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[terated Maximum Large Neighborhood Search for the Traveling Salesman
Problem with Time Windows and its Time-Dependent Version

Cédric Pralet
ONERA, Université de Toulouse, 2 av. Edouard Belin, BP 74,025 F-31055 Toulouse Cedex 4, France

Abstract

This article introduces a new algorithm for finding feasible or makespan-optimal solutions of Traveling
Salesman Problems with Time Windows (TSPTWs) and Time-Dependent TSPTWs (TDTSPTWSs). The
algorithm starts from a sequence of visits of the customers involved in the problem, uses destroy and repair
operations to iteratively improve this sequence, and applies perturbations to diversify search. For the destroy
phase, customers are removed from the current sequence of visits as long as a parameter called the insertion-
width is not too high. For the repair phase, the customers removed are reinserted for the best based on
a dynamic programming procedure whose complexity is only linear in the number of customers. For the
perturbation phase, some customers are randomly shifted in the sequence of visits. The algorithm obtained is
called Iterated Maximum Large Neighborhood Search (ImaxLNS). On seven standard TSPTW benchmarks,
it returns the best-known solution for each instance in less than one second on average. On two TDTSPTW
benchmarks related to urban logistics, it provides new feasible solutions and best solutions. On a TDTSPTW
benchmark related to Earth observing satellites, it solves most of the instances in less than a second.
Keywords: Traveling Salesman Problem with Time Windows, Time-Dependent Transitions, Large

Neighborhood Search, Makespan Minimization, Solution Feasibility

1. Introduction

In a Traveling Salesman Problem with Time Windows (TSPTW), a vehicle must visit a set of customers
within allowed time windows while minimizing some objective function. The latter can be the sum of the
travel times (TSPTW-TT) or travel costs (TSPTW-TC), the time at which the sequence of visits is completed
(TSPTW-M), or the duration spent by the vehicle outside of its depot (TSPTW-D). Several extensions of
TSPTW were also introduced over the years to answer application needs. Some extensions add precedence
constraints between customer visits. Other extensions like Time-Dependent TSPTW (TDTSPTW) take into
account travel times or travel costs depending on the time at which the vehicle moves, which is useful to
model a vehicle subject to traffic conditions varying over the day.

Even without any objective, TSPTW is a challenging problem since determining whether there exists a

feasible solution visiting all customers within their time windows is strongly NP-complete [1]. This is why
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many resolution approaches were defined during the last four decades, including both exact methods that
alm at producing optimal solutions and incomplete methods that quickly deliver good quality solutions. In
this article, we introduce another incomplete method adapted to TSPTW and TDTSPTW. For this method,
the objective is first to find a feasible solution and then to minimize the completion time of the sequence of
visits (or makespan). From a global point of view, the algorithm proposed is based on a Large Neighborhood
Search (LNS [2]), a metaheuristic that was shown to be efficient in various contexts [3]. Basically, LNS
starts from a solution s to a given problem and iteratively updates s by searching at cach step for a better
solution in a large neighborhood. In LNS, the neighborhood is defined by a destroy method that removes
some decisions from the current solution following a degree of destruction, and a repair method that rebuilds
a full solution based cither on complete search or on heuristic search.

In the LNS approach that we propose for (TD)TSPTW, a solution is simply a sequence of visits of the
customers, the destroy method consists in removing a subset of customers from such a sequence, and the
repair method uses dynamic programming for exploring all possible reinsertions of the customers removed.
One particularity of the destroy method introduced is that it attempts to remove a maximum subset of
customers from the incumbent solution under the constraint that the repair method must remain applicable
with a limited complexity. The latter is measured by a parameter called the insertion-width of the partial
solution obtained after destruction. On top of these destroy and repair mechanisms, we apply perturbations
when a locally optimal solution is found, as in the Iterated Local Search metaheuristic (ILS [4]). These
perturbations consist in performing 1-shift moves that randomly change the position of some customers
in the sequence of visits. Restarts from empty solutions are also performed from time to time to diversify
search. In the end, the algorithm proposed is called Iterated Mazimum Large Neighborhood Search (ImaxLNS)
because it combines LNS, ILS, and an effort to use a maximum destroy degree given the fixed-parameter
complexity of the repair phase.

Several benchmarks are considered to show the efficiency of ImaxLNS. First, on seven TSPTW bench-
marks covering 467 instances, ImaxLNS produces the best-known solution in less than a second for each
instance on average. Second, on a TDTSPTW benchmark introduced by Arigliano et al. [5], ImaxLNS pro-
duces new feasible solutions and new best solutions. Third, on a TDTSPTW benchmark related to urban
delivery problems [6], ImaxLNS provides 59 new best solutions over the 60 largest instances. Fourth, on a
new TDTSPTW benchmark related to Earth observing satellites, it produces feasible solutions in less than
a second for hard instances, which is good news since this application is the main motivation for this work.

The article is organized as follows. Section 2 provides some background on TSPTW and TDTSPTW.
Section 3 formalizes the problem tackled. Section 4 describes preprocessing techniques. Section 5 introduces
ImaxLNS. Sections 6 and 7 detail its destroy and repair phases. Section 8 provides experimental results, and

Section 9 gives perspectives for this work. Most of the proofs are given in the supplementary material.
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2. Literature review

This section provides an overview of the methods developed over the years for solving TSPTWs and
TDTSPTWs. These methods are based on mathematical programming, dynamic programming, constraint

programming, relaxations, local search, metaheuristics, or hybrid optimization.

TSPTW: exact methods. In the early works on TSPTW, Christofides et al. [7] defined a branch-and-bound
algorithm for TSPTW-M where the bounding part uses dynamic programming and state-space relaxations.
Afterwards, Baker [8] proposed another branch-and-bound method for TSPTW-M, and Ascheuer et al. [9]
proposed branch-and-cut for TSPTW-TC. These early works also introduced preprocessing techniques to
tighten the time windows available for visiting the customers, infer precedence constraints between some
visits, or fix some decisions. On the modeling side, efforts were made to find good mathematical programming
formulations [9, 10]. On this point, some authors studied integer linear programming models obtained from
time-expanded networks, where the time window associated with each customer is discretized into a restricted
set of possible visit times. Such time-expanded networks were introduced by Dash et al. [11] for a static
network, and extended by Boland et al. [12] to a dynamic network refined step-by-step. These approaches
were defined for TSPTW-TC but are applicable to TSPTW-M as well.

In parallel, several authors studied Dynamic Programming (DP) for TSPTW. Initially, Dumas et al. [13]
used DP for TSPTW-TC. Their algorithm starts from an empty sequence of visits and explores the possible
paths extending it, an extension being represented by a state (5,4, t) composed of a set of customers already
visited (5), the last customer visited (i), and the time at which the visit of this last customer ends ().
These states are explored by increasing the cardinality of S while keeping only the Pareto-optimal states
in terms of total traveling cost and current time. Several state elimination techniques were proposed to
decrease the size of the state space, for instance by discarding states that are incompatible with mandatory
precedence constraints or with the latest visit times of the customers not visited yet. Later on, Mingozzi
et al. [14] proposed a bidirectional DP algorithm applicable to TSPTW-TC with additional precedence
constraints. This algorithm exploits stronger state elimination techniques inspired by the relaxations defined
by Christofides et al. [7]. Recently, Baldacci et al. [15] proposed even stronger state elimination methods by
using mathematical programming and column generation to compute bounds on the cost required to visit
the customers not visited yet.

Last, Constraint Programming (CP) was applied to TSPTW. The seminal contribution was performed
for TSPTW-TT by Pesant et al. [16], who proposed a specific constraint propagation process based on the
computation of minimum spanning trees. To better deal with the optimization part, Focacci et al. [17] then

enhanced the CP approach proposed by Pesant et al. with the help of cost-based domain filtering.
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TSPTW: incomplete methods. Numerous incomplete methods were studied for TSPTW. Many approaches
employ a two-phase process where first insertion heuristics produce an initial solution, and then local search
improves the quality of this solution, typically by using or-opt-k neighborhoods that reinsert a bloc of &
successive customers in the sequence of visits, or k-opt neighborhoods that change k edges in the chain
representing this sequence. Initially, Savelsbergh [1] proposed such a two-phase process for TSPTW-TT and
TSPTW-M, based on or-opt-3, or-opt-2, or-opt-1, and 2-opt for the local search phase. Gendreau et al. [18]
then explained how to efficiently check the feasibility of the sequences of visits at each local optimization
step. After that, a two-phase algorithm using 3-opt for the local search phase was introduced by Calvo [19],
and Ascheuer et al. [9] studied several heuristic techniques.

In parallel, several metaheuristics were tested, such as the tabu search algorithm defined by Carlton and
Barnes [20] to minimize the makespan and then travel times, the variant of simulated annealing called com-
pressed annealing introduced by Ohlmann and Thomas [21] for TSPTW-TT, the Ant-Colony Optimization
(ACO) algorithm proposed by Favaretto et al. [22] still for TSPTW-TT, or its extension to Beam-ACO by
Lépez-Ibanez and Blum [23] to combine ACO and the manipulation of a beam of partial solutions. The
Beam-ACO and compressed annealing methods were adapted to TSPTW-M by Lépez-Ibdnez et al. [24],
showing the advantages of Beam-ACO against compressed annealing in this case. Several authors also stud-
ied the so-called General Variable Neighborhood Search (GVNS) metaheuristic, where VNS is coupled with
a Variable Neighborhood Descent (VND) that explores a sequence of neighborhoods in a predefined order.
To give a bit more details, for TSPTW-TT, da Silva and Urrutia [25] proposed a GVNS algorithm where the
VNS part aims at finding a feasible solution based on a increasing number of 1-shift moves (reinsertion of a
single customer in the sequence of visits), and the VND part aims at minimizing the transition times based
on two successive neighborhoods (1-shift and 2-opt). Mladenovic et al. [26] extended this GVNS approach
by using six successive neighborhoods for the VND part. Later on, Amghar et al. [27] adapted these ideas
for a makespan minimization objective. Their experimental results showed that GVNS is robust and at least
as good as the state-of-the-art incomplete methods for TSPTW-M, including Beam-ACO [24].

A last class of incomplete methods is restricted dynamic programming. The restricted DP procedure of
Mingozzi et al. [14] that keeps k least-cost states at each state expansion layer belongs to this class. Another
example is an algorithm defined by Balas and Simonetti [28], usable for TSPTW-TT and TSPTW-M. This
algorithm starts from an initial tour and applies DP with constraints like “for every pair of customers placed
at positions ¢ and j in the current sequence of visits and such that j > i + k(¢), the visit of customer ¢ must
precede the visit of customer j”, where k(%) is a bound depending on . When all k() terms are bounded by a
constant K, DP can find an optimal solution in time and space linear in the number of customers. Repeated
usages of DP within an LNS procedure then progressively improve the incumbent solution. One drawback

however is a so-called locality issue since each customer can only be moved around its current position due
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to the k(i) constants. To overcome this difficulty, Balas and Simonetti proposed to gather some contiguous

customers before applying DP or to use DP in conjunction with a global interchange heuristic like k-opt.

TDTSPTW. We finish this literature review by listing techniques available for Time-Dependent TSP TWs.
Globally, TDTSPTW received much less attention than TSPTW. Initially, Malandraki and Daskin [29]
introduced time-dependent routing problems where travel times are modeled as step functions, together with
an MILP model able to take time windows into account. Afterwards, Albiach et al. [30] tackled problems
involving time-dependent travel times and costs, together with waiting costs when the vehicle arrives too
early at a given customer. To minimize the total cost, they defined an exact approach that uses a problem
transformation leading to an asymmetric TSP.

Next, Aguiar-Melgarejo et al. [6] applied Constraint Programming to TDTSPTWSs representing urban
delivery problems. They defined a new time-dependent no-overlap constraint and its constraint propagation
rules to deal with problems involving time-dependent transition times and activities that must not overlap.

Still for exact methods, mathematical programming was considered. A first reference is the branch-and-
bound algorithm of Arigliano et al. [5], usable for TDTSPTW with a makespan minimization objective and
where travel times are described by a piecewise linear function. For the bounding part, the main idea is
to exploit a time-independent problem where a maximum travel speed is considered, as in previous works
on TDTSP by Cordeau et al. [31]. Next, Montero et al. [32] reused an Integer Linear Programming model
proposed by Sun et al. [33] and defined a branch-and-cut algorithm for TDTSPTW-M. They also introduced
several constructive heuristics together with local moves on the best solution found (swap move, or-exchange,
arc reversal...). Recently, the idea of Boland et al. [12] to handle integer programming models obtained from
dynamic time-expanded networks was adapted to TDTSPTW-M by Vu et al. [34]. The approach is shown
to outperform the previous exact techniques. Moreover, it can tackle TDTSPTW-D where the objective is
to minimize the total duration spent by the vehicle outside a depot.

Last, Lera-Romero et al. [35] used dynamic programming for TDTSPTW-M and TDTSPTW-D. Their
algorithm incorporates many features such as efficient preprocessing rules, state expansion conditions during
DP where the number of ancestors and descendants of customers in a precedence graph are analyzed,
dominance relations among state labels, or bidirectional search. It also uses several relaxations for evaluating
states, including the ngL-tour relaxation of Baldacci et al. [15] where customers can be visited several times
or the ti-tour relaxation that exploits a time-independent problem. Extensive experiments showed that the
approach is very efficient when compared to the state-of-the-art. There also exist algorithms for TDVRPTW,

where a fleet of vehicles visits the customers [36], but our work is focused on single vehicle routing problems.
Contributions. Compared to previous works, the ImaxLLNS algorithm we propose has the following features.

e First, contrarily to the best state-of-the-art methods for TDTSPTW, the approach proposed is able to
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handle non-linear time-dependent transition functions. This is important for the observation satellite
application that motivates this work, where transition times are obtained from a black-box space

toolkit. It can also be relevant to exploit transition functions defined from machine learning models.

Second, as existing incomplete methods, ImaxLNS progressively improves an incumbent solution
through local modifications, and similarly to GVNS for TSPTW, it exploits the idea of using an
increasing number of random 1-shift moves to diversify search at some steps. But ImaxLNS uses a new
neighborhood that is not or-opt-k, k-opt, or an arbitrary combination of these. Instead, the unique
neighborhood considered consists in reinserting k£ customers in a partial solution through dynamic pro-
gramming. Another originality is that the size of this large neighborhood (the value of k) is adapted
at each LNS step depending on the structure of the precedence graph of the problem, and the position
of tens of customers can be optimized in a single step on some instances involving tight time windows.
Moreover, apart from the constructive heuristics and local moves proposed by Montero et al. [32], the
work on TDTSPTW is mainly focused on complete search, hence ImaxLLNS is an original contribution

on this point (even if incomplete methods were defined for extensions of TDTSPTW [37]).

Third, with regards to dynamic programming approaches that are coupled with state elimination and
state-space relaxation, ImaxLNS uses DP only as a local reoptimization procedure applied as many
times as possible per second. As shown later, ImaxLLNS guarantees that each local application of DP
has a complexity that is linear in the number of customers, contrarily to the global DP procedure
defined by Lera-Romero et al. [35] that can consume an exponential CPU time or memory size when
no search limit is imposed. For state elimination, ImaxLNS does not solve any linear program, but as
in the work of Lera-Romero et al., it exploits the counts of ancestors and descendants of each customer
to reduce the set of states that need to be expanded. One difference however is that ImaxLNS also
exploits these counts beforehand, to maximize the size of the neighborhood that DP can explore in
linear time. Next, the ngl-tour state-space relaxation [15] mentioned before exploits a mandatory chain
of precedences between customers. For ImaxLLNS, the counterpart of this chain is a partial solution

that helps reducing the complexity of DP.

Fourth, as in the DP algorithm introduced by Balas and Simonetti [28] for TSPTW, ImaxLNS in-
tensively exploits the precedence constraints of the problem together with side constraints to get a
“local” DP procedure that is applicable in linear time. The main difference is that our side constraints
correspond to a partial solution that is built step-by-step by a destroy phase, and not to maximum
distances between pairs of customers. One strong advantage of this strategy is that ImaxLLNS does not
suffer from the locality issue mentioned by Balas and Simonetti and does not need to be combined with

other global interchange neighborhoods. Last, ImaxLNS is defined for both TSPTW and TDTSPTW.



3. Problem definition

This section formally defines the problem tackled, namely a TDTSPTW possibly involving additional

1o precedence constraints. In this problem, we consider:

e aset of customers numbered from 1 to N, with for each customer i € [1..N] a time window [Start (i), Fnd(i)]

during which the visit of ¢ can start;

e two fictitious customers numbered 0 and N + 1 that respectively represent the depot from which the

sequence of visits must start and the depot at which it must end (not necessarily the same depots);

185 e a time window [0, H] usable for performing the visits; by convention, times windows associated with

customers 0 and N + 1 are [Start(0), End(0)] = [Start(N + 1), End(N + 1)] = [0, H];

e a set of precedence constraints P C [0..N] X [1..N + 1]; each pair (¢,7) € P expresses that customer 4
must be visited before customer j; the precedence graph G induced by P contains one arc ¢ — j per
pair (i,7) € P; this graph must be acyclic, and we assume that customer 0 precedes every customer in

190 [1..N + 1] and customer N + 1 follows every customer in [0..N], either directly or by transitivity;

e a transition time function ¢ such that for any pair of distinct customers (¢,5) € [0..N] x [1..N + 1] and
any time 7 € [Start(i), +o0[, quantity tt(i,j,7) gives the transition time required between the start of
the service of customer 7 and the start of the service of customer j, if the service of customer ¢ starts at
time 7 and j is visited just after ¢; this transition time covers both the service time for ¢ and the travel

105 time from ¢ to j; function ¢t usually satisfies the FIFO property expressing that the earlier a transition
starts, the earlier it ends, that is (7 < 7/) — (7 + tt(¢,4,7) < 7 + tt(i,4,7')); the FIFO property

provides some guarantees but is not mandatory to apply the algorithm proposed in this article.

Transition time function ¢t may also satisty the triangular inequality, meaning that for three distinct
customers 4, j, k and for every time 7 > Start(i), we have tt(i, k,7) < tt(j, k, max(r + tt(4, j,7), Start(j))).

20 For the sake of some pruning rules detailed later, we introduce a function ﬁ, called the forward path
transition time function, such that for any pair of distinct customers (i,5) € [0..N] x [1..N + 1] and any
time 7 € [Start(i), +00|, quantity ﬁ(z, J,7) is assumed to give a lower bound on the transition time required
between a visit of customer ¢ at time 7 and a visit of customer j, possibly with some other customers visited
between i and j. When ¢t satisfies the triangular inequality, it suffices to take =1 Otherwise, ﬁ(z, J,7)

2s can be computed from ¢t by solving a time-dependent shortest-path problem between ¢ and j. However, as
such lower bounds need to be computed many times per second during ImaxLNS, we assume that the modeler

can define a lower bound function # that is ecasier to compute. For instance, for TDTSPTW instances
involving a vehicle subject to time-dependent speeds, we can derive # from the maximum (constant) vehicle

speed. Assuming that ﬁ returns an actual lower bound on path transition times brings some guarantees
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on the consistency of pruning rules used thereafter, but is not mandatory to apply the algorithm proposed.
Formally, we only require that ﬁ < {t holds, and when no lower bound function is specified, we use ﬁ =1t
even if ¢t might not satisfy the triangular inequality. Note that checking the satisfaction of the triangular

equality is not possible for a black-box transition function ¢t defined over a continuous time domain.

Solutions and partial solutions. A solution is a sequence of visits that starts from the initial depot, visits all
customers in [1..N] while respecting the precedence constraints, and returns to the final depot. More formally,
a solution is a sequence o = 09,071, ...,0N,0N+1] that corresponds to a topological order of the precedence
graph, meaning that if there is a path from customer 7 to customer j in this graph then ¢ must appear before
j in o. This implies that o starts with g = 0 and ends with oy4+1 = N + 1, and that [o1,...,0n] is a
permutation of [1..N]. Solutions are represented as doubly linked lists and for a given sequence of customer
visits o, we denote by Prev(c,i) and Nezt(o,i) the predecessor and successor of customer 7 in o. We also
denote by pos(c, i) the position of customer i in o (pos(o,i) = k equivalent to of, = 7).

Last, a partial solution is a sequence 8 = [By, ..., Bm+1] such that By =0, B41 = N+1, and [51, ..., B
is a permutation of a subset of [1..N] that satisfies the precedence constraints, meaning that if two customers
i and j belong to 8 and there is a path from customer ¢ to customer j in the precedence graph, then ¢ must

appear before j in 5. A completion of 3 is a solution o such that 3 is a subsequence of o.

Visit times and makespan. For every solution o, the visit time 7 (o, p) associated with the pth customer in o
corresponds to 7(0,0) = 0 at position 0 and is recursively defined by 7(o, p) = max(Start(o,),7(o,p— 1) +
tt(op—1,0p,7(0,p — 1))) for every p € [1..N + 1]. We assume here that the vehicle can arrive earlier at a
customer location and wait for the window start time. The makespan of solution o, denoted by 7(¢), is the

arrival time at the final depot, i.e. 7(c) = 7(o, N + 1).

Feasibility and tardiness. A solution o is feasible if and only if it visits every customer during its time
window, i.e. Vp € [0..N +1], 7(0,p) < End(op). The degree of infeasibility of o is measured by its cumulated
tardiness, which evaluates by how much the window end times are exceeded. The cumulated tardiness
6(o,p) for the pth customer in o corresponds to §(c,0) = 0 at position 0 and is recursively defined by
0(o,p) = 0(o,p—1) + max(0, 7(0,p) — End(c,)) for every p € [1..N + 1]. The cumulated tardiness of o,
referred to as d(o), corresponds to the tardiness at the last step, i.e. d(c) = d(o, N +1). A solution is

feasible if and only if its cumulated tardiness §(o) is null.

Total transition cost. The total transition cost p(o) of a solution o corresponds to the sum of the transition
times for the vehicle. More precisely, the total transition cost for customer o, referred to as p(o,p), corre-
sponds to p(c,0) = 0 at position 0 and is recursively defined by p(o, p) = p(o,p — 1)+ tt(op—1,0p,7(c,p — 1))
for every p € [1..N + 1]. The total transition cost p(c) of o is the final cost, i.e. p(c) = p(o, N 4+ 1).
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Global objective. Our first objective is to find a feasible solution and our second objective is to minimize
the makespan. When searching for a makespan-optimal solution, it can be useful to temporarily work on
solutions having a positive tardiness. It is also useful to minimize the total transition time, the rationale
being that among two solutions having the same makespan, the one having the lowest total transition time is
preferred since it is more likely to allow some visits to be moved forward (globally more idle periods between

the visits). Therefore, our objective during search is to compute a solution o such that the triple

Bual(e) = (5(c), 7(), pl)) (1)

is lexicographically minimal. This triple is called the tmc-evaluation (“tardiness-makespan-cost” evaluation)
of . For convenience, we introduce a step evaluation function that computes the tmc-evaluation at step p
from the tmc-evaluation at step p — 1. More precisely, by denoting as Eval(o,p) = (d(o,p),7(0,p), p(0,p))

the triple formed by the tardiness, makespan, and transition cost values at position p, we have:
Eval(o,p) = StepEval(Eval(o,p — 1),0p—1,0p) (2)

where StepFEval((d,t,1),1,7) corresponds to the triple (d’, ¢', ') defined by ' = max(Start(j), t + tt(i, j, t)),
d' = d 4+ max(0,t' — End(j)), and r' = r + t£(i, 5, t).

