduction

The overall objective of the AFC4TR project is to investigate the use of Active Flow Control using so called pulsed air blowing devices with Zero Net Mass Flux (ZNMF) to control the vortical flow for the Next Generation Civil Tilt Rotor (NGCTR) aircraft configuration.

Properties of velocity field in the vicinity of synthetic jet generator

Active Flow Control 4 Tilt Rotor aircraft

Computational Fluids & Structures Engineering

Leonardo Helicopters

Optimization of the ZNMF to improve performance of the NGCTR

Introduction

Numerical methods

- > NSMB solver and Meshing
- Modeling of ZNMF devices
- Results
 - Critical Flow Conditions
 - Configuration 1 with horizontal nacelle
 - Configuration 2 with tilted nacelle
 - Configuration 3 with deflected aileron
- Conclusions and Perspectives

- NSMB solver: Navier Stokes Multi-Block code (compressible NS equations using Finite Volume method) [Hoarau et al. 2016]
- Structured grids are designed following the gridding guidelines of AIAA CFD HighLift/Drag Prediction Workshops
- Farfield boundary > $100 \times C_{ref}$
- Turbulence model $k \omega SST$
- Patched grid and chimera grid techniques are used

7 grid components that are merged together (within ICEMCFD or externally with Python scripts)

- Base (fuselage, wing, nacelle) 10'200'000 cells
- Aileron 620'000 cells
- Engine cover 370'000 cells
- Engine 450'000 cells
- Hub 340'000 cells
- Blades 770'000 cells/blade

The engine can be deflected from 0° to 90° Total mesh 25 millions cells

Modelling of Zero-Net-Mass-Flux (ZNMF) devices

[Truong et al., 3AF conference, 2022]

Modelling of ZNMF devices

Optimization of the ZNMF to improve performance of the NGCTR

Introduction

- Numerical methods
 - NSMB solver and Meshing
 - Modeling of ZNMF devices

Results

- Critical Flow Conditions
- Configuration 1 with horizontal nacelle
- Configuration 2 with tilted nacelle
- Configuration 3 with deflected aileron
- Conclusion and Perspectives

Critical Flow Conditions

Skin friction CFx component contours with streamlines of CF (CFx, CFy, CFz) with horizontal nacelle

Critical Flow Conditions

Skin friction CFx component contours with streamlines of CF (CFx, CFy, CFz) with tilted nacelle

Critical Flow Conditions

Skin friction CFx component contours with streamlines of CF (CFx, CFy, CFz) with deflected aileron

6 ZNMFs are placed upstream of three zones of separation

Forces integrated on the wing for the 5th and 6th rotations of the propeller

$$\bar{C}_L, \bar{C}_D = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \bar{C}(t) dt$$

	ZNMF position	ΔCD	ΔCL	∆CL/CD
$\left[\right]$	1	-1.11%	0.05%	1.18%
	2	-1.15%	-0.23%	0.93%
	3	0.18%	-0.86%	-1.03%
	4	5.90%	1.24%	-4.40%
	5	14.66%	-2.24%	-14.74%

Insignificant gain since the flow detachment is not as strong as expected => the ZNMF position remains to be optimized

Forces integrated on the wing for the 4th and 5th rotations of the propeller $\bar{C}_L, \bar{C}_D = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \bar{C}(t) dt$

ZNMF position	ΔCD	ΔCL	ΔCL/CD
Baseline	0.078401	1.5899	20.27916
5x2	0.081561	1.601834 +0.75%	19.63971 - <mark>3.15%</mark>
10x2	0.0824	1.620681 +1.94%	19.66842 - <mark>3.01%</mark>
10x1	0.083497	1.603649 +0.86%	19.20601 - <mark>5.29%</mark>
20x1	0.082924	1.621328 +1.98%	19.55205 - <mark>3.59%</mark>

Lift enhancement accompanied with drag increase => lift-to-drag ratio decreases

6 ZNMFs are placed upstream of the separation zones in the middle of the wing

*Simulations show skin friction CF*_x

ZNMF parametersv = 300 m/sf = 65 Hz

Forces integrated on the wing for the 4^{th} and 5^{th} rotations of the propeller

$$\bar{C}_L, \bar{C}_D = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \bar{C}(t) dt$$

ZNMF position	ΔCD	ΔCL	ACL/CD		
1	12.29%	14.32%	1.82%		
2	22.14%	12.86%	-7.59%		
3	16.75%	12.34%	-3.78%		
4	21.80%	12.66%	-7.51%		
5	23.19%	11.87%	-9.19%		
Lift enhancement accompanied with drag increase => lift-to-drag ratio decreases					

for the 4th and 5th rotations of the propeller $\bar{C}_L, \bar{C}_D = \frac{1}{t_2}$ $\bar{C}(t)dt$ **ZNMF** ΔCD ΔCL $\Delta CL/CD$ position 0.062931 1.318551 20.95223 Baseline 26.36939 0.051597 1.360576 5x2 -18.01% +3.19% +25.85% 0.060883 1.38261 22.70945 10x2 -3.26% +8.39% +4.86% 0.058348 1.401107 24.01302 10x1 -7.28% +6.26% +14.61% 0.053571 1.387395 25.89821 20x1 -14.87% +23.61% +5.22%

Forces integrated on the wing

Lift enhancement accompanied with drag decrease => lift-to-drag ratio increases

6 ZNMFs are placed near the leading edge of the aileron

ZNMF positions on deflected aileron

Forces integrated on the aileron for the 3rd and 4th rotations of the propeller

ZNMF position	ΔCD	ΔCL	ΔCL/CD
TE	-4.27%	2.10%	6.65%
0	0.04%	13.10%	13.06%
1	1.33%	14.10%	12.60%
2	2.23%	14.52%	12.03%
3	-0.14%	10.64%	10.80%
4	1.77%	11.81%	9.86%
5 Lift enhancer	-3.36%	5.79%	9.47%

=> lift-to-drag ratio is improved effectively

Optimization of the ZNMF to improve performance of the NGCTR

Introduction

- Numerical methods
 - NSMB solver and Meshing
 - Modeling of ZNMF devices
- Results
 - Critical Flow Conditions
 - Configuration 1 with horizontal nacelle
 - Configuration 2 with tilted nacelle
 - Configuration 3 with deflected aileron

Conclusions and Perspectives

Conclusions

- > CFD simulations to optimise location of ZNMF for flow control of NCGTR (reference parameters of the ZNMF v = 300m/s, f = 65Hz, D/H = 1mm, $Angle = 45^{\circ}$)
- ZNMF devices are able to reduce flow separations in critical flow regions, but their location needs to be selected with care
- Optimization of ZNMF position
 - > Configuration 1: Insignificant gain since the flow detachment is not as strong as expected
 - Configuration 2: Improvement of lift (+14.32%) and increase of drag (12.3%) => higher lift-to-drag ratio (1.8%)
 - Configuration 3: Lift enhancement while drag remaining unchanged => L/D ratio of the aileron is improved effectively (12%)

Acknowledgement

This project has received funding from the European Union's H2020 - CleanSky2 research and innovation framework programme under grant agreement No 886718

Thank You !

ICU3E

Active Flow Control for Tilt-Rotor This project has received funding from the European Union's H2020 - CleanSky2 research and innovation framework programme under grant agreement No 886718