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Abstract

We present a new method implemented in our new package FitAik, to perform least-squares fitting of calculated and
experimental atomic transition probabilities, by using the mono-electronic transition integrals 〈n`|r|n′`′〉 (with r the
electronic radial coordinate) as adjustable quantities. FitAik is interfaced to the Cowan suite of codes, for which
it automatically writes input files and reads output files. We illustrate our procedure with the example of Er+ ion,
for which the agreement between calculated and experimental Einstein coefficients is found to be very good. The
source code of FitAik can be found on GitLab, and the calculated Einstein coefficients are stored in our new database
CaDDiACs. They are also used to calculate the dynamic dipole polarizability of Er+.
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1. Introduction

The spectroscopy of lanthanide ions has long been
studied in the context of astrophysics, as shown by the
number of articles published on that topic in astrophys-
ical journals, see i.e. [1, 2, 3, 4, 5, 6, 7, 8]. As examples
of interest, one can cite the study of chemically-peculiar
stars [9, 10, 11], or the so-called r-process in neutron
star mergers [12, 13, 14].

In a different context, the spectroscopy of Rydberg
states of erbium has recently been investigated exper-
imentally [15], following an earlier study on holmium
[16]. Both groups are involved in the development of
experiments with ultracold gases of lanthanide atoms
[17, 18, 19, 20] that has taken place for 15 years
[21, 22]. Rydberg atoms with several valence electrons
offer the possibility to use their open-shell ionic core for
e.g. laser cooling or trapping, based on isolated-core ex-
citation, see i.e. [23, 24, 25]. Yet those purposes re-
quire a precise knowledge of the core energies, tran-
sition intensities and dynamic polarizabilities. In this
respect, we investigated in 2016 candidates for laser-
cooling transitions in Er+ [26], relying on an accurate
modeling of the Er+ spectrum (see Fig. 1), whose de-
scription motivates the present article.

To perform such atomic-structure calculations,
Robert D. Cowan’s suite of codes is a widely used tool
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Figure 1: Energy levels of Er+ sorted according to the total electronic
angular momentum J and the parity (even parity in blue, odd parity
in red). The long lines correspond to experimental energies, while the
short ones to calculated energies of experimentally unknown levels.

for more than forty years [27, 28]. It consists of four
Fortran programs called RCN, RCN2, RCG and RCE,
which can be downloaded on the website of the Uni-
versity of Dublin [29]. Based on the same architecture,
A. Kramida wrote his own version of the codes, improv-
ing the performance of the original ones and correcting
some major bugs [28]. Those two versions contain the
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so-called RCE program to perform a least-squares fit-
ting of experimental energies and Hamiltonian eigenval-
ues calculated ab initio. However, the mono-electronic
transition integrals that are the building blocks of the
transition intensities have their ab initio values. In paral-
lel, P. Quinet and coworkers have modified the ab initio
part of the Cowan codes, in order to account for core-
polarization effects in the calculation of single elec-
tron wave functions [30, 31]. This has significantly in-
creased the accuracy of the predicted intensities (Ein-
stein coefficients or oscillator strengths), in comparison
with the ab initio ones of the original codes.

Following the idea of least-squares fitting of ener-
gies, we have developed a suite of codes called FitAik,
that we interfaced to Cowan codes, to perform a least-
squares fitting of transition probabilities, i.e. Einstein
coefficients of spontaneous emission, by considering
mono-electronic transition integrals 〈n`|r|n′`′〉 (where
r is the electronic radial coordinate) as variable quan-
tities. Our method allows for accurately reproducing
many measured Einstein coefficients, and for predicting
yet unknown ones. In this article, we describe in detail
our fitting procedure, and we illustrate it with Er+ [26],
for which J. E. Lawler’s group has provided a set of ap-
proximately 400 experimental Einstein coefficients [4].
The agreement between calculated and experimental co-
efficients is found to be very satisfactory. Following
a similar semi-empirical methodology, J. Ruchkowski
and coworkers developed their own numerical code to fit
energies, hyperfine constants, and oscillator strengths,
which they applied e.g. to scandium ion Sc+ [32] and
strontium atom Sr [33]. To the best of our knowledge,
this code is not open-source.

The article is organized as follows: Section 2 presents
the theoretical background of our method, while Section
3 presents our results in the case of Er+, and Section 4
contains concluding remarks.