4. Preprocessing

As in existing works on (TD)TSPTW, we introduce several preprocessing techniques. The latter lead to
an equivalent problem if transition function ¢t satisfies the FIFO property and if W provides actual lower
bounds on path transition times. Otherwise, the problem obtained after the preprocessing phase might be

more constrained than the initial one.

Precedence constraints. To avoid considering infeasible solutions, the algorithm first infers precedence con-
straints from the time windows available. On this point, given two distinct customers 4, j € [1..N] such that
Start (i) + ﬁ(z, J, Start(i)) > End(j), precedence (j,4) can be added to the set of precedence constraints P
of the problem. Indeed, in this case, even when starting a transition from ¢ to j at the earliest possible time,
the vehicle cannot arrive on time to visit customer j according to t? Such a preprocessing is not new [32],

however we proceed as follows to avoid testing the previous constraints for all pairs of customers.

e First, we derive a minimal set of precedence constraints that are valid whatever the content of the
transition function. To do this, customers in [1..N] are ordered by increasing window start times,
which gives an ordered sequence [i1,...,ix]|. Customers are then considered from i; to iy. For each
customer 4,,, we compute the smallest index v > u such that Start(i,) > End(i,) (i, necessarily visited

after i,,) and the largest index w > v such that Start(iy,) < End(iy) (iy not necessarily visited after
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iy). We then add precedence constraint (i,,4,/) to P for every index v’ € [v, w]. For all indices w’ > w,
customer i, must also necessarily follow i,,, but there is no need to add precedence constraint (4, ,-)

to P since this constraint will be implied by transitivity at the end of the process.

e Second, we check condition Start (i) + t?(z, J, Start(i)) > End(j) only for the pairs of distinct customers
(i,7) € [1..N] x [1..N] such that 4 is neither an ancestor nor a descendant of j in the current precedence

graph. Precedence (j,7) is added to P if the previous inequality holds.

e Third, for all customers ¢ that have no ancestor (resp. no descendant) in the current precedence graph,

we add precedence constraint (0,4) (resp. (¢, N + 1)) to P.

To boost the algorithm, we also compute the transitive reduction of the precedence graph, that is we
remove all precedence constraints entailed by transitivity to get the sets of immediate predecessors and
successors of each customer ¢, denoted by Predo(i) and Succo(i) respectively. From this, by traversing the
precedence graph in a topological order (resp. reverse topological order), the sets of mandatory ancestors

and descendants of every customer 4, denoted by Anco(i) and Descy(i), are recursively obtained by:

Anco(i) < Predo(i) U (Uje pred, (i) Anco(j)) (3)

Descy (i) < Succo(i) U (Ujesuce, (1) Desco () (4)

Makespan lower bound. The algorithm initially computes a lower bound 7% on the optimal makespan
value. To do this, it considers the customers one by one in a topological order of the precedence graph.
When considering customer i € [0..N + 1], the earliest time 755 (i) at which i can be visited is computed as:

THP(0) = max(Start(i), _max - (7G) + G LT G)) )

and the makespan lower bound is then 728 = 7LB(N + 1). If this lower bound is strictly greater than the

horizon end (77% > H), then the problem has no solution according to 17

Initial greedy search. During the preprocessing phase, the algorithm also computes an initial sequence of
visits o by inserting customers one by one based on what we call the tardiness-makespan-cost heuristic. This
heuristic starts from an empty sequence and adds at each step a non-visited customer whose mandatory
predecessors are already visited. Among the candidate customers, a preference is given first to the customers
whose visit leads to the highest cumulated tardiness (to limit this tardiness as much as possible), then to
the customers that can be visited at the earliest possible time (earliest visit first heuristic), and then to the
customers whose visit leads to the lowest cumulated transition cost (nearest visit heuristic). If the solution
o obtained satisfies 6(¢) = 0 and 7(0) = 778 the algorithm directly returns that ¢ is makespan-optimal.
Finally, the preprocessing phase detects whether some customers can be harmlessly visited before the

others. More precisely, given the solution ¢ = [og,...,0n+1] produced by the tardiness-makespan-cost
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heuristic, if an index p € [1..N] is such that o is feasible until position p (i.e., 7(c,q) < End(c,) for every
g € [1..p]) and all customers placed at a position ¢ > p can be visited at their earliest possible time (i.e.,
T(0,p)+tt(op, 04, 7(0,p)) < Start(oy)), then all customers in [0y, ..., 0p] can be removed from the makespan

minimization problem since there exists a way to visit them without any impact on the other customers.

5. Iterated Maximum Large Neighborhood Search: general description

We now describe the algorithm proposed to search for a feasible solution minimizing the makespan (and
the transition times as a side effect). As mentioned before, this algorithm is called ImaxLNS for Iterated
Maximum Large Neighborhood Search. It exploits destroy and repair operations to locally optimize the

current solution, together with perturbations and restarts to diversify search.

5.1. Preliminary: insertion-width of a partial solution

In ImaxLNS, each destroy operation removes a set of customers S from the current solution . Such a
removal leads to a partial solution 8. The repair phase is responsible for exploring all possible reinsertions of
the customers in S and for returning a completion of S that is evaluated as the best one. To set the degree
of destruction employed to get 5, ImaxLNS exploits a parameter called the insertion-width, the rationale
being that as shown later, the complexity of the repair phase is only linear in the number of customers when
the insertion-width of 5 is bounded.

Basically, the insertion-width of 5 measures the maximum number of removed customers that can occupy
each position in the sequence of visits, given the precedence graph of the problem. More formally, let us
denote by R(/3) the set of customers removed to get a partial solution g, that is R(8) = {i € [1..N]|i & S}.
The set of mandatory precedences P of the problem, including those added at the preprocessing step, defines
a precedence graph G = ([0..N + 1], P) over the set of customers. For a partial solution 5 = [fo, ..., Bm+1),
graph G can be extended to get a new graph G(8) = ([0..N + 1],P U {(Bk, Bx+1) | k € [1..m — 1]} where
a precedence arc Oy — g1 is added for every pair of successive customers in S. Adding precedence arcs
Bo — p1 and B, — B4 is useless since they are already covered by P.

In graph G(f), let us denote by Anc(B,i) and Desc(8,i) the sets of ancestors and descendants of
customer 7. The set of positions that can be occupied by ¢ over all possible completions of 3 is then
[Prin(By%)..Prmaz (B, 4)] where P (8,1) = |Anc(B,7)] and Ppeq(8,4) = N + 1 — |Desc(B,4)|, the rationale
being that 7 is necessarily visited after all its ancestors and before all its descendants. From this, the set of

removed customers that can be visited at position p € [0..N + 1] is:

R(B,p) = {i € R(B) | p € [Prmin(B, 7). Pmax (B, 7)] } (6)

Then, the insertion-width of 3 at position p, referred to as W (8, p), is defined by:
W(B,p) = R(B,p)| (7)

11
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that is it corresponds to the number of removed customers that can be visited at position p. Finally, the

insertion-width W () of 8 is the maximum insertion-width obtained over all positions:

W(p) = L W(8,p) (8)

When 8 = [0, N + 1] (empty partial solution), we speak of the insertion-width of the problem. To illustrate
these definitions, let us consider a problem involving N = 8 customers and a set of precedence constraints P
given in Figure la. The extended graph G(f) associated with partial solution 8 = [0,2,4, 5, 9] is provided in
Figure 1b, where two precedence constraints not already implied by transitivity are added (dashed arrows).
For this example, Figure 2 gives the minimum and maximum positions of each customer and the insertion-
width of each position. In this case, the insertion-width of 8 is W () = 4, meaning that even if 5 customers

do not belong to 3, at most 4 removed customers can occupy a given position.

Figure 1: Initial precedence graph G (a) and precedence graph G(j3) obtained for partial solution 8 = [0,2,4,5,9] (b)

i (customer) | |Anc(B,1)| | |Desc(B,%)| | [Pmin(B,1).. Pimas(B,1)] p (position) R(B,p) W(B,p)
0 0 9 [0..0] 0 ] 0
1 1 3 [1..6] 1 {1,3} 2
2 1 5 [1..4] 2 {1,3,7} 3
3 1 4 [1..5] 3 {1,3,6,7} 4
4 2 3 [2..6] 4 {1,3,6,7} 4
5 4 2 [4..7] 5 {1,3,6,7} 4
6 3 2 [3..7] 6 {1,6,7} 3
7 2 1 [2..8] 7 {6,7,8} 3
8 7 1 [7..8] 8 (7,8} 2
9 9 0 [9..9] 9 i} 0

Figure 2: Possible positions for the customers involved in the example of Figure 1b, and insertion-width of each position

5.2. ImaxLNS: an example

Table 1 gives a possible trace of ImaxLNS on the problem seen before. Initially, at step 1, a solution is
built from the tardiness-makespan-cost heuristic defined in Section 4. This solution leads to tmc-evaluation
(12,64, 51), meaning that it is not feasible (tardiness equal to 12), its makespan equals 64, and the total

transition time is 51. Then, ImaxLNS performs successive destroy and repair operations (steps 2-5). Each
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destroy and repair step consists in removing a subset of customers .S from the current solution and reinserting
these customers to try and minimize the tmc-evaluation of the resulting solution. For instance, at step 2,
the destroy phase removes customers in S = {1, 3,6, 7,8}, which leads to a partial solution 8 = [0,2,4,5,9],
and the repair phase reinserts these customers into 3 to produce solution [0,3,2,6,1,7,4,5,8,9].

To try and detect local optima, ImaxLNS maintains, for each customer ¢, the number of times rm/[i]
this customer has been reinserted without improving the tmec-evaluation (column nRemovals). For instance,
after step 5, we have rm[l] = 2, rm[2] = 1, etc. If each counter rm|i] has a value greater than or equal to a
parameter of ImaxLNS referred to as Rmin, then ImaxLNS considers that a local optimum has been reached.
In this case, it applies a perturbation to the current solution. On the example, we use Rmin = 1 and at step
6, the perturbation applied is a 1-shift move that changes the place of one customer in the sequence of visits
(customer 7). After that, destroy and repair operations are performed again to optimize the current solution
(steps 7-9). On the example, ImaxLNS is attracted by the same local optimum as before. At step 10, another
perturbation is performed, but this time using a larger magnitude (1-shift moves for two customers). At steps
11 to 13, the destroy and repair operations are attracted by another local optimum whose tmc-evaluation
is (0,61,58). From this, if the number of perturbations applied at the last perturbation step is equal to
a parameter of ImaxLNS referred to as Kmazx, a restart from a new initial solution is performed. On the
example, we use Kmax = 2, hence a restart occurs at step 14. The search process goes on until there is no

CPU time left or a feasible solution whose completion time equals the makespan lower bound is found.

step update current solution (o) Eval(o) nRemovals (rm) nPerturbs (k)
1 initialization 0,2,3,1,6,7,4,5,8,9]  (12,64,51) [0,0,0,0,0,0,0,0] k=0
2 destroy & repair {1,3,6,7,8} [0,3,2,6,1,7,4,5,8,9]  (5,57,50)  [0,0,0,0,0,0,0,0] k=0
3 destroy & repair {2,4,5,6}  [0,3,4,2,1,5.7,6,8,9]  (0,59,55)  [0,0,0,0,0,0,0,0] k=0
4 destroy & repair {1,5,6,7}  [0,3,4,2,1,5,7,6,8,9]  (0,59,55)  [1,0,0,0,1,1,1,0] k=
5 destroy & repair {1,2,3,4,8} [0,1,5,4,2,3,7,6,8,9] (0,59,55) 2,1,1,1,1,1,1,1] k=0
6 perturbation (L-shift: {7}) 0,1,5,4,2,3,6,8,7,9]  (0,65,65)  [0,0,0,0,0,0,0,0] k=1
7 destroy & repair {2,5,6,7}  [0,1,5,4,2,3,7,6,8,9]  (0,59,55)  [0,0,0,0,0,0,0,0] k=1
8  destroy & repair {1,3,4,8}  [0,1,4,5,2,3.7,6,8,9]  (0,59,355)  [1,0,1,1,0,0,0,1] k=1
9 destroy & repair {2,5,6,7} [0,1,5,4,2,3,7,6,8,9] (0,59,55) [L,1,1,1,1,1,1,1] k=1
10 perturbation (1-shift: {1,5}) [0,4,2,3,7,6,1,5,8,9]  (0,62,60)  [0,0,0,0,0,0,0,0] k=2
11 destroy & repair {2,3,4,6}  [0,2,4,3,7,1,6,5,8,9]  (0,61,58)  [0,0,0,0,0,0,0,0] k=2
12 destroy & repair {2,3,4,7}  [0,2,4,3,7,1,6,5,8,9]  (0,61,58)  [0,1,1,1,0,0,1,0] k=2
13 destroy & repair {1,5,6,7,8} [0,2,4,3,7,1,6,5,8,9]  (0,61,58) [1,1,1,1,1,1,2,1] k=
14 restart (0,3,7,1,5,4,2,6,8,9] (18,75,75) [0,0,0,0,0,0,0,0] k=0

Table 1: A possible trace of ImaxLNS for the example of Figure la
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5.3. ImaxLNS: main function
The main function of ImaxLNS is given in Algorithm 1. During search, the algorithm maintains the best
solution found so far (¢*) and the best solution found since the last perturbation or restart (). As in the

example, ImaxLNS uses the following steps.

At Line 1, an initial solution ¢ is obtained from the tardiness-makespan-cost heuristic defined in
Section 4. Then, the algorithm searches for solutions while there is some CPU time left and while the
best solution found is not feasible or not as good as the makespan lower bound 778 (Line 4). If the

L

goal is just to find a feasible solution, the condition on 7”7 can be skipped.

During the while loop, the algorithm records the number of times each customer ¢ has been reinserted
in the sequence of visits without any improvement (counters rm/[i]). These counters are set to 0 initially
(Line 2). They are incremented after each destroy step for all customers that are not involved in partial
solution § (Line 9), and reset each time an improvement is obtained with regards to o (Line 11). They

are also reset after each perturbation (Line 15) and after each restart (Line 19).

At each destroy phase (Lines 6-7), the algorithm selects a pivot customer i such that counter rmli]
is lower than parameter Rmin given in the input. In the destroy function that produces a partial
solution B, the algorithm will remove customer 7 from o, as well as other customers as long as the

insertion-width of § is not greater than the mazrimum insertion-width parameter Wmaz.

During each repair phase (Line 8), the algorithm explores all possible ways to reinsert the removed
customers into partial solution g and chooses the best one according to the tardiness-makespan-cost

evaluations. The exploration of the set of reinsertion alternatives is based on dynamic programming.

When a local optimum is reached, if the current solution o is feasible and the magnitude k of the last
perturbation phase is less than parameter Kmaz given in the input, then magnitude k is incremented
and k random 1-shift moves are performed by calling function perturbOneShift (Lines 13-14), to try
and escape from the current local optimum. Each call to perturbOneShift randomly selects a customer
o; in o and a 1-shift direction (forward or backward). If a forward direction is chosen, perturbOneShift
considers all positions for o; such that o; is placed before all its mandatory descendants in precedence
graph G. Using a uniform probability distribution, it randomly chooses one of the positions that

preserves the feasibility of the current solution. Backward 1-shift moves are handled in a similar way.

Otherwise, if a local optimum is reached and either the current solution is not feasible or the magnitude
of the last perturbation equals Kmaz, then ImaxLLNS restarts from a random solution and resets the
magnitude of the last perturbation (Lines 17-18). To get a random solution, the algorithm starts from

an empty sequence ¢ and adds at each step, at the end of ¢, an unvisited customer whose mandatory
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predecessors are already visited. This unvisited customer is chosen using a uniform distribution,
independently of the time windows. Said differently, the restart phase randomly selects a topological

order of precedence graph G. The new solution obtained (Line 18) is not necessarily feasible.

395 e At any step, if a new best solution ¢ is found, it is recorded and the magnitude of the last perturbation

is reset to intensify search around o (Line 20). Finally, the best solution found ¢* is returned (Line 21).

Algorithm 1 defines the global search scheme used by ImaxLNS. To get an efficient approach, one key

point is the way the destroy and repair functions are implemented, which is detailed in the two next sections.

Algorithm 1: IMAXLNS(Tmax, 7B, Rmin, Wmaz, Kmax)

LB. makespan lower bound; Rmin: minimum number of removals

Input: Tmaz: max CPU time; 7
for each customer; Wmaz: maximum insertion-width; Kmax: maximum number of 1-shifts
Output: The solution minimizing the tardiness-makespan-cost vector among all solutions explored
1 0 « InitSolution()
2 o) < o; foreach i € [1..N] do rm[i] +- 0
30+ o0k« 0
4 while (time() < Tmaz) A (6(c*) > 0V 7(c*) > 7EB) do

5 if 3i € [1..N]|rm[i] < Rmin then // destroy and repair

6 select ¢ € [1..N] such that rm[i] < Rmin

7 B < destroy(o,i, Wmaz)

8 o + repair(3)

9 foreach i € [1.N]|i & S do rm[i] < rm[i] + 1
10 if Eval(o) < Eval(o}) then

11 oF + o; foreach i € [1..N] do rm[i] + 0
12 else if (§(c) = 0) A (k < Kmaz) then // perturbation
13 k+—k+1
14 foreach [ € [1..k] do o <« perturbOneShift(o)
15 oF < o; foreach ¢ € [1..N] do mm[i] < 0
16 else // restart
17 k<0
18 o + randomSolution()
19 o} < o; foreach i € [1..N] do rm[i] < 0

20 if Eval(c) < Eval(c*) then ¢* < 0; k<« 0

21 return o*
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6. Destroy procedure

This section details the destroy procedure of ImaxLLNS. As mentioned before, this procedure starts from
a solution ¢ visiting all customers and removes a maximum set of customers from ¢ under the constraint

that the insertion-width of the partial solution obtained must not exceed a maximum value Wmaz.

6.1. Main function: iterative customer removal attempts

Algorithm 2 details the main function of the destroy procedure. The latter manipulates a current partial
solution § resulting from the customer removals made so far. For each position p € [1..N], it maintains
quantity W(3,p). For each customer #, it maintains quantities Anc(B,1), Desc(8,1), Pmin(8,%), Pmaz(8,1%),
and two other quantities referred to as lastAnc(8,4) and firstDesc(8,4) that will be detailed in Section 6.3.
As there is a unique partial solution S manipulated at each step, the algorithm actually maintains W(p),
Anc(i), Desc(i), Pmin(2), Pmaz (1), lastAnc(i), and firstDesc(i), without any 8 parameter. These quantities
are initialized at Lines 1-4: at the beginning, the insertion-width of every position is null, the set of ancestors
(resp. descendants) of each customer is made of all its preceding (resp. following) customers in o, and the
only possible position for customer oy, is position k. Next, the destroy procedure removes the pivot customer
given in the input by calling function remove at Line 5. The latter updates data structures W(.), Anc(.),
Desc(.), Pimin(.); Pmaz(-), lastAnc(.), and firstDesc(.) to take into account the removal of i, and returns value
true if and only if ¢ can be removed without exceeding the maximum insertion-width Wmaz. At Line 5,
as Wmax > 1, the removal of a single customer is necessarily accepted and the initial partial solution to
consider is = o \ {i¢} (Line 6).

After that, the algorithm selects at each step a random customer 7 still not considered yet and tries to
remove 7 from S by calling function remove again (Lines 10-11). If this function returns ¢rue, then customer
7 can be safely removed from ( with the guarantee that the insertion-width of the resulting partial solution
does not exceed Wmazx, and all changes made by function remove on the data structures are committed
(Line 13). Otherwise, customer r is kept in the current partial solution and all changes made on the data
structures manipulated are undone by calling the rollback function that restores the state obtained after the
last call to commit (Line 15). In the while loop, the iterative removal process is applied until all customer

removals have been tried. Finally, the partial solution obtained is returned (Line 16).

6.2. Remove function: attempt to remove a single customer

We now detail the remove function that is responsible for updating the insertion-width of each position
following the removal of a customer 7, and for detecting insertion-width overloads with regards to parameter
Wmaz. This function corresponds to Algorithm 3. Initially, the insertion-width of every position p in
interval [Ppuin(7)..Pmas ()] is incremented since a possible position for r before the removal of 7 from 3 is

still a possible position for r after this removal. Doing so, we simply take into account the change of status of
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Algorithm 2: DESTROY(c, i, Wmaz)

Input: o: initial solution; i: a pivot customer; Wmax > 1: maximum insertion-width
Output: A partial solution 8 such that W(5) < Wmax

foreach p € [1.N] do W(p) <0

2 foreach k=0 to N +1 do

-

3 Anc(og) < {00y, 0k=1}; Pumin(or) < k; lastAnc(oy) < nil
4 Desc(or) < {0k+1,---,0N+1}; Pmaz(0k) < k; firstDesc(oy) < nil
5 remove(o, 3,1, Wmaz)

[~

f o\ {i}

commit( W (.), Anc(.), Desc(.), Pmin(.); Pmaz (), lastAnc(.), firstDesc(.))
8 NotRemoved < [1..N]\ {i}

9 while NotRemoved # () do

N1

10 pick 7 from NotRemoved; NotRemoved < NotRemoved \ {r}

11 if remove(o, 8,7, Wmaz) then

e | | se s\

13 commit(W(.), Anc(.), Desc(.), Pmin(.), Pmaz(.), lastAnc(.), firstDesc(.))
14 else

15 rollback(W (.), Anc(.), Desc(.), Pmin(.)s Pmaz (-), lastAnc(.), firstDesc(.))

16 return (3

r from “non-removed” to “removed”. If one position p € [Ppin (7). Pimas (1)] is already full (W (p) = Wmaz),
then the algorithm directly returns that removing r is forbidden (Line 2).

After this initial step, the algorithm updates the insertion-width of the different positions by taking
into account that the removal of customer r from S can change the number of ancestors for customers
following r in initial solution ¢ (Lines 3-11) and the number of descendants for customers preceding 7 in
o (Lines 12-20). For the first point, the customers placed after r in o (r included) are considered one by
one in the order given by ¢, the underlying idea being that o is necessarily a topological order of graph
G(B) since S is a subsequence of o. During such a forward traversal, the set of ancestors of each customer
i is updated by calling function updateAncestors detailed later in Section 6.3. This function simulates the
impact of the removal of r on set Anc(i). From this, the new minimum position of 4 is computed (Line 6).
If it differs from the previous one, the insertion-width of every new possible position for ¢ is incremented
and insertion-width overloads are detected (Line 9). Moreover, for the sake of incremental computations in
function updateAncestors, customer i is added to set changedAnc that records all customers whose set of

ancestors has changed. The backward traversal of ¢ to update the descendants of the customers preceding r

17



450

in o is similar. In this second case, a call to function updateDescendants detailed in Section 6.3 updates the

descendants of the customer ¢ given in the input, the insertion-width of every new possible position for 7 is

incremented (Lines 17-18), and if needed 7 is added to set changedDesc that records all customers whose set

of descendants has changed.

