Study of nano-scale supperlattices by proton induced Kossel diffraction

Meiyi Wu^{1,2}, Karine Le Guen^{1,2}, Jean-Michel André^{1,2}, Philippe Jonnard^{1,2}

 ¹ Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Chimie Physique - Matière et Rayonnement, 4 Place Jussieu, F-75252 Paris cedex 05, France
 ² CNRS UMR 7614, Laboratoire de Chimie Physique - Matière et Rayonnement, 4 Place Jussieu, F-75252 Paris cedex 05, France.

Ian Vickridge^{3,4}, Didier Schmaus^{3,4}, Emrick Briand^{3,4}

 ³ Sorbonne Universités, UPMC Univ Paris 06, Institut des NanoSciences de Paris, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05, France
 ⁴ CNRS UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, boîte courrier 840, F-75252 Paris cedex 05, France

Philippe Walter^{5,6}

 ⁵ Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'archéologie moléculaire et structurale, 4 place Jussieu 75005 Paris, France
 ⁶ CNRS, UMR 8220, Laboratoire d'archéologie moléculaire et structurale, 4 place Jussieu 75005 Paris, France

Qiushi Huang⁷, Zhanshan Wang⁷

⁷ Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

Motivation

Superlattices

Methodology

- Particle Induced X-ray Emission (PIXE)
- Kossel diffraction
- Combination of Kossel diffraction and PIXE
- X-ray color camera

Results and Discussions

Conclusions

Motivation

• Widely used superlattices, or periodic multilayers.

• Characterization of the structure of periodic multilayers is dominated by X-ray reflectrometry.

• Do we have more options for the characterization?

Pd/Y multilayers designed to work in the 7.5-11 nm wavelength range. Theoretical calculation indicates that Pd/Y has a high reflectance in this range.

10-14 December

Pd/Y based superlattices

Problem: the original design has bad optial performance

• Grazing incident X-ray reflectometry (Cu K radiation 8048 eV):

Low reflection, bad periodicity

• Severe interdiffusion between Pd and Y layers.

• Solution: Derivative systems

• N₂ in the sputtering gas [1].

0% 2% 6%

- B₄C barrier layers [2].
- Pd-on-Y interfaces
- Y-on Pd interfaces
- all interfaces

[1] Xu *et al.*, "Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors," Opt. Express. 23, 33018 (2015).
 [2] Prasciolu *et al.*, "Thermal stability studies of short period Sc/Cr and Sc/B4C/Cr multilayers," Appl. Opt. 53(10), 2126 (2014).

Particle Induced X-ray Emission

Particle Induced X-ray Emission (PIXE)

- Ionization: particle generated core-hole.
- X-ray emission (fluorescence).

SAFIR platform in UPMC

- Système d'Analyse par Faisceaux d'Ions Rapides (Analysis System using fast ions).
- Van de Graaff accelerator of positive ions.
- 2 MeV proton beam, ionization of Pd L shells.

Advantages of protons

- Low scattering.
- Low bremsstrahlung.
- Low energy loss (0.5% after penetrating the multilayer).
- Uniform ionization cross section.

Accelerator in SAFIR

Kossel diffraction

•Kossel diffraction [3]

- Interference of fluoresence diffracted by a periodic micro-structure.
- X-ray standing waves within the superlattice: periodic electric field with nodal plan and anti-nodal plan.

$$D = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{Q}$$

[3] W. Kossel, V. Loeck, and H. Voges, Z. Für Phys. 94, 139 (1935).

Combine PIXE with Kossel diffraction

10-14 December

3NANO2017, Paris, France

X-ray color camera

- Advantage: spatially resolved.
- Measurement of X-ray emission intensity in a squared area of about 13 x 13 mm.
- Acquisition time significantly reduced compared to SDD.

Days to 2 hours >>>potential of in-situ measurements (annealing test, oxidation test)

Kossel curves

- Kossel curve: the angular distribution of the characteristic X-ray emission.
- The original image obtained by X-ray color camera contains the intensity of emitted photons of all energies.
- Too get the Kossel curve of Pd Lα emission, we need 3 steps:
- 1. Select region of interest (ROI) on the spectrum.
- 2. "Filter" the original image by applying ROI.
- 3. Integrate the "filtered" image along the vertical pixels.

3NANO2017, Paris, France

Kossel curve

10-14 December

Distribution of X-ray

Kossel curves of Pd La emission

- 2-hour acquisition time. Curve statistics can be further improved by increasing the acquisition time.
- Angles are adjusted to the Bragg angle, which is in most cases located in the center of the Kossel oscillation.
- The periodicity of the originally designed Pd/Y multilayer is totally compromised.
- Nitrogen reduces the interdiffusion.
- Kossel features can be distinguished for samples with different B₄C barrier layers. Structural sensitivity.

Kossel curves of the series of samples: a) Deposited with nitrogen in the sputtering gas.

Kossel curves of the series of samples: b) With B_4C barrier layers. The notation gives multilayer structure and layer thickness respectively.

Simulation

- Simulation of the PIXE-Kossel curve.
 Code for XRF-Kossel curve.
- Approach. Uniform ionization.
- Still not perfect due to background.
 Improvement needed.

B4C/Pd/B4C/Y Pd L alpha emission

Conclusion

- We have observed the Kossel diffraction of proton induced Pd La emission in Pd/Y based superlattices.
- Nitridation has positive effect in preventing or reducing the interdiffusion between Pd and Y layers.
- The Pd/Y based superlattices with B₄C barrier layers located at different interfaces can be distinguished by their Kossel curves.
- We have developed a new method to characterize the superlattices: PIXE-Kossel.
- Simple experimental setup.
- Element specific diffraction patterns.

Thank you for your attention!