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Abstract

The stability analysis of possibly time varying positive semigroups on non
necessarily compact state spaces, including Neumann and Dirichlet boundary
conditions is a notoriously difficult subject. These crucial questions arise in
a variety of areas of applied mathematics, including nonlinear filtering, rare
event analysis, branching processes, physics and molecular chemistry. This ar-
ticle presents an overview of some recent Lyapunov-based approaches, focusing
principally on practical and powerful tools for designing Lyapunov functions.
These techniques include semigroup comparisons as well as conjugacy princi-
ples on non necessarily bounded manifolds with locally Lipschitz boundaries.
All the Lyapunov methodologies discussed in the article are illustrated in a
variety of situations, ranging from conventional Markov semigroups on general
state spaces to more sophisticated conditional stochastic processes possibly re-
stricted to some non necessarily bounded domains, including locally Lipschitz
and smooth hypersurface boundaries, Langevin diffusions as well as coupled
harmonic oscillators.
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1 Introduction

1.1 Description of the models

Let BpEq be the algebra of locally bounded measurable functions on a locally compact
Polish space E. We denote by BbpEq Ă BpEq the sub-algebra of bounded measurable
functions endowed with the supremum norm }.}. Let Qs,t, be a semigroup of positive
integral operators on BbpEq indexed by a continuous time indices s, t P T “ R` :“
r0,8r or by a discrete time index set T “ N, with s ď t.

For a given uniformly positive function V P BpEq, we let BV pEq Ă BpEq be the
sub-space of functions f P BpEq equipped with the norm }f}V :“ }f{V }.

We also let B8pEq Ă BpEq be the subalgebra of locally bounded and uniformly
positive functions V that grow at infinity; that is, supK V ă 8 for any compact set
K Ă E, and for any r ě V‹ :“ infE V ą 0 the r-sub-level set Vprq :“ tV ď ru Ă E is
a non empty compact subset. We denote by B0pEq :“ t1{V : V P B8u Ă BbpEq the
sub-algebra of positive functions, locally lower bounded and that vanish at infinity.
For a given V P B8pEq, consider the subspace

B0,V pEq :“ tf P BpEq : |f |{V P B0pEqu .

We say that Qs,t is a V -positive semigroup on BV pEq for some Lyapunov function
V P B8pEq as soon as there exists some τ ą 0 and some function Θτ P B0pEq such
that for any 0 ă f P BV pEq and s ă t we have 0 ă Qs,tpfq P B0,V pEq as well as

Qs,s`τ pV q{V ď Θτ and sup
|t´s|ďτ

`

|||Qs,t||| _ |||Qs,t|||V

˘

ă 8. (1)

The growth conditions stated above are discussed in some details in Section 1.3.
As shown in Section 3.1, the l.h.s. criterion in (1) can be seen as a uniform Foster-
Lyapunov condition (a.k.a. drift condition).

Foster-Lyapunov criterion dates back to the 1950s with the seminal articles [32, 38].
These criteria are nowadays an essential tool to analyze the stability properties of
Markov semigroups on general state spaces [7, 26, 37, 39, 50, 51]. Their use in the
context of positive semigroup arising in discrete time nonlinear filtering goes back to
the pioneering articles [27, 64], based on coupling techniques developed in [41, 42].
The extension of Foster-Lyapunov criterion to discrete or continuous time varying
positive semigroups and their normalized versions on general state spaces were further
developed in [21], extending Dobrushin’s ergodic coefficient techniques introduced
in [11, 12] and further developed in [15, 16, 17, 14, 22] to unbounded state space
models.

Recall that the Dobrushin’s ergodic coefficient of a Markov semigroup is the oper-
ator norm of the Markov integral operator acting on probability measures equipped
with the total variation norm (see for instance [16] and references therein). In the
same vein, the V -Dobrushin’s ergodic coefficient of a Markov transition is defined as
the operator norm of the Markov integral operator acting on probability measures
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equipped with the V -norm. In this operator theoretical framework, the contraction
w.r.t. V -norms is deduced by coupling the Foster-Lyapunov criterion with a local
contraction on a sufficiently large compact sub-level set of the Lyapunov function. A
brief overview on this subject is provided in Section 2.

