Cédric Pralet 
  
Iterated Maximum Large Neighborhood Search for the Traveling Salesman Problem with Time Windows and its Time-Dependent Version

Keywords: Traveling Salesman Problem with Time Windows, Time-Dependent Transitions, Large Neighborhood Search, Makespan Minimization, Solution Feasibility

This article introduces a new algorithm for finding feasible or makespan-optimal solutions of Traveling Salesman Problems with Time Windows (TSPTWs) and Time-Dependent TSPTWs (TDTSPTWs). The algorithm starts from a sequence of visits of the customers involved in the problem, uses destroy and repair operations to iteratively improve this sequence, and applies perturbations to diversify search. For the destroy phase, customers are removed from the current sequence of visits as long as a parameter called the insertion width is not too high. For the repair phase, the customers removed are reinserted for the best based on a dynamic programming procedure whose complexity is only linear in the number of customers. For the perturbation phase, some customers are randomly shifted in the sequence of visits. The algorithm obtained is called Iterated Maximum Large Neighborhood Search (ImaxLNS). On seven standard TSPTW benchmarks, it returns the best-known solution for each instance in less than one second on average. On two TDTSPTW benchmarks related to urban logistics, it provides new feasible solutions and best solutions. On a TDTSPTW benchmark related to Earth observing satellites, it solves most of the instances in less than a second.

Introduction

In a Traveling Salesman Problem with Time Windows (TSPTW), a vehicle must visit a set of customers within allowed time windows while minimizing some objective fonction. The latter can be the sum of the travel times (TSPTW-TT) or travel costs (TSPTW-TC), the time at which the sequence ofvisits is completed s (TSPTW-M), or the duration spent by the vehicle outside of its depot (TSPTW-D). Several extensions of TSPTW were also introduced over the years to answer application needs. Sorne extensions add precedence constraints between customer visits. Other extensions like Time-Dependent TSPTW (TDTSPTW) take into account travel times or travel costs depending on the time at which the vehicle moves, which is useful to model a vehicle subject to traffic conditions varying over the day.

10

Even without any objective, TSPTW is a challenging problem since determining whether there exists a feasible solution visiting all customers within their time windows is strongly NP-complete [START_REF] Amghar | A general variable neighborhood search heuristic for the traveling salesman problem with time windows under completion time minimization[END_REF]. This is why September 28, 2022 ImaxLNS for TSPTW and TDTSPTW: supplementary material C. Pralet 1 Experiments: detailed results

TSPTW benchmarks

Remarks:

• The semantics of columns N, Gm, Gs, Tm, and Ts is given in the main article.

• Column BF gives the value of the best solution found by each method over 5 runs.

• Column W corresponds to the insertion-width of each instance.

• The results of GVNS are directly taken from the article of Amghar et al. [START_REF] Amghar | A general variable neighborhood search heuristic for the traveling salesman problem with time windows under completion time minimization[END_REF]. In these results, the best-known solution was improved for some instances, hence Amghar et al. provided some results with a negative gap. For these instances, as ImaxLNS finds the same new solution values, we do not mention the gap and standard deviation for GVNS in this case (cells filled with "-", e.g. for instance rc202.4 in the SolomonPotvinBengio benchmark). Note that the GVNS results were obtained by Amghar et al. on another processor. For single-threaded computations, the processor used for GVNS is approximately 1.5 times faster than the processor used for ImaxLNS.

• The termination of ImaxLNS is indicated by superscript t in column BF. Termination occurs for instances whose insertion-width is low and for instances where ImaxLNS manages to produce a solution whose makespan is equal to the makespan lower bound. 

Aguiar-Melgarejo et al. [4] benchmark

Tables 9 to 11 give the detailed results obtained on all instances of sizes 30, 50,100 and for distance matrices M00, M10, M20. For the CP-tdNoOverlap method of Aguiar-Melgarejo et al. [START_REF] Aguiar-Melgarejo | A time-dependent no-overlap constraint: Application to delivery problems[END_REF] (that has a maximum CPU time of 2 hours), the table reports the best solutions found for each instance (column BF). It also gives the relative gap G in percent with regards to the best solutions found during all our experiments on ImaxLNS (column ImaxLNS-all). For each instance, the best solution found by ImaxLNS with Wmax = 5 over 5 runs of 2 minutes is given in column BF. The semantics of columns Gm, Gs, Tm, and Ts is given in the main article. Table 11: Detailed results on the TDTSPTW benchmark defined by Aguiar-Melgarejo et al. [START_REF] Aguiar-Melgarejo | A time-dependent no-overlap constraint: Application to delivery problems[END_REF], for the instances of size 100 and transition matrices M00, M10, M20 (configuration for ImaxLNS: Wmax = 5, maximum CPU time = 2 minutes per run, 5 runs per instance)

Earth observing satellites benchmark

Column W corresponds to the insertion-width of each instance, and the semantics of the other columns is detailed in the main article. 