2. Theoretical background

In this section, we present the theoretical basis of our
calculations of Einstein coefficients for atomic transi-
tions, illustrated, for the sake of clarity, with the exam-
ple of the Er+ ion, for which the results will be given in
Section 3.

2.1. The expression of Einstein coefficients

We consider a spontaneous emission (SE) transition
from an upper level |i〉 of energy Ei and total electronic
angular momentum J, to a lower level |k〉 of energy Ek

and total electronic angular momentum J′. The corre-
sponding Einstein coefficient for SE is given by

Aik =
ω3

ik

3πε0~c3(2J + 1)
|〈i ‖d‖ k〉|2 (1)

where ε0 is the vacuum permittivity, ~ the reduced
Planck constant, c the speed of light and ωik = 2πνik =

(Ei − Ek)/~ the transition frequency. The quantity
〈i‖d‖k〉 is the reduced matrix element of the electric
dipole moment (EDM), equal to d = −e

∑
α rα. where e

is the elementary charge and rα the instantaneous posi-
tion of the α-th electron.

In practice, the eigenvectors describing each atomic
level are expanded on a basis set written in the frame-
work of the Russel-Saunders (LS ) coupling

|i〉 =
∑

b

cb |b, J〉 and |k〉 =
∑

b′
cb′

∣∣∣b′, J′〉 (2)

A given basis state |b, J〉 consists of an electronic config-
uration and of intermediate orbital and spin angular mo-
menta, and it has a well-defined electronic parity, odd or
even.

Table 1 presents the electronic configurations in-
cluded in our Er+ calculations: there are four config-
urations of even parity and five configurations of odd
parity. For each configuration, the table also presents
the number of basis states for J = 13/2. For in-
stance, in the case of 4 f 126s, the two possible LS states
are 4 f 12(3H)6s(2S ) 4H and 4 f 12(1I)6s(2S ) 2I, where the
spectral terms in parentheses refer to individual sub-
shells 4 f 12 and 6s, and the one without parentheses
gives the total orbital and spin angular momenta of
the states. As another example, the five possible ones
for 4 f 126p are: 4 f 12(3H)6p(2Po) 4Io, 4Ho, or 2Io, and
4 f 12(1I)6p(2Po) 2Ko or 2Io. Note that for 4 f 13, the only
possible LS term is 2Fo, possessing two states with
J = 5/2 and 7/2, but not with 13/2.

Table 1: Electronic configurations sorted by even/odd parity included
in our Er+ (Er II) calculations, as well as the number of basis states
for J = 13/2.

Even parity Odd parity
Config. Nb. states Config. Nb. states
4 f 126s 2 4 f 13 0
4 f 125d 9 4 f 116s2 3

4 f 116s6p 44 4 f 115d6s 75
4 f 115d6p 223 4 f 115d2 166

4 f 126p 5
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Table 2: Pairs of opposite parity configurations and subshells (n`, n′`′)
obeying the electric-dipole selection rule, as well as the correspond-
ing integral r j ≡ rn`,n′`′ calculated by the Hartree-Fock + relativistic
(HFR) method, and the group of free parameters to which they belong
(see Subsection 3.2).

Even conf. Odd conf. (n`, n′`′) rn`,n′`′ Group
4 f 126s 4 f 115d6s 4 f -5d 0.5171 5
4 f 126s 4 f 126p 6s-6p -3.4883 1
4 f 125d 4 f 13 5d-4 f 0.6322 5
4 f 125d 4 f 115d2 4 f -5d 0.5166 5
4 f 125d 4 f 126p 5d-6p 2.4909 4

4 f 116s6p 4 f 116s2 6p-6s -3.3745 2
4 f 116s6p 4 f 115d6s 6p-5d 1.8709 4
4 f 115d6p 4 f 115d6s 6p-6s -3.0151 3
4 f 115d6p 4 f 115d2 6p-5d 2.0789 4
4 f 115d6p 4 f 126p 5d-4 f 0.5188 5

By introducing Eq. (2) in the reduced EDM of
Eq. (1), we get

〈i ‖d‖ k〉 =
∑
bb′

cbcb′
〈
b, J ‖d‖ b′, J′

〉
. (3)

