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1. Introduction

ABSTRACT

Convolutional Neural Networks (CNNs) have achieved great success in computer vision
applications. However, due to the high requirements for computation power and mem-
ory usage, most state-of-the-art CNNs are difficult to deploy on resource-constrained
mobile devices. Although many typical lightweight neural networks have been pro-
posed in the industry, such as MobileNetV2, which reduce the amount of parameters
and calculations, they still have a lot of redundancy. Furthermore, few papers con-
sider the use of deep learning models to implement image retrieval on terminals, so we
propose a new offline retrieval framework based on lightweight neural network mod-
els, called Offline Mobile Content-Based Image Retrieval (OMCBIR). In this frame-
work, we focus on the feature extraction of the model, by introducing pointwise group
convolution and channel shuffle into the bottleneck block, reconstructing the network
structure, and introducing the convolutional attention module, we propose an extremely
lightweight small network-Attention-based Lightweight Network(ALNet). Compared
to MobileNetV2, ALNet obtains a higher mAP on each dataset in OMCBIR when the
model parameters are reduced by more than 62% and the model size is reduced by more
than 63%. Extensive experiments conducted on five public datasets provide a trade-off
between retrieval performance and model size of different algorithms, which proves the
efficiency of the proposed OMCBIR.

However, most CNNs have a large amount of calculation and
parameters, which can only be used on the server side and re-

Content-based image retrieval (CBIR) aims to retrieve
quickly and accurately the images needed by the users from
a large number of digital images by extracting the visual infor-
mation of the image, which is of great value in both research
and commercial use. In the past ten years, with the advent of
deep learning, the features learned from convolutional neural
networks (CNNs) have been widely applied to various visual
tasks. Babenko et al. [1] is the first attempt to fine-tune a CNN
model for image retrieval. Currently, CNN features have been
used as a general representation of CBIR.

*Corresponding author:
e-mail: congbai@zjut.edu.cn (Cong Bai)

quire high-performance accelerator to run. Thus there is a se-
rious contradiction between complex models and limited com-
puting resources. Due to the limitation of storage space and
power consumption, storage and calculation of deep neural net-
work models on embedded devices and mobile terminals are
still facing huge challenges. At the same time, the era of the
Internet of Things has come, and the number of mobile smart
applications has exploded. Internet of Things applications have
put forward higher requirements for response time, privacy data
protection, and big data transmission. The efficiency of cloud
computing is not enough to support these applications, and the
edge of the network is changing from data consumer to data
producer as well as data consumer [2]. Therefore, how to ap-
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ply a lightweight CNN on a specific task to the terminals has
become an urgent problem. At present, most of the existing
image retrieval methods are aimed at online retrieval problems,
and offline mobile image retrieval (OMIR) based on deep learn-
ing models is still not fully explored.

In this paper, we intend to fill this gap and focus on OMIR
methods based on lightweight neural network. Compared with
online image retrieval, OMIR is not restricted by the network,
guarantees the privacy and security of data, and can complete
the retrieval in a very short time. It implements image retrieval
by applying deep learning models to terminal devices in an of-
fline manner. OMIR needs to solve two main problems: one is
to build a retrieval framework that can be used to implement of-
fline retrieval, and the other is to train a deep learning model to
obtain image features. After that, image retrieval is completed
by converting the deep learning model into a terminal model
and embedding it into the retrieval framework.

To solve the above problems, we propose a novel offline re-
trieval framework based on a lightweight neural network, called
OMCBIR, as shown in Figure 1. OMCBIR builds a lightweight
convolutional neural network as a feature extractor to obtain
image features, which is the core part of the framework. With
the help of OMCBIR, we can implement offline image retrieval
on terminal devices.

However, the most important factor affecting retrieval perfor-
mance is feature extraction, so we focus on improving this mod-
ule. Although some lightweight CNNs have been proposed,
they still suffer from a large amount of expensive computing
power and memory usage. To further reduce the model param-
eters and computational complexity, we propose an Attention-
based Lightweight Block (ALBlock) unit. ALBlock signif-
icantly reduces the amount of computation and parameters
within the block by grouping a large number of 1 X 1 convo-
lutions in the bottleneck block [3]. At the same time, channel
shuffle is used to make up for the information flow between
channel groups and improve the feature representation ability.
Furthermore, based on the proposed ALBlock unit, this paper
proposes an extremely lightweight network architecture, called
Attention-based Lightweight Network (ALNet), which com-
bines an attention mechanism to improve retrieval performance.
Finally, the model demonstrates good retrieval performance in
OMCBIR with greatly reduced model parameters and compu-
tation cost. In summary, the main contributions of this paper
are as follows.

1) We propose a novel offline framework for content-based
image retrieval on the mobile side, namely OMCBIR. As far as
we know, this is the first time that a deep learning model is used
for a completely offline mobile content-based image retrieval
task.