Algorithm 3: REMOVE(s, 3,r, Wmax)

[y

[N

w

N

10

11

12

13

14

15

16

17

18

19

20

21

Input: o: a solution; 3: a partial solution obtained from ¢; r: a customer to remove from g;
Wmaz > 1. maximum insertion-width

Output: A Boolean indicating whether customer r can be removed from § according to Wmax
foreach p € [Pyin (7). Praz (1)] do

if W(p) < Wmaz then W(p) <+ W(p)+1 else return false
changedAnc < ()
for i<+ r;i# N+ 1; i+ Next(o,i) do
updateAncestors(i, o, B, r, changedAnc)
newl i, < |Anc(i)]
if newP in # Pmin (i) then

foreach p € [newP pmin.. Pmin (i) — 1] do

if W(p) < Wmaz then W(p) «+ W(p) +1 else return false
Proin (2) < newP pp

changedAnc + changedAnc U {i}

changedDesc <+ )
for i + r; i #£0; i < Prev(o,i) do
updateDescendants(i, o, 3,1, changedDesc)
newP oy < N + 1 — |Desc(i)]
if newP mar # Pmae (i) then
foreach p € [Pz (i) + 1..newP 4] do
if W(p) < Wmaz then W(p) «+ W(p)+1 else return false

Prnaz (2)  newP o

changedDesc < changedDesc U {i}

return true

6.3. Incremental update of ancestors and descendants

The last components of the destroy function are the updateAncestors and wupdateDescendants proce-

dures used in Algorithm 3. The two procedures being similar, we focus here on the updateAncestors func-

tion. The naive implementation would consist in recursively computing formulas Anc(8,4) < Pred(8,i) U
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(Ujeprea(s.iAnc(B,j)) where Pred(B,i) denotes the set of predecessors of i in graph G(3). Each formula of
this form requires a number of union operations that is linear in the number of predecessors of i in G(/3).
Instead, we propose an incremental method for computing Anc(8,7) by using at most two union operations.
Obviously, Anc(8,4) contains Ancy(i), the set of mandatory ancestors of 4 computed at the preprocessing
phase. Then, if 7 belongs to 8, it can be shown that Anc(8,7) simply contains the customers in Ancg(i), the

predecessor of ¢ in 3, and all ancestors of this predecessor, that is we can use formula:
if i € B8, then Anc(8,4) < Anco(i) U{Prev(B,i)} U Anc(8, Prev(8,4)) (9)

For instance, in Figure 1b, the predecessor of customer 5 in 3 is customer 4, and we can compute Anc(3,5)
by Anc(3,5) < Anco(5) U {4} U Anc(8,4) = {0,1} U {4} U {0,2} = {0,1,2,4}. Otherwise, for a customer ¢
that does not belong to 3, it can be shown that it suffices to add to Anco(i) the ancestors of the ancestor
of ¢ that appears at the rightmost position in g, referred to as lastAnc(8,4). For instance, in Figure 1b
again, the ancestor of customer 8 that belongs to 8 and that is placed at the rightmost position in £
is customer lastAnc(3,8) = 5, and we can compute Anc(3,8) by Anec(3,8) <« Anco(8) U Anc(5,5) =
{0,1,2,3,5,6} U{0,1,2,4} = {0,1,2,3,4,5,6}. Formally, we can use formula:

if i & B, then Anc(B,i) < Anco(i) U Anc(8, lastAnc(B,1)) (10)

where the last ancestors for the removed customers are recursively obtained by:

lastAnc(B,i) < GrgmaTpcjc pred, (i) | jefYU{lastAnc(B,j) | j€ Predo(i),jg8} POS(0. k) (11)

The previous equation means that to compute the last ancestor of 4, we look on the one hand at all mandatory
predecessors of ¢ that still belong to 3, and on the other hand at all last ancestors of the predecessors of ¢
that do not belong to 8 anymore. To get the customer that has the rightmost position in g it suffices to
keep the customer that has the rightmost position in o, since 3 is a subsequence of o.

Equations 9-11 are directly reused in function updateAncestors given in Algorithm 4. In this function, as
before, parameter J is removed from quantities Anc(6,4) and lastAnc(8,). As in Equations 9-10, two cases

are distinguished to simulate the impact of the removal of customer r on the set of ancestors of customer 1.

e If i belongs to the partial solution after the removal of r (test at Line 1), then following Equation 9,
Anc(7) is revised either if the predecessor of 7 in § changes after the removal of r (which occurs only
if Prev(,i) = r as tested at Line 2, and in this case the new predecessor of ¢ will be Prev(8,r)), or if

the set of ancestors of this predecessor has changed (Lines 4-5).

e Otherwise, the algorithm determines whether the last ancestor of ¢ needs to be recomputed after the
removal of r (check at Line 7). If yes, Equation 11 is applied and the set of ancestors of ¢ is updated
based on Equation 10 (Lines 8-9). Otherwise, if the last ancestor of ¢ is unchanged, then the set of

ancestors of ¢ is updated only if the set of ancestors of lastAnc(7) has changed (Lines 10-11).
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Algorithm 4: UPDATEANCESTORS(i, 7, 3,7, changedAnc)

Input: i: customer to analyze; o: a solution; 8: a partial solution obtained from o; r: the customer
to remove; changedAnc: customers whose ancestors change if r is removed

if (i€pB)A(i#7r) then

2 if Prev(f,i) =r then

-

3 ‘ Anc(i) < Anco(i) U {Prev(8,r)} U Anc(Prev(B,r))
4 else if Prev(B,i) € changedAnc then

5 ‘ Anc(i) < Anco(i) U {Prev(3,i)} U Anc(Prev(3,1))
6 else

7 if (i =r)V (lastAnc(i) = r) then
8 lastAnc(i) < argmatye e pred (i) | jepy0lastAnc(s) | j€ Predo(i),jgp) POS (05 k)
9 Anc(i) < Anco(i) U Anc(lastAnc(i))

10 else if lastAnc(i) € changedAnc then

11 Anc(i) + Anco(i) U Anc(lastAnc(i))

The updateDescendants function detailed in Algorithm 5 is similar. The main difference is that for each
customer 4 that is not in 3 after the removal of r, the function computes the descendant in Descy() that
appears at the leftmost position in 8, referred to as firstDesc(f,4). The counterpart of Equation 11 is then:

firstDesc(8,4) < argmingc(jcsuceo(s) | jeB}ufirstDesc(8,5) | jeSuceo(i),jga} POS (05 k) (12)
and the recursive equations used to compute the descendants of every customer ¢ are:

Desc(B,i) <+ Desco(i) U{Next(3,i)} U Desc(B, Next(B,4)) if i € 8 (13)

Descq(i) U Desc(B, firstDesc(, 1)) otherwise. (14)

In practice, the incremental computations detailed before are a key point in ImaxLNS as they allow to

increase the number of destroy operations that can be performed per second.

6.4. Complexity of the destroy procedure

In the following, we assume that the sets of predecessors, successors, ancestors, and descendants of every
customer are represented as bitsets. For example, the jth bit of Ancg(4) is equal to 1 if and only if customer

j is a mandatory ancestor of ¢ in precedence graph G.
Proposition 1. The worst-case time complexity of the destroy procedure is O(N?).

Proof. For each removal attempt, updating the last ancestor and the first descendant of all customers has a

complexity O(|P|) coming from the argmaz at Line 8 of Algorithm 4 and the argmin at Line 8 of Algorithm 5.
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Algorithm 5: UPDATEDESCENDANTS(%, 0, 8, 1, changedDesc)

Input: i: customer to analyze; o: a solution; 8: a partial solution obtained from o; r: the customer
to remove; changedDesc: customers whose descendants change if r is removed

if (i € B) A (i # 1) then

2 if Next(B,i) =r then

-

3 ‘ Desc(i) < Desco(i) U {Neat(8,r)} U Desc(Next(3,1))
4 else if Nezl(S,i) € changedDesc then

5 ‘ Desc(i) < Desco(i) U {Next(3,4)} U Desc(Next(85,1))
6 else

7 if (i =r) V (firstDesc(i) = r) then
8 firstDesc(i) <= argminye (jesuceo(i) | jeBYULfirstDesc(s) | j€Suceo(i),jgs}y POS (05 F)
9 Desc(i) + Desco(i) U Desc(firstDesc())

10 else if firstDesc(i) € changedDesc then

11 Desc(i) < Desco(i) U Desc(firstDesc(#))

From this, for each removal attempt, recomputing the sets of ancestors and descendants of all customers
has a time complexity O(N?) (for each customer, at most two union operations between bitsets of size
N + 2). Over all removal attempts, the insertion-width of each position is incremented at most Wmazx
times, therefore managing all insertion-width increments over all removal attempts has a time complexity
O(Wmaz - N). From the previous observations, testing the successive removals of all customers has a time

complexity O(N - (|P| + N2) + Wmaz - N), which can be transformed into O(N?). O

With regards to Proposition 1, let us stress that first O(N?3) is only a worst-case time complexity since
some sets of ancestors and descendants will not need to be updated for some removal attempts, and second,
one of the N factors comes from a single bitset union operation. The latter is indeed linear in N, but based
on a 64-bit words encoding, it is very fast in practice even for problems containing hundreds of customers.
Additionally, if the transitive reduction of the precedence graph is sparse (number of arcs linear in N), term
N -|P] is only quadratic in N. On these points, the experiments confirm that the time consumed by the

destroy phase is low compared to the time consumed by the repair phase.

7. Repair procedure

This section defines the repair procedure that produces an optimized (complete) solution ¢ starting from
the partial solution § returned by the destroy phase. This procedure uses a dynamic programming approach.

Section 7.1 describes the dynamic programming equations to be computed, Section 7.2 discusses the rep-
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resentation of states during dynamic programming, Section 7.3 formalizes the repair algorithm, Section 7.4
discusses implementation details, Section 7.5 gives linear complexity results, and Section 7.6 introduces state
elimination techniques. As before, we remove parameter § from the notations manipulated since we work
here with a unique partial solution. Therefore, the set of customers removed for 3 is denoted by R instead

of R(B), and the set of removed customers that can occupy position p is denoted by R(p) instead of R(3,p).

7.1. Dynamic programming equations: formulation and properties

The repair procedure explores so-called visit states defined as triples (p, S,7) where p € [0..N + 1] stands
for a position in the sequence of visits, .S represents a set of customers visited until position p (position p
included), and ¢ denotes the last customer visited. Initially, the set of visit states reachable at position 0 is
S(0) = {(0,{0},0)} (a unique visit state corresponding to the visit of customer 0). Then, from a visit state
(p, S, j) obtained at position p, a customer ¢ can be visited at position p + 1 if and only if it is not visited
yet in S and all its ancestors in G(3) are already visited in S. Formally, the set of visit states reachable at

a position p + 1 € [1..N + 1] is recursively defined by:
Sp+1)={(p+1,5U{i},i)|3(p,S,j) € S(p) s.t. i € [0.N + 1]\ S and Anc(i) C S} (15)

The objective of the repair procedure is to compute the best way to reach visit state (N+1, [0..N+1], N+1)
that visits all customers and ends with customer N +1. To do this, an evaluation is associated with each visit
state (p,S,4). This evaluation corresponds to a cost vector v(p,S,i) € R? called the tardiness-makespan-
cost evaluation (or tmc-evaluation) of (p,S,4). It is a triple (d(p, S,%),7(p, S, %), p(p, S,4)) where d(p, S, ),
7(p, S,4), and p(p, S, %) respectively stand for a tardiness value, a completion time, and a cumulated transition
cost. The evaluation of the initial visit state is (0, {0},0) = (0,0, 0), and the evaluation of a reachable visit

state (p+ 1,5 U {i},4) is recursively defined by:

vip+1,5U {i},i) = StepEval(v(p, S, j), j, 1) (16)

(p.S,§)ES(p) s.t. Lgﬁgnl{;i:ll:]\s and Anc(i)CS
The previous recursive equation means that v(p + 1,5 U {i},4) is the “best” evaluation obtained when
performing a transition from a possible previous visit state (p, S, j), using the StepFval function introduced
in Section 3. The best evaluation corresponds to the best cost vector when using a lexicographic ordering
(minimum tardiness, then minimum makespan, and finally minimum transition cost). Note that Equation 16
keeps a unique evaluation for each visit state instead of recording all Pareto-optimal evaluations in terms of
tardiness and current time.

During this process, a parent customer w(p + 1,5 U {i},4) can be recorded to memorize the customer
to visit just before ¢ to obtain cost vector v(p + 1,5 U {i},4). This parent customer is chosen so that
v(p+1,SU{i},i) = StepEval(v(p, S, j), j,i) for j = n(p+1,SU{i},i). This allows to extract a sequence of

customer visits leading to each visit state, as expressed in the following definition.
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Definition 1. (path leading to a visit state) The path leading to wvisit state (p,S,i), referred to as

Path(p, S, 1), is the sequence of customers recursively defined by:

Path(p.5.i) =4 O TP=0 (17)

Path(p — 1,5\ {i},7(p, S,1)) - [i] otherwise

The repair procedure detailed in the following efficiently computes the sequence of customer visits cor-
responding to Path(N + 1,[0..N + 1], N 4+ 1). Proposition 2 shows that this sequence is indeed a solution
that completes the partial solution § obtained after the destroy phase, and Proposition 3 gives makespan-

optimality guarantees.

Proposition 2. The path Path(N + 1,[0..N + 1], N + 1) leading to visit state (N + 1,[0..N + 1], N 4+ 1)

corresponds to a solution (feasible or not) that is a completion of B.

Proposition 3. Let us assume that the transition function satisfies the FIFO property. If there exists a com-

pletion o of partial solution 3 such that §(c) = 0 (null tardiness), then solution ¢’ = Path(N +1,[0..N + 1], N + 1)

is feasible and makespan-optimal among the completions of 3.

As a result, the dynamic programming equations allow to compute a makespan-optimal repair as soon as
there exists a feasible completion of 8. Conversely, if the cumulated tardiness of Path(N + 1,[0..N + 1], N + 1)
is not null, it is possible to infer that there is no feasible solution completing 8. In the general case, when
there does not exist a feasible completion of 3, the repair process must just be seen as a heuristic procedure
since it offers no guarantee to return a solution having a minimum tardiness. Indeed, let us consider the
counterexample given in Figure 3, where there are only two possible sequences of visits o1 = [0, 1,2,3,4, 5]
and o9 = [0,2,1,3,4,5]. The figure gives the time window associated with each customer, and the paths
representing o1 and oo are labeled by the transition times (no time-dependency here). If the goal is to
minimize the total tardiness then the best solution is oy since 6(o1) = 1 and d(o2) = 2. However, in this
case, the dynamic programming equations applied from partial solution S = [0, 5] will return sequence os.
The reason for this is that among the two solution prefixes ¢f = [0,1,2,3] and ¢4 = [0,2,1,3] that lead
to the same visit state (3,{0,1,2,3},3), the second one is preferred because even if its completion time is
higher, it has a lower tardiness (6(¢5) = 0 whereas §(c}) = 1). Said differently, the repair procedure tries to
solve tardiness issues as early as possible. As shown in the experiments, this approach is robust to get a first
feasible solution. Note that when the FIFO property is not satisfied, the dynamic programming approach is

still applicable but the formal guarantees given in Proposition 3 do not hold anymore.

7.2. Compact representation of visit states

To efficiently compute the dynamic programming equations, it is first possible to represent visit states

in a much more compact way. Indeed, for a state (p,.S,4) obtained at position p, it can be shown that it is
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Figure 3: Example involving N = 4 customers, with precedence constraints 1 — 3,2 — 3, and 3 — 4

useless to represent in S the removed customers that are necessarily visited strictly before position p, i.e. the
customers in R« (p) = {i € R| Ppae(i) < p}. For the example of Figure 1b, these sets are given in column
R<(p) in Table 2. Additionally, it is useless to explicitly represent in .S the visited customers belonging to
B, the rationale being that these customers can be directly inferred from p and the size of S N R(p). To
illustrate these points, on the example introduced before where 5 = [0,2,4,5,9] and with the precedence
graph G(8) given in Figure 1b, state (p, S,7) = (7,{0,1,2,3,4,5,6,8},8) can be compactly represented as
(p,R,i) = (7,{6,8},8), since (1) the algorithm will guarantee that all customers in R.(7) = {1,3} are
visited before position 7, and (2) as 4 removed customers are visited over the 8 positions available from
position 0 to position 7 (customers in {6,8} U {1, 3}), there are necessarily 4 non-removed customers visited
over these positions, and as the algorithm will respect the precedence constraints defined by partial solution
B =10,2,4,5,9], these 4 customers can only be customers 0, 2, 4, and 5. As a result, from the restricted
set R = {6,8}, we can ecasily infer that the full set of visited customers is S = {0,1,2,3,4,5,6,8} as in the
extended representation. In the end, for a visit state (p,.S,4), only the customers in R = S N R(p) need to

be represented. Proposition 4 formalizes this property.

Proposition 4. For every reachable visit state (p,S,4), if R denotes the restriction of S to R(p) (R=5SnN
R(p)), then we have S = RUR(p) U{Bo,- .., Bp—|r|—|R<(p)|}- This implies that (p,S,i) can be represented
by the so-called compact visit state (p, R,i). Moreover, the last customer visited in (p,S,1) always satisfies

condition i € RU {Bp_|R|_|R<(p)|}, that is either it belongs to R or it is a specific customer in (3.

Last, Proposition 5 shows that given a visit state (p,S,%), its compact visit state (p, R,4) suffices to
quickly reconstruct the compact visit state associated with the state (p — 1,5\ {i}, m(p,S,4)) to visit at the
previous position, hence manipulating compact visit states induces no information loss on this aspect. For
this, the proposition uses, for each position p, set R4, (p) that corresponds to the set of removed customers
whose maximum position is equal to p (Rypaz (p) = {i € R | Pras (1) = p}). The values of these sets for the

same example as before are given in column R4, (p) in Table 2.
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P R(p) Romin(p) | Rmaz(p) R<(p) T’ (p)

0 ] ] 0 0 [-1,-1,-1,-1]
1 {1,3} {1,3} 0 ) [ 1, 3,—-1,-1]
2| {1,3,7} {7} 0 0 [ 1, 3, 7,—1]
3| {1,3,6,7} {6} ) ) [ 1, 3, 7, 6]
4 | {1,3,6,7} 0 ) [ 1, 3, 7, 6]
5 | {1,3,6,7} 0 {3} 0 [ 1, 3, 7, 6]
6 | {1,6,7} 0 {1} {3} [ 1,-1, 7, 6]
7| {6,7,8) {8} {6} {1,3} [ 8,-1, 7, 6]
8| {78} ] {7,8} {1,3,6} [ 8-1, 7,—-1]
9 0 0 0 {1,3,6,7,8} || [-1,-1,-1,-1]

Table 2: Sets of removed customers associated with each position, for the example in Figure 1b where R = {1,3,6,7, 8}

Proposition 5. Let (p,S,4) be a visit state reached at position p € [1..N + 1] and let (p, R, i) be its compact
version. Then, the compact visit state associated with (p— 1,5\ {i},7(p,S,1)) is (p — 1, R, w(p, S,1)) where

R/ _ (R \ {Z}) U Rmaz (p - 1) ZfZ € R(p) (18)

RURmaz(p — 1) otherwise
This means that in the compact parent visit state (p — 1, R/, 7(p, S,%)), customer i is not visited yet in R’

and all removed customers for which position p — 1 is the last possible one are added to R'.

7.8. Definition of the repair procedure

The repair procedure is given in Algorithm 6. It exploits compact visit states (p, R, %) instead of extended
visit states (p,S,7), and instead of manipulating cost vectors v(p, S,7) € R and parent customers 7(p, S,4)
applied to extended visit states, it manipulates cost vectors v(p, R,i) € R® and parent customers 7(p, R,7)
applied to compact visit states. The two cases can anyway always be distinguished since customer 0 always
belong to S while it never belongs to R. For complexity reasons, the repair algorithm also maintains, for
each position p € [0..N + 1], a data structure Q(p) that contains all sets R such that there exists a visit state
(p, R, j) reachable at position p.

In Algorithm 6, the (unique) initial visit state is (p, R,7) = (0,0, 0), its evaluation is v(0,@,0) = (0,0, 0),
and the unique set R such that there is a reachable visit state (0, R,¢) is R = () (Lines 1-2). All visit state
evaluations at positions p > 0 are initialized to (oo, 00,00), meaning that no visit state has been reached so
far (Line 3). The algorithm also computes, for each customer 7 and each position p that can be occupied
by i, set AncR(i,p) < Anc(i) N R(p) that contains the removed customers that are ancestors of ¢ and can

occupy position p (Line 4).
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After that, the algorithm expands the visit states (p, R, j) by increasing position (Lines 5-23). For each
possible set R € Q(p), it first computes the last and next customers visited in 8 according to R (Line 8). The
formulas used are justified by Proposition 4 seen before. Algorithm 6 also computes set R = R\ Raz (D)
that contains all customers in R that must be kept in the compact representation of visit states at position
p+ 1. Then, each expansion phase adds the visit of one new customer ¢ such that all ancestors of i are

already visited. Two kinds of new customer visits are analyzed at position p + 1.

e Case 1: visit of a removed customer (Lines 10-16).

In this case, Line 10 considers a customer ¢ € R(p + 1) \ R’ (i.e., a customer that can occupy position
p—+1 and that is not visited yet) such that Snext ¢ Anc(i) (i.e., the next non-removed customer to visit
is not an ancestor of ¢) and AncR(i,p +1) € R’ (i.e., all ancestors of ¢ that are removed customers
are already visited). As shown in the supplementary material, these conditions are equivalent to
“ € [0..N +1]\ S and Anc(i) € S” where S is the set of customers already visited given p and R.

For each possible next visit of a customer ¢, the algorithm considers all possible previous visit states,
with one visit state per customer j such that v(p, R, j) # (00, 00,00) (Line 11). It then uses function
StepEval introduced in Section 3 to compute the tmc-evaluation v obtained when performing transition
j — ¢ from state (p, R, 7). The visit state obtained is (p+ 1, R’ U {i}, 7). If the resulting tmc-evaluation
v is lexicographically smaller than the current tmec-evaluation of (p+ 1, R’ U {i}, %), the evaluation and

the parent of this visit state are updated (Lines 14-15).

Case 2: visit of a non-removed customer (Lines 17-23).

In this case, the unique customer to consider is ¢ = fBnext (i.c., the next non-removed customer to
visit), and condition AncR(Bnext,p+ 1) C R’ ensures that all removed customers that are ancestors
of Bnext and candidates for occupying position p + 1 are already visited (Line 17). As shown in the
supplementary material, these conditions are again equivalent to “i € [0..N + 1]\ S and Anc(i) C S”

where S is the set of customers already visited given p and R.

If customer ¢ = Snext can be the next customer visited, the algorithm considers all possible previous
visit states, with one visit state per customer j such that v(p, R,j) # (00,00,00) (Line 18). Again,
it uses function StepFwval to compute the tmc-evaluation v obtained when transition j — SBnext is
performed from state (p, R, j). Such a transition reaches visit state (p + 1, R', Snext). If the resulting
tmc-evaluation v is lexicographically smaller than the current tme-evaluation of (p+ 1, R’, 8next), the

evaluation and the parent of this visit state are updated (Lines 21-22).

