
HAL Id: hal-03931075
https://hal.science/hal-03931075v1

Submitted on 9 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum-Resistant Software Update Security
on Low-Power Networked Embedded Devices

Gustavo Banegas, Koen Zandberg, Emmanuel Baccelli, Adrian Herrmann,
Benjamin Smith

To cite this version:
Gustavo Banegas, Koen Zandberg, Emmanuel Baccelli, Adrian Herrmann, Benjamin Smith.
Quantum-Resistant Software Update Security on Low-Power Networked Embedded Devices. ACNS
2022 - International Conference on Applied Cryptography and Network Security, Jun 2022, Rome,
Italy. pp.872-891, �10.1007/978-3-031-09234-3_43�. �hal-03931075�

https://hal.science/hal-03931075v1
https://hal.archives-ouvertes.fr

Quantum-Resistant Software Update Security
on Low-power Networked Embedded Devices

Gustavo Banegas⋆1, Koen Zandberg⋆2, Emmanuel Baccelli2,3, Adrian
Herrmann3, and Benjamin Smith1

1 Inria and Laboratoire d’Informatique de l’École Polytechnique,
Institut Polytechnique de Paris Palaiseau, France

gustavo@cryptme.in, smith@lix.polytechnique.fr
2 Inria Saclay, France

{koen.zandberg, emmanuel.baccelli}@inria.fr
3 Freie Universität Berlin

Berlin, Germany
adrian.herrmann@fu-berlin.de

Abstract. As the Internet of Things (IoT) rolls out today to devices
whose lifetime may well exceed a decade, conservative threat models
should consider adversaries with access to quantum computing power.
The IETF-specified SUIT standard defines a security architecture for
IoT software updates, standardizing metadata and cryptographic tools—
digital signatures and hash functions—to guarantee the update legiti-
macy. SUIT performance has been evaluated in the pre-quantum con-
text, but not yet in a post-quantum context. Taking the open-source
implementation of SUIT available in RIOT as a case study, we survey
post-quantum considerations, and quantum-resistant digital signatures
in particular, focusing on low-power, microcontroller-based IoT devices
with stringent memory, CPU, and energy consumption constraints. We
benchmark a range of pre- and post-quantum signature schemes on a
range of IoT hardware including ARM Cortex-M, RISC-V, and Espressif
(ESP32), which form the bulk of modern 32-bit microcontroller architec-
tures. Interpreting our benchmarks in the context of SUIT, we estimate
the real-world impact of transition from pre- to post-quantum signatures.

Keywords: Post-quantum, Security, IoT, Microcontroller, Embedded Systems

1 Introduction

Decades of experience with the Internet and networked software has shown that
you can’t secure what you can’t update. Meanwhile, recent technological and soci-
etal trends have fuelled the massive deployment of cyberphysical systems; these
⋆ These authors contributed equally to this work.

This work was funded by the European Commission through H2020 SPARTA,
https://www.sparta.eu/,

https://www.sparta.eu/

2 Banegas, Zandberg, Baccelli, Herrmann, Smith

systems are increasingly pervasive, and we are increasingly dependent on their
functionalities. A so-called Internet of Things (IoT) emerges, weaving together
an extremely wide variety of machines (embedded software and hardware) which
are required to cooperate via the network, at large scale.

Unpatched devices—or worse, unpatchable devices—quickly become liabili-
ties. Exploits weaponizing compromised IoT devices are demonstrated time and
again, sometimes spectacularly as with botnets such as Mirai [7]. However, the
cure can become a disease: software updates are themselves an attack vector.
Legitimate software updates laced with malware can compromise the updated
device [46]. Once IoT devices are deployed, up and running, it thus becomes cru-
cial to understand how, and when, software embedded in IoT devices is updated;
how software updates are secured; and what level of security is provided.

In this paper, we study the impact of the pre- to post-quantum transition
on IoT software updates, assuming that we want to maintain 128-bit conven-
tional security (matching current internet security standards) while reaching
NIST Level 1 post-quantum security. We aim to answer the following questions:

– How do the practical costs of pre- and post-quantum security compare?
– What is the footprint of post-quantum security, relative to typical low-power

operating system footprints?
– What are the potential alternatives for post-quantum signature schemes to

secure IoT software updates, and which hash functions should be used?

1.1 Low-power IoT and post-quantum cryptography

Low-power IoT characteristics. One prominent and highly challenging compo-
nent of IoT deployments consists in integrating low-power, resource-constrained
IoT devices into the distributed system. These devices are typically based on
low-cost microcontrollers (e.g., ARM Cortex M, RISC-V, ESP), interconnected
via low-power radio or wired communication. An estimated 250 billion micro-
controllers are in use today around the globe [31]. Compared to microprocessor-
based devices, microcontrollers aim for a different trade-off: They offer much
smaller capacity in computing, networking, memory [17], in order to achieve
radically lower energy consumption and a tiny price tag (<$1 unit price). It is
not uncommon to have a total memory budget of 64kB of RAM and 500kB of
ROM (flash) for the whole embedded system software—including drivers, crypto
libraries, OS kernel, network stack and application logic. Nonetheless, the func-
tionalities and services provided by constrained microcontroller-based devices
are as crucial as those of less constrained elements in the cyberphysical system.

Post-quantum cryptography. Post-quantum cryptosystems are designed to run on
contemporary hardware, yet resist adversaries equipped with both classical and
quantum computers. Many signature schemes claim post-quantum security, some
old and some new, but until now none has seen wide deployment. Recent research
in post-quantum cryptography has revolved around the National Institute of
Standards and Technology (NIST) Post-Quantum Cryptography project [47],

Quantum-resistant Software Updates on Low-power Devices 3

which will select a limited number of candidate schemes for standardization. This
process is currently in its third round; draft standards are expected by 2024.

Post-quantum security for low-power IoT. Let’s get back to the motto you can’t
secure what you can’t update (securely). In our quest for post-quantum security,
the first priority is to guarantee the legitimacy of software updates received via
the network on low-power IoT devices. The crucial cryptographic tool here is a
digital signature. Open standards targeting IoT security (such as the IETF [52])
specify a variety of signature schemes to secure software updates on low-power
devices, including one scheme (LMS [41]) that offers quantum resistance.

Implementation approaches. Cryptographic implementations are often devel-
oped to tackle specific problems, such as speed or size. Most implementations
take advantage of special instructions or hardware, but this narrows their appli-
cability to specific architectures, which does not fully reflect the reality of IoT.
Usually, operating systems (OS) must support more than one architecture.

Typically, new cryptographic algorithm implementations are demonstrated as
stand-alone applications—a key first step in proving feasibility. But in practice,
the OS does not have only the cryptography package: it has other modules, a
network stack, and the kernel.