The local contraction on the compact sub-level sets of the Lyapunov function
is generally an easily verifiable condition. This property is often deduced from a
Doeblin type local minorization property of integral operators on the compact sub-
level sets of the Lyapunov function. For instance, this local minorization condition
is satisfied as soon as the semigroup is lower bounded by an absolutely continuous
integral operator (a.k.a. transition kernel operator). This class of models includes
hypo-elliptic diffusion semigroups as well as some regular jump processes on non
necessarily bounded domains.

Even for diffusion semigroups with smooth densities on bounded manifolds with
entrance boundaries (i.e. boundary states that cannot be reached from the inside), the
existence of a sufficiently strong Lyapunov function is essential to ensure the stability
of the semigroup. In this context, the transition densities are null on entrance bound-
ary states so that the local minorization condition alone applied to some exhausting
sequence of compact subsets is not sufficient to ensure the stability of the process.
The exhausting sequence of compact subsets needs to be equivalent to the sub-level
sets of some sufficiently strong Lyapunov function near entrance boundaries. For a
more thorough discussion on this subject we refer to Section 2 and the article [21],
see also the series of Riccati-type diffusions discussed in Section 5.

The general problem of constructing Lyapunov functions for positive semigroups,
including for Markov semigroups often requires to have some good intuition about a
candidate for a Lyapunov function on some particular class of model. As for determin-
istic dynamical systems, the design of Lyapunov functions for sub-Markov semigroups
associated with a non-absorbed stochastic process requires to use some physical in-
sight on the stability and the behavior of the free evolution stochastic process near
possible absorbing boundaries.

Constructing Lyapunov functions for general classes of positive semigroups is well
known as a very hard problem in system theory as well as in applied probability
literature. The main subject of this article is to find practical ways to design these
Lyapunov functions for various classes of positive semigroups that have been discussed
in the literature, including conditional diffusions on manifolds with Neumann and
Dirichlet boundaries. We did our best to cover the subject as broadly as possible, we
also refer to the article [21] for additional historical and reference pointers. Due to the
vast literature on this subject we apologize for possible omissions of some important
contributions due to the lack of knowledge.

The remainder of this article is structured as follows:
In Section 2, we begin with a brief review of V -norm contraction theorems and

semigroup stability properties stemming from an assumed Lyapunov structure. Sec-
tion 2.1 is dedicated to time varying Markov semigroups. The extension of these re-
sults to time varying positive semigroups are discussed in Section 2.2. In Section 2.3,
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we present some consequences of these results in the context of time homogenous
models, including existence of ground states and quasi-invariant measures. Section 2.4
and Section 2.5 present different tools to design Lyapunov functions for continuous
time Markov semigroups and sub-Markov semigroups. We also illustrate these results
through different examples of semigroups arising in physics and applied probability,
including overdamped Langevin diffusions, Langevin and hypo-elliptic diffusions, as
well as typical examples of solvable one-dimensional sub-Markov semigroups such as
the harmonic oscillator, the half-harmonic oscillator and the Dirichlet heat kernel.
General comparison and conjugacy principles to construct Lyapunov functions for
positive semigroups are provided in Section 3. Boundary problems are discussed in
some details in Section 4. We then turn in Section 5 to the design of Lyapunov func-
tions for Riccati type processes, including positive definite matrix valued diffusions,
logistic and multivariate birth and death processes arising respectively in Ensemble
Kalman-Bucy filter theory and population dynamic analysis.

In Section 6 we illustrate the power of the Lyapunov approach in the context
of multivariate conditional diffusions. Section 7 is dedicated to illustrations with
explicit computations of geometrical objects for the Lyapunov functions discussed in
Section 4.3 in the context of hypersurface Dirichlet boundaries.

1.2 Some basic notation

We denote by CpEq Ă BpEq the sub-algebra of continuous functions and by CbpEq Ă
CpEq the sub-algebra of bounded continuous functions.

We also set CV pEq :“ BV pEq X CpEq, C0pEq :“ B0pEq X CpEq and C8pEq :“
B8pEq X CpEq and C0,V pEq :“ B0,V pEq X CpEq. Note that none of the sub-algebras
B0pEq and B8pEq have an unit unless E is compact, the null function 0 R B0pEq but
the unit function 1 P C0,V pEq as soon as V P B8pEq.