Once the visit states are built for all positions, a sequence of visits is extracted from the recorded parent
customers thanks to the reconstructPath function given in Algorithm 7. The latter reuses the results provided

in Proposition 5 to perform a backward traversal of the visit states.
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Algorithm 6: REPAIR(()
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Input: §: a partial solution
Output: A solution o that is completion of 3
v(0,0,0) < (0,0,0)
Q(0) « {0}
foreach p € [1.N + 1], RC R(p), i € RU{Bp_|r|—jr-(p)|} dO v(p, R,i) <+ (00,00,00)
foreach i € [1..N + 1], p € [Prmn(?)..Pmasz(?)] do AncR(i,p) < Anc(i) N R(p)
foreach p = 0 to N do
Qp+1)«0
foreach R € Q(p) do
(Blast, Bnext) < (Bp—|R|~1R < )| Bp-IRI-1R < ()| +1)
R' < R\ Rinaz(p)
/* case 1: visit a removed customer */
foreach i € R(p+ 1)\ R’ s.t. Bnext ¢ Anc(i) and AncR(i,p+1) C R’ do
foreach j € RU {Blast} s.t. v(p, R, j) # (00,00,00) do
v « StepFEval(v(p, R, j), j, i)
if v<v(p+1,R U{i},i)) (+ possible state pruning, see Section 7.6) then
vip+1,R U {i},i) < v
mlp+1, R U{i}, i)« j
Qp+ 1)« Qp+ 1) U{R U{i}}

/* case 2: progress in the visits of non-removed customers */

if AncR(Bnext,p+1) C R’ then

foreach j € RU {Blast} s.t. v(p, R, j) # (00, 00,00) do

v < StepEval(v(p, R, j), j, Bnext)

if v<v(p+1,R, Bnext)) (+ possible state pruning, sce Section 7.0) then
v(p+ 1,R, Bnext) + v
m(p+1, R, Bnext) + j
Qp+1)« Q2p+1)U{R'}

24 return reconstructPath(m)

7.4. Implementation details

Bitset representations. For each position p, all along the iterations of ImaxLNS, set R(p) (the set of removed

customers that can occupy position p) contains at most Wmaxz customers due to the constraints imposed

at the destroy phase. This allows us to represent R(p) using a table Tz (p) of size Wmaz. For instance, as
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Algorithm 7: RECONSTRUCTPATH(7)
Input: 7: parent customers computed during the expansion phase of visit states

Output: A solution o
10«0
(R,3) « (0,N+1)
foreachp = N+1 to 1 do

[

w

'

o« i]-o

<]

j <« 7(p, R.i)
6 R+ if (i € R(p)) then (R\ {i}) URu(p— 1) else RUR 0:(p — 1)

7 147

®

return [0] - o

illustrated in Table 2 where Wmaz = 4, set R(p) = {1,3,7} at position p = 2 is represented by Tr(p) =
[1,3,7,—1]. The kth element of T (p) is referred to as Tr(p, k). From this, any state R included in R(p)
can be represented as a bitset B(R) of size Wmaz where the kth bit of B(R) is set to 1 if and only if R
contains customer Tz (p, k). For instance, if T (p) = [1,3,7,6] such as at position p = 5 in the example of
Table 2, set R = {1,6} corresponds to B(R) = 1001. For two sets X,Y included in R(p) for a given position
p, operations X UY, X NY, X \'Y can then be performed as bitset operations in time linear in Wmazx
(bitwise operations “B(X)|B(Y)”, “B(X) & B(Y)”, and “B(X) & !B(Y)” respectively). This entails that set
R\ Rppaz(p) used at Line 9 of Algorithm 6 can be computed in time O(Wmaz), since Rz (p) € R(p)
and R C R(p) always hold at that line. Similarly, set R(p+ 1) \ R’ can be computed in time O( Wmaz) at
Line 10 since R' € R(p + 1) always holds at that line. In our implementation, any bitset B(R) is actually
represented as a single 32-bit integer since the value of Wmaz is always lower than 32 in our settings (CPU
time and memory consumption are prohibitive otherwise).

Moreover, in a visit state (p, R,4), integer ¢ (the last visited customer) is represented by an index k €
[0..Wmaz]: if i is a removed customer, this index is the unique integer k£ € [0..Wmaz — 1] such that
Tr(p, k) = i; otherwise (case i = 3,_|r|—|R(p)|), this index takes value k = Wmaz.

Another trick is that if every customer 4 always has the same index in all tables T’z (p) associated with the
positions p it can occupy, then a set R that is included both in R(p) and R(p + 1) has the exact same bitset
representation at positions p and p + 1. For instance, at position 6 where Tx(6) = [1,—1,7,6], set {1,6}
corresponds to bitset 1001, as at position 5 where 7% (5) = [1,3,7,6]. This makes it easier to handle sets of
customers from one position to the next. The good news is that it is always possible to define such a unique
index Windex (i) € [0.. Wmaz —1] for each removed customer 7. For this, we start from Tz (p) tables filled with

value —1 and traverse the successive positions p. For each position p, a unique W-index is allocated to each
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customer ¢ that is “activated” at position p, that is to each customer in set Ryin (p) = {7 € R| Pmin(?) = p}.
This index is then booked for ¢ in the Tk (p') tables at all positions p’ € [Pyin (2).. Praz (2)]. By construction,
it can be easily shown that when considering customer i, finding a free W-index is always possible since the
insertion-width of 3 is bounded by Wmaz. For instance, at position 1 in Table 2, where R, (1) = {1, 3}, we
first book index Windez(1) = 0 for customer 1 and index Windez(3) = 1 for customer 3. When considering
position 2, we book index Windex(7) = 2 for customer 7, and when considering position 3, we book index
Windex(6) = 3 for customer 6. At position 7 where R, (7) = {8}, the free W-index chosen for customer 8
is Windex(8) = 0, since index 0 was booked by customer 1 only until position 6. In the general case, it can
be shown that such a process allows us to both define a unique W-index for each customer i and to compute
the Tz (p) tables with a time and space complexity O(N - Wmax).

Last, note that for the repair algorithm to work, it suffices to store the 7 (p, R, ) values and not the whole
set of v(p, R,i) values. Indeed, at each step, we only need two copies of data structures v(p, R, %), namely
one copy for the evaluation of the states at the current position and another one for the evaluation of the

states at the next position.

7.5. Complexity of the repair procedure
Proposition 6. If each call to transition function tt has a time and space complexity O(1), then the repair

procedure has a time complexity O(2Wmer . Wmaz? - N) and a space complexity O(2™W™% . Wmagz - N).

Proof. At Line 4, all sets AncR(i,p) can be computed in time O(N - Wmaz?). Indeed, for each position p,
there are (1) at most Wmaz removed customers that can occupy position p, (2) at most Wmaz + 1 non-
removed customers that can occupy position p, since every customer of 3 that can be visited at position p
has the form 8, _|r|—|r (p)|, Where the only variable component is the cardinality of R that is always between
0 and Wmaz. Moreover, for each pair (¢, p), the intersection at Line 4 can be computed in time O( Wmax)
since [R(p)| < Wmax and since after the destroy phase, set Anc(i) is already available as a bitset.

Next, for each position p € [0..N], the number of states R C R(p) involved in visit states (p, R,%) is
bounded by 2"™ since |R(p)| < Wmaz. For each pair (p, R) involved in a visit state, at most Wmaz + 1
next customers need to be considered (at most Wmaz possible values for i at Line 10, plus value ¢ = Snext
in the second case analyzed). For each candidate next customer #, the “ancestors-checks” at Lines 10 and 17
are feasible in time O( Wmaz) using bitset representations. Then, at most Wmaz + 1 values of j are analyzed
at Lines 11 and 18. As a result, the overall time complexity of Lines 7 to 23 is O(2"Wmee . Wma:rQ). Over
all positions, this leads to a time complexity O(2"™% . Wmaz?® - N). Last, the path reconstruction phase
is feasible in time O( Wmaz - N) since operations “(R\ {i}) URmae(p —1)” and “RU R 42 (p — 1)” used at
Line 6 in Algorithm 7 can be performed in time O( Wimaz) thanks to bitset representations again. The space
complexity comes from the data structures related to visit states (p, R,4) (at most 2™ . (Wmaz + 1) - N

visit states over all positions p € [1..N]). ]
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As a result, the repair process has a complexity that is only linear in N given a fixed Wmaz value. In
comparison, let us recall that the standard Held-Karp procedure for TSP has a time complexity O(2V - N?)
and a space complexity O(2" - N) [38, 39]. The complexity result given before allows us to identify a new

polynomial class for (TD)TSPTW.

Proposition 7. When the transition function satisfies the FIFO property and can be computed in polynomial
time, determining whether there exists a feasible solution to (TD)TSPTWs whose insertion-width is bounded
by a fixed constant W is polynomial. Moreover, if there exists a feasible solution, finding a makespan-optimal

solution is polynomial as well, simply by applying the repair procedure from partial solution 8 = [0, N + 1].

7.6. State elimination techniques

One last standard ingredient of a dynamic programming algorithm for (TD)TSPTW is a state elimination
technique. In ImaxLNS, when the tardiness of the solution o considered before the destroy phase is null,
we force the repair process to explore only solutions that have a null tardiness. For this, we use a backward
propagation step that computes, before the repair process, a latest visit time for each customer in partial
solution . To do this, there is a need to dispose of a backward transition time function <F such that for
any pair of distinct customers (i,5) € [0..N] x [1..N + 1] and any time 7 €] — 0o, Fnd(j)], quantity %(z’,j, T)
gives a lower bound on the duration required to perform a transition or a chain of transitions from i to j
and reach customer j before time 7 (ideally, <E(71,j, 7) = min{y € RT | t?('i/,j, T —7) <~}). When transition
function ft satisfies the triangular inequality and is not time-dependent (¢t(z,j,7) = tt(¢,7)), it suffices to
use <E(i,j, 7) = tt(4,5). For TDTSPTW in general, <t_rf(z'7j, 7) can be computed by an iterative method that
(1) starts from an interval [y1,72] within which %(z, J,7) should be looked for, and (2) considers at each
step a new value 3 € [vy1,72] obtained by dichotomy or linear interpolation, to converge to <E(z, j,T) up
to a given precision. We actually used such an iterative technique for one of the benchmark involving a
black-box time-dependent transition function. Specific implementations of % can also be defined for some
TDTSPTW benchmarks. For instance, for benchmarks involving time-dependent vehicle speeds, <E can be
obtained from a relaxed time-independent model making a maximum speed assumption.

Then, assume that the current solution o considered before the destroy phase has a null tardiness (§(c) =
0). Based on function <E, we traverse partial solution 8 = [y, ..., Bm+1] in a backward fashion and compute,
for each customer Gy, a latest visit start time I£(fx). For the end customer 3,41 = N + 1, we use lt(8p4+1) =

7(o) (i.e. the makespan of o). For any customer §; that is not the last one in 5, we use:

. —
It(By) = max(m,m') where m = min(End(Bx), 1t(Br+1) — tt (Brs Bet1, H(Br+1))) (19)
m' = 7(0. pos(, Br))
Term m corresponds to the latest visit time of 3 according to function %. Term m’ corresponds the current

visit time of By in the solution o considered before the repair phase. Taking into account both m and m’
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allows to guarantee that the latest visit time computed for i is never more restrictive than the feasible
visit time available in solution o. This is useful to increase the robustness of the algorithm with regards
to precision issues in the computation of <E, and more generally with regards to cases where % does not
provide true lower bounds on transition times. If % can return results in time O(1), then the latest visit
start times for all customers in 8 can be computed in time O(N).

After that, during the repair process, when a state evaluation v = (4, 7, p) is computed after a transition
j — i from a state (p, R, j), this evaluation is discarded at Lines 13 and 20 of Algorithm 6 if it does not allow
to reach the next customer in 3 on time, that is if condition 7 + t?(z, Bnext,T) > lt(Bnext) holds. Extended
state-elimination techniques do exist for TDTSPTW, however the first experiments performed by using such
techniques within ImaxLNS were not conclusive. This is why lightweight pruning rules are used instead.

One last remark is that even if <E does not provide true lower bounds on transition times, the repair

algorithm can still be used. The only impact is that it might produce suboptimal results in this case.

8. Experiments

This section presents the results obtained on several benchmarks: (1) standard TSPTW benchmarks,
(2) the TDTSPTW benchmark defined by Arigliano et al. [5], (3) the TDTSPTW benchmark defined by
Aguiar-Melgarejo et al. [6], and (4) a new TDTSPTW benchmark related to the management of Earth

observation satellites.

8.1. Common evaluation methodology

FEzecution environment. ITmaxLNS is implemented in C++ and tested on an Intel Xeon processor E5-2660-v3
(2.60 GHz, 25MB cache) with 65GB of RAM. For each instance of each benchmark, 5 runs are performed to
obtain both best and mean results over the 5 runs. Each run is executed in a single thread. The maximum
CPU time for each run is set to 5 seconds for preliminary experiments that help determining a good value

for parameter Wmaz, and to 1 or 2 minutes for the hard TDTSPTW benchmarks.

Algorithmic settings. As explained in Section 5, ImaxLLNS has three parameters: (1) Wmaz, the maximum
insertion-width allowed, (2) Rmin, the minimum number of times each customer must be removed and
reinserted before considering that a local optimum is reached, and (3) Kmaz, the maximum number of 1-
shift moves performed during the perturbation phases. For all the experiments presented thereafter, we use
values Rmin = 3 and Kmax = 8 which provide good results, and we show the impact of parameter Wmazx for
Wmax € [1..10]. Moreover, during the preprocessing phase, dynamic programming is systematically applied
from an empty partial solution S = [0, N + 1] when the insertion-width of the problem is less than 12. In

this case, the solution found is returned without any further search.
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Metrics. For each instance solved by 5 runs, we analyze several metrics for ImaxLINS, namely #nsr: over
the 5 runs, the number of times ImaxLNS does not find a feasible solution; BG: the best relative gap in
percent obtained over the 5 runs; the relative gap g for a run is g = 100 - (b — BK)/BK where b denotes the
best solution found by the run and BK denotes the best-known solution for the instance; Gm and Gs: over
the 5 runs, the mean value and standard deviation of the relative gap, in percent; Tm and Ts: over the 5
runs, the mean value and standard deviation of the time required to get the best solution found for a given
run, in seconds; #it/s: over the 5 runs, the mean number of destroy-repair iterations per second.

At the level of each benchmark (covering several instances), we analyze the following metrics: #mnsr: the
number of runs for which ImaxLNS does not find a feasible solution; #BG>0: the number of instances for
which BG is strictly positive, or equivalently the number of instances for which none of the 5 runs finds the
best-known solution; #Gm>0: the number of instances for which Gm is strictly positive, or equivalently
the number of instances for which at least one run did not find the best-known solution; max(Gm) and
Gm: the maximum value and the average value obtained for Gm over all instances; max(Tm) and Tm: the
maximum value and the average value obtained for Tm over all instances; #spp: the number of instances
solved during the preprocessing phase of ImaxLNS.

Moreover, for each instance of each benchmark, we analyze the average number of customers removed at
each destroy phase. The objective is to show that on some instances, many customers can be reinserted even
when using small Wmax values like Wmax = 4 or 5. In this case, applying mazimum LNS is more efficient
than removing a fixed number of customers at each iteration independently of the problem structure. Last,

for a good value of Wmazx (Wmaz = 4 or 5), we compare ImaxLLNS with state-of-the-art methods.

8.2. Results on standard TSPTW benchmarks

Description of the benchmarks. We consider seven standard TSPTW benchmarks referred to as Langevin [10],
AFG [40], Dumas [13], SolomonPotvinBengio [41], SolomonPesant [16], GendreauDumasExtended [18], and
OhlmannThomas [21]. These benchmarks can be found at http://lopez-ibanez.eu/tsptw-instances.
They cover 467 instances containing from 3 to 231 customers and involving time windows that are more of

less tight. For this benchmark, the transition function ¢t is not time-dependent and we use ==

Impact of Wmaz. Table 3 shows the impact of parameter Wmaz for the different benchmarks. In this table,
each run has a maximum duration of 5 seconds. Overall, 5 runs are performed for each of the 467 instances,
which leads to 2335 runs per value of Wmax. Over these 2335 runs, each method always finds a feasible
solution (#nsr = 0 for each instance). All values of Wmaz give quite good results, but the best option is to
choose a value that is neither too low nor too high in order to be able to both consider large neighborhoods
and perform many local moves (see lines #it/s). In the end, value Wmaz = 4 is a good trade-off. It allows to

find the best-known solution for each of the 2335 runs, therefore leading to a null gap all the time. Moreover,
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with Wmax = 4, ImaxLLNS reaches the best-known solutions very quickly, in less than 0.06 second on average

for each benchmark. Note that all instances of the Langevin benchmark are solved during the preprocessing

phase of ImaxLLNS since they have a very low insertion-width.

benchmark inst metric Winax
1 2 3 4 5 6 7 8 9 10
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gs(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Langevin 70 Tm(s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ts(s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#it/s - - - - - - - - - -
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gs(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AFG 50 Tm(s) 0.09 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
Ts(s) 0.38 0.12 0.02 0.02 0.01 0.02 0.01 0.01 0.04 0.05
#it/s 45646.2  25015.5  19821.3 11100.6 9065.6  5848.3  3604.2 2211.8 1373.3 887.3
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gs(%) 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dumas 135 Tm(s) 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ts(s) 0.02 0.00 0.24 0.01 0.01 0.01 0.01 0.01 0.01 0.01
#it/s 20976.2  13293.1 9460.1 6247.5 4354.9  3145.5  2149.1 1516.2 1192.8 904.7
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02
Solomon Gs(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.10
Potvin 30 Tm(s) 0.16 0.05 0.07 0.06 0.07 0.12 0.17 0.18 0.22 0.30
Bengio Ts(s) 0.55 0.10 0.21 0.18 0.21 0.37 0.55 0.51 0.64 0.82
#it/s 71178.1  41833.8  26144.3  16693.7 9829.3  5655.6 3396.2 1952.7  1313.7 806.8
Gm(%) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01
Solomon @%) 0.04 0.00 0.00 0.00 0.00 0.02 0.02 0.03 0.09 0.07
Pesant 27 Tfm(s) 0.16 0.09 0.08 0.06 0.07 0.07 0.13 0.16 0.10 0.24
Ts(s) 0.47 0.46 0.33 0.24 0.26 0.29 0.49 0.57 0.30 0.76
#it/s 68108.6  39944.2  24597.9  16063.1  9290.4  5543.7  3456.6  2204.8 1607.1 1079.6
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gendreau Gs(%) 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Dumas 130 Tm(s) 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
Extended Ts(s) 0.22 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.02
#it/s 24590.5  14948.2 9237.7 6290.2 4063.0  2657.8 1710.8  1118.6 709.9 453.6
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gs(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ohlmann -
25 Tm(s) 0.19 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.05 0.07
Thomas _
Ts(s) 0.44 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04 0.07
#it/s 8637.1 5335.9 3547.6 2430.1 1574.5  1017.8 641.4 390.5 238.8 145.6

Table 3: TSPTW benchmarks: impact of Wmaz on the performance of ImaxLNS (max CPU time = 5 seconds per run, 5 runs

per instance); the number of instances in each benchmark is given in column inst

Number of customers removed at each destroy phase. Figure 4 gives the mean number of customers removed

at each destroy phase (y-axis) for each instance of each benchmark (one item on the x-axis per instance that

is not solved during the preprocessing phase), when using Wmaz = 4. These mean numbers, represented by
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the blue rectangles, are averaged over all LNS iterations of all runs performed for the corresponding instance.
The figure also shows the total number of customers in each instance (unfilled rectangles). For example,
for the first instance of the SolomonPesant benchmark, 8 customers among 25 are reinserted at each LNS
step on average. Globally, for the AFG and Dumas benchmarks, the mean number of customers removed at
each step is quite high. For the SolomonPotvinBengio and SolomonPesant instances, from 4 to 16 customers
are removed on average at each destroy phase. For the GendreauDumasExtended benchmark, more than 20
customers are sometimes removed and reinserted in a single iteration. For the OhlmannThomas benchmark,
around 20 customers are removed on average at each step. Concerning these results, it is worth mentioning
that the preprocessing phase sometimes detects that some customers can be harmlessly visited before the
others (see Section 4). These customers are counted in the set of customers removed at each step, which
is why some peeks appear in the histograms of Figure 4, such as for one instance of the OhlmannThomas

benchmark where the preprocessing phase fixes the position of about 180 customers out of 200.

Comparison with the state-of-the-art. ImaxLNS with Wmax = 4 is compared with one of the best state-of-
the-art methods, namely the recent GVNS algorithm of Amghar et al. [27] which is claimed to be robust and
at least as good as the state-of-the-art incomplete search techniques for TSP TW-M. For the comparison, we
used the raw results obtained by Amghar et al. on an Intel i7-3770 processor (3.40 GHz, 8 MB cache) and
with a time limit of 24 seconds per run. These raw results include the gap statistics Gm and Gs for each
instance over 5 runs, as well as the time statistics Tm and Ts given by Amghar et al. with a precision of
one second. According to https://www.cpubenchmark.net/compare, for single-threaded computations, the
performance of the processor they used for GVNS is approximately 1.5 times faster than the processor we
use for ImaxLLNS, however we do not apply any scaling and directly report their raw results.

The detailed comparison between ImaxLNS and GVNS for each instance of each benchmark is available
in the supplementary material. Table 4 gives a global view of this comparison. It shows that for each
benchmark, ImaxLNS gives both the smallest mean gaps and the smallest CPU times on average, and
as shown in the supplementary material, this trend is valid at the level of each instance too. Moreover,
contrarily to GVNS, ImaxLNS reaches the best-known solution at each run (see columns #Gm>0). It finds
these best-known solutions with a mean computation time Tm equal to approximately 1 second in the worst
case, while on some instances, GVNS requires a mean time greater than 10 seconds to find its best solution
(see columns max(Tm)). Last, ImaxLNS solves several instances directly during the preprocessing phase
(see column #spp), either because the insertion-width of the instance is low enough (less than 12 in our
settings), or because the initial greedy search based on the tardiness-makespan-cost heuristic provides a
solution whose makespan is equal to the makespan lower bound. For example, among the 30 instances of
the SolomonPotvinBengio benchmark, 11 are solved during the preprocessing phase. ImaxLNS sometimes

terminates during search, when a solution whose makespan is equal to the makespan lower bound is produced.
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Figure 4: For standard TSPTW benchmarks and for ImaxLNS with Wmaz = 4, mean number of customers removed at each

destroy phase (y-axis) for each instance (x-axis) that is not directly solved during the preprocessing phase

benchmark GVNS (24 seiper run) o ImaxLNS (5 sec. pﬂun, Wmaz :i
#Gm>0 max(Gm) Gm max(Tm) Tm #nsr  #Gm>0 max(Gm) Gm max(Tm) Tm #spp

Langevin 0 0.00 0.00 0 0.00 0 0 0.00 0.00 0.00 0.00 70
AFG 0 0.00 0.00 11 0.24 0 0 0.00 0.00 0.07 0.01 26
Dumas 1 0.06 0.00 1 0.11 0 0 0.00 0.00 0.01 0.00 63
SolomonPotvinBengio 2 0.11 0.01 8 0.57 0 0 0.00 0.00 0.60 0.06 11
SolomonPesant 3 2.65 0.11 11 0.56 0 0 0.00 0.00 1.20 0.06 6
GendreauDumasExt. 5 0.23 0.01 2 0.31 0 0 0.00 0.00 0.01 0.00 22
OhlmannThomas 3 0.29 0.02 19 4.68 0 0 0.00 0.00 0.02 0.01 2

Table 4: Global comparison between GVNS and ImaxLNS on the TSPTW benchmarks (for ImaxLNS, max CPU time = 5

seconds per run, 5 runs per instance, and Wmaz = 4)

8.3. Arigliano et al. [5] benchmark

Description. In this benchmark, a vehicle must visit locations in an environment decomposed into zones
that have different congestion levels. The congestion level of each zone varies along time, which leads to
time-dependent transitions between the locations. For this benchmark, we define functions % and % from a
time-independent model using a maximum speed assumption among congestion zones. The instances differ
in the number of locations N € {15,20,30,40} to visit, the level of congestion, the traffic pattern, and the
sizes of the time windows through a parameter 8 € {0.00,0.25,0.50,1.00} (the higher 8, the smaller the
time windows; this parameter must not be mistaken for the notation 3 used before for partial solutions). In
what follows, we do not consider the small instances involving N = 15 locations. We aggregate the results

obtained for each of the remaining 12 combinations of N and £, as in the work of Lera-Romero et al. [35].