To yield a non-zero contribution, a (b, b′) pair must in-
volve configurations that differ by only one electron,
e.g. 4 f 126s-4 f 126p or 4 f 126s-4 f 115d6s. The subshells
of the “hopping” electron, labeled (n`, n′`′), must also
satisfy `′ − ` = ±1. Among the 4 × 5 = 20 pairs of
configurations with opposite parities, 10 obey those se-
lection rules (see Table 2), and the corresponding EDM
matrix element 〈b, J‖d‖b′, J′〉 is proportional to the one-
electron position operator rn`,n′`′ = 〈n`|r|n′`′〉. As a con-
sequence, all the EDM matrix elements depend only on
ten rn`,n′`′ quantities, as shown in Table 2. We can thus
rewrite Eq. (1) in the general form

At =

Npar∑
j=1

at j r j


2

(4)

where t ≡ (ik) is an index characterizing the transition
between |i〉 and |k〉, and j the Npar possible pairs of sub-
shells (n`, n′`′). The quantities at j depend on the tran-
sition frequency νik, the coefficients (cb, cb′ ), and on the
angular momenta of the states in a complex way (see
Ref. [27], Chap. 14). In what follows, the quantities r j

will be treated as adjustable parameters.

2.2. The least-squares fitting procedure
We use a set of Ntr experimental Einstein coefficients

At,exp, t ∈ [1; Ntr], published by the Wisconsin group [4]

in the case of Er+. In our least-squares fitting procedure,
we seek to minimize the standard deviation σA,

σA =


∑Ntr

i=1

(
At,cal − At,exp

)2

Ntr − Npar


1/2

, (5)

where At,cal is given by Eq. (4). Because the Einstein
coefficients can be spread over several orders of magni-
tude, minimizing Eq. (5) may tend to minimize in prior-
ity the error on the strongest transitions. To avoid this,
we also define the logarithmic standard deviation σlogA

σlogA =


∑Ntr

i=1 log2
(

At,cal

At,exp

)
Ntr − Npar


1/2

. (6)

For both quantities, a first calculation is performed on a
grid of discrete r j parameters (see below). Defining

r j = f j r j,init, (7)

with f j the ratio, or scaling factor (SF), between the
r j variables and their initial values r j,init, namely the
Hartree-Fock + relativistic (HFR) ones calculated by the
Cowan code RCN2. Equation (4) becomes

At =

Npar∑
j=1

at j f j


2

, (8)

where at j = at j r j,init. Similarly to the energy least-
squares fitting in the RCE program of the Cowan suite, it
is possible to force certain parameters to have the same
SF during the calculation. This is, for instance, the case
for all r4 f ,5d parameters of Table 2. The grid of the first
least-squares fit is defined on SFs: their minimum f j,min,
maximum f j,max and step δ f j.

In a second step, the optimal grid for SFs serves as the
set of initial values for a more precise fit based on the
Gauss-Newton method. As the Einstein coefficients are
non-linear functions of the fitting parameters r j (or f j),
the success of this second fit requires those initial values
to be reasonably close to the final solution. Namely,
we search for the set of parameters f j gathered in the
vector F for which the gradient of the standard deviation
∇FσA = 0. The components of the gradient vector are
given by

∂σA

∂ f j
=

2
(Ntr − Npar)σA

Ntr∑
t=1

at j(At,cal − At,exp)
√

At,cal.

(9)
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Given the initial set of parameters F0 (resulting from the
grid calculation), the set obtained after the first iteration
F1 is then equal to

F1 = F0 −
(
JF0

)−1
∇F0 , (10)

where JF is the Npar × Npar Jacobian matrix, whose ele-
ments are equal to

Ji j =
∂2σA

∂ fi ∂ f j

=
2

(Ntr − Npar)σA

Ntr∑
t=1

atiat j(3At,cal − At,exp)

−
4

(Ntr − Npar)2 σ3
A

Ntr∑
t=1

ati(At,cal − At,exp)
√

At,cal

×

Ntr∑
u=1

au j(Au,cal − Au,exp)
√

Au,cal. (11)

Equation (10) is repeated until convergence is reached,
namely |∂σA/∂ f j| ≤ ε, ∀ j, where ε is arbitrarily small.

Once the convergence is reached, we estimate the
root-mean-square deviation ∆ f j of a given SF, by as-
suming that, when the SF varies by ±∆ f j around its op-
timal value f j,opt, the standard deviation σA increases by
the quantity δ (say 5 % which is a typical uncertainty of
the Wisconsin group’s measurements). Using a second-
order Taylor expansion around the optimal SFs, one ob-
tains

∆ f j =

√
2δσA,opt

J j j,opt
, (12)

where σA,opt and J j j,opt are respectively the standard de-
viation and diagonal Jacobian matrix elements obtained
with the optimal set of SFs.