Let MbpEq be the set of bounded signed measures µ on E equipped with the
total variation norm }µ}tv :“ |µ|pEq{2, where |µ| :“ µ` ` µ´. It stands for the total
variation measure associated with a Hahn-Jordan decomposition µ “ µ` ´ µ´ of the
measure. Also let PpEq ĂMbpEq be the subset of probability measures on E.

With a slight abuse of notation, we denote by 0 and 1 the null and unit scalars as
well as the null and unit function on E.

The action of Qs,t on BbpEq is given for any f P BbpEq by the formulae

Qs,tpfqpxq :“

ż

Qs,tpx, dyq fpyq. (2)

The left action of Qs,t on MbpEq is given for any η PMbpEq by the formulae

pη Qs,tqpdyq :“

ż

ηpdxq Qs,tpx, dyq. (3)

In this notation, the semigroup property takes the following form

Qs,uQu,t “ Qs,t with Qs,s “ I, the identity operator. (4)
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In the above display, Qs,uQu,t is a shorthand notation for the composition Qs,u˝Qu,t of
the left or right-action operators. Unless otherwise stated, all the semigroups discussed
in this article are indexed by conformal indices s ď t in the set T . To avoid repetition,
we often write Qs,t without specifying the order s ď t of the indices s, t P T .

We denote by MV pEq be the space of measures µ P MbpEq equipped with the
operator V -norm |||µ|||V :“ |µ|pV q, and by PV pEq Ă MV pEq be the convex set of
probability measures. We associate with a function h P B0,V pEq the Boltzmann-Gibbs
transformation

Ψh : µ P PV pEq ÞÑ Ψhpµq P PV hpEq (5)

with the probability measure

Ψhpµqpdxq :“
hpxq

µphq
µpdxq and V h :“ V {h P B8pEq.

We also denote by |||Q|||V the operator norm of a bounded linear operator Q : f P
BV pEq ÞÑ Qpfq P BV pEq; that is

|||Q|||V :“ supt}Qpfq}V : f P BV pEq such that }f}V ď 1u. (6)

In terms of the V -conjugate semigroup

f P BbpEq ÞÑ QV
pfq :“ QpV fq{V P BbpEq

we have

|||Q|||V “ }Q
V
p1q} “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇQV
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ :“ supt}QV
pfq} : f P BbpEq such that }f} ď 1u.

For a given measurable function f and a given measurable subset, we use the short-
hand notation

´8 ď inf
A
f :“ inf

xPA
fpxq ď sup

A
f :“ sup

xPA
fpxq ď `8.

For a given s P T and τ P T with τ ą 0, we consider the time mesh

rs,8rτ :“ ts` nτ P rs,8r : n P Nu.

Throughout, unless otherwise is stated we write c for some positive constants
whose values may vary from line to line, and we write cα, as well as cpβq and cαpβq
when their values may depend on some parameters α, β defined on some parameter
sets. We also set a^ b “ minpa, bq, a_ b “ maxpa, bq, and a` “ a_ 0 for a, b P R.
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1.3 Regularity conditions

The irreducibility condition f ą 0 ùñ Qs,tpfq ą 0 is satisfied if and only if we have
Qs,tp1q ą 0. We check this claim by contradiction. Assume that Qs,tp1q ą 0 and
consider a function f ą 0 and some x P E such that Qs,tpfqpxq “ 0. In this case, for
any ε ą 0 we would have

0 “ ε Qs,t p1fěεq pxq ď Qs,tpfqpxq

by Fatou’s lemma we would find the contraction

lim inf
εÑ0

Qs,t p1fěεqpxq “ 0 ě Qs,tp1qpxq ùñ Qs,tp1qpxq “ 0.

Without further mention, all semigroups Qs,t considered in this article are assumed to
be semigroups of positive integral operators Qs,t on BbpEq satisfying the irreducibility
condition Qs,tp1q ą 0 for any s ď t. Notice that the condition

0 ă f P BV pEq ùñ @s ă t 0 ă Qs,tpfq P B0,V pEq

is met as soon as Qs,t is a strong V -Feller semigroup, in the sense that for any s ă t
we have Qs,tpBV pEqq Ă CV pEq and when we have Qs,tpV q{V P B0pEq. To check
this claim, observe that for any positive function f P BV pEq and s ă t the function
Qs,tpfq is positive and continuous; and thus locally lower bounded. In this situation,
whenever }f}V ď 1, for any s ă t we have the comparison property

Qs,tpfq{V ď Qs,tpV q{V P B0pEq ùñ Qs,tpfq{V P B0pEq ðñ Qs,tpfq P C0,V pEq.