Table 12: Satellite TDTSPTW benchmark: detailed results for ImaxLNS with Wmax = 5 and for the three different altitudes (maximum CPU time = 5 seconds per run, 5 runs per instance)

2 Proofs

Recursive definition of the ancestors and descendants

Lemma 1. By considering the customers in a topological order of precedence graph G(β), quantities Anc(β, i) can be recursively computed by:

Anc(β, i) ← Anc 0 (i) ∪ {Prev (β, i)} ∪ Anc(β, Prev (β, i)) if i ∈ β (1) 
Anc 0 (i) ∪ Anc(β, lastAnc(β, i)) otherwise (2) 
where Anc 0 (i) is the set of mandatory ancestors of i in the initial precedence graph G.

Proof. Let us first consider a customer i ∈ β. By definition of graph G(β), it is easy to see that inclusion Anc 0 (i) ∪ {Prev (β, i)} ∪ Anc(β, Prev (β, i)) ⊆ Anc(β, i) holds. For the reverse inclusion, let us consider an ancestor j of i that is not in Anc 0 (i). In this case, there necessarily exists a path from j to i containing one customer k belonging to β and as G(β) is acyclic, customer k must appear before i is β. This allows us to infer that either k = Prev (β, i) or there exists a path from k to Prev (β, i). In the second case, we obtain that j is necessarily an ancestor of Prev (β, i), which proves the reverse inclusion.

Let us now consider a customer i ∈ β. By definition of graph G(β), it is easy to see that inclusion Anc 0 (i) ∪ Anc(β, lastAnc(β, i)) ⊆ Anc(β, i) holds. For the reverse inclusion, let us consider an ancestor j of i that is not in Anc 0 (i). In this case, there necessarily exists a path from j to i containing one customer k belonging to β and as G(β) is acyclic, customer k must either be equal to lastAnc(β, i) or appear before lastAnc(β, i) in β. In both cases, we can conclude that j is an ancestor of lastAnc(β, i) in G(β), which proves the reverse inclusion.

Lemma 2. By considering the customers in a reverse topological order of precedence graph G(β), quantities Desc(β, i) can be recursively defined by:

Desc(β, i) ← Desc 0 (i) ∪ {Next(β, i)} ∪ Desc(β, Next(β, i)) if i ∈ β (3) Desc 0 (i) ∪ Desc(β, firstDesc(β, i)) otherwise (4) 
where Desc 0 (i) is the set of mandatory descendants of i in the initial precedence graph G.

Proof. Similar to the proof of Lemma 1.

Complexity of the destroy procedure

Proposition 1. The worst-case time complexity of the destroy procedure is O(N 3 ).

Proof. Proof available in the main article.

Properties of the dynamic programming equations

In the following, the set of solutions is referred to as Σ. As shown in Lemma 3 below, the path leading to a visit state satisfies some good properties with regards to the solution prefixes introduced in Definition 1. is feasible and makespan-optimal among the completions of β.

Proof. Let C(σ) denote the set of customers visited by a sequence σ. Let us show that for every position p ∈ [0..N + 1], if there exists a solution prefix σ ∈ Σ(p) such that δ(σ) = 0, then solution prefix Path(p, C(σ), σ p ) is feasible and has an optimal makespan among the prefixes leading to visit state (p, C(σ), σ p ). The proposition holds for p = 0 since the unique solution prefix [0] associated with position 0 is both feasible and makespan-optimal. Assume that the proposition holds at position p ∈ [0..N ] and consider a solution prefix σ • [i] ∈ Σ(p + 1) such that δ(σ • [i]) = 0. The visit states associated with σ • [i] and σ are (p + 1, C(σ) ∪ {i}, i) and (p, C(σ), σ p ) respectively. As δ(σ • [i]) = 0, we also have δ(σ) = 0. The assumption that the proposition holds at position p then entails that Path(p, C(σ), σ p ) is feasible and makespan-optimal among the solution prefixes whose visit state is (p, C(σ), σ p ). Thanks to Lemma 3, the feasibility and makespan-optimality of Path(p, C(σ), σ p ) imply that δ(p, C(σ), σ p ) = 0 and τ (p, C(σ), σ p ) ≤ τ (σ) hold.

From this, let us prove that δ(p + 1, C(σ) ∪ {i}, i) = 0 and τ (p + 1, C(σ) ∪ {i}, i) ≤ τ (σ • [i]). First, the dynamic programming equations entail the following lexicographic inequality:

ν(p + 1, C(σ) ∪ {i}, i) ≤ StepEval (ν(p, C(σ), σ p ), σ p , i) (5) 
By defining x = τ (p, C(σ), σ p ) + tt(σ p , i, τ (p, C(σ), σ p )), Equation 5 allows us to write:

δ(p + 1, C(σ) ∪ {i}, i) ≤ δ(p, C(σ), σ p ) + max(0, x -End (i)) (definition of the StepEval function) ≤ δ(p, C(σ), σ p ) + max(0, τ (σ) + tt(σ p , i, τ (σ)) -End (i)) (FIFO assumption) ≤ δ(σ) + max(0, τ (σ) + tt(σ p , i, τ (σ)) -End (i)) (since δ(p, C(σ), σ p ) = 0 = δ(σ)) ≤ δ(σ • [i]) (definition of the cumulated tardiness)
This entails that δ(p + 1, C(σ) ∪ {i}, i) = 0, therefore Equation 5 implies the following inequalities:

τ (p + 1, C(σ) ∪ {i}, i) ≤ max(Start(i), x) ≤ max(Start(i), τ (σ) + tt(σ p , i, τ (σ))) ≤ τ (σ • [i])
To sum up, we obtain both δ(p + 1, C(σ) ∪ {i}, i) = 0 and τ

(p + 1, C(σ) ∪ {i}, i) ≤ τ (σ • [i]), hence Path(p + 1, C(σ) ∪ {i}, i
) is feasible and makespan-optimal among the solution prefixes σ • [i] leading to visit state (p + 1, C(σ) ∪ {i}, i). This means that the proposition holds at position p + 1. The results concerning Path(N + 1, [0..N + 1], N + 1) are entailed by the satisfaction of the proposition at position N + 1. Second, if the last customer i visited in (p, S, i) is a removed customer, then it must belong to R (it cannot belong to R < (p) since it is visited at position p). Otherwise, the last visited customer can only be customer β p-|R|-|R<(p)| to respect the precedence constraints induced by β. Lemma 5. Let (p, S, j) be a visit state at position p ∈ [0.

From extended visit states to compact visit states

.N ] and let (p, R, j) be its compact version (R = S ∩ R(p)). Let R be the set defined by R = R \ R max (p), where all customers in R for which position p is the last possible one are discarded. Then, for every non-removed customer i ∈ [1..N + 1], conditions "i ∈ [0..N + 1] \ S and Anc(i) ⊆ S" are equivalent to the conjunction of two conditions:

• i = β p-|R|-|R<(p)|+1 ( i.e., i is the next non-removed customer to visit);

• Anc(i) ∩ R(p + 1) ⊆ R ( i.e., all ancestors of i that are candidates at position p + 1 are already visited).

When these conditions hold, visit state (p + 1, S ∪ {i}, i) corresponds to compact visit state (p + 1, R , i).

Proof. If i is not a removed customer, conditions "i ∈ [0..N + 1] \ S and Anc(i) ⊆ S" can be reformulated as the conjunction of the three following conditions: (1) i ∈ β and i ∈ S, (2) all ancestors of i that are non-removed customers belong to S, and (3) all ancestors of i that are removed customers belong to S, that is Anc(i) ∩ R ⊆ S. 

Definition 1 .Lemma 3 .Proposition 2 .Proposition 3 .

 1323 (solution prefixes) Let σ = [σ 0 , . . . , σ N +1 ] be a solution completing the partial solution β obtained after the destroy phase. The prefix of σ at a position p ∈ [0..N + 1], denoted by σ[0 → p], is the sequence σ[0 → p] = [σ 0 , . . . , σ p ]. The set of possible solution prefixes at position p is Σ(p) = {σ[0 → p] | σ ∈ Σ} where Σ denotes the set of solutions that are completions of β.In the definition of the dynamic programming equations, after processing position p ∈ [0..N + 1], the path Path(p, S, i) associated with a reachable state (p, S, i) is a solution prefix in Σ(p) that visits all customers in S. Moreover, ν(p, S, i) corresponds to the tmc-evaluation of this prefix, that is ν(p, S, i) = Eval (Path(p, S, i)) where Eval () is defined as in Section 3 of the article.Proof. The proposition holds at position p = 0: indeed, for the unique initial visit state (0, {0}, 0), path Path(0, {0}, 0) = [0] is a solution prefix in Σ(0) and we have ν(0, {0}, 0) = (0, 0, 0) = Eval ([0]). Let us now assume that the proposition holds at position p ∈ [0..N ]. Let us consider a reachable visit state (p + 1, S ∪ {i}, i) at position p + 1 and its associated parent customer j * = π(p + 1, S ∪ {i}, i). The assumption that the proposition holds at position p implies that sequence σ * = Path(p, S, j * ) belongs to Σ(p), and ν(p, S, j * ) = Eval (σ * ). Moreover, we can write Path(p + 1, S ∪ {i}, i) = σ * • [i] according to the definition of a path leading to a visit state. As (p + 1, S ∪ {i}, i) is a reachable visit state, i is not in S and all its ancestors belong to S, therefore σ * • [i] is a solution prefix in Σ(p + 1). Moreover, by definition of parent customers, we have ν(p + 1, S ∪ {i}, i) = StepEval (ν(p, S, j * ), j * , i). As a result, we obtain ν(p + 1, S ∪ {i}, i) = StepEval (Eval (σ * ), j * , i) = Eval (σ * • [i]) = Eval (Path(p + 1, S ∪ {i}, i)). This proves that the proposition holds at position p + 1. The path Path(N + 1, [0..N + 1], N + 1) leading to visit state (N + 1, [0..N + 1], N + 1) corresponds to a solution (feasible or not) that is a completion of β. Proof. Direct consequence of Lemma 3. Let us assume that the transition function satisfies the FIFO property. If there exists a completion σ of partial solution β such that δ(σ) = 0 (null tardiness), then solution σ = Path(N + 1, [0..N + 1], N + 1)

Proposition 4 .

