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In order to limit climate change and reduce greenhouse gas emissions, renewable energies are increasingly being used to replace fossil energy resources such as gas, coal, and oil. To accelerate this energy transition, energy communities are encouraging factories to share and use renewable energy sources in a collective self-consumption framework. This article presents a configuration of photovoltaic self-consumption in an energy community that combines collective and individual self-consumption. A bi-objective mathematical model has been proposed for this configuration to minimize energy costs and CO 2 emissions. To achieve a trade-off between these two goals, two methods are used to solve this problem by converting the bi-objective problem into a single objective: the weighted sum method (WSM) and an algorithm based on the ϵ-constraint method. The performance of these two methods is evaluated using several numerical experiments. The results show that WSM gives the minimum average value (2.8026%) for the summation of the gap between the obtained objectives for each goal and their optimal values when they are considered separately. Moreover, this method yields the smallest gap value (1.3071%) compared to the ϵ-constraint method.

INTRODUCTION

As a result of industrial and economic development in the world, energy production (mainly based on fossil energy) is increasing. Besides, building energy consumption is expected to increase by 50% in 2060, which will cause an increase in carbon emissions and contribute to global warming [START_REF] Liu | Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage[END_REF]). In this context, most energy consumers are encouraged to play an active role by reducing their demands or producing energy. The energy communities have discovered that more can be done in this regard by acting collectively [START_REF] Van Der Schoor | Power to the people: Local community initiatives and the transition to sustainable energy[END_REF]).

Energy communities were created as local initiatives to accelerate the energy transition while providing economic, environmental, technical, and social benefits to their members. Today, more than 3500 energy communities have been constructed in the European Union [START_REF] Caramizaru | Energy communities: an overview of energy and social innovation[END_REF]). Among their primary goals are the reduction of electricity costs, surety of clean energy supply, and the reduction of greenhouse gas emissions. In this context, several researchers have been working on biobjective optimization problems in energy communities in order to find the best compromise between CO 2 emissions and electricity cost reductions [START_REF] Schram | Comparison of the greenhouse gas emission reduction potential of energy communities[END_REF]).

The generation methods are among the most popular resolution methods for bi-objective optimization problems, and they have significant advantages. The solution process is separated into two phases: the first is the generation of effective solutions, and the second is the engagement of decision-makers. Among these methods, there are the weighted sum method (WSM) which converts a biobjective optimization problem into a single objective by assigning a weight coefficient to each objective [START_REF] Lasemi | Multi-objective smart distribution network operation considering demand response programming[END_REF]), and the ϵ-constraint method, which can provide a representative sample of the Pareto set [START_REF] Chankong | Multiobjective decision making: theory and methodology[END_REF]). Previous research has shown that evolutionary algorithms, such as the non-dominated sorting genetic algorithm-II (NSGA-II), are widely used in bi-objective optimization to search the Pareto front. In [START_REF] Ruiming | Multi-objective optimized operation of integrated energy system with hydrogen storage[END_REF], NSGA-II was used to design an integrated energy system with a hydrogen storage strategy that minimized both operating costs and pollution emissions. In [START_REF] Zhu | Multi-objective economic emission dispatch considering wind power using evolutionary algorithm based on decomposition[END_REF], a bi-objective evolutionary algorithm based on decomposition was used to optimize the cost and emission of a wind-thermal power system. [START_REF] Fleischhacker | Portfolio optimization of energy communities to meet reductions in costs and emissions[END_REF] used the ϵ-constraint method to reduce costs and carbon emissions in an energy community. The results show that the solutions for minimum costs and minimum carbon emissions are opposite to each other. Therefore, the calculation of the Pareto Front allows quantifying the optimal technical portfolio according to the two objectives. In another study, [START_REF] Schram | On the trade-off between environmental and economic objectives in community energy storage operational optimization[END_REF] proposed a multi-objective optimization framework in an energy community and used ϵ-constraint method to calculate the Pareto frontier in order to find the trade-off between emission reduction and associated costs.

To the best of our knowledge, there is no work in the literature that addresses the compromise between CO 2 emissions and energy costs reductions for a configuration that combines individual and collective self-consumption in an industrial energy community. This paper presents two methods for solving a bi-objective model in order to minimize energy costs and greenhouse gas emissions in an industrial energy community.

The rest of this paper is organized as follows: Section 2 presents the problem description and introduces the mathematical model. Section 3 provides the data generation for testing the model. Section 4 addresses the methods used in this study. Section 5 includes a discussion of the results and section 6 draws conclusions with some directions for future research.