2) As the core of OMCBIR, we propose an extremely
lightweight network architecture ALNet, whose role is to ex-
tract features from images. Besides, we also propose an AL-
Block unit, which is the basic building block of ALNet. By
introducing pointwise group convolution, channel shuffle and
convolution attention module in bottleneck block, we not only
improve retrieval accuracy, but also greatly reduce the compu-
tational cost and memory usage of the model.
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3) The experimental results on five public datasets demon-
strate the effectiveness of our model. Compared to Mo-
bileNetV2, ALNet obtains a higher mAP on each dataset in
OMCBIR with over 62% reduction in model parameters and
over 63% reduction in model size.

2. Related work

2.1. Deep Learning based Online Image Retrieval

In the last decade, following the emergence of deep learn-
ing, feature representation begin to shift from hand-crafted to
learning-based [4], in which feature learning based on CNNs
replaces traditional hand-crafted feature representation as the
most advanced pipeline. Deep learning is a hierarchical fea-
ture representation technology used to learn abstract features
that are important to datasets and applications from data. At
present, CNN features have been used as a general expression
for content-based image retrieval, and a lot of researches are
devoted to obtain image features that are conducive to retrieval
for online image retrieval. For example, previous work [5] op-
timizes AlexNet from the pooling layer, fully connected layer,
and hidden layer, and obtains state of the art results on large-
scale image retrieval tasks.

The fixed-length compact feature vector is usually generated
by other measures of pooling or convolutional layer. CNN-
based image representation taking advantage of deep learning,
can be regarded as a global feature, and has achieved remark-
able performance in image retrieval. [6] points out that many
methods directly use pool strategy to obtain image features and
successfully perform image search, such as global maximum
pool, global average pool, CroW pool [7], R-MAC pool [8], etc.
For example, Razavian et al. [9] segments the original image
into many blocks, and then extracts features from the segmented
image blocks. Finally, the feature vectors extracted from all
the blocks of the image are put together for post-processing.
Babenko er al. [10] aggregate local depth features to generate
compact global descriptors for image retrieval. Kalantis ez al.
[7] mainly propose a direct and effective image representation
method based on the cross-dimensional weighting and aggre-
gation of the output of the deep convolutional neural network
layer. Tolias et al. [8] construct a compact feature vector to en-
code multiple image regions without providing multiple inputs
to the neural network, and proposes an R-MAC pool method
for image retrieval.

With the popularity of Generative Adversarial Networks
[11, 12] (GANSs), many researchers have explored the possi-
bility of using GAN in image-related applications because it
shows great potential. Some of the existing research methods
tend to use GAN to obtain more training data. By using GAN to
generate synthetic images that are visually similar to the input
image, this is conducive to image retrieval tasks, because the
ultimate goal is to retrieve similar images from a given dataset.
On the other hand, a lot of research is devoted to use GAN to
realize unsupervised image retrieval. E.g, Dizaji et al. [13] pro-
pose HashGAN, which can effectively obtain image binary rep-
resentation without pre-training. In addition, a novel hash loss
function and cooperative loss function are introduced to achieve
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Fig. 1. The framework of the proposed OMCBIR. Model training stage: The parameters of the convolutional layer trained on each dataset are saved as a pre-
training model. Offline retrieval stage: The pre-training model can be run on the mobile terminal through model conversion technology, and the retrieval result can
be obtained by measuring the L2 distance between the query image and the image in the vectorized dataset.

similar random input and hash bits of the synthesized image.
Song et al. [14] propose a binary generative confrontation net-
work BGAN+, which converts images into binary codes, and
performs image retrieval and compression in a multi-task learn-
ing manner. Bai et al. [15] propose an unsupervised framework
for adversarial instance-level image retrieval, which is the first
time that adversarial training is adopted in retrieval procedure
at instance level image retrieval task.

CNNs have reached the most advanced accuracy in many
computer vision tasks. However, the success of CNN usually
depends on a large amount of computation and memory con-
sumption, which limits the use of CNNs on resource-limited
devices such as mobile or embedded devices. In order to solve
these problems, efforts are also made in the field of deep learn-
ing to promote the miniaturization of neural networks.

2.2. Deep learning based Mobile Image Retrieval

Currently, mobile image retrieval based on deep learning can
be divided into online and offline methods. The similarity be-
tween the two is that a pre-trained DNN model is used to extract
feature vectors of terminal images. The difference is that online
mobile image retrieval transmits the extracted features to the
server, conducts image retrieval on the cloud, and finally re-
turns the retrieval results to the terminal for display. This semi-
offline approach requires frequent interaction with the server.
However, our proposed OMCBIR can complete absolute of-
fline retrieval, which is not limited by the network, can ensure
the privacy and security of data, and reduce the inference time
delay caused by multiple interactions.