Focusing on portability and wide deployment, our experimental work did not
use any tuned assembly, or platform-specific instructions: we only modified the
implementations to fit real-life conditions, such as those imposed by RIOT for
our use-case (for example: not dedicating the entire stack to crypto).

1.2 Contributions and outline

In this paper, we:

– review the SUIT specification for secure software updates on low-power IoT
devices, using its open-source implementation in the RIOT operating system
as a case study;

– show how crypto primitives including digital signatures and hash functions
are used in compliance with SUIT;

– analyze post-quantum considerations for SUIT-compliant hash functions,
which we benchmark on low-power 32-bit microcontrollers;

– survey post-quantum signature schemes, and derive a selection of schemes
most applicable for the secure IoT software update use case;

– benchmark signatures on heterogeneous low-power IoT hardware based on
popular 32-bit microcontrollers (ARM Cortex-M, RISC-V and ESP32);

– compare the performance of post-quantum signature schemes (LMS, Falcon,
and Dilithium) against typical pre-quantum schemes (Ed25519 and secp256);
and

– conclude on the cost of post-quantum security, and outline perspectives for
low-power IoT.

4 Banegas, Zandberg, Baccelli, Herrmann, Smith

We begin with a survey of related work in §2. In §3, we set out our case
study: we describe SUIT software updates, categorise typical software update
types, detail pre-quantum cryptographic considerations and begin to identify the
main issues for the transition to post-quantum cryptography. We focus on post-
quantum signature schemes in §4, explaining our choice of candidate schemes for
benchmarking. Our experimental results appear in §5; we interpret their impact
in the context of SUIT software updates in §6, before concluding in §7.

2 Related Work

The performance of pre-quantum digital signature schemes in the context of se-
cure software updates on various Cortex-M microcontrollers is evaluated in [55].
Various NIST candidate post-quantum schemes are compared as component al-
gorithms in TLS 1.3 in [51], analyzing performance, security, and key and sig-
nature sizes, as well as the impact of post-quantum authentication on TLS 1.3
handshakes in realistic network conditions, while [38] shows a real life experi-
ment with clients using two post-quantum schemes: an isogeny-based algorithm
(SIKE) and a lattice-based algorithm (HRSS). More recently, another experi-
ment with different schemes was conducted by Cloudflare [20,49].

For pure post-quantum cryptographic implementation work targeting mi-
crocontrollers, [18] evaluates the performance of stateful LMS on Cortex-M4
microcontrollers, while pqm4 [35] aims to implement and benchmark NIST can-
didate schemes on Cortex-M4, with M4 assembly subroutines plugged into some
of the PQClean implementations. (Note that among the NIST candidate sig-
nature schemes, PQClean implements only Dilithium, Falcon, Rainbow, and
SPHINCS+; of these, pqm4 implements only Dilithium and Falcon.) Software
verifying SPHINCS, RainbowI, GEMSS, Dilithium2, and Falcon-512 signatures
in Cortex-M3 using less than 8 kB of RAM is presented in [28].

Many post-quantum signature schemes use standard SHA3 hashing under the
hood. SHA3 performance in hardware (FGPA) has been studied [36,34,29], but
surprisingly few studies focus on SHA3 performance in software on low-power
microcontrollers. Some prior work exists: [11] and [37] focus on 8-bit microcon-
trollers, while [30] compares the performance of Keccak variants on 32-bit ARM
Cortex-M microcontrollers.

3 Case Study: Low-power Software Updates with SUIT

The IETF’s Software Updates for Internet of Things (SUIT) specifications [43,44]
define a security architecture, standard metadata and cryptographic schemes
able to secure IoT software updates, applicable on microcontroller-based devices.
An open-source implementation of the SUIT workflow is available in RIOT [54],
a common operating system for low-power IoT devices [10] which we use as base
for our case study.

Quantum-resistant Software Updates on Low-power Devices 5

Fig. 1: SUIT secure software update workflow.

3.1 SUIT Workflow

Figure 1 shows the SUIT workflow. In the preliminary Phase 0, the authorized
maintainer flashes the IoT device with commissioning material: the bootloader,
initial image, and authorized crypto material. Once the IoT device is commis-
sioned, up and running, we iterate a cycle of Phases 1-5, whereby the authorized
maintainer can build a new image (Phase 1), hash and sign the corresponding
standard metadata (the so-called SUIT manifest, Phase 2) and transfer to the
device over the network via a repository (e.g. a CoAP resource directory). The
IoT device fetches the update and SUIT manifest from the repository (Phase 3),
and verifies the signature (Phase 4). Upon successful verification, the new soft-
ware is installed and booted (Phase 5); otherwise, the update is dropped.

The cryptographic tools needed for software updates in general, and SUIT
in particular, are a digital signature scheme and a hash function. The digital
signature authenticates (a hash of) the software update binary.

We distinguish four broad categories for low-power IoT software updates,
defining the following four prototypical use cases:

– U1: Software module update (≈ 5kB)
– U2: Small firmware update without crypto libraries (≈ 50kB)
– U3: Small firmware update including crypto libraries (≈ 50kB)
– U4: Large firmware update (≈ 250kB)

We will see that the costs and recommendations for post-quantum SUIT are
different for each of these typical updates.

3.2 Security features of SUIT

The metadata and the cryptographic primitives specified by SUIT can mitigate
attacks exploiting software updates [42]. To give three simple examples:

– Tampered/Unauthorized Firmware Update Attacks: Adversaries may try to
update the IoT device with a modified, intentionally flawed firmware image.
To counter this threat, SUIT specifies the use of digital signatures on a hash
of the image binary and the metadata, to ensure the integrity of both.

6 Banegas, Zandberg, Baccelli, Herrmann, Smith

– Firmware Update Replay Attacks: Adversaries may replay a valid, but old
(known-to-be-flawed) update. To mitigate this threat, SUIT metadata in-
cludes a sequence number that is increased with each new firmware update.

– Firmware Update Mismatch Attacks: Adversaries may send an authentic up-
date to an incompatible device. To counter this, SUIT specifies the inclusion
of device-specific conditions, to be verified before installing a firmware image.

3.3 Hash Functions with SUIT

The metadata of the update (the SUIT Manifest [43]) includes a cryptographic
hash of the sofware update binary. The SUIT standard specification [43] allows
the use of SHA-2 or SHA-3, with 224-, 256-, 384-, or 512-bit output.

Post-Quantum Considerations. There are few quantum attacks against
SHA-2 and SHA-3 in the literature. Grover’s algorithm may be parallelized to
find hash preimages [12]; this attack applies to both Merkle–Damgård hashes
(e.g. SHA-2) and Sponge-based hashes (e.g. SHA-3). For collision resistance,
the state-of-the-art in quantum collision search does not drastically reduce the
complexity with respect to classical algorithms [21]. On the other hand, classical
attacks for SHA-2 might become a reality, as shown in [25].