Impact of Wmaz. To study the impact of Wmaz, we consider the instances containing N = 40 locations,

and for each value of 3, we randomly select 60 instances among the 300 available ones. To be able to analyze
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the gap for each value of Wmax, among these 60 instances for each 8 value, we only keep the instances that
we identified as solved to optimality by Lera-Romero et al. [35]. Doing so, we end up with 45, 57, 60, and 60
instances for g = 0.00, 0.25, 0.50, 1.00 respectively. The mean gaps obtained for different values of Wmax
are given in Table 5, for a CPU time of 5 seconds per run. All runs of ImaxLNS manage to find a feasible
solution for every instance selected, and all instances with § = 1.00 are solved during the preprocessing
phase, their widths being less than 12 (between 4 and 9). For the other values of 3, there is again a tradeoff
to be made between choosing a small value for Wmax to increase the number of LNS iterations per second,
and a high value to get a larger neighborhood. In the following, we select value Wmaz = 4. With this value,
the mean gap after 5 seconds is less than 0.5% on average, and this gap is smaller for the high 3 values
that reduce the size of the time windows. Note that the gaps are evaluated with a precision 1072 on the

makespan as the best values provided by Lera-Romero et al. [35] have that precision.

B inst metric Wimax
1 2 3 4 5 6 7 8 9 10

Gm(%) 1.67 0.72 0.49 0.44 0.49 0.59 0.81 1.17 1.82 2.63
Gs(%) 0.77 0.58 0.51 0.51 0.60 0.68 0.88 1.29 1.71 2.26
0.00 | 300 Tm(s) 2.41 2.34 2.29 2.43 2.50 2.51 2.59 2.71 2.99 3.42
Ts(s) 1.45 1.46 1.40 1.37 1.41 1.48 1.38 1.40 1.31 1.15
F#it/s 39249.7  20913.1 10726.6 5198.5 2373.0 1052.9 454.9 187.9 81.7 35.3
Gm(%) 1.27 0.49 0.38 0.27 0.33 0.38 0.48 0.75 1.05 1.45
Gs(%) 1.00 0.58 0.71 0.45 0.64 0.85 0.83 1.10 1.38 1.61
0.25 | 300 Tm(s) 2.56 2.41 2.25 2.29 2.16 2.30 2.47 2.48 2.68 2.63
Ts(s) 1.48 1.40 1.44 1.41 1.42 1.42 1.50 1.50 1.47 1.34
F#it/s 32693.9  18360.5 10374.7 5580.4 2829.6 1389.6 663.5 308.3 146.0 68.9
Gm(%) 0.41 0.12 0.07 0.05 0.04 0.04 0.07 0.11 0.17 0.25
Gs(%) 0.52 0.23 0.14 0.13 0.11 0.11 0.22 0.32 0.37 0.49
0.50 | 300 Tm(s) 2.34 1.57 1.39 1.37 1.51 1.41 1.72 1.84 1.96 2.28
Ts(s) 1.45 1.38 1.29 1.38 1.36 1.26 1.34 1.35 1.41 1.42
#it/s 31277.0 17878.9  10399.8 5856.5 3182.3 1700.8 891.1 460.5 242.0 125.3
Gm(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gs(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 | 300 Tm(s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ts(s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F#it/s - - - - - - - - - -

Table 5: Arigliano et al. [5] benchmark: impact of Wmaz on the performance of ImaxLNS§, for instances of size 40 and for

different values of 8 (max CPU time = 5 seconds per run, 5 runs per instance)

Number of customers removed at each destroy phase. Figure 5 shows the number of customers removed at
each destroy phase for all instances of size 40 selected for the preliminary experiments and that are not
solved during the preprocessing phase. Globally, when using Wmaz = 4, the mean number of customers

removed is always equal to 4 for 5 = 0.00, between 4 and 7 for § = 0.25, and between 7 and 11 for 8 = 0.50.
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Figure 5: For the Arigliano et al. [5] benchmark and for ImaxLNS with Wmaz = 4: mean number of customers removed at

cach destroy phase (y-axis) for each instance (x-axis) that is not directly solved during the preprocessing phase

Comparison with the state-of-the-art. Table 6 compares ImaxLNS using Wmaz = 4 with the state-of-the-
art exact dynamic programming algorithm recently proposed by Lera-Romero et al. [35] and referred to as
DP-LR is the following. DP-LR was shown to outperform the previous approach by Arigliano et al. [5].
For DP-LR, column opt indicates the number of instances solved to optimality by Lera-Romero et al. on
an Intel Core i7-8700 (3.20GHz, 12MB cache), with 32GB of RAM and a maximum CPU time of 1 hour.
According to https://www.cpubenchmark.net/compare, for single-threaded computations, this processor
is almost 1.5 faster than the processor we use for ImaxLINS, however we present the raw results of the two
methods on the two different processors without any scaling. The best solutions obtained by DP-LR are
retrieved from https://github.com/gleraromero/tdtsptw/blob/master/tdtsptw-optima.ods (version:
August 2022) and the gaps presented in this section are computed relatively to the best solution found by
DP-LR or ImaxLLNS for each instance. As DP-LR performs a unique run for each instance, Table 6 indicates
the number of instances for which DP-LR finds no solution (column #unsi), the number of instances for which
its relative gap is strictly positive (column #G>0, which counts the number of instances for which DP-LR
finds either no solution or a suboptimal solution), the maximum and average values of this gap over all
instances for which a solution is found (max(G) and G), and the total computation time required by DP-LR
on average over the instances solved to optimality (T°Pt).

For ImaxLNS, the time limit is set to 1 minute per run. Table 6 shows that ImaxLNS leads to mean
gap values that are small (less than 0.11% on average after one minute). It also shows that the number
of instances for which none of the 5 runs of ImaxLLNS finds the best solution is null for the instances of
size N € {20,30}, and small for the instances of size 40 (see column #BG>0). Moreover, contrarily to
DP-LR, all runs of ImaxLNS$ find a feasible solution (see column #nsr compared to column #nsi). Another
result that is not explicitly mentioned in the table is that compared to DP-LR, ImaxLNS produces 50 new
feasible solutions and 13 new best solutions for configuration [N = 40,8 = 0.00], with a quite large gap
for the new best solutions (see column max(G) for DP-LR). These numbers are consistent with the fact
that for this configuration, DP-LR solves to optimality all 300 instances but 63. Similarly, for configuration
[N = 40,8 = 0.25], ImaxLNS produces 9 new feasible solutions and 4 new best solutions when compared

to DP-LR, still with a quite large gap for the new best solutions. Again, these numbers are consistent with

37



900

905

910

915

the fact that for this configuration, DP-LR solves to optimality all 300 instances but 13. All new solution
values found by ImaxLNS for these specific 63 + 13 instances are available in the supplementary material.
These new solution values have been obtained from 5 runs of 5 minutes of ImaxLLNS, to try and improve
the best values produced. One last comment is that the mean CPU time consumed by ImaxLNS to find its
best solution is small on average (from a few seconds to 20 seconds), even on benchmarks where the average
time required by DP-LR to solve the instances to optimality is high. To conclude, we can say that DP-LR is
very good at solving numerous instances to optimality, while ImaxLNS always manages to produce optimal
or near-optimal solutions very quickly and can be considered as very robust since it never fails to produce a
feasible solution and never returns a solution having a very large gap, even after a few seconds of CPU time.
The two approaches could be combined in the sense that ImaxLNS could provide good upper bounds that

might help DP-LR. Finally, ImaxLNS has a very low memory consumption.

3 N | #inst DP Lera-Romero et. al [35] (i hour)i ImaxLNS (5 runs per instalﬁ 1lmin per rulemaa: =4)
opt #nsi #G>0 max(G) G Tert #nsr #BG>0 max(Gm) Gm max(Tm) Tm #spp
20 | 300 | 300 0 0 0.00 0.00 45.64 0 0 0.00 0.00 3.97 0.13 0
0.00 | 30 | 300 | 300 0 0 0.00 0.00 488.56 0 0 1.56 0.01 26.72 3.09 0
40 | 300 | 237 50 63 134.75  5.48  2119.87 0 62 2.12 0.11 51.42 20.30 0
20 | 300 | 300 0 0 0.00 0.00 20.92 0 0.00 0.00 7.50 0.11 0
0.25 | 30 | 300 | 300 0 0 0.00 0.00 299.96 0 0.55 0.00 30.56 2.37 0
40 | 300 | 287 9 13 91.23 1.15  1654.10 0 41 0.94 0.05 47.20 14.73 0
20 | 300 | 300 0 0 0.00 0.00 6.32 0 0.00 0.00 0.28 0.03 0
0.50 | 30 | 300 | 300 0 0 0.00 0.00 115.67 0 0.05 0.00 22.29 0.47 0
40 | 300 | 300 0 0 0.00 0.00 619.69 0 11 0.96 0.01 45.63 5.40 0
20 | 300 | 300 0 0 0.00 0.00 0.01 0 0.00 0.00 0.00 0.00 300
1.00 | 30 | 300 | 300 0 0 0.00 0.00 0.01 0 0.00 0.00 0.00 0.00 300
40 | 300 | 300 0 0 0.00 0.00 0.10 0 0.00 0.00 0.00 0.00 300

Table 6: Global comparison between the dynamic programmaing algorithm of Lera-Romero et al. [35] and ImaxLNS on the

Arigliano et al. [5] benchmark (configuration: Wmaz = 4, maximum CPU time = 1 minute per run, 5 runs per instance)

8.4. Aguiar-Melgarejo et al. [6] benchmark

Description. This benchmark is related to an urban delivery problem [6]. The corresponding instances
can be found at http://perso.citi-lab.fr/csolnon/TDTSP.html. They contain 10, 20, 30, 50, or 100
customers. We do not consider instances of sizes 10 and 20 in the following. As this benchmark considers
an urban environment where traffic conditions vary over the day, the travel time between two customers is
time-dependent. In the benchmark, time is discretized using a 6-minute time-step and a travel time matrix
specifies the transition duration required between any pair of customers at each time-step. This travel time
matrix does not necessarily satisfy the FIFO assumption, but it can be easily transformed to recover a FIFO
travel time function [6]. For the experiments, we use U = #t even if the triangular inequality is sometimes

violated by tt, and we derive <E from the direct transition times specified by ¢t. In the benchmark, there are
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3 possible distance matrices referred to as M00, M10, and M20 and for each problem size in {30,50, 100},
there are 20 customer selection scenarios, which leads to 60 instances per problem size. One last remark is
that as customer 0 is contained in the set of customers for each instance, we actually have N € {29,49,99}.

The instances can contain precedence constraints, and one difficulty is that several time windows are
sometimes available for visiting a given customer. To overcome this difficulty, the presence of several time
windows [Start(i, k), End(i, k)] for a given customer ¢ is managed through the transition time function. More
precisely, if the transition time from customer j to customer ¢ equals  when starting the transition at time 7
and if 7+ is located strictly between two windows [Start (i, k), End(i, k)] and [Start(i, k + 1), End (3, k + 1)],
then we use tt(i,j,7) = Start(i,k + 1) — 7 to express that the vehicle must wait for the beginning of time

window [Start(i, k + 1), End (i, k + 1)] in this case. In any other case, we use tt(i,j,7) = x.

Impact of Wmazx. Table 7 gives results obtained with a maximum CPU time of 5 seconds per run. In
this table, the gap values are computed relatively to the best solutions found by ImaxLNS over all our
experiments. These values are always at least as good as the best solution values provided on the benchmark
website. As smaller average gaps are obtained with Wmaz = 5, we choose this value for the rest of the
experiments. Globally, this value is a good trade-off between the speed of each local move and the size of the
neighborhood explored, whereas value Wmaz = 10 leads to a very small number of iterations per second,
and value Wmaz = 1 sometimes has difficulty to find feasible solutions due to its restricted neighborhood.
We also observed that with a CPU time of 5 seconds per run, the best solution found by ImaxLNS with
Wmax = 5 over each instance is always at least as good as the best-known solution. Note that none of the

instances is solved during the preprocessing phase.

. . . Wmax
size inst metric 1 9 3 4 5 6 7 s 9 10
Gm(%) 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gs(%) 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03
30 60 Tm(s) 0.47 0.22 0.10 0.11 0.12 0.12 0.17 0.24 0.30 0.36
Ts(s) 0.84 0.52 0.27 0.29 0.40 0.38 0.36 0.48 0.59 0.62
it /s 73030.2  41538.0  24542.3  13855.2  7537.9 3973.5 2044.6 1058.3 545.3  281.3
Gm(%) 0.47 0.19 0.14 0.14 0.11 0.14 0.15 0.23 0.31 0.36
Gs(%) 0.77 0.46 0.38 0.42 0.36 0.43 0.43 0.58 0.80 0.73
50 60 Tm(s) 1.46 1.14 1.01 0.84 0.97 0.89 0.99 1.21 1.18 1.27
Ts(s) 1.42 1.35 1.33 1.19 1.27 1.20 1.25 1.38 1.39 1.30
#it /s 39290.9 22915.0 13966.3 8058.5 4458.8  2234.1  1200.5 590.6 295.5  146.7
Gm(%) 6.70 3.563 2.79 2.40 2.25 2.42 2.60 2.60 3.30 3.70
Gs(%) 3.84 2.31 1.97 1.74 1.81 1.85 2.19 2.12 3.05 3.02
100 60 Tm(s) 1.97 2.01 2.07 2.18 1.85 2.09 2.18 2.43 3.06 3.77
Ts(s) 1.65 1.57 1.57 1.62 1.56 1.49 1.43 1.32 1.39 1.10
#it/s 18360.7  10103.7 6111.6 3674.5 2005.0 1132.1 595.0 322.4 166.3 85.5

Table 7: Aguiar-Melgarejo et al. [6] benchmark: impact of parameter Wmaz on the performance of ImaxLLNS (max CPU time

= 5 seconds per run, 5 runs per instance)
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Number of customer removals. Figure 6 shows the mean number of customers removed at each destroy
phase. For each problem size, the x-axis contains one item for each of the 60 problem instances, and each
blue rectangle represents the mean number of customers removed at each step when using Wmaz = 5. This
number is between 5 and 7 for the instances of size 30, between 6 and 8 for the instances of size 50, and
between 7 and 8 for the instances of size 100. These results are consistent with the fact that many customers

have large time windows in this benchmark.
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Figure 6: Aguiar-Melgarejo et al. [6] benchmark: for ImaxLNS with Wmaz = 5, mean number of customers removed at each

destroy phase (y-axis) for each instance (x-axis) of size 30, 50, or 100 (5 seconds per run, 5 runs per instance)

Comparison with the state-of-the-art. The solutions found by ImaxLNS in 5 runs of 2 minutes are compared
with the best solutions provided on the website of the benchmark and obtained by Aguiar-Melgarejo et al.
on processors Intel Xeon X5570 (2.93GHz, 8MB cache), with 20GB of RAM and a maximum CPU time
of 2 hours ([6], page 93). Their solving technique, referred to as CP-tdNoOQverlap in the following, uses an
implementation of a specific time-dependent no-overlap constraint in the IBM ILOG CpOptimizer constraint
programming engine. The detailed results for all the instances are provided in the supplementary material.
Table 8 gives a global view of these results. It shows the number of instances for which no solution is found
by CP-tdNoOverlap in 2 hours (column #nsi), as well as statistics concerning the gap G in percent with
regards to the best solutions found during our experiments on ImaxLNS. These statistics include the number
of instances for which the gap is positive (#G>0), the maximum gap value over all the instances (max(G)),
and the average gap value over all the instances (G). Several comments can be made on these results. First,
ImaxLLNS always manages to find a feasible solution while CP-tdNoOverlap has issues with 6 of the 60
instances of size 100. Second, with Wmax = 5, ImaxLNS reaches the best solutions many times and leads
to very small gaps for each instance, whereas this gap is sometimes greater than 18% for CP-tdNoOverlap.
Third, the instances of size 100 are much harder than the instances of size 30 or 50 given the dispersion
of the CPU time required to get the best solution. In the end, for this benchmark, the 2-minute runs of
ImaxLNS provide 6 new best solutions over the 60 instances of size 30, 29 new best solutions over the 60
instances of size 50, and 59 new feasible or best solutions over the 60 instances of size 100. This allows
us to conclude that from the point of view of the quality of the solutions produced, ImaxLNS outperforms

CP-tdNoOverlap, even if CP-tdNoOverlap can prove solution optimality for the small instances.
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cive | matrix | inst CP-tdNoOverlap (2 hours)ﬁ ImaxLNS (5 sec. pz"un, Wmaz :ﬁ
#nsi #G>0 max(G) G #nsr  #BG>0 max(Gm) Gm max(Tm) Tm #spp
MO0 20 0 3 1.99 0.23 0 0 0.00 0.00 2.79 0.25 0
30 M10 20 0 2 2.13 0.18 0 0 0.00 0.00 0.24 0.06 0
M20 20 0 1 0.07 0.00 0 0 0.00 0.00 0.20 0.06 0
MO0 20 0 8 2.04 0.31 0 0 0.13 0.01 58.53 6.70 0
50 M10 20 0 9 5.59 0.64 0 0 0.14 0.01 62.58 5.77 0
M20 20 0 12 7.95 1.05 0 0 1.17 0.06 82.54 8.59 0
MO0 20 4 20 15.17  5.18 0 15 1.82 0.46 97.11 53.96 0
100 M10 20 1 19 18.81  4.47 0 15 1.82 0.63 92.80 55.80 0
M20 20 1 20 18.97  5.87 0 17 2.08 0.92 80.22 52.79 0

Table 8: Global comparison between CP-tdNoOverlap and ImaxLNS on the TDTSPTW benchmark defined by Aguiar-Melgarejo

et al. [6], (configuration: Wmaz = 5, maximum CPU time = 2 minutes per run, 5 runs per instance)

8.5. Earth observing satellite benchmark

Description. In this last benchmark, a low Earth orbit satellite moving around the Earth must take pictures
of targets located at the Earth surface (see Figure 7). To observe a target, the satellite must be pointed
to the corresponding ground area. The relationship with TDTSPTW is that each target i can be seen as a
customer that can be visited only when the satellite overflies ¢, and the transition time between two customer
visits corresponds to the time required by the satellite to move from one target pointing to the next [42, 43].
This transition is time-dependent because from the satellite point of view, the position of a given ground
target varies along time, since the satellite is moving on its orbit around the Earth and the ground targets
are moving due to the rotation of the Earth on itself. In the instances generated,' we consider three different
satellite altitudes (500km, 700km, 800km). This leads to time windows for observing the targets that are
more or less tight (the higher the altitude, the larger the time windows). The size of each time window also
depends on a maximum observation angle a; € {15°,30°,45°} associated with each target i. From a general
point of view, the time-dependent transition function between observations is not linear and requires calls to
an external space mechatronics library. Such calls are fully compatible with ImaxLNS, but to define public
instances without providing this external library, we precompute the transition time from each target i to
each target j every 15 seconds and use a piecewise linear interpolation from the points obtained.

For this benchmark, the goal is not to minimize the makespan but to find a feasible sequence of visits
of the targets. To evaluate ImaxLLNS, hard instances are generated as follows. We consider one pass of the
satellite over an area containing 100 targets located between 20 and 60 degrees of latitude. These targets
are randomly ordered and added one by one to the current plan using ImaxLLNS with a maximum CPU time
of 10 seconds per target insertion. If the insertion of target 7 succeeds (possibility to get a feasible solution),

then 4 is kept in the current plan, otherwise it is discarded. At the end, we obtain a set of selected targets

1The instances will be made public in case of acceptance.
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Figure 7: Satellite benchmark: example of successive images performed over a set of targets (depicted in grey)

which are seen as the customers of a TDTSPTW, and by construction the latter admits a feasible solution.
Using this process, we generated 36 instances for each of the 3 satellite altitudes. Each of these 108 instances
is then solved by ImaxLLNS using a lower computation time (5 seconds max per run). For the experiments,

we use ﬁ = tt, even if the transition time function may violate the triangular inequality.

Impact of Wmaz. Table 9 details the impact of parameter Wmazx on the efficiency of ImaxLLNS. The number
of runs for which no feasible solution is found (lines #nsr) shows that setting Wmaz = 5 is a good trade-off.
With this value, the mean time required to get a feasible solution is small on average: 0.03 second for the
500km instances, 0.52 second for the 700km instances, and 0.59 second for the 800km instances. Moreover, as
shown in the supplementary material, the mean computation time over 5 runs is always less than 0.37 second
for each 500km instance, 3 seconds for each 700km instance, and 3.5 seconds for each 800km instance. The
800km instances are the hardest ones because at this altitude, the size of the largest time windows is between
4 and 5 minutes, whereas for the 500km instances, it is between 2 and 3 minutes and the insertion-width is

smaller. During the experiments, no instance was solved by the preprocessing phase of ImaxLNS.

Wmax
altitude inst metric
1 2 3 4 5 6 7 8 9 10
#nsr 15/180 0/180 0/180 0/180 0/180 0/180 0/180 0/180 0/180 0/180
Tm(s) 0.48 0.25 0.08 0.03 0.03 0.02 0.02 0.03 0.03 0.03
500km 36 _
Ts(s) 0.82 0.64 0.26 0.08 0.08 0.03 0.03 0.04 0.04 0.05
#it/s 32666.5  14446.9 8767.1 5427.7  3165.7 2112.6  1099.9 717.9 520.6 398.6
F#nsr 70/180 24/180 10/180 3/180 2/180 3/180 9/180 9/180 23/180 19/180
Tm(s) 1.09 0.83 0.50 0.53 0.52 0.56 0.62 0.72 0.84 0.99
700km 36 _
Ts(s) 1.02 1.08 0.79 0.75 0.83 0.87 0.85 0.89 1.02 1.14
#it/s 53296.5  18904.2 9048.2 4447.9 2381.0 1334.0 845.6 503.6 396.5 214.0
F#£nsr 60/180 25/180 16/180 11/180 3/180 5/180 2/180 3/180 7/180 17/180
Tm(s) 0.82 0.69 0.58 0.58 0.59 0.49 0.58 0.66 0.68 0.82
800km 36 _
Ts(s) 0.85 1.04 0.98 0.98 0.97 0.79 0.94 0.94 0.90 0.99
#it/s 57433.5  20627.0 10792.7 5399.4 2549.5  1443.1 752.4 431.3 279.6 204.8

Table 9: Satellite benchmark: ImaxLNS results for maximum insertion-width Wmaz in interval [1..10] and for three different

altitudes (maximum CPU time = 5 seconds per run, 5 runs per instance)

Number of customer removals. Figure 8 shows that using maximum LNS instead of LNS with a fixed number

of customer removals pays off for this benchmark. Indeed, with Wmaz = 5, the average number of customers
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removed at each destroy step is between 17 and 45 for the 500km instances, between 12 and 37 for the 700km
instances, and between 9 and 34 for the 800km instances. No state-of-the-art result is available on this new

satellite benchmark, hence we do not include a comparison between ImaxLNS and another method.

