
HAL Id: hal-03931125
https://hal.science/hal-03931125

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Precision Sparse Matrix-Vector Product and
its application to Krylov Solvers

Roméo Molina, Stef Graillat, Fabienne Jézéquel, Théo Mary

To cite this version:
Roméo Molina, Stef Graillat, Fabienne Jézéquel, Théo Mary. Adaptive Precision Sparse Matrix-Vector
Product and its application to Krylov Solvers. 13èmes Rencontres Arithmétique de l’Informatique
Mathématique (RAIM 2022), Nov 2022, Nantes, France. �hal-03931125�

https://hal.science/hal-03931125
https://hal.archives-ouvertes.fr

RAIM 2022
3rd November 2022

Adaptive Precision Sparse Matrix–Vector
Product

and its Application to Krylov Solvers

Roméo Molina
LIP6, Sorbonne Université

Service Online, Département Informatique, IJCLab

Joint work with
Stef Graillat, Fabienne Jézéquel, and Theo Mary

1/19

Today’s floating-point landscape

Bits

Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware

• Great benefits:
◦ Reduced storage, data movement, and communications
◦ Reduced energy consumption (5× with fp16, 9× with bfloat16)
◦ Increased speed on emerging hardware (16× on A100 from fp32 to

fp16/bfloat16)

• Some limitations too:
◦ Low accuracy (large u)
◦ Narrow range

2/19

Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

• Precision tuning: autotuning based on the source code, my thesis
area: CADNA / PROMISE...

N Does not need any understanding of what the code does

H Does not have any understanding of what the code does

• This work: another point of view, exploit as much as possible
the knowledge we have about the code

3/19

Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

• Precision tuning: autotuning based on the source code, my thesis
area: CADNA / PROMISE...

N Does not need any understanding of what the code does
H Does not have any understanding of what the code does

• This work: another point of view, exploit as much as possible
the knowledge we have about the code

3/19

Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ε, adaptively select
the minimal precision for each computation

⇒ Why does it make sense to make the precision vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

and small elements produce small errors :

| fl(a op b)− a op b| ≤ u|a op b|, op ∈ {+,−, ∗,÷}

⇒ Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually
smaller) data in lower precision

4/19

Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ε, adaptively select
the minimal precision for each computation

⇒ Why does it make sense to make the precision vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

and small elements produce small errors :

| fl(a op b)− a op b| ≤ u|a op b|, op ∈ {+,−, ∗,÷}

⇒ Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually
smaller) data in lower precision

4/19

Adaptive precision at the variable level?

• Pushing adaptive precision to the extreme: can we benefit from
storing each variable in a (possibly) different precision?

• Example: Ax = b with adaptive precision for each Aij

◦ Is it worth it?
Need to have elements of widely different magnitudes

◦ Is it practical?
Probably not for compute-bound applications, but could it work for
memory-bound ones?

⇒ Natural candidate: sparse matrices

5/19

Sparse matrix–vector product (SpMV)

y = Ax , A ∈ Rm×n

for i = 1: m do
yi = 0
for j ∈ nnz i (A) do

yi = yi + aijxj
end for

end for

• Standard error analysis for y = Ax performed in a uniform
precision ε gives,

|ŷi − yi | ≤ niε
∑

j∈nnz i (A)

|aijxj |

• Idea: store elements of A in a precision inversely proportional to
their magnitude (smaller elements in lower precision)