When using deep learning on mobile, it is often nec-
essary to compress CNNs [16], including network pruning
[17, 18, 19, 20], parameter quantization [17, 21], knowledge

distillation [22, 23, 24, 25] and lightweight network design
[26, 27, 28, 29, 30, 3, 31, 32]. Network pruning uses a spe-
cific algorithm to cut out redundant network parameters with-
out affecting the performance of the neural network. The com-
mon steps of neuron pruning include training, pruning and fine-
tuning, in which the latter two steps are usually repeated many
times. Parameter quantization is a method of compressing the
network by reducing the number of bits required to represent
each weight, including low-bit quantization, binary quantiza-
tion and etc., which can greatly improve efficiency and make
it possible to deploy deep learning algorithms in actual scenar-
ios. However, low-precision weight representation may cause
performance degradation [33]. Hinton et al. [22] put forward
the concept of knowledge distillation for the first time, and its
main design idea is to use the trained teacher model to guide
the training of the student model, thus achieving knowledge
transfer. Knowledge distillation is suitable for the training of
small-volume models, but the artificial setting of student net-
work results is very subjective, which will make the training
effect very different.

Compared with three methods mentioned above, designing
a lightweight network is the most direct and effective way to
reduce the size of the model, which is directly applicable to
mobile and embedded devices. The main idea of lightweight
model design is to design a more efficient network calculation
method, so that network parameters are reduced without loss
of network performance. Popular lightweight neural network
models are SqueezeNet [26], Xception [27], ShuffleNet series
[28, 29], EfficientNet [32], MobileNet series [30, 3, 31]. The
advantage of SqueezeNet lies in the design of the squeeze layer
and the expand layer, which reduces the amount of parameters
by replacing the 3 X 3 convolution with 1 X 1 convolution and
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Fig. 2. Attention-based lightweight block(ALBlock). The first four parts in the block perform convolution operations in sequence. Finally, use the output feature

map as the input of the convolutional attention module to get the final output.

reducing the number of input channels in the expand layer. The
basic idea of Xception is to design a channel-separated convo-
Iution. Because there are a large number of dense 1 X 1 convo-
lutions in Xception, the network is very inefficient. Therefore,
ShuffleNet network that combines point-by-point group convo-
lution and channel shuffle is proposed. Based on neural struc-
ture search technology, EfficientNet finds a simple and efficient
composite coefficient to enlarge the network from three dimen-
sions of depth, width and resolution to improve the accuracy
of the model, which requires a lot of GPUs. MobileNet uses
depth-wise separable convolution to build a lightweight deep
neural network. On the basis of depth-wise separable convolu-
tion, MobileNetV2 introduces two modules: inverted residual
and linear bottleneck, which makes the model smaller and faster
when the network is deeper, but it still has a large amount of ex-
pensive point-by-point convolutions. Therefore, the parameters
and computational complexity of MobileNetV2 need to be fur-
ther reduced in order to better apply it to mobile devices with
limited memory.

3. Methodology

We propose an offline mobile content-based image retrieval
(OMCBIR) framework based on a lightweight neural network.
In this framework, the most important factor affecting deploy-
ment and retrieval is the feature extraction module. In order to
further compress the model and to obtain image features that
are conducive to retrieval, we focus on the improvement of fea-
ture extraction module, and propose ALBlock unit and ALNet
lightweight neural network to further reduce the computation
and parameters of the model. The core details of this frame-
work will be elaborated in the following sections.

3.1. Framework Overview

The overall framework proposed in this paper is shown in
Figure 1. The whole OMCBIR consists of two important stages.
The first stage is to design and to train a more lightweight net-
work, with the purpose of extracting features. The second stage
is image retrieval, including model conversion and deploy-
ment. After that, the loaded model is used to extract features in
batches to complete image retrieval. The entire framework uses

this model for classification training, saving the model param-
eters with the highest classification accuracy. Before migrating
to mobile, we load the pre-trained model, remove the classifier,
and perform a model conversion so that the model can be used
for image retrieval on mobile device.

3.2. Efficient Lightweight Block Design

We find that the bottleneck structure of MobileNetV?2 still has
a lot of expensive point-by-point convolutions, and the amount
of calculation is still not negligible. In order to further com-
press the model, we propose an improvement to the bottleneck,
named ALBlock. The overview of ALBlock is shown in Figure
2. Firstly, we use group convolution (GConv) to effectively re-
duce the computation and parameter amount of point-by-point
convolution. However, grouping will lead to the failure to ex-
change the feature information of different groups, which will
weaken the performance of the model to a certain extent. In or-
der to solve this problem, we introduce channel shuffle after the
first grouped convolutional layer. Channel shuffle reorganizes
the feature map after group convolution, which can improve the
expression ability of features and model generalization with-
out increasing the amount of calculation by performing uniform
channel exchange in different groups. The third layer of AL-
Block is a depthwise convolutional layer. Unlike conventional
convolution operations, a convolution kernel of depthwise Con-
volution (DWConv) is only responsible for one channel. The
depthwise convolution is followed by a second grouped convo-
lutional layer, which performs a weighted combination of the
feature maps from the previous step in the depthwise direction.

In order to improve the feature learning ability of the model
within the block, we also introduce a lightweight Convolutional
Block Attention Module(CBAM) after the second grouped con-
volutional layer. Therefore, we not only reduce the amount of
parameters and computation, but also preserve the accuracy of
the model [34].