 4 For every reachable visit state (p, S, i), if R denotes the restriction of S to R(p) (R = S ∩ R(p)), then we have S = R ∪ R < (p) ∪{β 0 , . . . , β p-|R|-|R<(p)| }. Moreover, the last customer visited in (p, S, i) always satisfies condition i ∈ R ∪ {β p-|R|-|R<(p)| }. Proof. Set S can be partitioned as S = (S ∩ R) ∪ = (S \ R), by considering the removed customers on one side and the non-removed ones on the other side. It is then possible to show that S ∩R = (S ∩R(p))∪(S ∩ R < (p)), since all removed customers visited in S must be visitable either at position p or strictly before position p. It can also be shown that R < (p) ⊆ S holds for every reachable visit state (p, S, i), therefore we obtain S ∩ R = R ∪ R < (p). From this, we know that S \ R contains p + 1 -|R < (p)| -|R| visits of non-removed customers, and as the latter are necessarily visited in the order specified by partial solution β, we have S \R = {β 0 , . . . , β p-|R|-|R<(p)| }, therefore we obtain S = R∪R < (p)∪{β 0 , . . . , β p-|R|-|R<(p)| }.

Proposition 5 .

 5 Let (p, S, i) be a visit state reached at position p ∈ [1..N +1] and let (p, R, i) be its compact version. Then, the compact visit state associated with(p -1, S \ {i}, π(p, S, i)) is (p -1, R , π(p, S, i)) where R = (R \ {i}) ∪ R max (p -1) if i ∈ R(p) R ∪ R max (p -1) otherwise (6) Proof. The compact visit state associated with (p -1, S \ {i}, π(p, S, i)) is (p -1, R , π(p, S, i)) where R = (S \ {i}) ∩ R(p -1). As S = R ∪ R < (p) ∪ {β 0 , . . . , β p-|R|-|R<(p)| }, this is equivalent to R = ((R ∪ R < (p)) \ {i}) ∩ R(p -1). As R ∩ R < (p) = ∅ and i ∈ R ∪ {β p-|R|-|R<(p)| } (see Proposition 4), this is equivalent to R = ((R \ {i}) ∪ R < (p)) ∩ R(p -1). Then, it is possible to show that we have on one hand R \ {i} ⊆ R(p -1) (because R ⊆ R(p) and all customers in R \ {i} are visited at a position p ≤ p -1), and on the other hand R < (p) ∩ R(p -1) = R max (p -1). As a result, we obtain R = (R \ {i}) ∪ R max (p -1). ((S ∩ R(p)) \ R max (p)) ∪ (S ∩ R min (p + 1)). As S ∩ R min (p + 1) = ∅ (since S ∩ R = R ∪ R < (p) and R ⊆ R(p)), we obtain S ∩ R(p + 1) = R \ R max (p). Therefore, as i ∈ R(p + 1), we can write (S ∪ {i}) ∩ R(p + 1) = (R \ R max (p)) ∪ {i} = R ∪ {i}.

  Conditions 1 and 2 together are equivalent to i = β p-|R|-|R<(p)|+1 since non-removed customers are totally ordered and the set of non-removed customers visited given S is {β 0 , . . . , β p-|R|-|R<(p)| }, according to Proposition 4. Condition 3 can be transformed into Anc(i) ∩ R(p + 1) ⊆ R , as in the proof of Lemma 4. Moreover, still as in the proof of the previous proposition, we can write S ∩ R(p + 1) = R \ R max (p). As i is not a removed customer, we obtain (S ∪ {i}) ∩ R(p + 1) = R \ R max (p) = R in this case.

Table 1 :

 1 

	instance	N	BK	BF	GVNS Gm Gs	Tm Ts	BF	ImaxLNS, Wmax = 4 Gm Gs Tm	Ts	W
	n20w20	20	370.4	370.4	0.00 0.00	0	0	t 370.4	0.00 0.00 0.00 0.00	2.6
	n20w40	20	342.8	342.8	0.00 0.00	0	0	t 342.8	0.00 0.00 0.00 0.00	2.6
	n20w60	20	362.0	362.0	0.00 0.00	0	0	t 362.0	0.00 0.00 0.00 0.00	3.8
	n20w80	20	363.4	363.4	0.00 0.00	0	0	t 363.4	0.00 0.00 0.00 0.00	7.0
	n20w100	20	331.6	331.6	0.00 0.00	0	0	331.6	0.00 0.00 0.00 0.00	8.8
	n40w20	40	521.2	521.2	0.00 0.00	0	0	t 521.2	0.00 0.00 0.00 0.00	3.4
	n40w40	40	512.2	512.2	0.00 0.00	0	0	t 512.2	0.00 0.00 0.00 0.00	6.2
	n40w60	40	481.4	481.4	0.00 0.00	0	0	481.4	0.00 0.00 0.00 0.00 13.2
	n40w80	40	486.6	486.6	0.00 0.00	0	0	486.6	0.00 0.00 0.00 0.00 13.6
	n40w100	40	463.0	463.0	0.00 0.00	0	0	463.0	0.00 0.00 0.00 0.00 16.4
	n60w20	60	626.8	626.8	0.00 0.00	0	0	t 626.8	0.00 0.00 0.00 0.00	6.8
	n60w40	60	654.4	654.4	0.00 0.00	0	0	t 654.4	0.00 0.00 0.00 0.00 10.2
	n60w60	60	672.8	672.8	0.00 0.00	0	0	672.8	0.00 0.00 0.00 0.00 16.4
	n60w80	60	628.2	628.2	0.00 0.00	0	0	628.2	0.00 0.00 0.00 0.00 16.6
	n60w100	60	620.2	620.6	0.06 0.00	0	0	620.2	0.00 0.00 0.00 0.00 25.8
	n80w20	80	748.2	748.2	0.00 0.00	0	0	t 748.2	0.00 0.00 0.00 0.00	5.6
	n80w40	80	725.6	725.6	-	-	0	0	725.6	0.00 0.00 0.00 0.00 14.0
	n80w60	80	712.6	712.6	0.00 0.00	0	0	712.6	0.00 0.00 0.00 0.00 19.0
	n80w80	80	714.6	714.6	-	-	0	0	714.6	0.00 0.00 0.00 0.00 25.6
	n100w20	100	823.0	823.0	0.00 0.00	0	0	t 823.0	0.00 0.00 0.00 0.00	9.4
	n100w40	100	821.0	821.0	0.00 0.00	0	0	821.0	0.00 0.00 0.00 0.00 15.6
	n100w60	100	817.2	817.2	0.00 0.00	0	0	817.2	0.00 0.00 0.01 0.01 22.0
	n150w20	150	978.4	978.4	0.00 0.00	0	0	t 978.4	0.00 0.00 0.00 0.00	9.8
	n150w40	150	990.4	990.4	0.00 0.00	0	0	t 990.4	0.00 0.00 0.01 0.00 20.8
	n150w60	150	988.6	988.6	0.00 0.00	1	0	988.6	0.00 0.00 0.01 0.00 27.2
	n200w20	200	1137.8	1137.8	0.00 0.00	1	1	1137.8	0.00 0.00 0.00 0.00 13.6
	n200w40	200	1156.0	1156.0	0.00 0.00	1	1	1156.0	0.00 0.00 0.01 0.01 23.0