In summary, a strong V -Feller semigroup Qs,t is V -positive on BV pEq as soon as there
exists some τ ą 0 and some function Θτ P B0pEq such that the l.h.s. condition in (1)
is met and for any s ă t we have

Qs,tpV q{V P B0pEq and Qs,s`τ pV q{V ď Θτ P B0pEq.

When V P C8pEq, we say that Qs,t is a V -positive semigroup on CV pEq as soon as
Qs,tpCV pEqq Ă C0,V pEq for any s ă t and condition (1) is met.

A V -Feller semigroup Qs,t for some V P C8pEq, in the sense that for any s ă t we
have Qs,tpCV pEqq Ă CV pEq, is also said to be V -positive on CV pEq as soon as there
exists some τ ą 0 and some function Θτ P B0pEq such that the l.h.s. condition in (1)
is met and for any s ă t we have

Qs,tpV q{V P C0pEq and Qs,s`τ pV q{V ď Θτ P B0pEq.

Last but not least, observe that positive semigroups Qs,t with continuous time
indices s ď t P R` can be turned into discrete time models by setting Qp,n “ Qpτ,nτ

for any p ď n P N and some parameter τ ą 0. Up to a time rescaling, the parameter
τ ą 0 arising in the definition of a discrete time V -positive semigroups Qp,n can be
chosen as the unit time parameter. In this context, the r.h.s. condition in (1) is
automatically satisfied.
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2 A brief review on semigroups

2.1 A V -norm contraction theorem

The aim of this section is to present some stability theorems for uniform V -positive
semigroups. We first examine the situation where Qs,t “ Ps,t is a semigroup of Markov
integral operators Ps,t on BbpEq. Note that the Lyapunov condition stated in the l.h.s.
of p1q ensures the following geometric drift condition

Ps,s`τ pV q ď ετ V ` cτ (7)

some parameter ετ P r0, 1r and some finite constant cτ ă 8. The geometric drift
condition (7) ensures that the sequence |||Ps,s`nτ |||V indexed by s ě 0 and n ě 1 is
uniformly bounded. In this context, the r.h.s. condition in (1) applied to Qs,t “ Ps,t
ensures that the operator norms of Ps,t are uniformly bounded w.r.t. any time horizon.
More precisely, whenever (7) is met we have the equivalence

sup
sě0

sup
těs
|||Ps,t|||V ă 8 ðñ sup

|t´s|ďτ

|||Ps,t|||V ă 8. (8)

Note that (8) is automatically satisfied whenever (7) is met for any τ ą 0 with
supτPr0,1s cτ ă 8. For instance, consider the Markov transition semigroup Ps,t of a
continuous time stochastic flow Xs,tpxq on some locally compact normed vector space
pE, }.}q with generator Lt defined on some common domain DpLq Ă BpEq. In this
context, for any non negative function V P DpLq and any parameters a ą 0, c ă 8
and τ ą 0 we have

Lτ pV q ď ´aV ` c ùñ p7q and p8q with ετ “ p1` aτq
´1
ă 1 and cτ “ cτ. (9)

The above estimate is rather well known, a detailed proof is provided in the appendix
on page 63. Further examples of Markov diffusion semigroups on Rn satisfying (7)
are discussed in Section 2.4. We further assume there exists some r0 ě 1 and some
function ατ : r P rr0,8r ÞÑ ατ prq P s0, 1s, such that for any r ě r0 we have

sup
px,yqPVprq2

}δxPs,s`τ ´ δyPs,s`τ}tv ď 1´ ατ prq with Vprq :“ tV ď ru. (10)

Consider the V -norm operator βV pPs,tq (a.k.a. the V -Dobrushin coefficient) of Ps,t
defined by

βV pPs,tq :“ sup
µ,ηPPV pEq

|||pµ´ ηqPs,t|||V {|||µ´ η|||V . (11)

In this notation, conditions (7), (8) and (10) ensure the existence of some parameter
τ ą 0 such that

sup
|t´s|ďτ

βV pPs,tq ă 8 and sup
sě0

βV pPs,s`τ q ă 1. (12)
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The proof of the above assertion can be found in [21] (see also [22] in the context
of time homogeneous models). The next exponential contraction theorem is a direct
consequence of the operator norm estimates (12) and it is valid on abstract measurable
spaces as well as for any function V ě 1.