For the Bottleneck Block of MobileNetV2 and ALBlock, we
suppose the size of the input feature map is H; x W x C, the
size of the output feature map is H, X W, x C,, the number of
input and output channels of the internal Dwise is tCy, where
H;, W;, and C; (i = 1 or 2) represent respectively height, width
and number of channels of the feature map, and t represents the
expansion multiple of the Dwise convolution. The first layer
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Table 1. Calculation of Parameter Analysis of Bottleneck and ALBlock.

Each layer FLOPs Params

1 x 1 Conv Cy X Hy x Wy xtCq Cy X tCy
Bottleneck Block DWConv 3 x 3 3Xx3xtC; X Hy x W, 3x3x1tCy
PEMobilCNSEV2 1 1 Conv 1C1 X Hy X Wy X C, 1Cy x C,

Sum tC1(Cy X Hy X W1 + (C2 +9) X Hy X W) tC1(C1 +C2+9)

1 x 1 GConv éxclelxéxwlxtQXg éxClxészIXg
ALBlock DWConv 3 x 3 3x3xtCy X Hy x Wy 3x3xtCy

1 x 1 GConv éxzclezxéxngCZXg éxtClxéxCZXg

Sum 1C1[x X Ci X Hy X Wi + (3 X C2 + 9) X Hy X W] 1Ci[ X (C1 +C2) +9]

of the Bottleneck of MobileNetV2 is the standard convolution
operation, where the convolution kernel is 1 X 1, the number
of input channels is C| and the number of output channels is
tC. The second layer is DWConv, where a convolution core of
depth convolution is responsible for a channel, the convolution
core is 3 X 3, and the number of input and output channels are
tCy. The third layer is still a standard convolution operation.
The size of the convolution kernel is 1 x 1, the number of output
channels is C,.

After improvement, ELBlock divides the extended 1x1 Conv
into g groups, so the size of each input feature map in the first
layer is H; X W} x C;/g, and the corresponding convolution
kernel size is C;/g.The computational complexity of the chan-
nel shuffle is very low, so it is not considered. The DWConv
layer of the second layer is the same as the bottleneck structure
in MobileNetV2. and the convolution kernel of 1 x 1GConv
in the third layer is C,/g. The calculation amount and param-
eter amount of each layer of Bottleneck of MobileNetV2 and
ALBIlock and the sum of that are shown in Table 1:

It can be seen that the ratio of the parameters of the improved
ALBlock to the original Bottleneck is:

éx(C1+C2)+9

R =
8= =649

)

The ratio of the FLOPs is:

lx(C]xH]xW1)+(9+%)><H2><W2

Ry(g) =2 2
2(8) CixH X W, + O+ Cy)x Hyx W, 2)

It can be seen from formulas (1) and (2) that when the number
of groups is g=8 that is used in the proposal, the parameter ratio
Ry is:

X (C1+C)+9

3
Ci+C+9 )

and the FLOPs ratio R; is:
IX(Crx Hi x Wi +(9+ L) x Hy x W, @

CixH XWi+(9+Cy) X Hy x W
and both have achieved a significant drop.

3.3. Structure of ALNet
This subsection describes the structure of ALNet in detail.
As shown in Figure 1, the input of ALNet is the image and the

corresponding label, and the output is the probability that the
image belongs to a certain class. We improve and optimize the
framework from two aspects: block internal optimization and
network structure. The first layer of ALNet uses standard 3 x 3
convolutions to construct the initial filter, which plays the role
of edge detection [31]. CBAM is added after the first layer to
improve the learning of key features, the detailed description
of CBAM is given in subsection 3.4. Then followed by seven
improved ALBlocks, which are stacked in sequence. ALBlock
layer is followed by 1 x 1 convolution layer, which is equivalent
to the full connection layer, realizing the dimension raising of
the feature channel, increasing the nonlinearity of the increas-
ing network, and enabling the network to express more complex
features. We add another CBAM module after the 1x1 convolu-
tional layer, and finally, replace the average pooling layer with
a binary adaptive average pooling layer (AdaptiveAvgPool2d)
to obtain image features of the same size for image retrieval.
When the classification training is over, the desired model fea-
tures is extracted by removing the classifier of the pre-trained
model instances.

The network structure of ALNet adopts a single stack mode,
and the basic building block is ALBlock, so as to achieve the ef-
fect of reducing the amount of model calculation without losing
the retrieval accuracy.

3.4. Attention Mechanism

In order to improve the performance of deep neural networks,
many researches focus on increasing the network depth, width
and cardinality, but these need to occupy more resources. Re-
cently, Woo et al. [34] propose a plug-and-play lightweight
CBAM, which is mainly characterized by an attention mecha-
nism. CBAM uses the original convolution operation to extract
features by mixing cross-channel and spatial information, and
can enhance meaningful features on the channel and spatial axis
dimensions by sequentially applying channel and spatial atten-
tion modules with only a small computational cost. Attention
not only tells the neural network model where to focus, it also
improves the representation of interests.