Low-Power IoT Considerations. Low-power systems must run hash func-
tions quickly, using as little power as possible; minimal memory (RAM and flash)
usage is also desirable. In this context, since we aim for 128-bit security, the two
functions we should consider for SUIT are SHA-256 and SHA3-256.

Table 1 compares the memory usage and speed of three hash function imple-
mentations on an ARM Cortex M4 microcontroller: RIOT’s default implemen-
tation of SHA-256, a compact implementation of SHA3-256 optimized to min-
imize flash memory, and an implementation of SHA3-256 optimized for speed
on Cortex-M4 ARMv7M architectures. Stack is roughly equivalent across the
different implementations, but speed and flash vary widely: SHA3-256 can offer
slightly faster execution than SHA-256, but at the price of a 10× larger flash
footprint. For a flash footprint similar to SHA-256, the comparative speed of
SHA3-256 diminishes drastically for larger inputs. For more detailed analysis of
different Keccak variants on microcontrollers, see [30].

Table 1: SHA2 and SHA3 performance on an ARM Cortex-M4 microcontroller.

Hash function Flash (B) Stack (B) Time (KTicks) to hash
64B 100B 1024B 10240B

SHA-256 (RIOT OS) 1008 384 277 278 1943 17933

SHA3-256 Compact 1692 404 1336 1342 10402 98448
SHA3-256 fast-ARMv7M 11548 284 223 228 1672 15732

Quantum-resistant Software Updates on Low-power Devices 7

Conclusions. Based on our analysis, there are no direct post-quantum as-
pects to consider here. Rather, the choice hash function should be driven by
low-power criteria, and by other indirect post-quantum aspects detailed below.
Recall the four prototypical use cases from §3.1. In U1 and U2, the updated
software does not include the hash function implementation (the cryptographic
tools are external, e.g., in a bootloader). In such cases, the flash memory over-
head for the hash function is of no concern, and SHA3-256 (optimized for speed)
is the best choice. In U3 and U4, however, the update includes the cryptographic
tools and the hash function code; thus, a tradeoff appears. For small firmware
updates as in U3, a 10 kB flash overhead represents a significant 25% bump
in what needs to be stored on the device and transmitted over the network.
As updates are infrequent, execution speed may be considered less of a prior-
ity, and thus both SHA-256 and flash-optimized SHA3-256 are valid options.
For larger updates as in U4, the storage and transfer overhead is negligible, so
speed-optimized SHA3-256 is the best option again.

Let us now consider a complementary perspective: most post-quantum signa-
ture scheme proposals use SHA-3 in their constructions. Indeed, candidates for
the upcoming NIST post-quantum signature standard are required to be SHA-
3/SHAKE compatible, because that is the current US standard. Since space for
code on IoT devices is very limited, factorization is typically desirable: using a
single hash function for both hashing and signing reduces the flash footprint.

For these reasons, SHA3-256 is the primary choice in our case-study.

3.4 Digital Signatures with SUIT

The SUIT architecture relies on the software update distributor (the autho-
rized maintainer in Figure 1) issuing a long-term public-private key pair used
to generate and verify digital signatures on IoT software updates. The public
key is pre-installed on the IoT device(s) to be updated during commissioning
(Phase 0).

Digital signature use in SUIT is specified in the COSE standard [48], which
defines how to sign and encrypt compact (CBOR) binary serialized objects. For
the 128-bit classical security level, COSE specifies the elliptic-curve signature
schemes Ed25519 and ECDSA on NIST P-256. These schemes offer very small
public (and private) keys at 32B each, and 64B signatures.

To give some concrete perspective, Table 2 shows the memory footprint of
SUIT and related software components using Ed25519, compared to the whole
software embedded on the IoT device. This measurement uses the open-source
RIOT implementation on the Nordic nRF52840 Development Kit, a popular
low-power IoT board based on an ARM Cortex-M4 microcontroller. The flash
memory footprint of this firmware is 52.5kB; the RAM (stack) usage is 16.3kB.

In this typical pre-quantum configuration, the crypto represents a small part
of the flash footprint: under 15% of a ≈ 50 kB total. The elliptic-curve signature
adds 15% to the size of the SUIT manifest metadata and less than 0.1% to the
data that must be transferred over the network, counting the manifest and the
firmware binary as depicted in Table 2.

8 Banegas, Zandberg, Baccelli, Herrmann, Smith

Table 2: Network transfer cost and decomposition of SUIT firmware update (for
nRF52840 Dev Kit) using minimal metadata with Ed25519+SHA-256.

SUIT OS firmware
Metadata Signature Total Crypto Kernel Modules Network Modules OTA

Size (B) 419 64 52485 7161 17039 20113 8172

Post-Quantum Considerations. Elliptic-curve schemes are advantageous
because they provide high security guarantees even though keys and signatures
are very small. However, the security of elliptic-curve signatures is guaranteed
by the hardness of the elliptic-curve Discrete Logarithm Problem, which can be
solved efficiently on large quantum computers using Shor’s algorithm [50,32,13].

It is important to note that a breakthrough in quantum computing at a time
T will not affect the security of elliptic-curve signatures generated before T , but
it would certainly destroy the security of any elliptic-curve signatures generated
after T . In our use case, the distributor’s key pair has a very long planned
lifetime, possibly equal to that of the devices to be updated; securely updating
the key itself will be impossible, or at least undesirable. We therefore need to
build-in resistance to the quantum threat in anticipation of such a development.

Low-Power IoT Considerations. The range of post-quantum signature
schemes considered as potential replacements for elliptic-curve signatures is wide
and diverse, and the idiosyncrasies that distinguish the various schemes are ex-
aggerated by the constraints of low-power IoT devices. However, all of these
schemes have public key and signature sizes that are one or two orders of mag-
nitude larger than the elliptic-curve equivalents. Post-quantum signatures are
therefore far from drop-in replacements; they represent a significant research
challenge for microcontroller and IoT implementations.

Nevertheless, the IETF recently began standardizing alternative signature
schemes with COSE/SUIT for post-quantum security, such as LMS [41]. In the
next sections, we survey alternative quantum-resistant schemes, comparing their
performance against state-of-the-art pre-quantum schemes in SUIT.