The same iterative approach as in Eq. (10) can be fol-
lowed with the logarithmic standard deviation (6), ex-
cept that the gradient vector and Jacobian matrix will
have slightly different expressions. In order to avoid the
repetition of long equations, the latter are given in Ap-
pendix A.

3. Results for Er+

This section is dedicated to the calculations of Ein-
stein coefficients. For the sake of completeness we first
briefly discuss the calculated level energies.

3.1. Energy levels
The modeling of level energies of Er+ was the pur-

pose of Ref. [34], in which the authors gave optimal sets

of energy parameters for both parities. Respectively,
four and five electronic configurations were considered
in the even and odd parities (Table 1). The odd configu-
ration 4 f 13 is included for a technical purpose regarding
the Cowan codes, but no experimental level belonging
to it was observed. In the even parity, 130 levels were
fitted with 25 free parameters, giving a standard devia-
tion of 55 cm−1; in the odd parity, 233 levels were fitted
with 21 free parameters, giving a standard deviation of
63 cm−1. Figure 1 shows experimental energies when
they have been detected [35], and calculated ones other-
wise, as functions of the electronic angular momentum
J, sorted by parity.

The agreement between the calculated and experi-
mental energies is very satisfactory, since the standard
deviations in the two parities are similar to those ob-
tained in other lanthanide ions with our semi-empirical
method [36]. Moreover, a recent purely ab initio
calculation reports on a relative average deviation of
4 %, which in regard to the energy range of about
40000 cm−1 covered by the calculation, corresponds to
an absolute average deviation of about 1600 cm−1 (see
Ref. [8], Table 11). Compared to Ref. [34], several
odd-parity levels listed in Table 3 previously excluded
are introduced in the present fit. This does not sig-
nificantly change the optimal energy parameters, that
are given in the RCG input files “Er+_opt.ing11” and
“Er+_opt.ING11” in the Supplementary Material.

3.2. Einstein coefficients
Once the fitting of level energies is done, we tackle

the fitting of Einstein coefficients, for which we use the
experimental set of data given in Ref. [4], containing
418 transitions. We aim at adjusting the SFs f j given in
Table 2. Firstly, we determine which groups of f j are
forced to remain equal during the fitting process. If we
let all 10 parameters to vary freely, we sometimes ob-
tain non-physical optimal values (i.e. much larger than
one), especially f5d,4 f for the 4 f 125d-4 f 13 transitions,
since 4 f 13 possess no experimental levels. After trying
different types of constraints, we obtain the most satis-
factory results by forcing all the f6p,5d and all the f5d,4 f

parameters to be equal to each other, while the three
f6s,6p evolve freely. This yields the five groups of free
parameters given in Table 2.

In that case, we make a fit with all the experimental
lines [4], which converges to the optimal SFs and un-
certainties given in column “(1)” of Table 4. The cor-
responding linear standard deviation is σA = 5.49 ×
106 s−1, which is 2.7 % of the largest experimental Ein-
stein coefficient. The logarithmic one is σlogA = 0.52,
meaning that a majority of the ratios At,cal/At,exp are

4



Table 3: Odd-parity levels added in the present version of the fit: Eexp, Ecal stand for experimental and calculated energies in cm−1, gexp and gcal
for Landé g-factors. The last level was included in Ref. [34], but no eigenvector was specified.

Eexp Ecal J gexp gcal Leading term & percentage
39053.059 39002 7/2 0.980 1.031 4 f 11(4Fo

5/2)5d6s(1D2) (5/2, 2)o 17.0
42527.301 42488 7/2 1.020 1.190 4 f 11(4S o

3/2)5d2(3F2) (3/2, 2)o 11.3
43221.645 43305 9/2 1.060 1.075 4 f 11(2Go

7/2)5d6s(3D3) (3/2, 3)o 8.5
44148.047 44219 7/2 1.065 1.041 4 f 11(4Io

11/2)5d2(1G4) (11/2, 4)o 7.8
44162.145 44199 3/2 0.770 0.893 4 f 11(4Io

11/2)5d2(1G4) (11/2, 4)o 17.9

Table 4: Optimal scaling factors f j with their uncertainties ∆ f j given
by Eq. (12), as well as the linear σA (in s−1), and logarithmic σlogA
standard deviations (Eqs. (5) and (6)), obtained in different cases: (1)
With all the experimental lines of Ref. [4]; (2) Excluding the lines
given in Table B.5, which show a large discrepancy between the cal-
culated and experimental Einstein coefficients; (3) Same data as (2)
but minimizing the logarithmic (A.1) rather than the linear standard
deviation (5).