CBAM can extract more detailed features and improve the
representation ability of convolutional networks. And CBIR al-
ways relies on the ability of descriptors to represent images, SO
this paper inserts the CBAM module into the model to enhance
the feature expression of the model. Combined with the model
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mentioned in this paper, we not only add CBAM to the model’s
architecture, but also add it to each ALBlock.

3.5. Implementation Details

In the proposed OMCBIR, the model parameters of ALNet
will be saved with the highest classification accuracy during the
entire training process. When the training epoch reaches the
preset value, we terminate the training. Before the model con-
version, the classifier of the model is removed with the aim of
obtaining the output features by forward inference of the model.
After that, the model conversion provided by the Pytorch Mo-
bile framework is used to complete the conversion of the Py-
Torch model to the TorchScript model, which supports the ef-
ficient operation of machine learning models on edge devices.
Finally, we deploy the well trained model to OMCBIR, by us-
ing PyTorch Mobile’s java interface to call the model in the
Android project.

In OMCBIR, we extract the image features of the image
database in batches and store them in the local database. When
performing image retrieval, we use the loaded deep learning
model to extract the features of the query image, compare them
with the features in the local database, obtain pictures similar to
the query image according to the similarity matching algorithm,
and calculate mAP. In algorithm 1, we summarize the workflow
of OMCBIR.

Algorithm 1 OMCBIR’s workflow.
Input: training data X and training epoch epoch,,
Output: The compact model and its parameters W*.

1: Initialize the weights of model;

2: for epoch = 1 — epochy,, do

3 Update the model parameter W based on X;

4:  Calculate the prediction results of the model;
5:  Save the model weights with the highest accuracy;
6
7
8
9

: end for
. if training is over then
Delete the classification layer of the model;

:  Perform model conversion and save the .pt model;
10: end if
11: Implementation:
12: Load the .pt model on the Android platform;
13: Extract the features of the datasets images, and store them

in the database;

14: Extract the features of the query image;
15: Caculate the distance and get similar pictures.
16: return mAP.

4. Experiments

We conduct experiments to evaluate the performance of OM-
CBIR framework. These experiments are tested on five widely
used datasets. Classification accuracy is an important indi-
cator for evaluating the network structure. Therefore, we
firstly evaluate the classification accuracy, computation, pa-
rameter amount and model size of ALNet and other classical
lightweight neural networks. In addition, we compare mAP
of ALNet with other state-of-the-art algorithms in OMCBIR.

Displays (2022)

Finally, the ablation experiments of different components are
performed, using MobileNetV2 as a baseline.

4.1. Datasets

MNIST [35] dataset is a very classic dataset in the field of
image classification, consisting of 60,000 training samples and
10,000 test samples, each of which is a 28 X 28 pixel gray scale
handwritten digital image. Since Pytorch Mobile does not sup-
port reading gray scale images, we use the method of overlaying
channels for training.

SVHN [36] (Street View House Number) dataset comes from
the Google Street View house number and contains more than
600,000 digit images. The native dataset is a number of unpro-
cessed color images with multiple digits on each image. This
dataset contains PNG images and digitStruct.mat files. The .mat
files are used in the experiments, and each image is 32 x 32 in
size. When performing image retrieval, .mat file is needed to
convert into an RGB image by using the image’s filename as
GroundTruth.

SUN397 [37] dataset contains 108753 images of 397 cate-
gories, used in the Scene UNderstanding (SUN) benchmark.
The number of images varies across category, but there are at
least 100 images per category. We process the image categories
into labels, then training images and test images are combined,
de-duplicated and sorted. Finally, the training images and test
images are divided into 8:2 according to random grouping. Af-
ter our processing, there are 76,872 training images and 19,218
test images, and the total dataset contains 96,090 images of 397
categories.

Oxbuild5K [38] dataset contains 5063 images of 17 Oxford
landmarks obtained from Flickr. We process the categories into
labels, corresponding to 1-17 numbers respectively. We have
preprocessed the image so that the image size for input model
training and image retrieval is 160 X 160.

Paris6K [39] dataset contains 6412 images of 12 Paris land-
marks obtained from Flickr. We perform the same data process-
ing as Oxbuild5K on this dataset.

4.2. Evaluation Criteria

For the evaluation of the proposal, we use widely adopted
evaluation metrics, namely the number of parameters and the
required floating-point operations (FLOPs), to evaluate the
memory occupation and calculation requirements of the model.
We also use Model Size to measure the memory footprint of
the model, which is the size of the saved .pt model. FLOPs
can directly determine the inference time of the model, and if
the complexity is too high, it will cause the model training and
prediction to take too much time. Params and Model Size de-
termine the memory footprint of the model, which is a crucial
factor that affects the implementation of the algorithm model.

To compute the number of FLOPs, we only consider the
flops of convolution operation, because other operations (such
as batch normalization and pooling) are insignificant compared
to convolution operations. As mentioned in [40], for convolu-
tional kernels, we have:

FLOPs = 2HW(Cy X K* + 1)Cout 5)



X. Zhang, C. Bai and K. Kpalma

where H, W and C;, are respectively the height, the width and
the number of channels of the input feature map, K is the kernel
width (assumed to be symmetric), and C,,, is the number of
output channels.