500km instances 700km instances 800km instances

20

Figure 8: Satellite benchmark: for ImaxLNS with Wmaz = 5, mean number of customers removed at each destroy phase

(y-axis) for each instance (x-axis), for the three different satellite altitudes (5 seconds per run, 5 runs per instance)

9. Conclusion and perspectives

This article introduced ImaxLNS, a new algorithm for finding feasible solutions or minimizing the
makespan for TSPTW and TDTSPTW, even if the transition time function is non-linear. This algorithm
uses iterative destroy and repair operations over a current sequence of visits, together with perturbations
and restarts to diversify search. As detailed in the pseudo-codes, the destroy phase removes customers from
the current sequence of visits as long as a parameter called the insertion-width is less than a value Wmazx,
and the repair phase uses dynamic programming to explore in linear time the possible reinsertions of the
customers removed. A specific effort was also put on algorithmic optimizations (incremental management of
the precedence graph, compact visit states, local bitset representations containing Wmaz bits, etc.), and this
effort allowed us to increase the number of destroy-repair operations performed per second, in conjunction
with the intrinsic capabilities offered by the neighborhood proposed. Several properties of ImaxLNS were
established, including makespan-optimality guarantees for the repair method and polynomial complexity
results for TDTSPTWs having a bounded insertion-width. The experiments performed on seven TSPTW
benchmarks covering 467 instances and three TDTSPTW benchmarks covering 3600 + 180 + 76 instances
showed the efficiency and robustness of ImaxLNS, which managed first to produce new feasible solutions and
best solutions, and second to reproduce many best-known solutions within short computation times.

Several perspectives could be explored. First, other objective functions could be studied, like the duration
objective. Second, the approach could be tested on TDTSPs, without time window constraints. In this case,
the destroy phase would be simpler since it would suffice to remove Wmax customers at each step. Third,
the repair phase of ImaxLNS could compute additional precedence constraints and rebuild a full solution
around a partial solution defined by a longest path in the customer precedence graph, as in the ngl-tour
relaxation [15]. Fourth, Adaptive LNS could be tested to automatically adapt parameters Wmaz, Rmin,

and Kmaz during search. Last, ImaxLLNS could produce good upper bounds for complete search methods.
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ImaxLNS for TSPTW and TDTSPTW: supplementary material

C. Pralet

1 Experiments: detailed results

1.1 TSPTW benchmarks

Remarks:
e The semantics of columns N, Gm, Gs, Tm, and Ts is given in the main article.
e Column BF gives the value of the best solution found by each method over 5 runs.
e Column W corresponds to the insertion-width of each instance.

e The results of GVNS are directly taken from the article of Amghar et al. [1]. In these results,
the best-known solution was improved for some instances, hence Amghar et al. provided some
results with a negative gap. For these instances, as ImaxLNS finds the same new solution values,
we do not mention the gap and standard deviation for GVNS in this case (cells filled with “-”, e.g.
for instance rc202.4 in the SolomonPotvinBengio benchmark). Note that the GVNS results were
obtained by Amghar et al. on another processor. For single-threaded computations, the processor
used for GVNS is approximately 1.5 times faster than the processor used for ImaxLNS.

e The termination of ImaxLNS is indicated by superscript ¢ in column BF. Termination occurs for
instances whose insertion-width is low and for instances where ImaxLLNS manages to produce a
solution whose makespan is equal to the makespan lower bound.

GVNS ImaxLNS, Wmaz = 4
BF Gm Gs Tm Ts BF Gm Gs Tm Ts w
n20w20 20 370.4 370.4 0.00 0.00 t370.4 0.00 0.00 0.00 0.00 2.6
n20w40 20 342.8 342.8 0.00 0.00 1342.8 0.00 0.00 0.00 0.00 2.6
n20w60 20 362.0 362.0 0.00 0.00 1362.0 0.00 0.00 0.00 0.00 3.8
n20w&0 20 363.4 363.4 0.00 0.00 ’363.4 0.00 0.00 0.00 0.00 7.0
n20w100 20 331.6 331.6 0.00 0.00 331.6 0.00 0.00 0.00 0.00 8.8
n40w20 40 521.2 521.2 0.00  0.00 1521.2 0.00 0.00 0.00 0.00 3.4
n40w40 40 512.2 512.2 0.00 0.00 1512.2 0.00 0.00 0.00 0.00 6.2
n40w60 40 481.4 481.4  0.00 0.00 481.4 0.00 0.00 0.00 0.00 13.2
n40w80 40 486.6 486.6 0.00 0.00 486.6 0.00 0.00 0.00 0.00 13.6
n40w100 | 40 463.0 463.0 0.00 0.00 463.0 0.00 0.00 0.00 0.00 16.4
n60w20 60 626.8 626.8 0.00 0.00 1626.8 0.00 0.00 0.00 0.00 6.8
n60w40 60 654.4 654.4 0.00 0.00 ‘654.4 0.00 0.00 0.00 0.00 10.2
n60w60 60 672.8 672.8 0.00 0.00 672.8 0.00 0.00 0.00 0.00 16.4
n60w80 60 628.2 628.2 0.00 0.00 628.2 0.00 0.00 0.00 0.00 16.6
n60w100 60 620.2 620.6 0.06  0.00 620.2 0.00 0.00 0.00 0.00 25.8
n80w20 80 748.2 748.2 0.00  0.00 1748.2 0.00 0.00 0.00 0.00 5.6
n80w40 80 725.6 725.6 - - 725.6 0.00 0.00 0.00 0.00 14.0
n80w60 80 712.6 712.6 0.00 0.00 712.6 0.00 0.00 0.00 0.00 19.0
n80w&0 80 714.6 714.6 - - 714.6 0.00 0.00 0.00 0.00 25.6
nl100w20 | 100 823.0 823.0 0.00 0.00 1823.0 0.00 0.00 0.00 0.00 94
nl100w40 | 100 821.0 821.0 0.00 0.00 821.0 0.00 0.00 0.00 0.00 15.6
nl100w60 | 100 817.2 817.2 0.00 0.00 817.2 0.00 0.00 0.01 0.01 22.0
nl150w20 | 150 978.4 978.4  0.00 0.00 ‘978.4 0.00 0.00 0.00 0.00 9.8
n150w40 | 150 990.4 990.4 0.00 0.00 990.4 0.00 0.00 0.01 0.00 20.8
n150w60 | 150 988.6 988.6 0.00 0.00 988.6 0.00 0.00 0.01 0.00 27.2
n200w20 | 200 1137.8 1137.8 0.00 0.00 1137.8 0.00 0.00 0.00 0.00 13.6
n200w40 | 200 1156.0 1156.0 0.00 0.00 1156.0 0.00 0.00 0.01 0.01 23.0

instance N BK
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Table 1: Results for the Dumas instances (for GVNS: 24 seconds per run, 5 runs per instance; for
ImaxLNS: 5 seconds per run, 5 runs per instance)



GVNS ImaxLNS, Wmaz =4
BF Gm Gs Tm BF Gm Gs Tm Ts
rbg010a 10 3840 3840 0.00  0.00 t3840 0.00 0.00 0.00 0.00
rbg016a 16 2596 2596 0.00 0.00 12596 0.00 0.00 0.00 0.00
rbg016b 16 2094 2094 0.00 0.00 t2094 0.00 0.00 0.00 0.00
rbg017.2 15 2351 2351 0.00 0.00 12351 0.00 0.00 0.00 0.00

instance N BK W
1
3
4
5
rbg017a 17 4296 4296 0.00 0.00 4296 0.00 0.00 0.00 0.00 16
2
3
4
18
5

rbg017 15 2351 2351 0.00 0.00 12351 0.00 0.00 0.00 0.00
rbg019a 19 2694 2694 0.00 0.00 12694 0.00 0.00 0.00 0.00
rbg019b 19 3840 3840 0.00 0.00 13840 0.00 0.00 0.00 0.00
rbg019¢ 19 4536 4536 0.00 0.00 4536 0.00 0.00 0.00 0.00
rbg019d 19 3479 3479 0.00 0.00 13479 0.00 0.00 0.00 0.00
rbg020a 20 4689 4689 0.00 0.00 4689 0.00 0.00 0.00 0.00 18
rbg021.2 19 4528 4528 0.00 0.00 4528 0.00 0.00 0.00 0.00 18
rbg021.3 19 4528 4528 0.00 0.00 4528 0.00 0.00 0.02 0.01 18
rbg021.4 19 4525 4525 0.00 0.00 4525 0.00 0.00 0.01 0.01 18
rbg021.5 19 4516 4516 0.00 0.00 4516 0.00 0.00 0.01 0.01 18
rbg021.6 19 4492 4492 0.00 0.00 4492 0.00 0.00 0.04 0.03 19
rbg021.7 19 4481 4481 0.00 0.00 4481 0.00 0.00 0.03 0.02 19
rbg021.8 19 4481 4481 0.00 0.00 4481 0.00 0.00 0.03 0.03 19
rbg021.9 19 4481 4481 0.00 0.00 4481 0.00 0.00 0.03 0.03 19

rbg021 19 4536 4536 0.00 0.00 4536 0.00 0.00 0.00 0.00 18
rbg027a 27 5093 5093 0.00 0.00 5093 0.00 0.00 0.01 0.01 26

rbg031a 31 3498 3498 0.00 0.00 13498 0.00 0.00 0.00 0.00 3
rbg033a 33 3757 3757 0.00 0.00 '3757 0.00 0.00 0.00 0.00 5
rbg034a 34 3314 3314 0.00  0.00 ’3314 0.00 0.00 0.00 0.00 5
rbg035a.2 35 3325 3325 0.00 0.00 13325 0.00 0.00 0.00 0.00 4
rbg035a 35 3388 3388 0.00 0.00 13388 0.00 0.00 0.00 0.00 8
rbg038a 38 5699 5699 0.00 0.00 15699 0.00 0.00 0.00 0.00 8
rbg040a 40 5679 5679 0.00 0.00 5679 0.00 0.00 0.00 0.00 4
rbg04la 41 3793 3793 0.00 0.00 13793 0.00 0.00 0.00 0.00 15
rbg042a 42 3260 3260 0.00 0.00 3260 0.00 0.00 0.01 0.01 20
rbg048a 48 9799 9799 0.00 0.00 19799 0.00 0.00 0.00 0.00 37

’13257 0.00 0.00 0.00 0.00 31
712050 0.00 0.00 0.00 0.00 4
11957 0.00 0.00 0.00 0.01 32

10985 0.00 0.00 0.00 0.00 40

16929 0.00 0.00 0.00 0.00 5
¥10331 0.00 0.00 0.00 0.00 5
15

3

8

5

5

rbg049a 49 13257 | 13257 0.00 0.00
rbg050a 50 12050 | 12050 0.00 0.00
rbg050b 50 11957 | 11957 0.00 0.00
rbg050c 50 10985 | 10985 0.00 0.00
rbg055a 55 6929 6929 0.00 0.00
rbg067a 67 10331 | 10331 0.00 0.00
rbg086a 86 16899 | 16899 0.00 0.00
rbg092a 92 12501 | 12501 0.00 0.00
rbgl25a 125 | 14214 | 14214 0.00 0.00
rbgl32.2 130 | 18524 | 18524 0.00 0.00
rbgl32 130 | 18524 | 18524 0.00 0.00
rbgl52.3 150 | 17455 | 17455 0.00 0.00
rbgl52 150 | 17455 | 17455 0.00 0.00

16899 0.00 0.00 0.00 0.00
12501 0.00 0.00 0.00 0.00
t14214 0.00 0.00 0.00 0.00
‘18524 0.00 0.00 0.00 0.00
t18524 0.00 0.00 0.00 0.00
t17455 0.00 0.00 0.00 0.00 11
'17455 0.00 0.00 0.00 000 6
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rbgl72a 172 | 17783 | 17783 0.00 0.00 11 17783 0.00 0.00 0.07 0.08 20
rbgl93.2 191 | 21401 | 21401 0.00 0.00 0 ¥21401 0.00 0.00 0.00 0.00 5
rbg193 191 | 21401 | 21401 0.00 0.00 0 ’21401 0.00 0.00 0.00 0.00 21
rbg201a 201 | 21380 | 21380 0.00 0.00 0 ’21380 0.00 0.00 0.00 0.00 20
rbg233.2 231 | 26143 | 26143 0.00 0.00 0 ’26143 0.00 0.00 0.00 0.00 4
rbg233 231 | 26143 | 26143 0.00 0.00 0 ’26143 0.00 0.00 0.00 0.00 21

Table 2: Results for the AFG instances (for GVNS: 24 seconds per run, 5 runs per instance; for ImaxLNS:
5 seconds per run, 5 runs per instance)

instance | N BK GVNS ImaxLNS, Wmaz = 4

BF Gm Gs Tm Ts BF Gm Gs Tm Ts w
N20ft30 | 19 730.78 730.78 0.00 0 0 1730.78 0.00 0.00 0.00 0.00 2.1
N20ft40 | 19 730.00 730.00 0.00 1730.00 0.00 0.00 0.00 0.00 29
N40ft20 | 39 999.20 999.20 0.00 1999.20 0.00 0.00 0.00 0.00 1.7
N40ft40 | 39 996.21 996.21 0.00 1996.21 0.00 0.00 0.00 0.00 2.5
N60ft20 59 1248.88 1248.88 0.00 71248.88 0.00 0.00 0.00 0.00 3.8
N60ft30 59 1247.31 1247.31  0.00 t1247.31 0.00 0.00 0.00 0.00 4.2
N60ft40 59 1244.73 1244.73 0.00 t1244.73 0.00 0.00 0.00 0.00 6.1
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Table 3: Results for the Langevin instances (for GVNS: 24 seconds per run, 5 runs per instance; for
ImaxLNS: 5 seconds per run, 5 runs per instance)



GVNS ImaxLNS, Wmazx = 4
BF Gm Gs Tm BF Gm Gs Tm Ts

instance N BK W
rc201.1 19 | 592.06 | 592.06 0.00 0.00 t592.06 0.00 0.00 0.00 0.00 7
6
2
8

rc201.2 25 | 860.17 | 860.17 0.00 0.00 ’860.17 0.00 0.00 0.00 0.00

rc201.3 31 | 853.71 | 853.71 0.00 0.00 ’853.71 0.00 0.00 0.00 0.00

rc201.4 25 | 889.18 | 889.18 0.00 0.00 ’889.18 0.00 0.00 0.00 0.00

rc202.1 32 | 850.48 | 850.48 0.00 0.00 850.48 0.00 0.00 0.00 0.00 24
rc202.2 13 | 338.52 | 338.52 0.00 0.00 ’338.52 0.00 0.00 0.00 0.00 13
rc202.3 28 | 894.10 | 894.10 0.00 0.00 ’894.10 0.00 0.00 0.00 0.00 12
rc202.4 27 | 853.71 | 853.71 - - 853.71 0.00 0.00 0.00 0.00 21
rc203.1 18 | 488.42 | 488.42 0.00 0.00 488.42 0.00 0.00 0.00 0.00 18
rc203.2 32 | 853.71 | 853.71 0.00 0.00 853.71 0.00 0.00 0.01 0.00 32
rc203.3 36 | 921.44 | 921.44 0.00 0.00 921.44 0.00 0.00 0.01 0.00 36
rc203.4 14 | 338.52 | 338.52 - - ’338.52 0.00 0.00 0.00 0.00 14
rc204.1 45 | 917.83 | 917.83 0.11 0.28 917.83 0.00 0.00 0.31 0.27 45
rc204.2 32 | 690.06 | 690.06 - - '690.06 0.00 0.00 0.08 0.08 32
rc204.3 23 | 455.03 | 455.03 0.00 0.00 455.03 0.00 0.00 0.01 0.01 23
rc205.1 13 | 417.81 | 417.81 0.00 0.00 ’417.81 0.00 0.00 0.00 0.00 7
rc205.2 26 | 820.19 | 820.19 0.00 0.00 820.19 0.00 0.00 0.00 0.00 16
rc205.3 34 | 950.05 | 950.05 0.00 0.00 ’950.05 0.00 0.00 0.00 0.00 3
rc205.4 27 | 837.71 | 837.71 0.00 0.00 ’837.71 0.00 0.00 0.00 0.00 9
rc206.1 3 117.85 | 117.85 0.00 0.00 ?117.85 0.00 0.00 0.00 0.00 3
rc206.2 36 | 870.49 | 870.49 0.00 0.00 870.49 0.00 0.00 0.05 0.03 23
rc206.3 24 | 650.59 | 650.59 0.00 0.00 650.59 0.00 0.00 0.00 0.00 18
rc206.4 37 | 911.98 | 911.98 - - 911.98 0.00 0.00 0.05 0.03 23
rc207.1 33 | 804.67 | 804.67 0.00 0.00 804.67 0.00 0.00 0.11 0.04 28
rc207.2 30 | 713.90 | 713.90 0.00 0.00 713.90 0.00 0.00 0.02 0.01 28
rc207.3 32 | 745.77 | 745.77 0.00 0.00 745.77 0.00 0.00 0.19 0.14 32
rc207.4 5 133.14 | 133.14 0.00 0.00 ?133.14 0.00 0.00 0.00 0.00 5
rc208.1 37 | 810.70 | 810.70 0.04 0.01 810.70 0.00 0.00 0.60 0.32 37
rc208.2 28 | 579.51 | 579.51 0.00 0.00 579.51 0.00 0.00 0.03 0.02 28
rc208.3 35 | 686.80 | 686.80 0.00 0.00 686.80 0.00 0.00 042 041 35
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Table 4: Results for the SolomonPotvinBengio instances (for GVNS: 24 seconds per run, 5 runs per
instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)

GVNS ImaxLNS, Wmaz = 4
BF Gm Gs Tm BF Gm Gs Tm Ts
rc201.0 25 | 853.71 | 853.71 0.00 0.00 ’853.71 0.00 0.00 0.00 0.00
rc201.1 28 | 850.48 | 850.48 0.00 0.00 ’850.48 0.00 0.00 0.00 0.00
rc201.2 28 | 883.97 | 883.97 0.00 0.00 t883.97 0.00 0.00 0.00 0.00
rc201.3 19 722.43 722.43 0.00 0.00 t722.43 0.00 0.00 0.00 0.00
rc202.0 25 850.48 850.48 0.00 0.00 850.48 0.00 0.00 0.00 0.00
rc202.1 22 702.28 702.28 0.00 0.00 1702.28 0.00 0.00 0.00 0.00
rc202.2 27 | 853.71 | 853.71 0.00 0.00 853.71 0.00 0.00 0.00 0.00 19
rc202.3 26 | 883.97 | 883.97 0.00 0.00 883.97 0.00 0.00 0.00 0.00 20
rc203.0 35 | 870.52 | 870.52 0.00 0.00 870.52 0.00 0.00 0.00 0.00 35
rc203.1 37 | 850.48 | 850.48 0.00 0.00 850.48 0.00 0.00 0.00 0.00 37
rc203.2 28 | 853.71 | 853.71 0.00 0.00 853.71 0.00 0.00 0.00 0.00 24
rc204.0 32 | 839.24 | 839.24 0.00 0.00 t839.24 0.00 0.00 0.00 0.00 32
rc204.1 28 | 492.60 | 492.60 0.00 0.00 492.60 0.00 0.00 0.02 0.01 28
rc204.2 40 | 870.52 | 870.52 2.65 2.24 870.52 0.00 0.00 0.12 0.05 40
rc205.0 26 834.62 834.62 0.00 0.00 ’834.62 0.00 0.00 0.00 0.00 14
rc205.1 22 899.24 899.24 0.00 0.00 t899.24 0.00 0.00 0.00 0.00 2
rc205.2 28 | 908.79 | 908.79 0.00 0.00 908.79 0.00 0.00 0.00 0.00 14
rc205.3 24 | 684.21 684.21 0.31 0.81 684.21 0.00 0.00 0.00 0.00 16
rc206.0 35 | 893.21 | 893.21 0.00 0.00 893.21 0.00 0.00 0.02 0.01 21
rc206.1 33 | 756.45 | 756.45 0.00 0.00 756.45 0.00 0.00 0.00 0.00 24
rc206.2 32 | 776.19 | 776.19 0.00 0.00 776.19 0.00 0.00 0.04 0.01 23
rc207.0 37 | 847.63 | 847.63 0.00 0.00 847.63 0.00 0.00 0.02 0.01 33
rc207.1 33 | 785.37 | 785.37 0.00 0.00 785.37 0.00 0.00 0.12 0.07 29
rc207.2 30 | 650.80 | 650.80 0.00 0.00 650.80 0.00 0.00 0.08 0.03 30

instance N BK
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rc208.0 44 | 836.04 | 836.04 0.04 0.09 11 836.04 0.00 0.00 1.20 045 44
rc208.1 27 | 615.51 | 615.51 0.00 0.00 0 615.51 0.00 0.00 0.04 0.03 27
rc208.2 29 | 596.21 | 596.21 0.00 0.00 0 596.21 0.00 0.00 0.03 0.02 29

Table 5: Results for the SolomonPesant instances (for GVNS: 24 seconds per run, 5 runs per instance;
for ImaxLNS: 5 seconds per run, 5 runs per instance)