SF (1) (2) (3)
f1 0.884 ± 0.056 0.886 ± 0.046 0.987 ± 0.081
f2 0.877 ± 0.055 0.876 ± 0.044 0.892 ± 0.607
f3 0.797 ± 0.088 0.797 ± 0.071 0.870 ± 0.187
f4 0.799 ± 0.493 0.808 ± 0.394 0.857 ± 0.099
f5 0.822 ± 0.701 0.817 ± 0.569 0.859 ± 0.179
σA 5.5 × 106 4.6 × 106 5.9 × 106

σlogA 0.52 0.22 0.20

larger than 10−0.52 ≈ 0.30 and smaller than 100.52 ≈ 3.3.
To visualize how accurately each experimental transi-
tion is reproduced, we plot on Figure 2 the calculated
line strength Scal = |〈i‖d‖k〉|2 as a function of the ratio
Acal/Aexp, both in logarithmic scale.

One can see that most ratios have values around
one, even though a few ones are very small, down
to 4.6 × 10−4. The transitions characterized by very
small ratios are associated with very small calculated
line strengths. Namely, the six transitions with a ratio
smaller than 0.06 have line strengths smaller than 0.007
atomic units. This relationship has been pointed out in
Ref. [37]. Therefore, Scal can be a suitable criterion
to evaluate the reliability of calculated Einstein coeffi-
cients, in particular for those which have no experimen-
tal counterpart.

On the other hand, Figure 2 also displays some tran-
sitions with a large Acal/Aexp ratio, the largest one being
6.81. To build the data set of calculation “(2)” from
“(1)” of Table 4, we exclude the transitions for which
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Figure 2: Calculated line strength Scal (in atomic units) as function of
the ratio between calculated and experimental Einstein coefficients in
log scale, obtained with the optimal scaling factors of column “(1)” in
Table 4, i.e. including all the experimental transitions of Ref. [4].

Acal/Aexp < 0.2 or Acal/Aexp > 5; those transitions are
reported in Table B.5. Most of them involve upper lev-
els of odd parity from 30000 to 40000 cm−1. In that
range, the large density of levels can result in pairs of
very close levels (less than 100 cm−1 apart) with the
same angular momentum. A list of such pairs is given in
Table B.6. Among them, transitions implying levels of
the first two pairs show satisfactory agreement between
calculated end experimental Einstein coefficients. The
accuracy in the third pair is less satisfactory, e.g. the
7th line of Table B.5 has Acal/Aexp = 5.5; but inverting
the two levels does not significantly improve it. For the
pair at 37098 and 37147 cm−1, inverting the two levels
improves the fit with all lines, whose standard devia-
tion drops from 5.5 to 4.6 × 106 s−1. Still, it is worth-
while noting that the optimal scaling factors almost do
not change. For the other pairs, there are no experimen-
tal Einstein coefficient to compare with. However, for
the last level pair, the experimental and theoretical val-
ues of the LandÃl’ g-factors indicate a probable level
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inversion.
Excluding the lines of Table B.5 defines calculation

“(2)” in Table 4, for which we obtain a minimal stan-
dard deviation of σA = 4.565 × 106 s−1. Those SFs
yield a logarithmic standard deviation σlogA = 0.217,
which represents a significant improvement compared
to the fit with the full experimental spectrum for which
σA = 5.49 × 106 s−1 and σlogA = 0.524. With the same
set of experimental data, we also seek the SFs minimiz-
ing the logarithmic standard deviation, see calculation
“(3)”. We obtain σA = 5.891 × 106 s−1 and σlogA =

0.199, which means that for the majority of the transi-
tions the ratio Acal/Aexp is between 10−0.199 = 0.631 and
100.199 = 1.58.