When calculating the parameters of the model (Params), we
only consider the convolution operations. We use the most com-
mon calculation method, for convolutional kernels, defined by
equation(4):

Params = K2 X Cin X C()ul (6)

where K is the kernel width, C;, is the number of channels of the
input feature map, and C,,,, is the number of output channels.

In order to evaluate the ability of the model on image re-
trieval tasks, we use mAP as an evaluation index of retrieval
performance to measure retrieval results. mAP represents the
average percentage of similar images in all retrieved images af-
ter evaluating all queries. The formula for the average accuracy
of k searches is calculated as follows:

SK R

3 )

precision@k =
where R.(i) € [0, 1] indicates whether the current K-th image
is an image with the same label and determines the correlation
between the query image and the i-th image. 0 means that this
image does not have the same label as the query image, and 1

means that this image has the same label. The average precision
(mAP) formula is defined as follows:

Z precision@k (8)
k=1

3=

1 0
mAP(Q) = = >
i=0

Q

where Q is the number of the set of query images, and m is the
number of similar images in the dataset.

4.3. Experimental Setting

For the experiments, Pytorch is used to train the classifica-
tion model and Pytorch Mobile framework is used to complete
the deployment of the deep learning model on the mobile ter-
minal. The experiments use the Stochastic Gradient Descent
(SGD) optimization algorithm, and the weight decay is 1x 1074,
For datasets with smaller images such as MINIST and SVHN,
batch size during training is 128, and 64 during testing. For
other datasets with larger size of images, batch size during train-
ing is 32, and 16 during testing. The initial learning rate is
0.1. According to the total number of training times, differ-
ent epoch numbers are set to reduce the learning rate. In order
to prove the effectiveness of ALNet, we have conducted com-
prehensive experiments on ALNet, ShuffleNet, ShuffleNetV2,
MobileNets , MobileNetV2 and EfficientNet on the five public
datasets. These experiments are divided into two stages. The
first stage is model training, and we record model parameters
after training, aiming at high classification accuracy, low com-
putation and low memory consumption. The second stage is
image retrieval, with mAP and mAP@5 as evaluation indicator.
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Fig. 3. Comparison of model performance on five datasets. The figure shows
the comparison of the Acc, FLOPs, Params, and Model Size indicators of dif-
ferent algorithms on five datasets. From the results, it can be seen that ALNet
shows excellent performance.

4.4. Evaluation on Model Metrics

In this subsection, we compare ALNet with -classic
lightweight neural network models (including ShuffleNet, Mo-
bileNets, ShuffieNetV2, MobileNetV2 and EfficientNet) in re-
cent years. We conduct feature extraction training for the model
oriented to classification tasks, so in this section we show the
comparison of the Acc, FLOPs, Params, and Model Size of dif-
ferent algorithms on five datasets. As shown in Figure 4 (a), (c)
and (d), the experimental comparison shows that the proposed
ALNet is much smaller than other lightweight models in terms
of Params and model size when there is little difference in clas-
sification accuracy, which can save a lot of memory footprint.
It can be seen from Figure 3(b) that on all datasets, FLOPs
of ALNet are much smaller than ShuffleNet, ShufflenetV2 and
MobileNets. Although FLOPs on the latter three datasets is
slightly higher than that of MobileNetV2 and Efficientnet, the
performance is better on the other three indicators. From the
analysis of the above results, ALNet still maintains a high clas-
sification accuracy while greatly reducing the complexity of the
model, which verifies the effectiveness of our improvements on
ALNet.

4.5. Evaluation on Retrieval Task

We use ALNet without the last layer of classifier as the fea-
ture extractor on the mobile terminal to test the retrieval perfor-
mance of OMCBIR. For other popular lightweight CNN net-
works (including ShuffleNet, MobileNets, ShuffleNetV2, Mo-
bileNetV2 and EfficientNet), we use the same method to test
retrieval performance on the mobile side. Moreover, we ana-
lyze the performance on each dataset and compared with other
state-of-the-art methods. Finally, we conduct ablation experi-
ments on the proposed ALNet in OMCBIR. The details of ex-
periments are shown in the following.
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Table 2. Comparision with The Five Methods on MINIST.
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Table 5. Comparision with The Five Methods on Oxbuild5k.