Results for the Dumas instances (for GVNS: 24 seconds per run, 5 runs per instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)

Table 3

 3 

	: Results for the Langevin instances (for GVNS: 24 seconds per run, 5 runs per instance; for
	ImaxLNS: 5 seconds per run, 5 runs per instance)

Table 4 :

 4 

	instance	N	BK	BF	GVNS Gm Gs	Tm Ts	BF	ImaxLNS, Wmax = 4 Gm Gs Tm	Ts	W
	rc201.0	25	853.71	853.71 0.00 0.00	0	0	t 853.71	0.00 0.00 0.00 0.00	2
	rc201.1	28	850.48	850.48 0.00 0.00	0	0	t 850.48	0.00 0.00 0.00 0.00	8
	rc201.2	28	883.97	883.97 0.00 0.00	0	0	t 883.97	0.00 0.00 0.00 0.00	6
	rc201.3	19	722.43	722.43 0.00 0.00	0	0	t 722.43	0.00 0.00 0.00 0.00	4
	rc202.0	25	850.48	850.48 0.00 0.00	0	0	850.48	0.00 0.00 0.00 0.00	22
	rc202.1	22	702.28	702.28 0.00 0.00	0	0	t 702.28	0.00 0.00 0.00 0.00	3
	rc202.2	27	853.71	853.71 0.00 0.00	0	0	853.71	0.00 0.00 0.00 0.00	19
	rc202.3	26	883.97	883.97 0.00 0.00	0	0	883.97	0.00 0.00 0.00 0.00	20
	rc203.0	35	870.52	870.52 0.00 0.00	0	0	870.52	0.00 0.00 0.00 0.00	35
	rc203.1	37	850.48	850.48 0.00 0.00	0	0	850.48	0.00 0.00 0.00 0.00	37
	rc203.2	28	853.71	853.71 0.00 0.00	0	0	853.71	0.00 0.00 0.00 0.00	24
	rc204.0	32	839.24	839.24 0.00 0.00	0	0	t 839.24	0.00 0.00 0.00 0.00	32
	rc204.1	28	492.60	492.60 0.00 0.00	0	0	492.60	0.00 0.00 0.02 0.01	28
	rc204.2	40	870.52	870.52 2.65 2.24	0	1	870.52	0.00 0.00 0.12 0.05	40
	rc205.0	26	834.62	834.62 0.00 0.00	0	0	t 834.62	0.00 0.00 0.00 0.00	14
	rc205.1	22	899.24	899.24 0.00 0.00	0	0	t 899.24	0.00 0.00 0.00 0.00	2
	rc205.2	28	908.79	908.79 0.00 0.00	0	0	908.79	0.00 0.00 0.00 0.00	14
	rc205.3	24	684.21	684.21 0.31 0.81	0	0	684.21	0.00 0.00 0.00 0.00	16
	rc206.0	35	893.21	893.21 0.00 0.00	0	0	893.21	0.00 0.00 0.02 0.01	21
	rc206.1	33	756.45	756.45 0.00 0.00	1	2	756.45	0.00 0.00 0.00 0.00	24
	rc206.2	32	776.19	776.19 0.00 0.00	3	8	776.19	0.00 0.00 0.04 0.01	23
	rc207.0	37	847.63	847.63 0.00 0.00	0	0	847.63	0.00 0.00 0.02 0.01	33
	rc207.1	33	785.37	785.37 0.00 0.00	0	0	785.37	0.00 0.00 0.12 0.07	29
	rc207.2	30	650.80	650.80 0.00 0.00	0	0	650.80	0.00 0.00 0.08 0.03	30
	rc208.0	44	836.04	836.04 0.04 0.09	11	8	836.04	0.00 0.00 1.20 0.45	44
	rc208.1	27	615.51	615.51 0.00 0.00	0	0	615.51	0.00 0.00 0.04 0.03	27
	rc208.2	29	596.21	596.21 0.00 0.00	0	0	596.21	0.00 0.00 0.03 0.02	29