PROBLEM DEFINITION AND MODELING

Following our previous work [START_REF] Gribiss | A new strategy for collective energy self-consumption in the eco-industrial park: Mathematical modeling and economic evaluation[END_REF]), in which two configurations of energy self-consumption were compared according to the economic criterion. In the first configuration, which we called "individual selfconsumption", each factory has its own photovoltaic production that supplies energy in addition to the grid to satisfy the demands. While in the second configuration, we have an additional energy resource in the form of a shared energy production center, which can be used to meet the factory's energy needs. That is why we call this configuration "individual and collective self-consumption". In both configurations, excess energy is either stored in the batteries (individual and collective) or sold to the grid. The results showed that investing collectively among the factories is more efficient than investing alone. In this work, the configuration that combines individual and collective energy self-consumption is studied according to economic and environmental objectives.

Figure 1 represents the schema of the configuration of energy self-consumption used in this study for the case of three factories [START_REF] Gribiss | A new strategy for collective energy self-consumption in the eco-industrial park: Mathematical modeling and economic evaluation[END_REF]). Each factory satisfies its energy demands by using five different energy sources in order to minimize their energy costs and CO 2 emissions. The target is to find a compromise between minimizing energy costs and CO2 emissions.

For this purpose, in the following, a mathematical model is presented to model this problem. D f j,t [KW h]: Energy demand of factory j at period t. Q p i,t [KW h/kW ]: Amount of photovoltaic energy available for 1 kW installed in the shared source i at period t. Q f j,t [KW h]: Amount of photovoltaic energy available for 1 kW installed in the factory j at period t. P g t , P f t , P p t , P bf t , and P bp t [e/KW h]: Price of energy drawn from the grid, the factory's production, the shared production, the factory's battery, and the shared battery at period t, respectively.

Mathematical model

P s

t [e/KW h]: Price of energy sold to the grid at period t. SOC min j and SOCP min [kW h]: Minimum state of charge of the factory's battery j, and the shared battery, respectively.

η char and η dech : Losses due to the battery's charging, and the battery's discharge, respectively.

P r f j [%] :

The contribution rate of the factory j to the construction of the production park.

Decision variables :

E f j,t , E p i,j,t , E g j,t , E dbf j,t
, and E dbp j,t [KW h] : Amount of energy which is drawn by factory j from its production, the common source i, the grid, its battery, and the common battery at period t, respectively. E sf j,t and E cbf j,t [KW h] : Amount of produced energy by the factory j at period t that is sold to the grid, and stored in its battery, respectively. E sp i,t and E cbp i,t [KW h] : Amount of produced energy by the common source i at period t that is sold to the grid, and stored in the common battery, respectively. E sp t [KW h] : Amount of total produced energy in common production at period t that is sold to the grid. P P V f j and P P V p i [KW ] : Power installed in the factory j, and in the common production i, respectively.

SOCP max and SOC max j [kW h]: Maximum state of charge of the shared battery, and the factory's battery j, respectively.

SOC j,t and SOCP t : State of charge of the factory's battery j, and the common battery at period t, respectively. c p t : = 1 if the common battery is charging at period t. 0 otherwise.

d p t : = 1 if the common battery is discharging at period t. 0 otherwise. c f j,t : = 1 if the factory's battery j is charging at period t. 0 otherwise. d f j,t : = 1 if the factory's battery j is discharging at period t. 0 otherwise.

IC f

j [e] : Investment costs related to the factory j for its own photovoltaic energy and battery during the horizon H. IC p j [e]: Investment costs related to the factory j for the common photovoltaic production and battery during the horizon H.

IC p [e] : Total investment costs of the common photovoltaic production and battery during the horizon H.

Objective functions

The proposed model is defined as a bi-objective optimization problem. The first and second objective functions, respectively, reduce the economic cost and CO2 emissions.