Even if some optimal SFs, like f1 and f3 differ no-
tably in calculations “(2)” and “(3)”, their ranges of un-
certainty always overlap, namely, f1 = 0.886±0.046 for
set (2) and 0.987 ± 0.081 for set (3). In order to deter-
mine which set of SFs is the most suitable, we notice the
following. In calculation “(2)”, the SFs minimizing σA

yield a σlogA that is 9 % larger than the lowest one given
by calculation “(3)”. On the contrary, the σA obtained
in “(3)” is 29 % larger than the minimal one obtained in
“(2)”. In consequence, we choose “(2)” as our reference
set of optimal SFs, with which the RCG input files given
in Supplementary Material are constructed, and the Ein-
stein coefficients are calculated and published in our
new database CaDDiAcS [38]. Note that this set “(2)” is
slightly different from the optimal set of Ref. [26], since
we have not exactly excluded the same transitions in the
two fits.

3.3. Dynamic dipole polarizabilities
Using the sum-over-states formula coming from the

second-order perturbation theory [39, 40, 41], the set
of energies and Einstein coefficients obtained above al-
lows for calculating the dynamic dipole polarizabili-
ties (DDPs) of many levels of Er+, in a wide range of
wavelengths λ. To determine the largest energy and
the smallest wavelength for which our data set can be
used, we seek to estimate the lowest Er+ energy lev-
els not included in the present calculation. Although
none of its levels are known experimentally, the low-
est electronic configuration not included in our model
is probably 4 f 127s. In Yb+, the corresponding config-
uration 4 f 147s appears at 54304.39 cm−1 [35]. As ex-
pected from the neutral erbium case, the levels of 4 f 127s
certainly play an important role in the DDPs of 4 f 126p
levels, especially for wavelengths close to the 4 f 126p-
4 f 127s resonances. Similarly, the levels of 4 f 116s7s are
likely to play an important role in the DDPs of 4 f 116s6p
levels. Consequently, the set of data obtained above
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Figure 3: Scalar dynamic dipole polarizability as a function of the
wavenumber and the wavelength of the incident light, for the ground
level (solid red line) and the excited level at 6824.774 cm−1 (dashed
blue line) of Er+.

can be used for energy levels E and vacuum light wave-
lengths such that E + hc/λ . 50000 cm−1, and the 6p-
7s transitions should be accounted for with the effective
model presented in Refs. [41, 42] and used for dyspro-
sium [43].

Among all possible levels, we focus on the ground
level 4 f 12(3H6)6s1/2 (6, 1/2)13/2 and the excited one
4 f 116s2 4Io

15/2 at 6824.774 cm−1, whose scalar DDPs,
given in Ref. [41], Eq. (7), are plotted on Figure 3. The
transition between those levels is the equivalent of the
clock transition in Yb+ [44, 45]; but unlike the ytter-
bium case, that transition is (weakly) allowed in the
electric-dipole approximation, with a calculated Ein-
stein coefficient Acal = 16 s−1 (linewidth of 2.6 Hz).
Moreover, its vacuum wavelength of 1.465 µm belongs
to the telecommunication band [46].

The static (λ → ∞) scalar polarizabilities of the
ground and 6825-cm−1 levels are respectively 59.2 and
76.8 atomic units (a.u.). The DDP of the ground level
increases faster with the wave number and the two
DDPs are equal around 19500 cm−1. The ground-level
DDP also shows many more peaks above 12000 cm−1,
which is due to the larger number of odd-parity levels
compared to even-parity ones in that region of the spec-
trum (see Fig. 1).

As for the tensor components of the static polariz-
abilities, they are equal to −1.8 and −0.9 a.u. for the
ground and 6825 cm−1 levels respectively. Similarly
to neutral lanthanides, these small values arise because
the polarizabilities of the two levels are mostly due to
the isotropic density distribution of the 6s electrons,
and are thus insensitive to any variation of the electric-
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field polarization. Another common point with neutrals
is that levels belonging to the same manifold have al-
most equal DDPs. As examples, the (first excited) level
4 f 12(3H6)6s1/2 (6, 1/2)11/2 at 440.434 cm−1 has a scalar
(resp. tensor) static polarizability of 59.2 (resp. −1.7)
a.u., and the level 4 f 116s2 4Io

13/2 at 13338.777 cm−1

has a scalar (resp. tensor) static polarizability of 76.5
(resp. −0.6) a.u.