Results for the SolomonPotvinBengio instances (for GVNS: 24 seconds per run, 5 runs per instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)

Table 5 :

 5 

	instance	N	BK	BF	Gm	GVNS Gs	Tm Ts	BF	ImaxLNS, Wmax = 4 Gm Gs Tm	Ts	W
	n20w120	20	319.6	319.6 0.00 0.00	0	0	319.6 0.00 0.00 0.00 0.00 15.0
	n20w140	20	286.2	286.2 0.00 0.00	0	0	286.2 0.00 0.00 0.00 0.00 16.2
	n20w160	20	311.4	311.4 0.00 0.00	0	0	311.4 0.00 0.00 0.00 0.00 16.6
	n20w180	20	311.2	311.2 0.00 0.00	0	0	311.2 0.00 0.00 0.00 0.00 14.8
	n20w200	20	281.8	281.8 0.00 0.00	0	0	281.8 0.00 0.00 0.00 0.00 19.0
	n40w120	40	470.6	470.6 0.00 0.00	0	0	470.6 0.00 0.00 0.00 0.00 19.6
	n40w140	40	458.2	458.2 0.00 0.00	0	0	458.2 0.00 0.00 0.00 0.00 25.6
	n40w160	40	426.8	426.8 0.00 0.00	0	0	426.8 0.00 0.00 0.00 0.00 30.4
	n40w180	40	427.4	427.4 0.00 0.00	0	0	427.4 0.00 0.00 0.00 0.00 25.8
	n40w200	40	412.0	412.0 0.00 0.00	0	0	412.0 0.00 0.00 0.00 0.00 22.6
	n60w120	60	573.8	573.8 0.05 0.08	1	1	573.8 0.00 0.00 0.00 0.00 15.8
	n60w140	60	600.0	600.0 0.00 0.00	0	0	t 600.0 0.00 0.00 0.00 0.00 27.0
	n60w160	60	619.6	619.6 0.00 0.00	0	0	619.6 0.00 0.00 0.00 0.00 30.6
	n60w180	60	576.0	576.0 0.00 0.00	0	0	576.0 0.00 0.00 0.00 0.00 41.4
	n60w200	60	570.2	570.2 0.02 0.02	0	1	570.2 0.00 0.00 0.00 0.00 37.6
	n80w100	80	711.2	711.2 0.00 0.00	0	0	711.2 0.00 0.00 0.01 0.00 31.4
	n80w120	80	697.4	697.4 0.01 0.01	1	1	697.4 0.00 0.00 0.00 0.00 28.6
	n80w140	80	672.8	672.8 0.00 0.00	1	1	672.8 0.00 0.00 0.00 0.00 33.2
	n80w160	80	653.6	653.6 0.23 0.24	2	2	653.6 0.00 0.00 0.00 0.00 45.8
	n80w180	80	656.4	656.4 0.05 0.09	1	1	656.4 0.00 0.00 0.00 0.00 49.0
	n80w200	80	646.2	646.2 0.00 0.00	2	3	646.2 0.00 0.00 0.00 0.00 56.6
				805.8 0.00 0.00	0	0	805.8 0.00 0.00 0.00 0.00 22.0
	n100w100	100	795.8	795.8 0.00 0.00	0	0	795.8 0.00 0.00 0.00 0.00 32.6
	n100w120	100	895.4	895.4 0.00 0.00	0	0	895.4 0.00 0.00 0.00 0.00 23.6
	n100w140	100	906.4	906.4 0.00 0.00	0	0	906.4 0.00 0.00 0.00 0.00 18.8
	n100w160	100	865.0	865.0 0.00 0.00	0	0	865.0 0.00 0.00 0.00 0.00 31.8

Results for the SolomonPesant instances (for GVNS: 24 seconds per run, 5 runs per instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)

Table 6 :