Objective 1 : Economic objective The economic objective aims to minimize the energy cost of the factories; it is represented by equation (1). The first part reduces investment costs by determining the optimal sizing of photovoltaic installations and storage in the energy community, while the second part determines the energy sources to be used by each factory in order to minimize energy costs.

min ECO =   IC p + J j=1 IC f j   + J j=1 H t=1 (P g t × E g j,t + + P f t × E f j,t + P bf t × E dbf j,t + P p t × I i=1 (E p i,j,t ) + P bp t × E dbp j,t -P s t × (E sf j,t + E sp t )) (1) 
Objective 2 : Environmental objective

The environmental objective aims to minimize the emissions of CO 2 . Equation (2) represents this objective. EI g , EI P V , and EI db are respectively, the CO 2 emission factors due to the use of the grid, the photovoltaic production, and the battery. The unit of these factors is in [KgCO 2 /kW h] with

EI P V ≤ EI db ≤ EI g . min EN V = J j=1 H t=1 (EI g ×E g j,t +EI pv ×(E f j,t + I i=1 (E p i,j,t ) +E sp t +E sf j,t ) + EI db ×(E dbf j,t +E dbp j,t ))
(2) Constraints Constraint (3) ensures that the total demand of each factory j is satisfied by the energy sources available in the common park, the factory j, and the grid at period t.

E f j,t + E dbf j,t + I i=1 (E p i,j,t ) + E dbp j,t + E g j,t = D f j,t ∀j, t (3) 
Constraint (4) ensures that the sum of the quantities of energy drawn by each factory j and sold to the grid must be equal to the quantity of energy available in the factory's production j at period t.

E f j,t + E dbf j,t + E sf j,t = P P V f j × Q f j,t ∀j, t (4) 
Constraint ( 5) ensures that the sum of the quantities of energy demands of all factories is satisfied by the common source i, the energy stored in the common battery from source i, and the energy sold to the grid from source i must be equal to the quantity of energy available in the common source i at period t.

J j=1 (E p i,j,t ) + E cbp i,t + E sp i,t = P P V p i × Q p i,t ∀t, i (5) 
Constraint ( 6) represents the percentage of energy to be drawn from the common production and the common battery by each factory j during the horizon H. 

(P P V p i × Q p i,t ) ∀j (6) 
Constraints ( 7) and ( 8) ensure respectively that the size of the photovoltaic installations in factories and common park cannot exceed a certain limit (P f max j in factory j and P pmax i in the common source i)

P P V f j ≤ P f max j ∀j (7) 
P P V p i ≤ P pmax i ∀i (8)
The constraints ( 9), (10), and (11) represent the state of charge initial, final, and at period t of the factory's battery j, respectively.

SOC j,0 = SOC min j (9)

SOC j,T = SOC min j (10) SOC j,t = SOC j,(t-1) +η char ×E cbf j,t -1/η dech ×E dbf j,t ∀j, t (11) 
Constraint (12) ensures that the factory's battery j is protected against accelerated aging. SOC min j ≤ SOC j,t ≤ SOC max j ∀j, t (12) constraint ( 13) ensures that the size of the factory's battery j cannot exceed a maximum EB f max j SOC max j ≤ EB f max j ∀j (13) Additionally, the amount of charging and discharging of the batteries of the factories must also meet the upper and lower bound constraints. Constraints ( 14) and ( 15) refer to the maximum (CB f,max j ) to be charged in the battery of the factory j at period t, while constraints ( 16) and ( 17) represent the maximum (DB f,max j ) to be discharged in the battery of the factory j at period t.

E cbf j,t ≤ CB f,max j × c f j,t ∀j, t (14) 
E cbf j,t ≥ c f j,t ∀j, t (15) 
E dbf j,t ≤ DB f,max j × d f j,t ∀j, t (16) 
E dbf j,t ≥ d f j,t ∀j, t (17) 
Constraint ( 18) ensures the choice between charging or discharging of the factory's battery j at period t.

c f j,t + d f j,t ≤ 1 ∀j, t (18) 
The constraints ( 19), (20), and ( 21) represent the state of charge initial, final, and at period t of the shared battery, respectively. 

SOCP 0 = SOCP min (19) SOCP T = SOCP min (20) SOCP t = SOCP (t-1) +η char × I i=1 (E cbp i,t ) -1/η dech × J j=1 (E dbp j,
Constraints ( 24) and ( 25) refer to the maximum (CB p,max ) to be charged in the common battery at period t, while Constraints ( 26) and ( 27) represent the maximum (DB p,max ) to be discharged in the common battery at period t.

I i=1 (E cbp i,t ) ≤ CB p,max × c p t ∀t (24) I i=1 (E cbp i,t ) ≥ c p t ∀t (25) J j=1 (E dbp j,t ) ≤ DB p,max × d p t ∀t (26) J j=1 (E dbp j,t ) ≥ d p t ∀t (27) 
Constraint ( 28) ensures the choice between charging or discharging of the shared battery at period t.

c p t + d p t ≤ 1 ∀t (28)

DATA GENERATION

This section presents how the model data was generated, such as photovoltaic installation, investment costs, and energy prices.