4 Post-Quantum Digital Signatures

The signature schemes that we consider target at least NIST Level 1 for post-
quantum security. This is the basic security level proposed by NIST as part of
its Post-Quantum Cryptography (PQC) Standardization Project [47]. Level 1
security includes both 128 bits of classical security, and an equivalent level of
security with respect to some model of quantum computation. That is, an ad-
versary should require on the order of 2128 operations to gain any non-negligible
advantage when attacking the scheme, even if this adversary benefits from quan-
tum computing power. The 128-bit security level is now standard in mainstream
internet applications requiring long-term security.

Quantum-resistant Software Updates on Low-power Devices 9

4.1 Post-quantum signature paradigms

We can classify the post-quantum signatures into the underlying hard problems
that guarantee their security:

Hash-based signatures. Hash-based signatures are among the oldest digital
signature schemes. Their security is based on the difficulty of inverting crypto-
graphic hash functions. The security assumptions have been well studied, which
gives an academic maturity to the problem. Hash-based signatures tend to offer
very fast verification, though this comes at the cost of very large signatures.

Lattice-based signatures. These schemes are based on hard problems in Eu-
clidean lattices, and related problems like Learning With Errors (LWE). These
schemes offer fast signing and verification, but have relatively large signatures.

Multivariate signatures. The security of “multivariate” schemes is based on
the difficulty of solving certain low-degree polynomial systems in many variables.
A recent analysis in [16] has brought their security levels into question.

Isogeny-based signatures. Isogeny-based cryptosystems are based on the dif-
ficulty of computing unknown isogenies between elliptic curves. Recent isogeny-
based signature schemes such as SQISign [26] inherit small parameter sizes from
conventional elliptic-curve cryptography (ECC), making them interesting for mi-
crocontroller applications, but they also inherit and increase ECC’s burden of
heavy algebraic calculations, which makes for very slow runtimes. These signa-
ture schemes have not yet been subjected to extensive security analysis.

Code-based signatures. Code-based cryptosystems are based on the difficulty
of hard problems from the theory of error-correcting codes. The McEliece key
exchange scheme [40] is among the oldest of all public-key cryptosystems. Code-
based signatures, on the other hand, are much less well-established.

Zero-knowledge-based signatures. A new category of post-quantum signatures
uses Zero-Knowledge (ZK) techniques, combining algorithms from symmetric
cryptography with a technique known as Multi-Party Computation In The Head.

Summary. Table 3 compares signature and key sizes, and maturity of security
analysis of various post-quantum signature scheme proposals, summarizing the
“pros” and “cons” of each paradigm according to our requirements.

4.2 Selection of candidates

When choosing candidate signature schemes, we must consider key and signature
sizes, runtime performance, and maturity with respect to security analysis. While
the relatively compact parameters of some isogeny- and code-based signature
schemes may make them interesting for future work targeting microcontrollers,
at present these schemes are far from theoretical maturity. The true security level
of the NIST multivariate and ZK-based candidates is a subject of current debate,
though their extremely large keys and/or signatures would likely eliminate them
from consideration for our applications in any case.

The NIST PQC project has dominated research in post-quantum cryptogra-
phy in recent years. Its candidate cryptosystems are a natural first port of call
for credible post-quantum signature algorithms, since they have had the benefit

10 Banegas, Zandberg, Baccelli, Herrmann, Smith

Table 3: Overview of post-quantum signature candidates. “Security analysis”
reflects the maturity of analysis of the scheme: here we consider the age of the
scheme, recent attacks, and how well-studied the underlying hard problem is.

Paradigm Scheme Security Sizes (B)
Analysis Signature Public Key Private Key

Hash-based LMS [41] mature 4 756 60 64
SPHINCS+-128f [8] mature 17 088 32 64

Lattice-based Dilithium [9] less mature 2 528 1 312 2 420
Falcon [27] less mature 1 281 897 666

MQ-based RainbowI [23] not mature 66 157 800 101 200
GeMSS [19] not mature 417 416 14 520 48

Isogeny-based SQISign [26] not mature 204 64 16

Code-based WAVE [24] not mature 1625 ≈ 13 000 000 N/R

Zero-knowledge-based Picnic3-L1 [22] not mature 13 802 34 17

of concerted analysis from the cryptographic community—especially the Round
3 proposals, which are candidates for standardization in the coming years. How-
ever, these are not the only algorithms that we should consider. For example,
among hash-based signature schemes, we might compare the older LMS scheme
(which is not a NIST candidate) with the newer SPHINCS+ scheme (which is
a NIST Round 3 alternate). LMS has smaller computational requirements, but
the signer must maintain some state between signatures; SPHINCS+ is a heavier
scheme, but it is stateless. Statelessness is an advantage for general applications.
In our use case, however, statefulness is natural (it corresponds naturally to the
version number on the software update), and easier to maintain—so the lighter
LMS is a more natural choice.

Post-quantum choices. For the reasons above, we chose to focus our efforts
on three post-quantum signature algorithms: LMS, Dilithium, and Falcon, rep-
resenting the hash-based and lattice-based categories. LMS has 60B public keys
and 4756-byte signatures. Dilithium II, targeting NIST security level 2, has
1312B public keys and 2420B signatures. Falcon-512, targeting NIST security
level 1, has 897B public keys and 666B signatures.

Pre-quantum choices. To make a meaningful comparison with pre-quantum
algorithms, we selected two elliptic-curve schemes: the Ed25519 [15,33] scheme,
and the historic standard ECDSA based on the secp256 curve [45]. These schemes
offer particularly small 32B public keys and 64B signatures.

5 Benchmarks

5.1 Hardware Testbed Setup

Our benchmarks were run on popular, commercial, off-the-shelf IoT hardware,
representative of the landscape of modern 32-bit microcontroller architectures:

– ARM Cortex-M4: the Nordic nRF52840 Development Kit provides
a typical ARM Cortex-M4 microcontroller running at 64MHz, with 256 kB

Quantum-resistant Software Updates on Low-power Devices 11

RAM, 1 MB flash, and a 2.4 GHz radio transceiver compatible with both
IEEE 802.15.4 and Bluetooth Low-Energy.

– Espressif ESP32: the WROOM-32 board (ESP32 module with the
ESP32-D0WDQ6 chip on board) provides two low-power Xtensa® 32-bit
LX6 microprocessors with integrated Wi-Fi and Bluetooth, operating at
80MHz, with 520 kB RAM, 448 kB ROM and 16 kB RTC SRAM.

– RISC-V: the Sipeed Longan Nano GD32VF103CBT6 Development
Board provides a RISC-V 32-bit core running at 72MHz with 32 kB RAM
and 128 kB flash.

IoT-Lab [6] provides this hardware for reproducibility on open access testbeds.

5.2 Software Setup

We used RIOT [5] as a base for our benchmarks.

Pre-quantum implementations. We used three different libraries, all currently
supported in RIOT.