GVNS ImaxLNS, Wmaz = 4
BF Gm Gs Tm BF Gm Gs Tm Ts W
n20w120 20 319.6 | 319.6 0.00 0.00 319.6 0.00 0.00 0.00 0.00 15.0
n20w140 20 286.2 | 286.2 0.00 0.00 286.2 0.00 0.00 0.00 0.00 16.2
n20w160 20 311.4 | 311.4 0.00 0.00 311.4 0.00 0.00 0.00 0.00 16.6
n20w180 20 311.2 | 311.2 0.00 0.00 311.2 0.00 0.00 0.00 0.00 14.8
n20w200 20 281.8 | 281.8 0.00 0.00 281.8 0.00 0.00 0.00 0.00 19.0
n40w120 40 470.6 | 470.6 0.00 0.00 470.6 0.00 0.00 0.00 0.00 19.6
n40w140 40 458.2 | 458.2 0.00 0.00 458.2 0.00 0.00 0.00 0.00 25.6
n40w160 40 426.8 | 426.8 0.00 0.00 426.8 0.00 0.00 0.00 0.00 30.4
n40w180 40 427.4 | 427.4 0.00 0.00 427.4 0.00 0.00 0.00 0.00 25.8
n40w200 40 412.0 | 412.0 0.00 0.00 412.0 0.00 0.00 0.00 0.00 22.6
n60w120 60 573.8 | 573.8 0.05 0.08 573.8 0.00 0.00 0.00 0.00 15.8
n60w140 60 600.0 | 600.0 0.00 0.00 {600.0 0.00 0.00 0.00 0.00 27.0
n60w160 60 619.6 | 619.6 0.00 0.00 619.6 0.00 0.00 0.00 0.00 30.6
n60w180 60 576.0 | 576.0 0.00 0.00 576.0 0.00 0.00 0.00 0.00 414
n60w200 60 570.2 | 570.2 0.02 0.02 570.2 0.00 0.00 0.00 0.00 37.6
n80w100 80 711.2 711.2 0.00 0.00 711.2 0.00 0.00 0.01 0.00 314
n80w120 80 697.4 | 697.4 0.01 0.01 697.4 0.00 0.00 0.00 0.00 28.6
n80w140 80 672.8 | 672.8 0.00 0.00 672.8 0.00 0.00 0.00 0.00 332
n80w160 80 653.6 | 653.6 0.23 0.24 653.6 0.00 0.00 0.00 0.00 45.8
n80w180 80 656.4 | 656.4 0.05 0.09 656.4 0.00 0.00 0.00 0.00 49.0
n80w200 80 646.2 | 646.2 0.00 0.00 646.2 0.00 0.00 0.00 0.00 56.6
n100w80 100 | 805.8 | 805.8 0.00 0.00 805.8 0.00 0.00 0.00 0.00 22.0
nl00w100 | 100 | 795.8 | 795.8 0.00 0.00 795.8 0.00 0.00 0.00 0.00 32.6
nl00w120 | 100 | 895.4 | 895.4 0.00 0.00 895.4 0.00 0.00 0.00 0.00 23.6
n100w140 100 | 906.4 | 906.4 0.00 0.00 906.4 0.00 0.00 0.00 0.00 18.8
n100w160 100 | 865.0 | 865.0 0.00 0.00 865.0 0.00 0.00 0.00 0.00 31.8

instance N BK
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Table 6: Results for the GendreauDumasExtended instances (for GVNS: 24 seconds per run, 5 runs per
instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)

instance N BK GVNS ImaxLNS, Wmaz =4

BF Gm Gs Tm Ts BF Gm Gs Tm Ts w
nl150w120.001 | 150 972 972 0.00 0.00 3 3 972 0.00 0.00 0.00 0.00 51
nl150w120.002 | 150 917 917 0.00 0.00 1 0 f917 0.00 0.00 0.01 0.00 53
n150w120.003 | 150 909 910 0.29 0.28 11 11 909 0.00 0.00 0.01 0.00 54
n150w120.004 | 150 925 925 0.00 0.00 2 2 925 0.00 0.00 0.01 0.00 54
n150w120.005 | 150 907 907 0.00 0.00 2 1 907 0.00 0.00 0.00 0.00 6
n150w140.001 | 150 | 1008 | 1008 0.00 0.00 1 0 1008 0.00 0.00 0.00 0.00 69
n150w140.002 | 150 | 1020 | 1020 0.00 0.00 3 3 1020 0.00 0.00 0.00 0.00 7
n150w140.003 | 150 844 844 0.00 0.00 1 0 844 0.00 0.00 0.00 0.00 61
n150w140.004 150 898 898 0.00  0.00 1 1 898 0.00 0.00 0.01 0.00 66
n150w140.005 150 926 926 0.00  0.00 1 0 926 0.00 0.00 0.01 0.01 64
nl150w160.001 | 150 959 959 0.00 0.00 1 0 1959 0.00 0.00 0.02 0.01 69
nl150w160.002 | 150 890 890 0.03 0.05 18 15 890 0.00 0.00 0.02 0.01 70
n150w160.003 | 150 934 934 0.00 0.00 1 0 '934 0.00 0.00 0.01 0.00 62
n150w160.004 | 150 912 912 0.00 0.00 1 0 912 0.00 0.00 0.01 0.01 71
n150w160.005 | 150 920 920 0.00 0.00 1 0 920 0.00 0.00 0.00 0.00 61
n200w120.001 | 200 | 1089 | 1089 0.28 1.04 13 11 1089 0.00 0.00 0.01 0.00 68
n200w120.002 | 200 | 1072 | 1072 0.00 0.00 2 1 1072 0.00 0.00 0.00 0.00 17
n200w120.003 | 200 | 1128 | 1128 0.00 0.00 7 6 1128 0.00 0.00 0.00 0.00 62
n200w120.004 | 200 | 1072 | 1072 0.00 0.00 3 1 1072 0.00 0.00 0.02 0.01 60
n200w120.005 200 1073 1073 0.00 0.00 2 0 1073 0.00 0.00 0.01 0.01 65
n200w140.001 200 1138 1138 0.00 0.00 19 17 1138 0.00 0.00 0.02 0.00 71
n200w140.002 | 200 | 1087 | 1087 0.00 0.00 3 0 1087 0.00 0.00 0.00 0.00 71
n200w140.003 | 200 | 1083 | 1083 0.00 0.00 5 3 1083 0.00 0.00 0.02 0.00 75
n200w140.004 | 200 | 1100 | 1100 0.00 0.00 10 8 1100 0.00 0.00 0.01 0.00 79
n200w140.005 | 200 | 1121 | 1121 0.00 0.00 5 2 1121 0.00 0.00 0.01 0.00 68

Table 7: Results for the OhlmannThomas instances (for GVNS: 24 seconds per run, 5 runs per instance;
for ImaxL.NS: 5 seconds per run, 5 runs per instance)



1.2 Arigliano et al. [2] benchmark

The new feasible solutions and the new best solutions found compared to Lera-Romero et al. [3] are given
in the tables below.

40.70_.A_0_.A4  686.89 40.90_.A 0.C4  943.52
40_70_A_0_A7  700.59 40.90.B_.0_A7  704.10
40-70_A_0_A9  688.47 40.90.B_0_-B5  893.61
40_70_.A_0.B2  750.87 40.90.B_0_.B7  810.52
40-70_.A_0.B5  957.27 40.90_.B_0_.C3  811.87
40.70_.A_0.B6  790.03 40.90_B_0_-C4  936.80
40.70_.A_0.B7  816.17 40.95_A_0_A7  690.42
40-70_A_0_-C1  915.46 40.95_.A_0.B5  888.59
40-70_A_0_-C3  846.09 40.95_A_0.B6  773.16
40-70_A_0.C4  973.48 40-95_.A_0_-C4  930.05
40-70_A_0_.C8  890.03 40.95_A 0_.C9  819.25
40_70_. A 0.C9  898.24 40.95.B.0_A7  695.29
40.70_.B.0_A7  749.49 40.95_.B_0_.B5  883.67
40.70.B.0.B5  999.18 4095.B.0_.C1  851.13
40_70.B_.0_.B6  864.74 40.95-B_0_-C3  799.70
40_70.B_0_B7  898.36 40.95_B_0_-C4  928.07
40.70.B_0_.C4  992.61 40.95.B_0_.C10 817.43
40.70_.B_0_.C10 922.96 40.98_A_0_A7  687.60
40_.80_A_0_A7  696.74 4098_A_0.C4  923.82
40_.80_A_0_A9 67741 4098_A_0_.C9  809.15
40-80-A_0.B5  927.82 40.98_B_0_A7  689.75
40_.80_A_0.B6  784.58 4098 B_0_-B5  873.25
40_.80_A_0.B7  800.48 40.98.B.0_.C4  921.87
40.80_A_0_.C1  895.32 40.98.B_0_-C9  810.63
40_.80_A_0_-C3  842.49 40.98.B_.0_C10  812.89
40-80_-A_0-C4  955.81 40-70_A_25_B7  929.99
40-80-A_0.C9  882.44 40_-70_-B_25_B5 1011.14
40.80.B.0_A7  720.84 40.70_B_25_B7  966.51
40_80.B_0.B5  935.77 40.80_A_25.B7 914.45
40_80.B.0.B6  824.06 40.80-B_25_.B7  919.23
40-80_B_0_.C1  886.26 40-80_B_25_.C3  987.64
40-80_B_0_-C3  825.96 40.90_.A_25_B7  897.75
40-80.B_0_-C4  963.76 40.90_B_25_B7  895.82
40-80_B_0_C10 880.93 40.90.B_25_.C3  971.79
40.90_A_0_A7  694.65 40.95_.A_25.B7  885.60
40.90_A_0.B5  904.03 40.95_B_25_B7  887.27
40.90_.A_0.C1  881.49 40.98_A_25_B7  876.92
40.90_.A_0.C3  854.18 40.98_.B_25_B7  880.73

Table 8: New feasible solutions and best solutions for the Arigliano et al. [2] benchmark

1.3 Aguiar-Melgarejo et al. [4] benchmark

Tables 9 to 11 give the detailed results obtained on all instances of sizes 30, 50,100 and for distance
matrices M00, M10, M20. For the CP-tdNoOverlap method of Aguiar-Melgarejo et al. [4] (that has a
maximum CPU time of 2 hours), the table reports the best solutions found for each instance (column
BF). It also gives the relative gap G in percent with regards to the best solutions found during all our
experiments on ImaxLNS (column ImaxLNS-all). For each instance, the best solution found by ImaxL.NS
with Wmax =5 over 5 runs of 2 minutes is given in column BF. The semantics of columns Gm, Gs, Tm,
and Ts is given in the main article.



matrix | instance CP-tdNoOverlap ImaxLNS, Wmaz =5 ImaxLNS-all
BF G BF Gm Gs Tm Ts W BF
01 18493 1.18 18278 0.00 0.00 0.29 0.25 29 18278
02 17111 0.00 17111 0.00 0.00 0.00 0.00 29 17111
03 18148 0.00 18148 0.00 0.00 0.08 0.05 29 18148
04 20335 0.00 {20335 0.00 0.00 0.05 0.02 29 20335
05 15482 1.51 15251 0.00 0.00 0.61 0.77 29 15251
06 18635 0.00 18635 0.00 0.00 0.06 0.03 29 18635
07 17252 0.00 17252 0.00 0.00 0.00 0.00 29 17252
08 20342 0.00 20342 0.00 0.00 0.03 0.01 29 20342
09 16305 0.00 16305 0.00 0.00 0.08 0.06 29 16305
MO0 10 17367 0.00 17367 0.00 0.00 0.04 0.02 29 17367
11 17575 0.00 17575 0.00 0.00 0.01 0.01 29 17575
12 17909 0.00 17909 0.00 0.00 0.02 0.01 29 17909
13 20522 0.00 20522 0.00 0.00 2.79 091 29 20522
14 18982 0.00 18982 0.00 0.00 0.08 0.04 29 18982
15 18573 1.99 18211 0.00 0.00 0.20 0.15 29 18211
16 15570 0.00 15570 0.00 0.00 0.00 0.00 29 15570
17 18506 0.00 18506 0.00 0.00 0.35 0.08 29 18506
18 22418 0.00 22418 0.00 0.00 0.26 0.19 29 22418
19 25157 0.00 t25157 0.00 0.00 0.00 0.00 29 25157
20 22132 0.00 {22132 0.00 0.00 0.01 0.00 29 22132
01 18157 0.00 18157 0.00 0.00 0.03 0.01 29 18157
02 16933 0.00 16933 0.00 0.00 0.08 0.05 29 16933
03 17770 0.00 17770 0.00 0.00 0.01 0.01 29 17770
04 20147 0.00 t20147 0.00 0.00 0.03 0.03 29 20147
05 15597 1.39 15383 0.00 0.00 0.13 0.10 29 15383
06 18203 0.00 18203 0.00 0.00 0.00 0.00 29 18203
07 17175 0.00 17175 0.00 0.00 0.00 0.00 29 17175
08 20120 0.00 20120 0.00 0.00 0.03 0.03 29 20120
09 16236 0.00 16236 0.00 0.00 0.11 0.05 29 16236
M10 10 17302 0.00 17302 0.00 0.00 0.01 0.01 29 17302
11 17609 0.00 17609 0.00 0.00 0.00 0.00 29 17609
12 17722 0.00 17722 0.00 0.00 0.02 0.00 29 17722
13 19862 0.00 19862 0.00 0.00 0.15 0.12 29 19862
14 18664 0.00 18664 0.00 0.00 0.19 0.20 29 18664
15 18394 2.13 18010 0.00 0.00 0.21 0.13 29 18010
16 15590 0.00 15590 0.00 0.00 0.02 0.01 29 15590
17 18264 0.00 18264 0.00 0.00 0.03 0.04 29 18264
18 21561 0.00 21561 0.00 0.00 0.24 0.21 29 21561
19 24895 0.00 {24895 0.00 0.00 0.00 0.00 29 24895
20 21996 0.00 t21996 0.00 0.00 0.01 0.00 29 21996
01 18109 0.00 18109 0.00 0.00 0.00 0.00 29 18109
02 16634 0.00 16634 0.00 0.00 0.00 0.00 29 16634
03 17349 0.00 17349 0.00 0.00 0.13 0.08 29 17349
04 20024 0.00 {20024 0.00 0.00 0.05 0.02 29 20024
05 15271 0.00 15271 0.00 0.00 0.14 0.08 29 15271
06 17776 0.00 17776 0.00 0.00 0.01 0.01 29 17776
07 16971 0.00 16971 0.00 0.00 0.00 0.00 29 16971
08 19975 0.00 19975 0.00 0.00 0.01 0.01 29 19975
09 16046 0.00 16046 0.00 0.00 0.18 0.13 29 16046
M20 10 16957 0.00 16957 0.00 0.00 0.01 0.01 29 16957
11 17516 0.00 17516 0.00 0.00 0.07 0.06 29 17516
12 17624 0.00 17624 0.00 0.00 0.05 0.04 29 17624
13 19572 0.00 19572 0.00 0.00 0.01 0.01 29 19572
14 18062 0.00 18062 0.00 0.00 0.20 0.09 29 18062
15 17845 0.00 17845 0.00 0.00 0.15 0.06 29 17845
16 15612 0.00 15612 0.00 0.00 0.01 0.00 29 15612
17 18055 0.07 18042 0.00 0.00 0.19 0.16 29 18042
18 21222 0.00 21222 0.00 0.00 0.01 0.01 29 21222
19 24814 0.00 t24814 0.00 0.00 0.00 0.00 29 24814
20 21861 0.00 {21861 0.00 0.00 0.00 0.00 29 21861

Table 9: Detailed results on the TDTSPTW benchmark defined by Aguiar-Melgarejo et al. [4], for the
instances of size 30 and transition matrices M00, M10, M20 (configuration for ImaxLNS: Wmaz = 5,
maximum CPU time = 2 minutes per run, 5 runs per instance)



matrix | instance CP-tdNoOverlap ImaxLNS, Wmaz =5 ImaxLNS-all
BF G BF Gm Gs Tm Ts Y% BF
01 23493 0.08 23474 0.00 0.00 2.80 3.07 49 23474
02 24824 0.00 24824 0.00 0.00 1.14 0.32 49 24824
03 24379 0.00 24379 0.00 0.00 0.05 0.06 49 24379
04 26687 0.96 26433 0.00 0.00 9.27 9.19 49 26433
05 21911 0.00 21911 0.00 0.00 0.03 0.02 49 21911
06 23056 0.00 23056 0.00 0.00 0.02 0.01 49 23056
07 23882 0.23 23827 0.00 0.00 1.22 0.34 49 23827
08 23945 0.00 23945 0.00 0.00 0.03 0.02 49 23945
09 23171 0.00 23171 0.00 0.00 0.06 0.06 49 23171
MO0 10 24136 0.99 23900 0.00 0.00 2.95 2.03 49 23900
11 25034 0.00 25034 0.00 0.00 0.78 0.78 49 25034
12 25541 0.00 25541 0.00 0.00 10.62 8.34 49 25541
13 24885 0.00 24885 0.00 0.00 3.37 2.25 49 24885
14 27658 1.53 27241 0.13 0.13 32.11 33,99 49 27241
15 23394 0.00 23394 0.00 0.00 0.02 0.02 49 23394
16 25122 0.29 25050 0.00 0.00 0.17 0.12 49 25050
17 25327 0.04 25317 0.00 0.00 6.33 5.71 49 25317
18 22725 0.00 22725 0.00 0.00 0.03 0.02 49 22725
19 26810 2.04 26274 0.02 0.02 5853 29.08 49 26274
20 24501 0.00 24501 0.00 0.00 4.49 2.00 49 24501
01 22795 0.00 22795 0.00 0.00 1.27 0.98 49 22795
02 23858 0.00 23858 0.00 0.00 0.57 0.41 49 23858
03 22192 0.00 22192 0.00 0.00 0.02 0.01 49 22192
04 25709 1.43 25347 0.00 0.00 8.83 5.07 49 25347
05 22959 5.59 21744 0.00 0.00 0.90 0.65 49 21744
06 22470 0.24 22416 0.00 0.00 0.85 0.46 49 22416
07 23358 0.00 23358 0.00 0.00 4.23 2.75 49 23358
08 23244 0.00 23244 0.00 0.00 0.18 0.09 49 23244
09 22539 0.09 22518 0.00 0.00 0.28 0.13 49 22518
M10 10 23158 0.00 23158 0.00 0.00 0.25 0.46 49 23158
11 24308 0.00 24308 0.00 0.00 1.69 1.17 49 24308
12 24714 0.00 24714 0.00 0.00 0.05 0.04 49 24714
13 23861 0.00 23861 0.00 0.00 0.05 0.02 49 23861
14 27158 3.55 26226 0.14 0.14 32.07 2947 49 26226
15 22987 0.00 22987 0.00 0.00 0.07 0.06 49 22987
16 24111 0.00 24111 0.00 0.00 0.11 0.06 49 24111
17 24243 0.21 24191 0.00 0.00 0.09 0.07 49 24191
18 22273 0.76 22106 0.00 0.00 0.22 0.14 49 22106
19 25829 0.98 25579 0.00 0.00 62.58 23.87 49 25579
20 23417 0.02 23413 0.00 0.00 1.18 0.72 49 23413
01 22832 1.53 22487 0.00 0.00 1.69 1.01 49 22487
02 23314 0.05 23303 0.00 0.00 0.96 0.69 49 23303
03 21730 0.00 21730 0.00 0.00 0.03 0.02 49 21730
04 25284 3.72 24378 0.00 0.00 2.89 1.50 49 24378
05 23275 7.95 21560 0.00 0.00 4.17 1.08 49 21560
06 22123 1.05 21894 0.00 0.00 3.01 1.89 49 21894
07 22890 0.39 22800 0.00 0.00 0.97 0.62 49 22800
08 22608 0.00 22608 0.00 0.00 0.15 0.09 49 22608
09 22301 0.11 22276 0.00 0.00 1.36 0.43 49 22276
M20 10 22670 0.00 22670 0.00 0.00 0.00 0.00 49 22670
11 23778 0.00 23778 0.00 0.00 0.31 0.46 49 23778
12 24162 0.05 24149 0.00 0.00 0.28 0.19 49 24149
13 23256 0.47 23148 0.00 0.00 18.00 14.58 49 23148
14 26306 3.58 25396 0.00 0.00 53.15 27.64 49 25396
15 22575 0.00 22575 0.00 0.00 0.30 0.33 49 22575
16 23679 0.16 23640 0.00 0.00 0.50 0.66 49 23640
17 23495 0.00 23495 0.00 0.00 0.05 0.04 49 23495
18 22000 0.00 22000 0.00 0.00 0.01 0.00 49 22000
19 25289 1.98 24798 1.17 0.54 82.54 884 49 24798
20 23032 0.00 23032 0.00 0.00 1.51 1.10 49 23032

Table 10: Detailed results on the TDTSPTW benchmark defined by Aguiar-Melgarejo et al. [4], for the
instances of size 50 and transition matrices M00, M10, M20 (configuration for ImaxLNS: Wmaz = 5,
maximum CPU time = 2 minutes per run, 5 runs per instance)



matrix | instance CP-tdNoOverlap ImaxLNS, Wmaz =5 ImaxLNS-all
BF G BF Gm Gs Tm Ts Y% BF
01 44741 7.7 41554  0.50 0.50 68.52 42.67 99 41515
02 - - 37945 0.52  0.50 23.81 10.97 99 37917
03 45308 10.69 41204 1.07 0.68 86.96 31.07 99 40931
04 50124 8.80 46123 041 0.41 59.43 37.73 99 46070
05 41815 3.42 40438 0.56 0.51 4592 38.20 99 40434
06 40051 2.02 39290 0.11 0.11 73.05 41.88 99 39259
07 47074 15.17 40875 0.02 0.02 38.79 29.16 99 40875
08 - - 44261 0.30 0.30 63.61 29.90 99 44194
09 - - 39405 0.18 0.18 7830 41.60 99 39405
MO0 10 45161 4.44 43291 031 0.31 6329 27.04 99 43240
11 45656 3.04 44646 1.20 0.85 90.34 19.25 99 44311
12 45499 1.59 44815 0.28 0.28 97.11 26.03 99 44788
13 43734 1.02 43291 0.15 0.15 61.34 10.25 99 43291
14 40888 1.42 40477 0.68 0.68 23.75 34.39 99 40314
15 45146 5.71 42724 0.36 0.43 41.83 4294 99 42708
16 49901 14.49 43768 1.82 1.04 39.32 3596 99 43585
17 45122 1.18 44594 0.00 0.00 6.37 6.61 99 44594
18 44802 1.63 44127 0.13 0.13 49.29 2592 99 44083
19 44638 0.56 44619 0.52  0.52 19.99 12.73 99 44390
20 - - 42454 0.00 0.00 48.12 37.09 99 42454
01 43005 8.23 39969 0.79 0.72 7724 2482 99 39736
02 38464 4.89 36824 091 0.58 45.06 31.42 99 36672
03 46961 18.81 39571  0.27  0.27 65.70 40.48 99 39527
04 50691 12.98 45023 0.43 043 92.80 31.82 99 44868
05 41662 5.73 39584  0.57 0.57 37.67 17.00 99 39405
06 39133 0.79 38826 0.00 0.00 8.06 4.11 99 38826
07 40493 0.00 40493 0.00 0.00 23.20 13.05 99 40493
08 47085 9.94 42917 0.65 0.60 56.05 2825 99 42828
09 - - 38656 0.87 0.78 8241 2834 99 38363
M10 10 42963 1.34 42579  0.55 0.55 5831 28.86 99 42397
11 44187 4.91 42234 1.82 090 57.53 36.31 99 42118
12 44249 1.83 43455 0.23 0.23 77.06 3546 99 43455
13 41741 2.09 41203 1.09 0.69 37.89 21.08 99 40885
14 39623 0.89 39272 0.38 0.38 73.30 40.79 99 39272
15 43086 5.58 41175  1.57 0.87 83.79 20.03 99 40807
16 41802 1.54 41508 1.06 0.48 89.99 30.58 99 41166
17 45037 1.84 44309 048 0.48 49.92 3294 99 44223
18 44499 2.80 43343 0.76 0.76 47.64 29.15 99 43289
19 44603 0.50 44383 0.00 0.00 3.40 1.78 99 44383
20 41699 0.19 41623 0.08 0.08 49.00 22.21 99 41621
01 40905 6.85 38316 0.77 0.62 67.71 2561 99 38282
02 36200 1.86 35547 0.39 0.39 54.09 29.87 99 35538
03 46286 18.97 39525 1.78 0.78 58.79 45.40 99 38905
04 48187 10.44 43679 041 041 6790 33.09 99 43631
05 40333 4.66 38536 0.00 0.00 23.90 9.31 99 38536
06 38950 2.17 38647 1.87 0.56 42.13 4528 99 38121
07 43886 9.57 40102 0.34 0.34 50.79 19.14 99 40053
08 45176 8.38 41787 1.13 0.96 78.27 40.60 99 41683
09 38530 3.37 37278  0.37  0.37 3828 2278 99 37275
M20 10 44197 8.71 41261 1.85 0.66 9.99 15.04 99 40656
11 42466 4.78 40544 0.76 0.61 76.13 3820 99 40530
12 42414 2.44 41571  0.62 0.62 40.58 26.94 99 41405
13 39955 2.98 39107 2.08 1.05 2430 17.67 99 38800
14 39198 1.11 38769 0.51 0.51 32.83 16.52 99 38769
15 40351 3.11 39380 0.97 0.87 77.37 29.84 99 39133
16 40780 2.61 40075 1.11  0.70 45.05 13.86 99 39744
17 45107 5.85 42643 0.60 0.53 67.63 35.86 99 42615
18 43910 4.37 42072 045 0.49 64.97 36.96 99 42072
19 47371 9.36 43796 1.65 0.60 80.22 39.50 99 43316
20 - - 40817 0.66 0.66 54.89 36.47 99 40712

Table 11: Detailed results on the TDTSPTW benchmark defined by Aguiar-Melgarejo et al. [4], for the
instances of size 100 and transition matrices M00, M10, M20 (configuration for ImaxLNS: Wmaz = 5,
maximum CPU time = 2 minutes per run, 5 runs per instance)



1.4 Earth observing satellites benchmark

Column W corresponds to the insertion-width of each instance, and the semantics of the other columns
is detailed in the main article.