6/19

Adaptive precision SpMV

for i = 1: m do
yi = 0
for k = 1: p do

y
(k)
i = 0

for j ∈ nnz i (A) do
if aijxj ∈ Bik then

y
(k)
i = y

(k)
i + aijxj at precision uk

end if
end for
yi = yi + y

(k)
i

end for
end for

• Split row i of A into p buckets Bik and sum elements of Bik in
precision uk

• Error analysis: |ŷ (k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |

7/19

Building the buckets

• |ŷ (k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |

⇒ Build the buckets such that uk
∑

aijxj∈Bik
|aijxj | ≈ ε

∑
j |aijxj |

• By setting Bik to the interval (εβi/uk+1, εβi/uk], we obtain

|ŷ (k)i − y
(k)
i | ≤ n

(k)
i εβi and so |ŷi − yi | ≤ niεβi

• Two possible choices for βi :
◦ βi =

∑
j |aijxj | ⇒ guarantees O(ε) componentwise error:

|ŷi − yi | ≤ nε
∑

j |aijxj | ∀i ∈ {1, ..., n}
◦ βi = ‖A‖‖x‖ ⇒ guarantees O(ε) normwise error:
||ŷi − yi || ≤ nε‖A‖‖x‖

• Smallest elements are simply dropped

8/19

Visualise mixed-precision gains

Matrice dgreen

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice imagesensor

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice nv1

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice nv2

For some matrices, many elements can be dropped that leads to
major gains.

9/19

Visualise mixed-precision gains

Matrice power9

For some matrices, many elements can be dropped that leads to
major gains.

9/19

SpMV experimental settings

• 33 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros

• 3 different accuracy targets:
◦ ε = 2−24

◦ ε = 2−37

◦ ε = 2−53

10/19

SpMV experimental settings

• 33 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros

• 3 different accuracy targets:
◦ ε = 2−24

◦ ε = 2−37

◦ ε = 2−53

10/19

SpMV experimental settings

Various sets of precision formats:

• 2 precisions: fp32, fp64

• 3 precisions: bfloat16, fp32, fp64

• 7 precisions: bfloat16, ”fp24”, fp32, fp64, ”fp40”, ”fp48”, ”fp56”

Bits

Mantissa Exponent

bfloat16 8 8
"fp24" 8 8
fp32 24 8
"fp40" 29 11
"fp48" 37 11
"fp56" 45 11
fp64 53 11

11/19

SpMV experiments

Maintaining componentwise accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices

10−15

10−13

10−11

10−9

10−7

10−5

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. 2 prec.

Adapt. 3 prec.

Adapt. 7 prec.

ε = 2−24

ε = 2−37

ε = 2−53

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.

12/19

SpMV experiments

Maintaining normwise accuracy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices

10−20
10−18
10−16
10−14
10−12
10−10
10−8
10−6

B
ac

kw
ar

d
er

ro
r

Unif.

Adapt. 2 prec.

Adapt. 3 prec.

Adapt. 7 prec.

ε = 2−24

ε = 2−37

ε = 2−53

Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.

12/19

SpMV experiments

Theoretical storage gains targetting ε = 2−53 accuracy (fp64)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices
0

20

40

60

80

100

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
)

Accuracy target: ε = 2−53

Unif. fp64

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

Up to 88% of storage reduction

13/19

SpMV experiments

Actual time gains targetting ε = 2−53 accuracy (fp64)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices
0

20

40

60

80

100

120

T
im

e
w

rt
un

if
.

fp
64

(%
)

Accuracy target: ε = 2−53

Unif. fp64

Adapt. NW 2 prec.

Adapt. CW 2 prec.

Up to 85% of time reduction

13/19

SpMV experiments

Theoretical storage gains targetting ε = 2−24 accuracy (fp32)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices
0

10

20

30

40

50

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
)

Accuracy target: ε = 2−24

Unif. fp32

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

Up to 97% of storage reduction

14/19

SpMV experiments

Actual time gains targetting ε = 2−24 accuracy (fp32)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices
0

20

40

60

80

100

120

T
im

e
w

rt
un

if
.

fp
32

(%
)

Accuracy target: ε = 2−24

Unif. fp32

Adapt. NW 2 prec.

Adapt. CW 2 prec.

Up to 88% of time reduction

14/19

SpMV experiments

Theoretical storage gains targetting ε = 2−37 accuracy
(unavailable in hardware!)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices
0

20

40

60

80

S
to

ra
ge

co
st

w
rt

un
if

or
m

fp
64

(%
)

Accuracy target: ε = 2−37

Unif. fp48

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

We are able to target any kind of accuracy with only natively
supported precisions.