Ed25519: For Ed25519, we used two libraries: C25519 (provided in [1]) and
Monocypher [53]. Both contain constant-time finite-field arithmetic based
on public-domain implementations [14]. One difference between Monocypher
and C25519 is that Monocypher uses precomputed tables to speed up the
computation of elliptic curve points.

ECDSA: For ECDSA, we used Intel’s Tinycrypt library [2], which is designed
to provide cryptographic standards for constrained devices. ECDSA differs
from Ed25519 both in some specific details of the signature algorithm and
in using the NIST standard p256 curve instead of Curve25519.

Post-quantum implementations. We re-used publicly available code after making
some small modifications to fit the hardware requirements.

LMS: For LMS, we used the Cisco implementation [3], removing calls to malloc
since it can lead to memory fragmentation [39], and in such low level can be
dangerous and slow4. This change might lead to some small improvements
in performance, since the kernel already knows the address at compile-time
rather than only at runtime. For our benchmark, we used the smallest pa-
rameters proposed in [41, Section 5]: that is, SHA-2 with 256-bit output for
the hash function (since we tried to keep the code as close as possible to [3])
with tree height 5, and 32 bytes associated with each node. For the LMOTS,
we use 32 bytes and 4 bits of width for Winternitz coefficients. We remove
the OpenSSL call from the original code and change for a implementation of
SHA256 provided in their repository [3]. Furthermore, we are using HSS with
2 layers. These parameters satisfy the life cycle of updates: in particular, the
key lifetime will never be surpassed by the amount of updates.

4 More details about dynamic allocation in embedded devices are available from
https://github.com/RIOT-OS/RIOT/blob/master/CODING_CONVENTIONS.md

https://github.com/RIOT-OS/RIOT/blob/master/CODING_CONVENTIONS.md

12 Banegas, Zandberg, Baccelli, Herrmann, Smith

Dilithium: We prepared two Dilithium implementations based on PQClean [4].
– Dynamic Dilithium is the basic PQClean implementation. The first

step in signing and verifying is to expand a random seed given in the
public key into a large matrix (cf. [9, Sec. 3.1]).

– Static Dilithium modifies the PQClean implementation to precompute
the matrix and store it in the flash memory. This makes signing and
verification both faster, though it also requires more flash and reduces
flexibility, since signatures can only be verified against the flashed key.

Falcon: We used the Falcon implementation provided by PQClean [4], without
any significant structural modifications.

Parameter sizes. Table 4 gives the sizes (in bytes) of the private key, public key,
and signature for each of these schemes.

Table 4: Key and signature sizes for benchmarked signature schemes.
Algorithm Private Key (B) Public Key (B) Signature (B)

Pre-quantum Ed25519 32 32 64
ECDSA p256 32 32 64

Post-quantum
Falcon 1281 897 666

Dilithium 2528 1312 2420
LMS (RFC8554) 64 60 4756

5.3 Pre- and post-quantum signature benchmarks

Tables 5, 6, and 7 present our benchmarking results on our three target ar-
chitectures: Cortex-M, ESP32 and RISC-V. For each implementation we give
the total flash memory used by the library, and for the signing and verification
operations we list the running time in milliseconds and in thousands of “ticks”
(computed from the hardware clock and time spent), and the stack required.

We see that Monocypher’s Ed25519 is the fastest for signing among all the
candidates, on all three boards. (Since the RISC-V board has only 32 kB RAM,
the Falcon and Dilithium signing algorithms could not be run there.) Falcon
offers the fastest verification on all three boards, followed by Static Dilithium.

6 The impact of post-quantum in SUIT/COSE

6.1 The cost of post-quantum security

How do post-quantum security costs compare to typical pre-quantum security
costs? A toe-to-toe comparison between pre- and post-quantum signatures must
consider public key and signature sizes, running time, and memory requirements.

Table 4 shows that post-quantum algorithms always have larger public key
and signature sizes, generally by well over an order of magnitude. Compared with

Quantum-resistant Software Updates on Low-power Devices 13

Table 5: Signature benchmarks: ARM Cortex-M (nRF52840 Dev. Kit).
Sign Verify

Algorithm Flash Time Stack Time Stack
(B) (ms) (KiloTicks) (B) (ms) (KiloTicks) (B)

Pre-quantum
Ed25519 (C25519) 5106 845 54111 1180 1953 125012 1300

Ed25519 (Monocypher) 13852 17 1136 1420 40 2599 1936
ECDSA p256 (Tinycrypt) 6498 294 18871 1084 313 20037 1024

Post-quantum

Falcon 57613 1172 75020 42240 15 1004 4744
Dilithium (Dynamic) 11664 465 29788 51762 53 3407 36058

Dilithium (Static) 26672 135 8655 35240 23 1510 19504
LMS (RFC8554) 12864 9224 590354 13212 123 7908 1580

Table 6: Signature benchmarks: Espressif ESP32 (WROOM-32 board).
Sign Verify

Algorithm Flash Time Stack Time Stack
(B) (ms) (KiloTicks) (B) (ms) (KiloTicks) (B)

Pre-quantum
Ed25519 (C25519) 5608 921 73690 1312 2165 173205 1440

Ed25519 (Monocypher) 17238 21 1709 1536 60 4864 2160
ECDSA p256 (Tinycrypt) 6869 333 26696 1296 374 29948 1216

Post-quantum

Falcon 60358 1172 93824 42504 16 1322 4920
Dilithium (Dynamic) 12397 87 7036 51954 43 3508 36242

Dilithium (Static) 27197 121 9694 35412 21 1706 19620
LMS (RFC8554) 15177 7583 606674 13488 101 8141 1808

standard elliptic-curve signature schemes, Falcon’s public keys are 28× larger
and its signatures are 10.4× larger; Dilithium’s public keys are 41× larger than
elliptic-curve keys, and its signatures are 38× larger. LMS avoids this spectacular
growth in public key sizes, with keys only 1.875× larger than elliptic-curve public
keys; but its signatures are a massive 74.3× larger than elliptic-curve signatures.

Looking at running time, as we saw in §5, post-quantum signatures have their
advantages and disadvantages. Signature verification is considerably faster across
all the IoT devices that we tested. Signing is generally slower. A comparison of
the signing algorithms in Table 5 shows that the fastest post-quantum algorithm
runs in 135 ms, which is 7.94× slower than Ed25519 (Monocypher). But the
tables are turned when we compare signature verification algorithms: The fastest
pre-quantum algorithm runs in 40 ms, which is 2.65× slower than post-quantum
Falcon. Efficient verification is a required and valuable feature (in all scenarios),
but in this setting, it comes at the price of an increase in stack and flash memory.