Based on different studies, a 1.9 m 2 monocristallin solar panel can produce 365 W . The maximum size of the photovoltaic installation that can be placed in a surface S is γ = S×365 1,9 . For the factories and the shared production, a maximum surface has been defined on which the photovoltaic installation can be placed.

The European Commission's Photovoltaic Geographic Information System (PVGIS) is used to calculate the amount of energy produced by a photovoltaic installation γ at each period t during the horizon H, . The PVGIS-SARAH radiation database is chosen, it can offer photovoltaic load profiles with a resolution of one hour between 2005 and 2016, which in turn were used to generate an average annual photovoltaic load profile.

For each factory, there are two types of investment costs:

• Fixed investment costs for its own Photovoltaic installation and battery during the horizon H. • Fixed investment costs for the common Photovoltaic and battery during the horizon H.

To calculate the investment costs of the factories and the common park, the data of Pedrero et al is used [START_REF] Pedrero | Economic evaluation of pv installations for self-consumption in industrial parks[END_REF]), which is represented in tables 1 and 2. 

= H t=1 D j,t H t=1 J j=1 D j,t
The cost of purchasing electricity from the grid is the highest, while the cost of purchasing energy from the factory is the lowest. The prices are arranged in the following order: P f t ≤ P bf t ≤ P p t ≤ P bp t ≤ P g t ; ∀t

METHODOLOGY

The mathematical model aims to find the best compromise between two objectives, namely the reduction of energy costs and CO 2 emissions. In this case, cost minimization necessitates optimal sizing of PV installations and storage in the energy community, as well as the appropriate selection of energy sources to meet demand. Furthermore, reducing CO2 emissions necessitates maximizing the use of PV installations.

As it is evident, considering each objective function alone can give a different solution. As a result, we must compromise by favoring one of the two goals, as defined by the imperatives. Two resolution methods for solving biobjective optimization problems were used and compared in this study to provide a representative sample of the Pareto set.

The first method is the weighted sum (WS) as presented in equation ( 29). In which, ECO and EN V are the economic, and environmental objectives, respectively. The ECO min and EN V min are their minimum values, which are obtained by solving each of them separately. The value of the coefficient α is between 0 and 1.

OF = α × ECO ECO min + (1 -α) × EN V EN V min (29) 
The second method is the ϵ-constraint, which is the most popular resolution method used to solve bi-objective optimization problems. With this method, we will consider two cases. The first one gives importance to the reduction of electricity costs, so we will keep as an objective function the minimization of the prices paid by the factories, and we will use the objective function that minimizes the CO 2 emissions as an additional constraint. In the second case, we reverse the roles between the economic and environmental objectives.

In the first case, a three-step approach is implemented based on the ϵ-constraint method for bi-objective optimization problems:

• The first step of the approach calculates the minimum solution of the economic objective function without any constraints concerning the reduction of emissions. This solution is used to calculate the respective value of the environmental objective (EN V = e 1 ). • Secondly, the objective function is changed from economic to environmental, and a new value for the environmental objective (EN V = e 2 ) is calculated. • Thirdly, the constraint shown in equation ( 30) is put on the first step. In this study, a variation of α in 10% steps is chosen.

EN V ≤ e 2 + (e 1 -e 2 ) × α (30)
Figure 2 represents the algorithm of this approach.

In the second case, a similar approach is followed by swapping the two objective functions.

RESULTS

In this section, illustrative examples are considered to validate and evaluate the presented model and methods, which are solved by CPLEX on an Intel Core i5 with 2.7 GHz and 8 GB RAM. To compare the results between the two methods, an energy community with three factories is presented. The optimization horizon is 1 year, which is presented in hours (8760 h). For each method and at every alpha, the corresponding values of ECO and ENV are calculated. The results of the gap in percentage between these obtained values and their optimal values when they are considered separately are tabulated in the following tables. The third column represents the sum of the two previous columns. The results displayed in table 4 correspond to the values obtained from method 1 (WSM). Table 5 shows the results of method 2(ϵ-constraint) where more importance is given to the economic objective. In table 6, the importance is given to the environmental objective when method 2 is applied. For each of the three tables, the average gap values for the economic objective are 1.2930%, 0.4503%, and 1.8108%, respectively. On the other hand, the set of values that are presented in these tables as 1.5096%, 4.9020%, and 1.6244% is stand for the environmental objective. As a result, method 2 with emphasis on the economic objective should be used to minimize the economic objective function, whereas the remaining methods are the best choice to minimize the environmental objective. Furthermore, the obtained results show that method 1 has the smallest summation of average values (2.8026%) for the gaps. Hence, this method should be utilized to minimize both objective functions. In addition, when α is equal to 0.5, the minimum value of this gap is found with method 1. Consequently, the weighted sum method provides the best compromise between the two objective functions.