Theorem 2.1. Let Ps,t be a semigroup of Markov integral operators Ps,t on some
measurable state space E satisfying condition (12) for some function V ě 1 and some
parameter τ ą 0. In this situation, there exists a parameter b ą 0 and some finite
constant c ă 8 such that for any s ď t and µ, η P PV pEq we have the exponential
estimate

|||pµ´ ηqPs,t|||V ď c e´bpt´sq |||µ´ η|||V . (13)

In particular, the above exponential Lipschitz estimates are met as soon as conditions
(7), (8) and (10) are satisfied. The estimates (13) also hold for any s ě 0 and
t P rs,8rτ as soon as (7) and (10) are satisfied for some τ ą 0.

The proof of Theorem 2.1 is based on discrete time type V -norm operator contrac-
tion techniques combining the geometric drift condition (7) with the total variation
estimates (10). The r.h.s. condition in (8) is a technical condition only made for con-
tinuous time semigroups to ensure that (13) also holds for continuous time indices.

For time homogeneous semigroups Pt :“ Ps,s`t the contraction estimate (13) en-
sures the existence of a single invariant probability measure µ8 “ µ8Pt P PV pEq.
In this context, similar approaches are presented in the article [37], simplifying the
Foster-Lyapunov methodologies and the small-sets return times estimation techniques
developed in [50]. Theorem 2.1 can be seen as an extension of Harris’ theorem to time
varying Markov semigroup. The operator-theoretic framework discussed above pro-
vides a very direct proof based on the V -Dobrushin coefficient (11). For a more
thorough discussion on this subject we refer to [21, 22].

Note that the strength of conditions (7) and (10) depends on the strength of the
function V : when the function V is bounded, the geometric drift condition (7) and
the uniform norm condition (8) are trivially met but in this case condition (10) is a
uniform contraction condition on the state E. In the reverse angle, when V P B8pEq
is a function with compact sub-level sets, the geometric drift condition (7) combined
with (8) ensures that µPs,t is a tight collection of probability measures indexed by
s ď t. In this context, the local contraction condition (10) is met if and only if for
any s ě 0 and any px, yq P Vprq2 there exists some probability measure µ on E (that
may depends on the parameters pτ, r, s, x, yq) such that

@z P tx, yu δzPs,s`τ pdyq ě ατ prq µpdyq.

For instance, the above condition is met as soon as

Ps,s`τ px, dyq ě ps,s`τ px, yq ντ pdyq (14)
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for some Radon positive measure ντ on E and some density function ps,s`τ , satisfying
for any r ě r0 the local minorization condition

0 ă inf
sPT

inf
Vprq2

ps,s`τ and 0 ă ντ pVprqq ă 8. (15)

For locally compact Polish spaces condition 0 ă ντ pVprqq ă 8 is met as soon as V has
compact sub-levels sets Vprq with non empty interior and ντ is a Radon measure of full
support; that is ντ is finite on compact sets and strictly positive on non-empty open
sets. For time homogeneous models, also note that the l.h.s. minorization condition
(15) is satisfied as soon as px, yq P pE˝q2 ÞÑ pτ px, yq is a continuous positive function
on the interior E˝ of the set E.

Several illustrations of Theorem 2.1 are discussed in Section 2.4 in the context of
diffusion processes on Euclidean spaces as well as in Section 5 in the context of Riccati-
type diffusion on positive definite matrix spaces and multivariate birth and death jump
type processes on countable state spaces. The stability of Markov semigroups on man-
ifolds with entrance boundaries can also be analyzed using the Lyapunov techniques
developed in Section 4. For instance, as shown in Section 4.1, any absolutely con-
tinuous Markov semigroup Ps,t on a bounded connected subset E Ă Rn with locally
Lipschitz boundary BE satisfies the conditions of Theorem 2.1 with the (non unique)
Lyapunov function V pxq “ 1{

a

dpx, BEq and the distance to the boundary defined
for any x P E by

dpx, BEq :“ inf t}x´ y} : y P BEu.