Looking at memory requirements, we see that post-quantum flash require-
ments can grow to over 11× the smallest pre-quantum flash. Similarly, post-
quantum algorithms impose a considerable increase in stack memory.

14 Banegas, Zandberg, Baccelli, Herrmann, Smith

Table 7: Signature benchmarks: RISC-V (Sipeed Longan Nano board). Falcon
flash only contains the verification algorithm. Static Dilithium flash contains the
verification algorithm and hard-coded public key.

Sign Verify

Algorithm Flash Time Stack Time Stack
(B) (ms) (KiloTicks) (B) (ms) (KiloTicks) (B)

Pre-quantum
Ed25519 (C25519) 6024 956 68883 1312 2242 161475 1440

Ed25519 (Monocypher) 17328 16 1194 1376 41 3013 1920
ECDSA p256 (Tinycrypt) 7452 270 19489 1224 308 22192 1112

Post-quantum
Falcon 11122 — — — 13 975 4756

Dilithium (Dynamic) — — — — — — —
Dilithium (Static) 25148 — — — 17 1237 19572
LMS (RFC8554) 15889 9105 655614 13352 122 8808 1736

6.2 The cost of post-quantum SUIT/COSE

What is the footprint of quantum-resistant security, relative to typical low-power
operating system footprints? As a concrete example: consider a firmware update
for RIOT on the nRF52840dk. In the classification of §3.1, the update is

– type U2, where the update does not include the cryptographic libraries
binary (i.e., these tools are external, e.g., in a bootloader), or

– type U3, where the update includes the cryptographic libraries binary.

We want to add quantum resistance to SUIT/COSE by changing the crypto-
graphic algorithms from Ed25519 and SHA256 to Falcon, LMS, or Dilithium,
and SHA3-256.

Impact on the SUIT manifest. In practical terms, the size of the SUIT
manifest increases according to the new signature size. In §2 we saw that the
SUIT manifest with pre-quantum Ed25519 (or ECDSA) has total size 419+64 =
483B. Moving to post-quantum signatures, this total becomes

– Falcon: 419 + 666 = 1085B, a ≈ 2.24× increase;
– Dilithium: 419 + 2420 = 2839B, a ≈ 5.87× increase; and
– LMS: 419 + 4756 = 5175B, a ≈ 9.84× increase.

Impact on SUIT software update performance. Now consider the cru-
cial aspect of network transfer costs, and the memory resources required to actu-
ally apply the firmware update on the IoT device. Table 8 uses our measurements
to evaluate the relative cost of the entire SUIT software update process. We see
that impact of switching to quantum-resistant security in SUIT varies widely
in terms of network transfer costs, ranging from negligible increase (∼ 1%) to
major impact (3× more), depending on the software update use case.

6.3 Post-quantum signatures for IoT

What are the potential alternatives for post-quantum digital signature schemes
to secure IoT software updates? There are many possible deployments of IoT,

Quantum-resistant Software Updates on Low-power Devices 15

Table 8: Relative costs for SUIT with quantum resistance (ARM Cortex M4).
Data Transfer

SUIT Flash Stack U2 U3
base w. Ed25519 / SHA256 52.4kB 16.3kB 47kB 53kB
with Falcon / SHA3-256 +120% +18% +1.1% +120%
with LMS / SHA3-256 +34% +1.2% +9% +43%
with Dilithium / SHA3-256 +30% +210% +4.3% +34%

and several possible scenarios for IoT software updates. It is safe to assume that
the authorized maintainer, responsible for updating the firmware, has powerful
hardware. Hence, the computational burden of signing is not the main concern
here. On the other hand, a constrained device will be responsible for signature
verification in Phases 3, 4, and 5 of the SUIT workflow in Figure 1.

As we have seen above, the cryptography package does not run standalone in
the board: it must coexist with several other modules (including kernel, network
stack, and libraries), and the application itself.

One challenge that we faced in deploying the schemes was sharing stack mem-
ory (and SRAM memory). For example, on our RISC-V platform (recall Table 7)
the total RAM memory budget available was 32kB for the whole system—which
is very small, but not an uncommon budget. We could not run Dilithium to sign
or verify within these limits, because it consumed all of the stack. In fact, we
needed to adapt stack use for all of the post-quantum algorithms we used.

Execution speed is another challenge. Slow signature verification may impact
real-time applications if special care is not taken. Typically, on low-power IoT
devices, there is no parallel computing. For instance, RIOT OS uses a preemptive
multithreading paradigm, where a single thread is running at any given time.
If signature verification takes a long time, running in a high-priority thread,
then the system blocks on this task until completion. It is therefore necessary
to carefully tune the priority of the crypto verification thread so as not to stop
other functionally essential tasks, especially if signature verification is slow.

6.4 Real-world usability of post-quantum signatures

Let us revisit the four prototypical software update categories from §3.1, and
consider the choice of postquantum signatures for each.

In use cases U1 (a small module update) and U2 (small firmware update
without crypto libraries), the package contains the software update and the
signature. Hence, speed and signature size are more important than flash size.
In these cases, Falcon has an advantage over LMS and Dilithium.

The use case U3 (small firmware update with crypto libraries) is more com-
plicated, with flash playing a much more crucial role. Since we must transfer
the update with crypto over a low-power network, the package size has a higher
impact on energy costs. As a point of reference, it takes 30-60s to transfer 50kB

16 Banegas, Zandberg, Baccelli, Herrmann, Smith

on a low-power IEEE802.15.4 radio link, depending on link quality and network
load (assuming non-extreme cases). This is to compare with plus-or-minus 2s
of computation speed difference for signature verification among the candidate
cryptosystems. In this case, as shown in Table 8, LMS presents the best tradeoff
between flash size, network transfer costs, verification time, and stack size.

In use case U4 (larger updates), the large network transfer costs overwhelm
the other costs, reducing the comparative advantages of one post-quantum sig-
nature over another.

From the point of view of cryptographic maturity, LMS is the safest choice.
As noted in §4.2, hash-based problems have received extensive cryptanalysis
from the cryptographic community, while the security of structured lattice-based
schemes like Falcon is less well-understood. Nevertheless, compared to the pre-
quantum state of the art, LMS imposes a significant increase in signature size and
running time, which has a major impact on SUIT performance. Thus, despite
its relative lack of maturity, the performance characteristics of Falcon make it
extremely tempting for applications with smaller updates.

Deployment of post-quantum security. On a positive note: even though
it necessitates increased data transfer, flash, and stack, post-quantum security
can be deployed on today’s IoT hardware (i.e. tomorrow’s legacy hardware). In
a nutshell: we can upgrade to quantum-resistant software update security on
heterogeneous legacy IoT hardware without vast changes in portable C code.