Model FLOPs Params Model Size mAP@1 mAP@5 Model FLOPs  Params Model Size mAP@1 mAP@5
MobileNets 44.04M  3.22M 13.1M 86.40 98.51 MobileNets 1205.0M  3.23M 13.1M 19.38 92.51
ShuffleNet 26.04M  0.93M 4.7M 27.03 98.51 ShuffleNet 1156.0M  0.93M 26.1M 19.23 92.96
ShuffleNetV2 | 39.29M 1.27M 5.5M 84.81 99.23 ShuffleNetV2 | 2049.0M  1.32M 5.7M 18.38 92.43
MobileNetV2 | 6.10M  2.24M 9.3M 83.91 99.14 MobileNetV2 | 224.39M  2.32M 9.6M 18.03 93.09
EfficientNet 1.09M  4.02M 16.7M 21.67 93.64 EfficientNet 15.65M  4.03M 16.7M 19.56 89.65
ALNet 4.56M  0.78M 3.4M 96.61 99.80 ALNet 404.31M  0.77M 3.4M 19.91 93.58
Table 3. Comparision with The Five Methods on SVHN. Table 6. Comparision with The Five Methods on Paris6k.
Model FLOPs Params Model Size mAP@1 mAP@5 Model FLOPs  Params Model Size mAP@1 mAP@5
MobileNets 48.24M  3.22M 13.1M 73.77 97.98 MobileNets 1205.0M  3.23M 13.1M 24.41 94.25
ShuffleNet 46.28M  0.93M 5.1IM 71.94 97.77 ShuffleNet 1156.0M  0.93M 26.1M 22.82 92.95
ShuffleNetV2 | 47.25M  1.27M 5.5M 84.66 98.37 ShuffleNetV2 | 2049.0M  1.32M 5.7M 23.14 93.45
MobileNetV2 | 6.69M  2.24M 9.3M 78.60 97.91 MobileNetV2 | 224.37M 2.31M 9.6M 22.57 92.60
EfficientNet 1.27M  4.02M 16.7M 75.74 97.96 EfficientNet 15.64M  4.02M 16.7M 23.60 92.10
ALNet 6.64M  0.86M 3.4M 82.66 98.46 ALNet 40431M  0.77M 3.4M 24.87 91.58
Table 4. Comparision with The Five Methods on SUN397. in Table 4. Our proposed method obtains the highest mAP@5
Model FLOPs  Params Model Size mAP@1 mAP®@5 of 95.76%. Although slightly unsatisfactory on mAP@1, it is
MobileNets | 772.27M  3.62M 13.1M 37.12 94.20 still higher than the baseline model. Compared with the first
ShuffleNet 740.88M  1.30M 18.2M 32.07 94.98 three methods, ALNet produces a better compression and ac-
ShuffleNetV2 | 1123.0M  1.70M 5.6M 35.34 95.13 celeration rate than the ShuffleNet series and MobileNets, as
MobileNetV2 | 131.15M  2.74M 9.4M 33.60 95.29 shown in FLOPS, Param, and Model Size. Compared with Mo-
EfficientNet | 11.24M  4.52M 16.7M 35.92 94.92 bileNetV2, although it is slightly higher in FLOPs, ALNet has
ALNet 212.79M  0.77M 3.4M 33.67 95.76 advantages in other aspects. (In terms of mAP@]1, they are

4.5.1. Results on MINIST

We analyze the performance on MINIST. As shown in Table
2, ALNet is far superior than other algorithms in terms of re-
trieval performance, mAP@1 is up to 96.61%, 10.21% higher
than MobileNetV2. mAP@5 is 99.80%, which is also higher
than other algorithms. At the same time, FLOPs, Params and
Model Size have also reached the minimum. Among them,
FLOPs is 4.56M, which is 25.2% lower than MobileNetV2 and
nearly one tenth of the other three algorithms. Model Size is
only 3.4M, which is convenient for deployment in smart phones
or wearable devices that have high requirements for computa-
tion power and memory occupation.

4.5.2. Results on SVHN

Table 3 summarizes the comparison results of each method
on SVHN dataset. The proposed method obtains a mAP@1 of
82.66%, second after ShuffleNetV2, but FLOPs, Params and
Model Size are smaller than ShuffleNetV2, it is worth mention-
ing that the amount of calculation is only 14% of ShuffleNetV2.
At the same time, compared with MobileNetV2, our method
reduces FLOPs by 0.7%, Params by 61.6% and Model Size by
63.4% when mAP@1 is higher than the baseline. The compre-
hensive advantages are more prominent.

4.5.3. Results on SUN397
Experiments on the large-scale scene understanding dataset
SUN397 are conducted and the experimental results are shown

33.67% and 33.60%, in terms of parameters, they are 0.77M
and 2.74M, and in terms of Model Size, they are 3.4M and
9.4M). Therefore, the proposed method demonstrates its high-
performance retrieval capabilities and the ability to compress
lightweight neural networks.

4.5.4. Results on Oxbuild5k and Paris6k

Table 5 and Table 6 summarize the comparison results on the
Oxbuild5k and Paris6k datasets. The proposed method obtains
19.91% mAP@1 and 93.58% mAP@5 on Oxbuild5k, which
is higher than other methods. In terms of Param and Model
Size, the best results are also obtained, which are 0.77M and
3.4M respectively, which is convenient for deployment in mo-
bile devices. We observe that ALNet always has a slightly
higher calculation amount than MobileNetV2 on datasets with
larger size of images (SUN397, Oxbuild5k, Paris6k), which is
the weakness of our method, but it is better than MobileNetV?2
in the other three indicators. It can be seen from Table 6 that
the proposed method shows more advantages in compression
rate and retrieval. Similar results are observed on Paris6K, the
highest mAP@1 of 24.87% is obtained on Paris6k, Params and
Model Size remain the same as Oxbuild5k, reaching the small-
est 0.77M and 3.4M. This verifies the effectiveness of OM-
CBIR.