 6 

	instance	N	BK	BF	Gm	GVNS Gs	Tm Ts	BF	ImaxLNS, Wmax = 4 Gm Gs Tm	Ts	W
	n150w120.001	150	972	972	0.00 0.00	3	3	972	0.00 0.00 0.00 0.00	51
	n150w120.002	150	917	917	0.00 0.00	1	0	t 917	0.00 0.00 0.01 0.00	53
	n150w120.003	150	909	910	0.29 0.28	11	11	909	0.00 0.00 0.01 0.00	54
	n150w120.004	150	925	925	0.00 0.00	2	2	925	0.00 0.00 0.01 0.00	54
	n150w120.005	150	907	907	0.00 0.00	2	1	t 907	0.00 0.00 0.00 0.00	6
	n150w140.001	150	1008	1008	0.00 0.00	1	0	t 1008	0.00 0.00 0.00 0.00	69
	n150w140.002	150	1020	1020	0.00 0.00	3	3	t 1020	0.00 0.00 0.00 0.00	7
	n150w140.003	150	844	844	0.00 0.00	1	0	t 844	0.00 0.00 0.00 0.00	61
	n150w140.004	150	898	898	0.00 0.00	1	1	898	0.00 0.00 0.01 0.00	66
	n150w140.005	150	926	926	0.00 0.00	1	0	926	0.00 0.00 0.01 0.01	64
	n150w160.001	150	959	959	0.00 0.00	1	0	t 959	0.00 0.00 0.02 0.01	69
	n150w160.002	150	890	890	0.03 0.05	18	15	890	0.00 0.00 0.02 0.01	70
	n150w160.003	150	934	934	0.00 0.00	1	0	t 934	0.00 0.00 0.01 0.00	62
	n150w160.004	150	912	912	0.00 0.00	1	0	912	0.00 0.00 0.01 0.01	71
	n150w160.005	150	920	920	0.00 0.00	1	0	920	0.00 0.00 0.00 0.00	61
	n200w120.001	200	1089	1089	0.28 1.04	13	11	1089	0.00 0.00 0.01 0.00	68
	n200w120.002	200	1072	1072	0.00 0.00	2	1	1072	0.00 0.00 0.00 0.00	17
	n200w120.003	200	1128	1128	0.00 0.00	7	6	t 1128	0.00 0.00 0.00 0.00	62
	n200w120.004	200	1072	1072	0.00 0.00	3	1	t 1072	0.00 0.00 0.02 0.01	60
	n200w120.005	200	1073	1073	0.00 0.00	2	0	1073	0.00 0.00 0.01 0.01	65
	n200w140.001	200	1138	1138	0.00 0.00	19	17	t 1138	0.00 0.00 0.02 0.00	71
	n200w140.002	200	1087	1087	0.00 0.00	3	0	1087	0.00 0.00 0.00 0.00	71
	n200w140.003	200	1083	1083	0.00 0.00	5	3	1083	0.00 0.00 0.02 0.00	75
	n200w140.004	200	1100	1100	0.00 0.00	10	8	t 1100	0.00 0.00 0.01 0.00	79
	n200w140.005	200	1121	1121	0.00 0.00	5	2	1121	0.00 0.00 0.01 0.00	68

Results for the GendreauDumasExtended instances (for GVNS: 24 seconds per run, 5 runs per instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)

Table 7 :

 7 Results for the OhlmannThomas instances (for GVNS: 24 seconds per run, 5 runs per instance; for ImaxLNS: 5 seconds per run, 5 runs per instance)1.2 Arigliano et al. [2] benchmarkThe new feasible solutions and the new best solutions found compared to Lera-Romero et al.[START_REF] Lera-Romero | Dynamic programming for the time-dependent traveling salesman problem with time windows[END_REF] are given in the tables below.

	40 70 A 0 A4	686.89	40 90 A 0 C4	943.52
	40 70 A 0 A7	700.59	40 90 B 0 A7	704.10
	40 70 A 0 A9	688.47	40 90 B 0 B5	893.61
	40 70 A 0 B2	750.87	40 90 B 0 B7	810.52
	40 70 A 0 B5	957.27	40 90 B 0 C3	811.87
	40 70 A 0 B6	790.03	40 90 B 0 C4	936.80
	40 70 A 0 B7	816.17	40 95 A 0 A7	690.42
	40 70 A 0 C1	915.46	40 95 0 B5	888.59
	40 70 A 0 C3	846.09	40 95 A 0 B6	773.16
	40 70 A 0 C4	973.48	40 95 A 0 C4	930.05
	40 70 A 0 C8	890.03	40 95 A 0 C9	819.25
	40 70 A 0 C9	898.24	40 95 B 0 A7	695.29
	40 70 B 0 A7	749.49	40 95 B 0 B5	883.67
	40 70 B 0 B5	999.18	40 95 B 0 C1	851.13
	40 70 B 0 B6	864.74	40 95 B 0 C3	799.70
	40 70 B 0 B7	898.36	40 95 B 0 C4	928.07
	40 70 B 0 C4	992.61	40 95 B 0 C10 817.43
	40 70 B 0 C10 922.96	40 98 A 0 A7	687.60
	40 80 A 0 A7	696.74	40 98 A 0 C4	923.82
	40 80 A 0 A9	677.41	40 98 A 0 C9	809.15
	40 80 A 0 B5	927.82	40 98 B 0 A7	689.75
	40 80 A 0 B6	784.58	40 98 B 0 B5	873.25
	40 80 A 0 B7	800.48	40 98 B 0 C4	921.87
	40 80 A 0 C1	895.32	40 98 B 0 C9	810.63
	40 80 A 0 C3	842.49	40 98 B 0 C10 812.89
	40 80 A 0 C4	955.81	40 70 A 25 B7 929.99
	40 80 A 0 C9	882.44	40 70 B 25 B5 1011.14
	40 80 B 0 A7	720.84	40 70 B 25 B7 966.51
	40 80 B 0 B5	935.77	40 80 A 25 B7 914.45
	40 80 B 0 B6	824.06	40 80 B 25 B7 919.23
	40 80 B 0 C1	886.26	40 80 B 25 C3 987.64
	40 80 B 0 C3	825.96	40 90 A 25 B7 897.75
	40 80 B 0 C4	963.76	40 90 B 25 B7 895.82
	40 80 B 0 C10 880.93	40 90 B 25 C3 971.79
	40 90 A 0 A7	694.65	40 95 A 25 B7 885.60
	40 90		40 95 B 25 B7 887.27
	40 90 A 0 C1	881.49	40 98 A 25 B7 876.92
	40 90 A 0 C3	854.18	40 98 B 25 B7 880.73

Table 8 :

 8 New feasible solutions and best solutions for the Arigliano et al.[START_REF] Arigliano | Time-dependent asymmetric traveling salesman problem with time windows: Properties and an exact algorithm[END_REF] benchmark

Proof. Proof available in the main article.