15/19

SpMV experiments

Actual time gains targetting ε = 2−37 accuracy (unavailable in
hardware!)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Matrices
0

20

40

60

80

100

120

T
im

e
w

rt
un

if
.

fp
64

(%
)

Accuracy target: ε = 2−37

Unif. fp64

Unif. fp32

Adapt. NW 2 prec.

Adapt. CW 2 prec.

We are able to target any kind of accuracy with only natively
supported precisions.

15/19

Applying adaptive GMRES to iterative solvers

Performance of GMRES rely on SpMV

r = b − Ax0
β = ‖r‖2
q1 = r/β
for k = 1, 2, . . . do

y = Aqk
for j = 1: k do

hjk = qTj y
y = y − hjkqj

end for
hk+1,k = ‖y‖2
qk+1 = y/hk+1,k

Solve the least squares problem minck ‖Hck − βe1‖2
xk = x0 + Qkck

end for

How does the adaptive method affect the convergence?

16/19

GMRES-IR experimental settings

• Adaptive SpMV achieve larger speedups for lower accuracy targets

• GMRES-based iterative refinement particularly attractive

1: for i = 1, 2, . . . do
2: ri = b − Axi−1
3: Solve Adi = ri by GMRES
4: xi = xi−1 + di
5: end for

• SpMV line 2 in CW adaptive, target ε = 2−53

• GMRES line 3 experimented with multiple variants

• Use of simple Jacobi preconditioner

• Fixed outside threshold εout = 2−53

• Varying inside threshold εin = 2−24

• Fixed inside restart to 80 iterations
17/19

Application to GMRES: convergence scheme experiments

GMRES convergence for matrix ML Laplace

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. CW εin = 2−24 (77%)

Adapt. CW εin = 2−20 (60%)

Adapt. CW εin = 2−18 (52%)

Adapt. CW εin = 2−16 (46%)

• With reasonable accuracy targets, adaptive SpMV, does not affect
the confergence scheme

• Choose the best compromise between the iteration cost and the
number of iterations

18/19

Application to GMRES: convergence scheme experiments

GMRES convergence for matrix CoupCons3D

0 200 400 600 800 1000
Iteration

10−15
10−13
10−11
10−9
10−7
10−5
10−3
10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. CW εin = 2−24 (68%)

Adapt. CW εin = 2−20 (56%)

Adapt. CW εin = 2−16 (46%)

Adapt. NW εin = 2−24 (36%)

Adapt. NW εin = 2−16 (1%)

Adapt. NW εin = 2−20 (17%)

• For a given εin value, NW variants achieve a lower cost but a
slower convergence than CW ones

• εin = 2−24 leads to the best NW variant, which converges in 1040
iterations with an SpMV cost of 36% of the fp32 uniform one

• εin = 2−20 leads to the best CW variant, which converges in 320
iterations with a corresponding SpMV cost of 56%

• Both options should be considered.18/19

Application to GMRES: convergence scheme experiments

GMRES convergence for matrix Geo 1438

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

10−13

10−11

10−9

10−7

10−5

10−3

10−1

B
ac

kw
ar

d
E

rr
or

Unif. fp32

Unif. bfloat16 (50%)

Adapt. CW εin = 2−24 (89%)

Adapt. NW εin = 2−24 (61%)

• Surprising behavior

• Consistently reproduced and occurs for several other matrices in
our set

• Aggressive dropping of small coefficients might lead to a “nicer”
matrix for which GMRES can converge quickly.

18/19

Conclusion: take-home messages

• Adaptive precision SpMV algorithm
◦ Ruilds computing buckets according to the elements magnitude
◦ Targets any accuracy
◦ Matrix-dependent gains

• Application to Krylov solvers
◦ Reasonable accuracy targets preserves convergence scheme

More info

Thank you! Any questions?

19/19