4.6. Ablation Study

In order to evaluate the effectiveness of ALNet, we conduct
detailed ablation studies on the five datasets. As shown in Table
7, we use MobileNetV?2 as the baseline and denote our model
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Table 7. Ablation Experiments on Five Datasets.
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. mAP(%)
Methods Params Model Size
MINIST SVHN SUN397 Oxbuild5k Paris6k

MobileNetV2 2.24 ~2.74M 9.3 ~9.6M 83.91 78.60 33.60 18.03 22.57
LNet 0.55 +0.01M 2.3+0.1M 81.28 49.47 30.29 18.77 18.94
LNet+CS 0.55+0.01M 2.3+ 0.1IM 92.76 74.70 31.29 18.79 20.75
LNet+CBAM 0.77 £ 0.01M 3.3+0.1M 86.41 61.59 29.90 19.44 22.69
LNet+CS+CBAM (ALNet) 0.77 ~ 0.86M 3.4M 96.61 82.66 33.67 19.91 24.87

that uses grouped convolution and the new network structure
as Lite-Network (LNet). On the basis of LNet, a lightweight
network with channel shuffle (CS) and CBAM is the proposed
ALNet. Table 7 reports the results of various parts of the abla-
tion experiment of ALNet. Similar observations can be found
in other datasets.

Channel Shuffle: From the comparison of Params and
Model Size of MobileNetV2 and LNet, it can be seen that
grouping convolution can effectively reduce the Params and
Model Size of the model, and the minimum values are obtained
on all datasets. However, mAP is almost lower than the baseline
on each dataset, so the grouping operation weakens the perfor-
mance of the model to a certain extent. Channel shuffle is pro-
posed to solve the problem of feature communication between
different groups. It can be seen from the third row of Table 7
that adding channel shuffle does not increase the parameters and
size of the model, but improves the model retrieval performance
to varying degrees.

CBAM: Channel Attention Module and Spatial Attention
Module perform attention on the channel and space respec-
tively. It not only saves parameters and computing power, but
also ensures that it can be integrated into the existing network
as a plug-and-play module in the architecture. As shown in
Table 7, after adding channel shuffle, although the retrieval per-
formance on the MINIST, SUN397 and Oxbuild5k datasets is
better than the baseline, it is still slightly insufficient on SVHN
and Paris6k. In order to improve the feature expression abil-
ity of the model, we introduce an attention mechanism to let
the network learn to pay attention to key information. From
the fourth row of Table 7, it can be seen that mAP is almost
improved after adding CBAM with only a small increase in pa-
rameters and model size.

By adding channel shuffle after the 1 x 1 group convolution
and adding a convolutional attention mechanism after the depth
separable convolution, we obtain the best model. The place-
ment order of the above modules is the best result obtained
through a large number of experiments. Comparing the rows in
Table 7, we can see that both channel shuffle and convolutional
attention mechanisms can basically enhance the retrieval per-
formance of the model. It can be concluded from the last row
of Table 7 that under the combined effect of the two, our model
has obtained the highest mAP that exceeds other algorithms on
each dataset.

5. Conclusions

This paper proposes an offline mobile retrieval framework
called OMCBIR. In this framework, we use lightweight CNN
to accomplish feature extraction in order to deploy the deep
learning model on mobile device. To further reduce model re-
dundancy, we redesign the block structure. By reconstructing
the model structure and introducing the convolutional attention
module, an extremely lightweight small network architecture
ALNet is designed, which greatly reduces the computational
cost and memory consumption of the model while improving
the retrieval accuracy. After that, the model is used as a fea-
ture extractor, which is converted and deployed to Android plat-
form to achieve image retrieval. A comprehensive experiments
are carried out in the experimental verification part. We evalu-
ate retrieval performance and model compression indicators of
ALNet and the latest SOTA methods on different datasets. In
addition, we also conduct ablation experiments on each com-
ponent of the model. Experimental results show that under the
OMCBIR framework, ALNet can achieve the best performance
compared to the refered methods.
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Highlights:

We propose a novel offline framework for content-based image retrieval
on the mobile side, namely OMCBIR. As far as we know, this is the first
time that a deep learning model is used for a completely offline mobile
content-based image retrieval task.

As the core of OMCBIR, we propose an extremely lightweight network
architecture ALNet, whose role is to extract features from images.
Besides, we also propose an ALBlock unit, which is the basic building block
of ALNet. By introducing pointwise group convolution, channel shuffle and
convolution attention module in bottleneck block, we not only improve
retrieval accuracy, but also greatly reduce the computational cost and
memory usage of the model.

The experimental results on five public datasets demonstrate the
effectiveness of our model. Compared to MobileNetV2, ALNet obtains a
higher mAP on each dataset in OMCBIR with over 62% reduction in model
parameters and over 63% reduction in model size.
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