We illustrate the above discussion with some elementary one dimensional examples.

Example 2.2. Consider a one dimensional Brownian on the compact interval E “

r0, 1s with reflected boundaries. In this situation, Pt :“ P0,t coincides with the Neu-
mann heat semigroup on r0, 1s. In this context, recalling that the Neumann heat kernel
is smooth and strictly positive on the compact interval r0, 1s, the conditions of Theo-
rem 2.1 are satisfied with the unit Lyapunov function V pxq “ 1, as well as for any of
the Lyapunov functions V pxq “ 1{

?
x, V pxq “ 1{

?
1´ x or V pxq “ 1{

?
x`1{

?
1´ x.

The same reasoning applies to the one dimensional positive Riccati-type diffusions
with an entrance boundary at the origin discussed in Section 5. Reflecting this class of
positive diffusions at x “ 1, the conditions of Theorem 2.1 are satisfied on E “s0, 1s
with the Lyapunov functions V pxq “ 1{

?
x as well as for V pxq “ 1{

?
x` 1{

?
1´ x.

2.2 Normalized semigroups

For non necessarily Markov V -positive semigroups Qs,t one natural idea is to normalise
the semigroups. For any probability measure η P PV pEq we let Φs,tpηq P PV pEq be
the normalised distribution defined for any f P BV pEq by the formula

Φs,tpηqpfq :“
ηQs,tpfq

ηQs,tp1q
and we set Qs,tpfqpxq :“

Qs,tpfqpxq

Qs,tp1qpxq
“ Φs,tpδxqpfq. (16)

10



The mapping Φs,t is a well defined semigroup on PV pEq. The denormalisation formula
connecting these semigroups is given for any t P rs,`8rτ by

µQs,tpfq “ Φs,tpµqpfq
ź

uPrs,trτ

Φs,upµqpQu,u`τ p1qq. (17)

with
rs, trτ :“ ts` nτ P rs, tr : n P Nu.

To check this claim, observe that for any t :“ s` nτ we have

Φs,s`pτ pµqpQs`pτ,s`pp`1qτ p1qq “ µQs,s`pp`1qτ p1q{µQs,s`pτ p1q

and therefore
ś

0ďpăn Φs,s`pτ pµqpQs`pτ,s`pp`1qτ p1qq “ µQs,s`nτ p1q

The above formula coincides with the product formula relating the unnormalised
operators Qs,t with the normalised semigroup Φs,t discussed in [14, Section 1.3.2], see
also [17, Proposition 2.3.1] and [19, Section 12.2.1].

We strengthen (14) and assume that for any s ě 0 and τ ą 0, the integral operator
Qt,t`τ has a density qs,s`τ with respect to some Radon positive measure ντ on E; that
is we have that

Qs,s`τ px, dyq “ qs,s`τ px, yq ντ pdyq. (18)

We also assume there exists some r0 ą 1 such that for any r ě r0 we have

0 ă ιrpτq :“ inf
sPT

inf
Vprq2

qs,s`τ ď sup
sPT

sup
Vprq2

qs,s`τ ă 8 and ντ pVprqq ą 0. (19)

In this situation, for any r ě r0 and r ě r we have the uniform estimate

inf
Vprq

Qs,s`τ p1q ě r,rpτq :“ inf
Vprq

Qs,s`τ p1Vprqq ě ιrpτq ντ pVprqq ą 0.

We associate with a given µ P PV pEq and some function H P B0,V pEq the finite rank
(and hence compact) operator

f P BV pEq ÞÑ T µ,Hs,t pfq :“
Qs,tpHq

µspQs,tp1qq
µtpfq P CV pEq

with the flow of measures µt “ Φs,tpµsq starting at µ0 “ µ. With this notation at
hand, one has the following theorem.

Theorem 2.3 ([21]). Consider a V -positive semigroups Qs,t with a density (18) sat-
isfying (19) for some parameter τ ą 0 and some r0 ą 1. In this situation, there exists
a parameter b ą 0 such that for any µ, η P PV pEq and any s ě 0 and t P rs,8rτ we
have the local Lipschitz estimate

|||Φs,tpµq ´ Φs,tpηq|||V ď cpµ, ηq e´bpt´sq |||µ´ η|||V . (20)
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For any pµ,Hq P pPV pEqˆB0,V pEqq there exists some finite constant cHpµq ă 8 such
that for any s ě 0 and t P rs,8rτ we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Qs,t

µsQs,tp1q
´ T µ,Hs,t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

V

ď cHpµq e
´bpt´sq. (21)

For continuous time semigroups, the above estimates also hold for any continuous
time indices s ď t as soon as for any r ě r0 there exists some r ě r such that
infδPr0,τ s r,rpδq ą 0.