In order to estimate the uncertainty on the DDP,
we use the results of Table 4. For the levels that we
consider, the static static polarizability mostly come
from 6s-6p transitions. Namely, for the ground level,
the terms proportional to 〈4 f 126s|r|4 f 126p〉2 account
for 103 % of the total value (the other rn`,n′`′ con-
tributions slightly reduce transition dipole moments).
For the 6825-cm−1 level, the terms proportional to
〈4 f 116s2|r|4 f 116s6p〉2 are responsible for 97 % of the
total value. In the data set (2) of Table 4, the relative
uncertainties on f1 and f2 are equal to 5.2 and 5.0 %
respectively. Therefore, we estimate the relative uncer-
tainties to be 10.4 and 10.0 % for the two levels, which
give 59.2 ± 6.1 and 76.8 ± 7.6 a.u. respectively.

4. Conclusion

We have presented a method to perform least-squares
fitting of Einstein coefficients by adjusting mono-
electronic transition integrals 〈n`|r|n′`′〉. This method is
implemented in the suite of codes FitAik freely available
on GitLab [47]. The codes are designed to work jointly
with either the Dublin [29] or the Kramida [28] version
of the Cowan codes. We have applied our method to the
case of Er+, for which we have obtained a fair agree-
ment between experimental and calculated Einstein co-
efficients. The latter can be found on our new database
CaDDiAcS [38], which currently contains the coeffi-
cients of 49122 electric-dipole and 94840 magnetic-
dipole transitions.

We think that our least-squares fitting procedure is
well suited for atoms with complex structure, such as
lanthanides, because a large number of Einstein coeffi-
cients are functions of a rather limited number of radial
integrals. Therefore, we plan to use our codes to analyze
the spectrum of singly-ionized lanthanides, e. g. Tm+.
Moreover, we have already used our codes for neutral
atoms, but in a somewhat restricted way. In dysprosium
we limited our analysis to the odd-parity configurations
4 f 106s6p and 4 f 95d6s2; but the Einstein coefficients in-
volving the lowest configuration 4 f 106s2 are sensitive to
the configuration interaction with 4 f 95d26s, which thus
will be included in the future [40]. The situation is sim-
ilar to dysprosium, but with configurations 4 f 116s6p,

4 f 105d6s2 and 4 f 105d26s [41]. For erbium, accounting
for configuration interaction between 4 f 115d6s6p and
other even-parity configuration may surely improve the
calculated Einstein coefficients [46].

The major prospect in our work is to improve our
method by accounting for the various types of uncer-
tainties. Currently, our code offers the possibility to run
several calculations with experimental Einstein coeffi-
cients varying randomly within their uncertainty range.
In the future, we plan to use weighted least-squares fit-
ting: in the standard deviation, each transition has a
weight inversely proportional to its experimental uncer-
tainty. Moreover, we want to provide the user of the
CaDDiAcS database with an indication of confidence
for each calculated Einstein coefficient [48]. In this re-
spect, Ref. [37] shows, and Figure 2 confirms, that the
calculated line strength is a good criterion, since the
larger the strength, the smaller the discrepancy between
theoretical and experimental coefficients. Finally, in ad-
dition to the Einstein coefficients and their logarithm,
we plan to minimize the standard deviation on the line
strength in our least-squares procedure. Preliminary
calculations on Er+ do not show strong differences in
the resulting optimal scaling factors, but the differences
are likely to be large when the range of experimental
wavelengths is broad, e.g. in Ref. [49].
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Appendix A. Gradient and Jacobian for logarith-
mic standard deviation

The gradient vector of the logarithmic standard devi-
ation has components equal to

∂σlogA

∂ f j
=

2
(Ntr − Npar) ln(10)σlogA

∑
t

at j√
At,cal

log
(

At,cal

At,exp

)
(A.1)

while the Jacobian matrix has elements equal to

∂2σlogA

∂ fi ∂ f j
=

2
(Ntr − Npar) ln(10)σlogA

×
∑

t

atiat j

At,cal

[
2

ln 10
− log

(
At,cal

At,exp

)]
−

4
(Ntr − Npar)2 ln2(10)σ3

logA

×
∑
t,u

atiau j√
At,calAu,cal

log
(

At,cal

At,exp

)
log

(
Au,cal

Au,exp

)
(A.2)

In Eqs. (A.1) and (A.2), the function ln is the natural
(base-e) logarithm and log the base-10 logarithm.

Appendix B. Transitions excluded from the fit

Table B.5 presents the transitions excluded from the
calculation “(1)” of Table 4, to give the data set used in
“(2)” and “(3)”.
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