. ImaxLNS, Wmaz =5 . ImaxLNS, Wmaz =5 . ImaxLNS, Wmaz =5

inst N #nsr  Tm Ts A\ inst N #nsr  Tm Ts w inst N #nsr  Tm Ts A%
s01 66 | 0/5 0.06 0.04 21 s01 67 | 0/5 0.02 0.01 30 s01 74 [ 0/5 0.00 0.00 32
s02 79 | 0/5 0.01 0.01 22 s02 74 | 0/5 0.11 0.07 45 s02 75 | 0/5 0.04 0.04 30
s03 71 0/5 0.02 0.01 19 s03 59 | 0/5 0.25 0.21 38 s03 68 | 0/5 0.26 0.17 29
s04 50 | 0/5 0.00 0.00 16 s04 75 | 0/5 0.02 0.01 49 s04 72 | 0/5 0.00 0.00 42
s05 83 | 0/5 0.01 0.00 21 s05 73 | 0/5 0.07 0.04 35 s05 73 | 0/5 0.00 0.00 36
s06 81 0/5 0.05 0.03 17 s06 58 | 0/5 0.13 0.10 34 s06 71 0/5 0.01 0.00 35
s07 68 | 0/5 0.00 0.00 17 s07 66 | 0/5 0.20 0.05 42 s07 73 | 0/5 0.01 0.00 39
s08 66 | 0/5 0.02 0.01 18 s08 75 | 0/5 0.39 0.10 48 s08 74 | 0/5 0.02 0.00 47
s09 59 | 0/5 0.02 0.01 18 s09 75 | 0/5 1.36 1.18 49 s09 72 | 0/5 0.00 0.00 36
s10 54 | 0/5 0.01 0.01 20 s10 61 0/5 0.06 0.05 30 s10 84 | 0/5 1.17 0.81 40
s11 50 | 0/5 0.05 0.04 22 s11 60 | 0/5 0.01 0.00 31 s11 91 0/5 0.33 0.20 41
s12 61 0/5 0.03 0.01 25 s12 68 | 0/5 0.07 0.04 31 s12 84 1/5  3.27 1.33 36
s13 48 | 0/5 0.01 0.01 23 s13 57 | 0/5 0.02 0.01 26 s13 87 1/5 249 147 39
s14 53 0/5 0.02 0.02 19 sl4 63 0/5 0.33 0.14 31 s14 86 0/5 2.84 1.49 38
s15 53 | 0/5 0.01 0.00 21 s15 70 | 0/5 0.29 0.12 31 s15 8 | 0/5 1.09 0.58 39
s16 55 | 0/5 0.01 0.00 14 s16 61 0/5 037 0.33 28 s16 84 1/5  2.84 1.77 43
s17 55 | 0/5 0.01 0.00 21 s17 76 | 0/5 1.63 1.08 47 s17 96 | 0/5 0.52 0.41 51
s18 51 0/5 0.03 0.01 21 s18 68 | 0/5 0.14 0.07 41 s18 94 | 0/5 207 091 53
s19 67 | 0/5 0.12 0.10 22 s19 67 | 0/5 0.01 0.01 30 s19 53 | 0/5 0.25 0.18 37
520 81 0/5 0.01 0.00 22 s20 74 | 0/5 0.11 0.07 45 s20 52 | 0/5 0.10 0.06 38
s21 76 | 0/5 0.07 0.05 19 s21 64 | 0/5 0.32 0.24 39 s21 47 | 0/5 0.16 0.11 32
522 50 | 0/5 0.00 0.00 16 $22 75 | 0/5 0.02 0.01 49 522 49 | 0/5 0.05 0.05 41
s23 8 | 0/5 0.03 0.02 23 s23 73 | 0/5 0.07 0.04 35 s23 50 | 0/5 0.38 0.15 36
s24 83 | 0/5 0.05 0.02 17 s24 61 0/5 0.54 030 35 s24 54 | 0/5 1.40 1.13 43
525 68 | 0/5 0.00 0.00 17 s25 73 | 0/5 0.67 0.50 45 s25 51 0/5 0.65 0.30 29
526 70 | 0/5 0.01 0.00 18 s26 74 | 0/5 0.71 0.30 47 526 53 | 0/5 0.38 0.31 32
s27 63 | 0/5 0.05 0.04 18 s27 75 1/5 1.35 1.83 50 s27 49 | 0/5 0.11 0.07 32
528 55 | 0/5 0.03 0.02 20 s28 61 0/5 0.06 0.05 30 528 55 | 0/5 177 1.13 39
529 49 | 0/5 0.03 0.04 22 s29 63 | 0/5 0.03 0.02 31 529 51 0/5 0.20 0.08 31
s30 57 | 0/5 0.37 0.22 24 s30 69 1/5 299 2.01 31 s30 49 | 0/5 0.18 0.26 29
s31 49 | 0/5 0.02 0.00 23 s31 57 | 0/5 0.02 0.01 26 s31 53 | 0/5 0.06 0.04 35
s32 53 | 0/5 0.02 0.02 19 s32 67 | 0/5 1.49 0.51 31 s32 53 | 0/5 0.03 0.01 39
s33 53 0/5 0.01 0.00 21 s33 69 0/5 1.24 1.27 30 s33 48 0/5 0.16 0.10 29
s34 55 | 0/5 0.01 0.00 14 s34 65 | 0/5 1.28 0.28 31 s34 48 | 0/5 0.11 0.08 36
s35 56 | 0/5 0.01 0.01 21 s35 73 | 0/5 222 091 43 s35 50 | 0/5 0.22 0.15 39
536 51 0/5 0.03 0.01 21 s36 72 | 0/5 1.60 0.57 42 536 52 | 0/5 046 0.27 38

(a) 500km (b) 700km (c) 800km

Table 12: Satellite TDTSPTW benchmark: detailed results for ImaxLNS with Wmaz = 5 and for the
three different altitudes (maximum CPU time = 5 seconds per run, 5 runs per instance)

2 Proofs

2.1 Recursive definition of the ancestors and descendants

Lemma 1. By considering the customers in a topological order of precedence graph G(f), quantities
Anc(B,1) can be recursively computed by:

Anc(B,i) <+  Anco(i) U{Prev(B,i)} U Anc(B, Prev(B,4)) ifi € 8 (1)
Anco(i) U Ane(B, lastAnc(B,1)) otherwise (2)

where Ancg(i) is the set of mandatory ancestors of i in the initial precedence graph G.

Proof. Let us first consider a customer i € 5. By definition of graph G(), it is easy to see that inclusion
Anco(i)U{Prev(B,1)}UAnc(B, Prev(f,i)) C Anc(B,4) holds. For the reverse inclusion, let us consider an
ancestor j of ¢ that is not in Ancg(¢). In this case, there necessarily exists a path from j to i containing
one customer k belonging to 5 and as G(f) is acyclic, customer k must appear before i is 3. This allows
us to infer that either k = Prev(S,4) or there exists a path from k& to Prev(5,i). In the second case, we
obtain that j is necessarily an ancestor of Prev((,4), which proves the reverse inclusion.

Let us now counsider a customer ¢ ¢ 3. By definition of graph G(8), it is easy to see that inclusion
Anco(i) U Anc(B, lastAnc(B,1)) C Anc(B,4) holds. For the reverse inclusion, let us consider an ancestor
j of i that is not in Anco(é). In this case, there necessarily exists a path from j to ¢ containing one
customer k belonging to 8 and as G(8) is acyclic, customer k must either be equal to lastAnc(B,i) or
appear before lastAnc(8,7) in 8. In both cases, we can conclude that j is an ancestor of lastAnc(8,1) in
G(B), which proves the reverse inclusion. O



Lemma 2. By considering the customers in a reverse topological order of precedence graph G(8), quan-
tities Desc(f3,1) can be recursively defined by:

Desc(B,i) <« Desco(i) U{Next(5,i)} U Desc(f3, Next(5,4)) if i € (3)
Descy (i) U Desc(B, firstDesc(3,1)) otherwise (4)

where Descy(i) is the set of mandatory descendants of i in the initial precedence graph G.

Proof. Similar to the proof of Lemma 1. O

2.2 Complexity of the destroy procedure

Proposition 1. The worst-case time complezity of the destroy procedure is O(N?3).

Proof. Proof available in the main article. O

2.3 Properties of the dynamic programming equations

In the following, the set of solutions is referred to as 3. As shown in Lemma 3 below, the path leading to
a visit state satisfies some good properties with regards to the solution prefixes introduced in Definition 1.

Definition 1. (solution prefixes) Let o = [0y,...,0n+1] be a solution completing the partial solution
B obtained after the destroy phase. The prefix of o at a position p € [0..N + 1], denoted by o[0 — p], is
the sequence o[0 — p| = [0, ...,0p]. The set of possible solution prefizes at position p is X(p) = {o[0 —

pl|o € X} where ¥ denotes the set of solutions that are completions of .

Lemma 3. In the definition of the dynamic programming equations, after processing position p € [0..N +
1], the path Path(p, S,1) associated with a reachable state (p, S,7) is a solution prefix in X(p) that visits all
customers in S. Moreover, v(p,S,i) corresponds to the tmc-evaluation of this prefiz, that is v(p, S, i) =
Eval(Path(p, S,i)) where Eval() is defined as in Section 3 of the article.

Proof. The proposition holds at position p = 0: indeed, for the unique initial visit state (0,{0},0), path
Path(0,{0},0) = [0] is a solution prefix in ¥(0) and we have v(0,{0},0) = (0,0,0) = Eval([0]). Let us
now assume that the proposition holds at position p € [0..N]. Let us consider a reachable visit state
(p+ 1,5 U{i},i) at position p + 1 and its associated parent customer j* = w(p + 1,5 U {i},i). The
assumption that the proposition holds at position p implies that sequence o* = Path(p, S, j*) belongs to
X(p), and v(p, S,j*) = Eval(c*). Moreover, we can write Path(p+ 1, S U {i},i) = o* - [i] according to
the definition of a path leading to a visit state. As (p+ 1,5 U {i},?) is a reachable visit state, ¢ is not
in S and all its ancestors belong to S, therefore o* - [i] is a solution prefix in ¥(p + 1). Moreover, by
definition of parent customers, we have v(p 4+ 1, S U {i},i) = StepEval(v(p, S, j*),j*,1). As a result, we
obtain v(p+1,SU{i},i) = StepEval(Eval(c*), j*,i) = Eval(o* -[i]) = Eval(Path(p + 1, S U {i},i)). This
proves that the proposition holds at position p + 1. O

Proposition 2. The path Path(N + 1,[0..N + 1], N + 1) leading to visit state (N +1,[0..N + 1], N +1)
corresponds to a solution (feasible or not) that is a completion of (.

Proof. Direct consequence of Lemma 3. O

Proposition 3. Let us assume that the transition function satisfies the FIFO property. If there exists a
completion o of partial solution § such that §(c) =0 (null tardiness), then solution

o' = Path(N +1,[0..N + 1], N +1)

is feasible and makespan-optimal among the completions of 3.

Proof. Let C(o) denote the set of customers visited by a sequence o. Let us show that for every po-
sition p € [0..N + 1], if there exists a solution prefix ¢ € ¥(p) such that §(c) = 0, then solution
prefix Path(p,C (o), 0p) is feasible and has an optimal makespan among the prefixes leading to visit state
(p,C(O'),O'p).

The proposition holds for p = 0 since the unique solution prefix [0] associated with position 0 is
both feasible and makespan-optimal. Assume that the proposition holds at position p € [0..N] and
consider a solution prefix o - [i{] € X(p+ 1) such that é(c - [i]) = 0. The visit states associated with
o -[i] and o are (p + 1,C(0) U {i},i) and (p,C(0),0,) respectively. As d(o-[i]) = 0, we also have
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d(c) = 0. The assumption that the proposition holds at position p then entails that Path(p,C(o),0p) is
feasible and makespan-optimal among the solution prefixes whose visit state is (p,C(0), 0p). Thanks to
Lemma 3, the feasibility and makespan-optimality of Path(p,C(0),0,) imply that é(p,C(c),0,) = 0 and

7(p,C(0),0,) < 7(0) hold.
From this, let us prove that §(p + 1,C(0) U {i},i) = 0 and 7(p+ 1,C(0) U {i},i) < 7(o - []). First,
the dynamic programming equations entail the following lexicographic inequality:

Y(p+1,C(0) U {i}, ) < StepBual(v(p,C(0), 07), 0 ) (5)
By defining x = 7(p,C(0),0p) + tt(op, i, 7(p,C(0),0,)), Equation 5 allows us to write:

d(p+1,C(o)U{i},9) d(p,C(0),0p) + max(0,x — End(i)) (definition of the StepEval function)

d(p,C(0),0p) + max(0,7(0) + tt(op,,7(0)) — End(i)) (FIFO assumption)

§(0) + max(0,7(0) + tt(op, 3, 7(0)) — End(i)) (since d(p,C(0),0,) =0 =06(0))
(

d(o - [7]) (definition of the cumulated tardiness)

VAN VAN VAN VAN

This entails that 6(p + 1,C(o) U {i},i) = 0, therefore Equation 5 implies the following inequalities:
T(p+1,C(0) U{i}, i) < max(Start(i),z) < max(Start(i),7(c) + tt(op,i,7(0))) < (o - [i])

To sum up, we obtain both d(p+ 1,C(0) U{i},i) = 0 and 7(p+ 1,C(0) U {i},i) < 7(o - [i]), hence
Path(p+1,C(o) U {i},q) is feasible and makespan-optimal among the solution prefixes o - [i] leading to
visit state (p + 1,C(o) U {i},4). This means that the proposition holds at position p + 1. The results
concerning Path(N + 1,[0..N + 1], N + 1) are entailed by the satisfaction of the proposition at position
N +1. O

2.4 From extended visit states to compact visit states

Proposition 4. For every reachable visit state (p,S,1), if R denotes the restriction of S to R(p) (R =
SNR(p)), then we have S = RUR(p) U{Bo, ..., Bp—|R—|R-(p)|}- Moreover, the last customer visited
in (p,S,1) always satisfies condition i € RU{B,_|r—|1R - ()| }-

Proof. Set S can be partitioned as S = (SNR) U (S\R), by considering the removed customers on one
side and the non-removed ones on the other side. It is then possible to show that SNR = (SNR(p))U(SN
R<(p)), since all removed customers visited in S must be visitable either at position p or strictly before
position p. It can also be shown that R.(p) C S holds for every reachable visit state (p, S,%), therefore
we obtain SNR = RUR<(p). From this, we know that S\ R contains p + 1 — |R«(p)| — | R| visits of
non-removed customers, and as the latter are necessarily visited in the order specified by partial solution
B, we have S\R = {fo, ..., Bpo—|R|—|R - (p)| }, therefore we obtain S = RUR(p)U{Bo, - - -, Bp—|R|=|R< (p)] }-

Second, if the last customer ¢ visited in (p, S,4) is a removed customer, then it must belong to R (it
cannot belong to R (p) since it is visited at position p). Otherwise, the last visited customer can only
be customer S3,_|r|—|r_(p)| to respect the precedence constraints induced by 3. O

Proposition 5. Let (p, S, i) be a visit state reached at positionp € [1..N+1] and let (p7 R, 1) be its compact

version. Then, the compact visit state associated with (p — 1,5\ {i}, 7(p, S,1)) is (p — 1, R, w(p, S, 1))
where
R — (BR\{i}) URmaz(p — 1) if i € R(p) (6)
RUR oz (p — 1) otherwise

Proof. The compact visit state associated with (p — 1,5\ {i}, n(p, S,4)) is (p — 1, R',7(p, S, %)) where

= S\{iHhNR(p-1). As S = RUR(p) U {ﬁo,...,ﬁp,|3|,m< )|}, this is equivalent to R’ =
(RUR-(H\{ih) NR(p—1). As RNR.(p) =0 and i € RU {5;:—|R|—\R<(p)\} (see Proposition 4),
this is equivalent to R’ = ((R\ {i}) U R<(p)) NR(p —1). Then, it is possible to show that we have
on one hand R\ {i} € R(p—1) (because R C R(p) and all customers in R \ {i} are visited at a
position p’ < p — 1), and on the other hand R (p) N R(p — 1) = Rpaz(p — 1). As a result, we obtain

= (R\{Z}) URmaz(p_ 1) D
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2.5 Complexity of the repair procedure

Proposition 6. If each call to transition function tt has a time and space complexity O(1), then the repair
procedure has a time complexity O(2W™* . Wmaz? - N) and a space complezity O(2"W™% . Wmaz - N).

Proof. Proof available in the main article. O

Proposition 7. When the transition function satisfies the FIFO property and can be computed in poly-
nomial time, determining whether there exists a feasible solution to (TD)TSPTWs whose insertion-width
is bounded by a fized constant W is polynomial. Moreover, if there exists a feasible solution, finding a
makespan-optimal solution is polynomial as well, simply by applying the repair procedure from partial
solution 8 = 1[0, N + 1].

Proof. Direct consequence of Propositions 3 and 6. O

2.6 Path expansion conditions from a visit state

Lemmas 4 and 5 given below show how the conditions required to visit one more customer given an
extended visit state (p,S,i) can be transformed into simpler conditions depending only on the basic
features of the corresponding compact visit state (p, R,4). These conditions are directly reused in the
pseudo-code of the repair algorithm.

Lemma 4. Let (p,S,j) be a visit state at position p € [0..N] and let (p,R,j) be its compact version
(R=SNR(p)). Let R be the set defined by R' = R\ Rnax(p), where all customers in R for which
position p is the last possible one are discarded. Then, for every removed customer i € R, conditions
% €[0.N+1]\ S and Anc(i) C S” are equivalent to the conjunction of the three following conditions:

e i c R(p+ 1)\ R (ie., iis a candidate for occupying position p + 1 and is not visited yet in R');
® Bo|Rl-|R-(p)|+1 & Anc(i) (i.e., the next non-removed customer to visit is not an ancestor of i);

o Anc(i) N R(p+1) C R’ (i.e., all ancestors of i that are candidates at position p + 1 are already
visited).

When these conditions hold, visit state (p+1, SU{i}, %) corresponds to compact visit state (p+1, R'U{i},1).

Proof. Let us assume that the conditions “é € [0..N 4+ 1]\ S and Anc(i) € S” hold. In this case, as
all ancestors of ¢ are included in S, we have P,,;,(i) < |S| = p+ 1. Moreover, by construction, no
customer in S U {i} can be a descendant of i, therefore |Desc(i)|] < N + 2 — (|S| + 1), which leads to
Priaz (i) = N +1—|Desc(i)| > p+ 1. The two inequalities Py (i) < p+1 and Ppes (i) > p+1 allow us
to write i € R(p + 1).

From the previous discussion, conditions “i € [0..N 4 1] \ S and Anc(i) C S” can be rewritten as
“ € R(p+1)\ S and Anc(i) € S”. Thanks to equality S = RUR<(p) U{Bo,.--,Bo—|r—R- )|}
given in Proposition 4, condition ¢ € R(p+ 1) \ S can be replaced by i € R(p+ 1) \ (RUR(p)). As
R(p+ 1)NR<(p) = 0, this is equivalent to i € R(p+ 1)\ R. As R(p + 1) "Rmaz(p) = 0, this is equivalent
toi € R(p+1)\ R

Condition “Anc(i) C S” can be split into two conditions, namely (1) “every ancestor of ¢ that is a
non-removed customer is contained in S”, and (2) “every ancestor of ¢ that is a removed customer is
contained in S”. As {fo, ..., Bp—|R|—|R-(p)|} S S holds and as customer 3,_|r|—|r _ (p)|+1 1S an ancestor of
all remaining non-removed customers, condition 1 is equivalent to 8, |r|—|r . (p)|+1 & Anc(i). Condition
2 can be formally stated as Anc(i) "R C S, or equivalently Anc(i)NR C RUR(p). As i is candidate for
occupying position p+ 1, it can be shown that every ancestor j of i satisfies Py, () < p, and after a few
steps we can obtain that every removed ancestor of ¢ necessarily belongs to R« (p)UR pmaz (p)UR(p 4+ 1). As
a result, condition 2 can be replaced by (Anc(i) "R« (p)) U (Anc(i) N Ropaz (p)) U (Anc(i) N R(p+1)) C
RUR<(p). Inclusion Anc(i) N R<(p) € R«(p) is always true, and it is possible to show that set
Anc(i)NRmaz (p) is included in R. As a result, condition 2 is equivalent to Anc(i)NR(p + 1) € RUR(p).
As R(p+1) N R<(p) = 0, we obtain condition Anc(i) N R(p+1) C R. As R(p+1) N Rpas(p) = 0,
this is equivalent to Anc(i) " R(p+ 1) C R\ Rinaxz(p), or in other words to the third condition given in
Lemma 4.

We now study the compact visit state associated with (p + 1,5 U {i},7). Set R(p+ 1) can be de-
composed as R(p+1) = (R(p) \ Rmaz(p)) U Rumin(p + 1), since the candidates for occupying position
p + 1 are either candidates at position p for which p is not the last possible position, or removed cus-
tomers for which position p + 1 is the first possible one. From this, we can write SN R(p+1) =
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(SNRP)) \ Rinaz(®@)) U (SN Rpin(p+1)). As SN Rpin(p+1) = 0 (since SNR = RUR(p)
and R C R(p)), we obtain SN R(p+1) = R\ Ruaz(p). Therefore, as i € R(p+ 1), we can write
(SU{iH) NR(p+1) = (BR\ Rumas(p)) U{i} = R"U{i}. 0

Lemma 5. Let (p,S,j) be a visit state at position p € [0..N] and let (p,R,j) be its compact version
(R=SNR(p)). Let R be the set defined by R' = R\ Rmas(p), where all customers in R for which
position p is the last possible one are discarded. Then, for every non-removed customer i € [1..N + 1],
conditions “ € [0..N + 1]\ S and Anc(i) C S” are equivalent to the conjunction of two conditions:

® i =By |R-|R-(p)|+1 (i€, @ is the next non-removed customer to visit);

e Anc(i) NR(p+1) C R’ (ie., all ancestors of i that are candidates at position p + 1 are already
visited).

When these conditions hold, visit state (p+ 1,5 U {i},i) corresponds to compact visit state (p+ 1, R', 7).

Proof. 1f i is not a removed customer, conditions “i € [0..N +1]\ S and Anc(i) C S” can be reformulated
as the conjunction of the three following conditions: (1) ¢ € 8 and ¢ ¢ S, (2) all ancestors of ¢ that
are non-removed customers belong to S, and (3) all ancestors of ¢ that are removed customers belong
to S, that is Anc(i) "R € S. Conditions 1 and 2 together are equivalent to i = B,_|g|—|r(p)|+1
since non-removed customers are totally ordered and the set of non-removed customers visited given S
is {80, -+, Bp—|R|-|R<(p)|}> according to Proposition 4. Condition 3 can be transformed into Anc(i) N
R(p+ 1) C R, as in the proof of Lemma 4. Moreover, still as in the proof of the previous proposition, we
can write SNR(p+ 1) = R\ Rynaz(p). As i is not a removed customer, we obtain (SU{i})NR(p+1) =
R\ Rinaz(p) = R in this case. O
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