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Today’s floating-point landscape

Bits

Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware

• Great benefits:
◦ Reduced storage, data movement, and communications
◦ Reduced energy consumption (5× with fp16, 9× with bfloat16)
◦ Increased speed on emerging hardware (16× on A100 from fp32 to

fp16/bfloat16)

• Some limitations too:
◦ Low accuracy (large u)
◦ Narrow range
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Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

• Precision tuning: autotuning based on the source code, my thesis
area: CADNA / PROMISE...

N Does not need any understanding of what the code does

H Does not have any understanding of what the code does

• This work: another point of view, exploit as much as possible
the knowledge we have about the code
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Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ε, adaptively select
the minimal precision for each computation

⇒ Why does it make sense to make the precision vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

and small elements produce small errors :

| fl(a op b)− a op b| ≤ u|a op b|, op ∈ {+,−, ∗,÷}

⇒ Opportunity for mixed precision: adapt the precisions to the
data at hand by storing and computing “less important” (usually
smaller) data in lower precision
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Adaptive precision at the variable level?

• Pushing adaptive precision to the extreme: can we benefit from
storing each variable in a (possibly) different precision?

• Example: Ax = b with adaptive precision for each Aij

◦ Is it worth it?
Need to have elements of widely different magnitudes

◦ Is it practical?
Probably not for compute-bound applications, but could it work for
memory-bound ones?

⇒ Natural candidate: sparse matrices
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Sparse matrix–vector product (SpMV)

y = Ax , A ∈ Rm×n

for i = 1: m do
yi = 0
for j ∈ nnz i (A) do

yi = yi + aijxj
end for

end for

• Standard error analysis for y = Ax performed in a uniform
precision ε gives,

|ŷi − yi | ≤ niε
∑

j∈nnz i (A)

|aijxj |

• Idea: store elements of A in a precision inversely proportional to
their magnitude (smaller elements in lower precision)
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Adaptive precision SpMV

for i = 1: m do
yi = 0
for k = 1: p do

y
(k)
i = 0

for j ∈ nnz i (A) do
if aijxj ∈ Bik then

y
(k)
i = y

(k)
i + aijxj at precision uk

end if
end for
yi = yi + y

(k)
i

end for
end for

• Split row i of A into p buckets Bik and sum elements of Bik in
precision uk

• Error analysis: |ŷ (k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |
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Building the buckets

• |ŷ (k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj |

⇒ Build the buckets such that uk
∑

aijxj∈Bik
|aijxj | ≈ ε

∑
j |aijxj |

• By setting Bik to the interval (εβi/uk+1, εβi/uk ], we obtain

|ŷ (k)i − y
(k)
i | ≤ n

(k)
i εβi and so |ŷi − yi | ≤ niεβi

• Two possible choices for βi :
◦ βi =

∑
j |aijxj | ⇒ guarantees O(ε) componentwise error:

|ŷi − yi | ≤ nε
∑

j |aijxj | ∀i ∈ {1, ..., n}
◦ βi = ‖A‖‖x‖ ⇒ guarantees O(ε) normwise error:
||ŷi − yi || ≤ nε‖A‖‖x‖

• Smallest elements are simply dropped
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Visualise mixed-precision gains

Matrice dgreen

For some matrices, many elements can be dropped that leads to
major gains.
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Visualise mixed-precision gains
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Visualise mixed-precision gains

Matrice nv1

For some matrices, many elements can be dropped that leads to
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Visualise mixed-precision gains

Matrice nv2

For some matrices, many elements can be dropped that leads to
major gains.
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Visualise mixed-precision gains

Matrice power9

For some matrices, many elements can be dropped that leads to
major gains.
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SpMV experimental settings

• 33 matrices coming from SuiteSparse collection and industrial
partners with at most 166M non-zeros

• 3 different accuracy targets:
◦ ε = 2−24

◦ ε = 2−37

◦ ε = 2−53
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SpMV experimental settings

Various sets of precision formats:

• 2 precisions: fp32, fp64

• 3 precisions: bfloat16, fp32, fp64

• 7 precisions: bfloat16, ”fp24”, fp32, fp64, ”fp40”, ”fp48”, ”fp56”

Bits

Mantissa Exponent

bfloat16 8 8
"fp24" 8 8
fp32 24 8
"fp40" 29 11
"fp48" 37 11
"fp56" 45 11
fp64 53 11
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SpMV experiments

Maintaining componentwise accuracy
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Adaptive methods preserve an accuracy close to the accuracy of
uniform methods.
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SpMV experiments

Maintaining normwise accuracy
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SpMV experiments

Theoretical storage gains targetting ε = 2−53 accuracy (fp64)
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Accuracy target: ε = 2−53

Unif. fp64

Adapt. NW 2 prec.

Adapt. NW 3 prec.

Adapt. NW 7 prec.

Adapt. CW 2 prec.

Adapt. CW 3 prec.

Adapt. CW 7 prec.

Up to 88% of storage reduction

13/19



SpMV experiments

Actual time gains targetting ε = 2−53 accuracy (fp64)
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SpMV experiments

Theoretical storage gains targetting ε = 2−24 accuracy (fp32)
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SpMV experiments

Actual time gains targetting ε = 2−24 accuracy (fp32)
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SpMV experiments

Theoretical storage gains targetting ε = 2−37 accuracy
(unavailable in hardware!)
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We are able to target any kind of accuracy with only natively
supported precisions.
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SpMV experiments

Actual time gains targetting ε = 2−37 accuracy (unavailable in
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Applying adaptive GMRES to iterative solvers

Performance of GMRES rely on SpMV

r = b − Ax0
β = ‖r‖2
q1 = r/β
for k = 1, 2, . . . do

y = Aqk
for j = 1: k do

hjk = qTj y
y = y − hjkqj

end for
hk+1,k = ‖y‖2
qk+1 = y/hk+1,k

Solve the least squares problem minck ‖Hck − βe1‖2
xk = x0 + Qkck

end for

How does the adaptive method affect the convergence?
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GMRES-IR experimental settings

• Adaptive SpMV achieve larger speedups for lower accuracy targets

• GMRES-based iterative refinement particularly attractive

1: for i = 1, 2, . . . do
2: ri = b − Axi−1
3: Solve Adi = ri by GMRES
4: xi = xi−1 + di
5: end for

• SpMV line 2 in CW adaptive, target ε = 2−53

• GMRES line 3 experimented with multiple variants

• Use of simple Jacobi preconditioner

• Fixed outside threshold εout = 2−53

• Varying inside threshold εin = 2−24

• Fixed inside restart to 80 iterations
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Application to GMRES: convergence scheme experiments

GMRES convergence for matrix ML Laplace
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Adapt. CW εin = 2−18 (52%)

Adapt. CW εin = 2−16 (46%)

• With reasonable accuracy targets, adaptive SpMV, does not affect
the confergence scheme

• Choose the best compromise between the iteration cost and the
number of iterations
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Application to GMRES: convergence scheme experiments

GMRES convergence for matrix CoupCons3D
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• For a given εin value, NW variants achieve a lower cost but a
slower convergence than CW ones

• εin = 2−24 leads to the best NW variant, which converges in 1040
iterations with an SpMV cost of 36% of the fp32 uniform one

• εin = 2−20 leads to the best CW variant, which converges in 320
iterations with a corresponding SpMV cost of 56%

• Both options should be considered.18/19



Application to GMRES: convergence scheme experiments

GMRES convergence for matrix Geo 1438
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• Surprising behavior

• Consistently reproduced and occurs for several other matrices in
our set

• Aggressive dropping of small coefficients might lead to a “nicer”
matrix for which GMRES can converge quickly.
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Conclusion: take-home messages

• Adaptive precision SpMV algorithm
◦ Ruilds computing buckets according to the elements magnitude
◦ Targets any accuracy
◦ Matrix-dependent gains

• Application to Krylov solvers
◦ Reasonable accuracy targets preserves convergence scheme

More info

Thank you! Any questions?
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