It is clear that we will need to pay a price in the transition of pre-quantum to
post-quantum algorithms. However, operating systems (for low powered devices
such as RIOT) can already offer the tools to verify quantum-resistant signatures.

7 Conclusion

We have made an experimental study of the transition from pre- to post-quantum
cryptography applied to securing software updates on low-power IoT devices,
taking an open-source implementation of the IETF standard SUIT as concrete
case study. We compare the performance of standard pre-quantum and selected
post-quantum candidates for the required cryptographic schemes (signatures and
hashing), in the same environment (RIOT) on three low-power IoT platforms
(ARM Cortex-M, RISC-V, and ESP32) representative of the current landscape of
32-bit microcontrollers. We show that upgrading from classical 128-bit security
to NIST Level 1 post-quantum security is indeed achievable today on these
platforms, and we derive recommendations based on our performance analysis.
We also characterize the toll of the pre- to post-quantum transition on memory
footprints and network transfer costs in the IoT software update process.

Future work. The priority remains to stabilize the current versions of post-
quantum signatures before pushing their implementations to common low-power
embedded software platforms such as RIOT. Meanwhile, NIST has yet to de-
termine the new post-quantum signature standard; should new candidates be
included in a new call, more analysis will be necessary.

Quantum-resistant Software Updates on Low-power Devices 17

References

1. Curve25519 and Ed25519 for low-memory systems, October 2017. https://www.
dlbeer.co.nz/oss/c25519.html.

2. TinyCrypt Cryptographic Library, July 2018. https://github.com/01org/
tinycrypt.

3. LMS Hash-Based Signature Implementation, 2021. https://github.com/cisco/
hash-sigs/.

4. PQClean, 2021. https://github.com/PQClean/PQClean.
5. RIOT Operating System, 2021. http://www.riot-os.org.
6. Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. Fit iot-lab: A large scale open experimen-
tal iot testbed. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),
pages 459–464, 2015.

7. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In 26th USENIX Security Symposium (USENIX Security 17), pages 1093–
1110, Vancouver, BC, August 2017. USENIX Association.

8. Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Do-
braunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hüls-
ing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Flo-
rian Mentel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter
Schwabe, and Bas Westerbaan. SPHINCS+ stateless hash-based signatures. URL:
https://sphincs.org/.

9. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle.
CRYSTALS/Dilithium. URL: https://pq-crystals.org/.

10. Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S.
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wählisch. Riot: An open source operating system for low-end embedded devices
in the iot. IEEE Internet of Things Journal, 5(6):4428–4440, 2018.

11. Josep Balasch, Bariş Ege, Thomas Eisenbarth, Benoit Gérard, Zheng Gong, Tim
Güneysu, Stefan Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos,
Thomas Pöppelmann, Francesco Regazzoni, François-Xavier Standaert, Gilles
Van Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and Ingo von
Maurich. Compact implementation and performance evaluation of hash functions
in ATtiny devices. In Stefan Mangard, editor, Smart Card Research and Advanced
Applications, pages 158–172, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

12. Gustavo Banegas and Daniel J. Bernstein. Low-communication parallel quantum
multi-target preimage search. In Carlisle Adams and Jan Camenisch, editors, Se-
lected Areas in Cryptography - SAC 2017 - 24th International Conference, Ottawa,
ON, Canada, August 16-18, 2017, Revised Selected Papers, volume 10719 of Lecture
Notes in Computer Science, pages 325–335. Springer, 2017.

13. Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof, and Tanja Lange. Concrete
quantum cryptanalysis of binary elliptic curves. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(1):451–472, 2021.

https://www.dlbeer.co.nz/oss/c25519.html
https://www.dlbeer.co.nz/oss/c25519.html
https://github.com/01org/tinycrypt
https://github.com/01org/tinycrypt
https://github.com/cisco/hash-sigs/
https://github.com/cisco/hash-sigs/
https://github.com/PQClean/PQClean
http://www.riot-os.org
https://sphincs.org/
https://pq-crystals.org/

18 Banegas, Zandberg, Baccelli, Herrmann, Smith

14. Daniel J Bernstein. Curve25519: new Diffie–Hellman speed records. In Interna-
tional Workshop on Public Key Cryptography, pages 207–228. Springer, 2006.

15. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of Cryptographic Engineer-
ing, 2:77–89, 2012.

16. Ward Beullens. Improved cryptanalysis of UOV and rainbow. IACR Cryptol.
ePrint Arch., 2020:1343, 2020.

17. Carsten Bormann, Ari Keranen, and Mehmet Ersue. RFC 7228: Terminology for
constrained node networks. IETF Request For Comments, 2014.

18. Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc Stöttinger. LMS vs
XMSS: comparison of stateful hash-based signature schemes on ARM cortex-M4.
In Abderrahmane Nitaj and Amr M. Youssef, editors, Progress in Cryptology -
AFRICACRYPT 2020 - 12th International Conference on Cryptology in Africa,
Cairo, Egypt, July 20-22, 2020, Proceedings, volume 12174 of Lecture Notes in
Computer Science, pages 258–277. Springer, 2020.

19. Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin,
Ludovic Perret, and Jocelyn Ryckeghem. GeMSS: A GrEat Multivariate Short
Signature. URL: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.

20. Sofía Celi and Thom Wiggers. KEMTLS: Post-quantum TLS
without signatures, January 2020. https://blog.cloudflare.com/
kemtls-post-quantum-tls-without-signatures/.

21. André Chailloux, María Naya-Plasencia, and André Schrottenloher. An efficient
quantum collision search algorithm and implications on symmetric cryptography.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science, pages
211–240. Springer, 2017.

22. Melissa Chase, David Derler, Steven Goldfeder, Daniel Kales, Jonathan Katz,
Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,
Daniel Slamanig, Xiao Wang, and Greg Zaverucha. Picnic: A family of post-
quantum secure digital signature algorithms. https://eprint.iacr.org/2017/
279.

23. Ming-Shing Chen, Jintai Ding, Matthias Kannwischer, Jacques Patarin, Albrecht
Petzoldt, Dieter Schmidt, and Bo-Yin Yang. Rainbow signature. URL: https:
//www.pqcrainbow.org/.

24. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A new
family of trapdoor one-way preimage sampleable functions based on codes. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology - ASI-
ACRYPT 2019 - 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceed-
ings, Part I, volume 11921 of Lecture Notes in Computer Science, pages 21–51.
Springer, 2019.

25. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of SHA-
512/224 and SHA-512/256. In Tetsu Iwata and Jung Hee Cheon, editors, Advances
in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory
and Application of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of Lecture
Notes in Computer Science, pages 612–630. Springer, 2015.

https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://blog.cloudflare.com/kemtls-post-quantum-tls-without-signatures/
https://blog.cloudflare.com/kemtls-post-quantum-tls-without-signatures/
https://eprint.iacr.org/2017/279
https://eprint.iacr.org/2017/279
https://www.pqcrainbow.org/
https://www.pqcrainbow.org/

Quantum-resistant Software Updates on Low-power Devices 19

26. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact Post-quantum Signatures from Quaternions and
Isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2020 - 26th International Conference on the Theory and Application
of Cryptology and Information Security, Daejeon, South Korea, December 7-11,
2020, Proceedings, Part I, volume 12491 of Lecture Notes in Computer Science,
pages 64–93. Springer, 2020.

27. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. Falcon: Fast-Fourier lattice-based compact signatures over
NTRU. URL: https://falcon-sign.info.

28. Ruben Gonzalez, Andreas Hülsing, Matthias J. Kannwischer, Juliane Krämer,
Tanja Lange, Marc Stöttinger, Elisabeth Waitz, Thom Wiggers, and Bo-Yin Yang.
Verifying post-quantum signatures in 8 kb of RAM. In Jung Hee Cheon and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021, Daejeon, South Korea, July 20-22, 2021, Proceedings, volume
12841 of Lecture Notes in Computer Science, pages 215–233. Springer, 2021.

29. Xu Guo, Sinan Huang, Leyla Nazhandali, and Patrick Schaumont. Fair and com-
prehensive performance evaluation of 14 second round SHA-3 ASIC implementa-
tions. In The Second SHA-3 Candidate Conference. Citeseer, 2010.

30. Adrian Herrmann. The Challenge of Security in IoT – A Study of Cryptographic
Sponge Functions and an Implementation for RIOT, 3. https://github.com/
emmanuelsearch/Keccak-Bachelor-Thesis/raw/main/thesis.pdf.

31. Huston Collins. Why TinyML is a giant opportunity. URL: https://venturebeat.
com/2020/01/11/why-tinyml-is-a-giant-opportunity/.

32. Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias
Soeken. Improved Quantum Circuits for Elliptic Curve Discrete Logarithms. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th In-
ternational Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceed-
ings, volume 12100 of Lecture Notes in Computer Science, pages 425–444. Springer,
2020.

33. S. Josefsson and I. Liusvaara. Edwards-Curve Digital Signature Algorithm (Ed-
DSA). RFC 8032, 2017.

34. Bernhard Jungk and Jurgen Apfelbeck. Area-efficient FPGA implementations of
the SHA-3 finalists. In 2011 International Conference on Reconfigurable Computing
and FPGAs, pages 235–241. IEEE, 2011.

35. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4.

36. Jens-Peter Kaps, Panasayya Yalla, Kishore Kumar Surapathi, Bilal Habib, Susheel
Vadlamudi, Smriti Gurung, and John Pham. Lightweight implementations of SHA-
3 candidates on FPGAs. In Daniel J. Bernstein and Sanjit Chatterjee, editors,
Progress in Cryptology – INDOCRYPT 2011, pages 270–289, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

37. YoungBeom Kim, Hojin Choi, and Seog Chung Seo. Efficient implementation of
SHA-3 hash function on 8-bit AVR-based sensor nodes. In International Conference
on Information Security and Cryptology, pages 140–154. Springer, 2020.

38. Kris Kwiatkowski and Luke Valenta. The TLS Post-Quantum Experiment, October
2019. https://blog.cloudflare.com/the-tls-post-quantum-experiment/.

https://falcon-sign.info
https://github.com/emmanuelsearch/Keccak-Bachelor-Thesis/raw/main/thesis.pdf
https://github.com/emmanuelsearch/Keccak-Bachelor-Thesis/raw/main/thesis.pdf
https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/
https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://blog.cloudflare.com/the-tls-post-quantum-experiment/

20 Banegas, Zandberg, Baccelli, Herrmann, Smith

39. Jean J. Labrosse. Chapter 15 - real-time kernels. In Jack Ganssle, editor, The
Firmware Handbook, Embedded Technology, pages 211–229. Newnes, Burlington,
2004.

40. Robert J McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44:114–116, 1978.

41. David McGrew, Michael Curcio, and Scott Fluhrer. RFC 8554: Leighton-Micali
hash-based signatures. IETF Request for Comments, April 2019.

42. Brendan Moran, Hannes Tschofenig, and Henk Birkholz. A Manifest Informa-
tion Model for Firmware Updates in IoT Devices. Internet-Draft draft-ietf-
suit-information-model-12, Internet Engineering Task Force, May 2021. Work in
Progress.

43. Brendan Moran, Hannes Tschofenig, Henk Birkholz, and Koen Zandberg. A
CBOR-based Serialization Format for the Software Updates for Internet of Things
(SUIT) Manifest. Internet-Draft draft-ietf-suit-manifest-12, Internet Engineering
Task Force, February 2021. Work in Progress.

44. Brendan Moran, Hannes Tschofenig, David Brown, and Milosch Meriac. A
Firmware Update Architecture for Internet of Things. RFC 9019, April 2021.

45. National Institute of Standards and Technology. FIPS186-4: Digital signature
standard (DSS). https://doi.org/10.6028/NIST.FIPS.186-4.

46. Lily Hay Newman. Inside the Unnerving Supply Chain Attack That Corrupted
CCleaner. Wired, 2018.

47. NIST. Post-Quantum Cryptography Project. URL: https://csrc.nist.gov/
projects/post-quantum-cryptography.

48. Jim Schaad. CBOR Object Signing and Encryption (COSE). RFC 8152, July
2017.

49. Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without
handshake signatures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, USA, November 9-13, 2020, pages 1461–1480.
ACM, 2020.

50. Peter W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and
Factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pages 124–134. IEEE Computer
Society, 1994.

51. Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. Post-Quantum
Authentication in TLS 1.3: A Performance Study. In 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

52. Hannes Tschofenig and Emmanuel Baccelli. Cyberphysical Security for the Masses:
A Survey of the Internet Protocol Puite for Internet of Things Security. IEEE
Security & Privacy, 17(5):47–57, 2019.

53. Loup Vaillant. Monocypher. https://monocypher.org/.
54. Koen Zandberg and Kaspar Schleiser. SUIT Reference Implementation. RIOT,

2020. http://api.riot-os.org/group__sys__suit.html.
55. Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, and Em-

manuel Baccelli. Secure Firmware Updates for Constrained IoT Devices Using
Open Standards: A Reality Check. IEEE Access, 7:71907–71920, 2019.

https://doi.org/10.6028/NIST.FIPS.186-4
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://monocypher.org/
http://api.riot-os.org/group__sys__suit.html

	Quantum-Resistant Software Update Security on Low-power Networked Embedded Devices