CONCLUSION

This paper presents a configuration of an energy community, which combines individual and collective selfconsumption with adding the option of storage and/or sale of surplus energy. In this study, a mathematical model with two objectives has been proposed and two methods are used for solving this bi-objective optimization model. The goal was to find a trade-off between energy costs and CO 2 emissions reductions. The performance of the proposed methods are evaluated using several numerical experiments and by comparing the gap between the obtained objectives for each goal and their optimal values when they are considered separately. The results show that weighted sum method (WSM) gives the minimum average gap value (1.3071%) and the smallest gap value (2.8026%) for the summation of the gaps, comparing to the ϵ-constraint method. Therefore, the weighted sum method achieves the best compromise between the two objective functions.

For future work, it could be interesting to propose a meta-heuristic algorithm for this problem to be compared with the presented methods. Also, we can study the same problem by considering other criteria, such as social and technical criteria, in addition to the economic and environmental ones.

  Fig. 1. Configuration of energy self-consumption for a case of three factories.

  Fig. 2. Resolution algorithm

Table 1 .

 1 PV installations reference costs

	PV Power	Reference Cost [e/W ]
	≤ 10kW		1.5
	10kW -100kW		0.9
	100kW -1M W		0.75
	Table 2. Economic parameters for the calcula-
	tion of investment costs
	Parameter		Value
	PV modules service life	25 (year)
	Inverter service life	15 (year)
	Inverter cost		0.2e/W
	Maintenance cost		0.02e/(W × year)

Table 3 .

 3 Table 3 is used to calculate the contribution cost for each factory. Percentage of contribution for each factory

		Total demand	Percentage of contribution
	Factory j	H t=1 D j,t	P r f j

Table 4 .

 4 Results obtained from method 1

	α	ECO(%) ENV(%)	Sum(%)
	0	3.9430	0	3.9430
	0.1	1.3869	0.0001	1.3870
	0.2	1.3869	0.0001	1.3870
	0.3	1.3517	0.0141	1.3658
	0.4	1.2350	0.0722	1.3072
	0.5	1.2347	0.0724	1.3071
	0.6	1.2347	0.0725	1.3072
	0.7	1.2338	0.0742	1.3080
	0.8	1.0163	0.9116	1.9279
	0.9	0.2002	5.5881	5.7883
	1	0	9.8003	9.8003
	average	1.2930	1.5096	2.8026

Table 5 .

 5 Results obtained from method 2 with importance to the economic objective

	α	ECO(%) ENV(%)	Sum(%)
	0	0.0014	9.8024	9.8038
	0.1	0.0119	8.8240	8.8359
	0.2	0.0499	7.8435	7.8934
	0.3	0.1125	6.8631	6.9755
	0.4	0.2018	5.8826	6.0845
	0.5	0.3168	4.9022	5.2190
	0.6	0.4549	3.9218	4.3766
	0.7	0.6158	2.9413	3.5572
	0.8	0.7965	1.9609	2.7564
	0.9	1.0074	0.9804	1.9878
	1	1.3858	0	1.3858
	average	0.4503	4.9020	5.3524
	Table 6. Results obtained from method 2 with
	importance to the environmental objective
	α	ECO(%) ENV(%)	Sum(%)
	0	3.1343	0	3.1344
	0.1	2.9196	0.0001	2.9197
	0.2	3.0534	0.0001	3.0535
	0.3	2.6731	0.0002	2.6733
	0.4	2.2992	0.0001	2.2993
	0.5	1.9171	0.0002	1.9172
	0.6	1.5453	0.0351	1.5804
	0.7	1.1884	1.1666	2.3550
	0.8	0.7923	2.6761	3.4684
	0.9	0.3961	4.6028	4.9990
	1	0	9.3876	9.3876
	average	1.8108	1.6244	3.4352