Proposition 7. When the transition function satisfies the FIFO property and can be computed in polynomial time, determining whether there exists a feasible solution to (TD)TSPTWs whose insertion-width is bounded by a fixed constant W is polynomial. Moreover, if there exists a feasible solution, finding a makespan-optimal solution is polynomial as well, simply by applying the repair procedure from partial solution β = [0, N + 1].

Proof. Direct consequence of Propositions 3 and 6.

Path expansion conditions from a visit state

Lemmas 4 and 5 given below show how the conditions required to visit one more customer given an extended visit state (p, S, i) can be transformed into simpler conditions depending only on the basic features of the corresponding compact visit state (p, R, i). These conditions are directly reused in the pseudo-code of the repair algorithm.

Lemma 4. Let (p, S, j) be a visit state at position p ∈ [0.

.N ] and let (p, R, j) be its compact version (R = S ∩ R(p)). Let R be the set defined by R = R \ R max (p), where all customers in R for which position p is the last possible one are discarded. Then, for every removed customer i ∈ R, conditions "i ∈ [0..N + 1] \ S and Anc(i) ⊆ S" are equivalent to the conjunction of the three following conditions:

• i ∈ R(p + 1) \ R ( i.e., i is a candidate for occupying position p + 1 and is not visited yet in R );

, the next non-removed customer to visit is not an ancestor of i);

• Anc(i) ∩ R(p + 1) ⊆ R ( i.e., all ancestors of i that are candidates at position p + 1 are already visited).

When these conditions hold, visit state (p+1, S∪{i}, i) corresponds to compact visit state (p+1, R ∪{i}, i).

Proof. Let us assume that the conditions "i ∈ [0..N + 1] \ S and Anc(i) ⊆ S" hold. In this case, as all ancestors of i are included in S, we have P min (i) ≤ |S| = p + 1. Moreover, by construction, no customer in S ∪ {i} can be a descendant of i, therefore |Desc(i)| ≤ N + 2 -(|S| + 1), which leads to P max (i) = N + 1 -|Desc(i)| ≥ p + 1. The two inequalities P min (i) ≤ p + 1 and P max (i) ≥ p + 1 allow us to write i ∈ R(p + 1). From the previous discussion, conditions "i ∈ [0..N + 1] \ S and Anc(i) ⊆ S" can be rewritten as "i ∈ R(p + 1) \ S and Anc(i) ⊆ S". Thanks to equality S

Condition "Anc(i) ⊆ S" can be split into two conditions, namely (1) "every ancestor of i that is a non-removed customer is contained in S", and (2) "every ancestor of i that is a removed customer is contained in S". As {β 0 , . . . , β p-|R|-|R<(p)| } ⊆ S holds and as customer β p-|R|-|R<(p)|+1 is an ancestor of all remaining non-removed customers, condition 1 is equivalent to β p-|R|-|R<(p)|+1 / ∈ Anc(i). Condition 2 can be formally stated as Anc(i) ∩ R ⊆ S, or equivalently Anc(i) ∩ R ⊆ R ∪ R < (p). As i is candidate for occupying position p + 1, it can be shown that every ancestor j of i satisfies P min (j) ≤ p, and after a few steps we can obtain that every removed ancestor of i necessarily belongs to R < (p)∪R max (p)∪R(p + 1). As a result, condition 2 can be replaced by (Anc(i) ∩ R < (p)) ∪ (Anc(i) ∩ R max (p)) ∪ (Anc(i) ∩ R(p + 1)) ⊆ R ∪ R < (p). Inclusion Anc(i) ∩ R < (p) ⊆ R < (p) is always true, and it is possible to show that set Anc(i)∩R max (p) is included in R. As a result, condition 2 is equivalent to Anc(i)∩R(p + 1) ⊆ R∪R < (p). As R(p + 1) ∩ R < (p) = ∅, we obtain condition Anc(i) ∩ R(p + 1) ⊆ R. As R(p + 1) ∩ R max (p) = ∅, this is equivalent to Anc(i) ∩ R(p + 1) ⊆ R \ R max (p), or in other words to the third condition given in Lemma 4.

We now study the compact visit state associated with (p + 1, S ∪ {i}, i). Set R(p + 1) can be decomposed as R(p + 1) = (R(p) \ R max (p)) ∪ R min (p + 1), since the candidates for occupying position p + 1 are either candidates at position p for which p is not the last possible position, or removed customers for which position p + 1 is the first possible one. From this, we can write S ∩ R(p + 1) =