The proof of Theorem 2.3 is based on discrete time type V -norm operator contrac-
tion techniques combining the geometric drift condition stated in the l.h.s. of (1) with
the local minorization condition stated in (19). The condition infδPr0,τ s r,rpδq ą 0 is
a technical condition only made for continuous time semigroups to ensure that (20)
and (21) also hold for continuous time indices.

Theses regularity conditions are rather flexible as we will now explain.
Absolutely continuous integral operators arise in a natural way in discrete time

settings [17, 14, 27, 64] and in the analysis of continuous time elliptic diffusion absorp-
tion models [2, 29, 30, 61]. In connection to this, two-sided estimates for stable-like
processes are provided in [6, 43, 59, 63]. Two sided Gaussian estimates can also be
obtained for some classes of degenerate diffusion processes of rank 2, that is when the
Poisson brackets of the first order span the whole space [44]. This class of diffusions
includes frictionless Hamiltonian kinetic models.

Diffusion density estimates can be extended to sub-Markovian semigroups using
the multiplicative functional methodology developed in [15]. Whenever the trajecto-
ries of these diffusion flows, say t ÞÑ Xtpxq, where x P E is the initial position, are
absorbed on the smooth boundary BE of a open connected domain E, for any τ ą 0
the densities qτ px, yq of the sub-Markovian semigroup Qτ (with respect to the trace of
the Lebesgue measure on E) associated with the non absorption event are null at the
boundary. Nevertheless, whenever these densities are positive and continuous on the
open set E2 for some τ ą 0, they are uniformly positive and bounded on any compact
subset of E; thus condition (19) is satisfied.

In this context, whenever T pxq stands for first exit time from E and Trpxq the
first exit time from the compact level set Vprq Ă E starting from x P Vprq, for any
δ P r0, τ s and r` ą r we have the estimate

Qδp1Vpr`qqpxq :“ E
`

1Vpr`qpXδpxqq 1T pxqąδ
˘

ě P
`

Tr`pxq ą δ
˘

ě P
`

Tr`pxq ą τ
˘

.

In this context, we have

inf
xPVprq

P
`

Tr`pxq ą τ
˘

ą 0 ùñ inf
δPr0,τ s

inf
Vprq

Qδp1q ě inf
δPr0,τ s

r,r`pδq ą 0. (22)

Whenever the interior E` :“ Vpr`q˝ is a connected domain, the l.h.s. estimate in (22)
is met as soon as the sub-Markovian semigroup Q`τ associated with the non absorption
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event at the boundary BE` has a continuous density px, yq P E2
` ÞÑ q`τ px, yq. To check

this claim, observe that for any x P Vprq we have

P
`

Tr`pxq ą τ
˘

“ Q`τ p1qpxq ě Q`τ p1Vprqqpxq “

ż

q`τ px, yq 1Vprqpyq ντ pdyq

ě ντ pVprqq inf
Vprq2

q`τ ą 0.

It is out of the scope of this article to review the different classes of absolutely con-
tinuous operators and related two-sided Gaussian estimates arising in the analysis of
continuous time elliptic diffusion and particle absorption models. For a more thorough
discussion on this topic we refer to the series of reference pointers presented above.

Needless to say that the design of Lyapunov functions is a crucial and challenging
problem in the stability analysis of positive semigroups. We have chosen to concen-
trate our review on presenting practical and general principles for designing Lyapunov
functions.

2.3 Time homogenous models

For time homogeneous models we use the notation

pΦt, Qt, Qtq :“ pΦ0,t, Q0,t, Q0,tq.

As expected for time homogeneous semigroups a variety of results follow almost im-
mediately from the estimates obtained in Theorem 2.3. Following [21], these results
include the existence of an unique leading eigen-triple

pρ, η8, hq P pRˆ PV pEq ˆ B0,V pEqq with η8phq “ 1 (23)

in the sense that for any t P T we have

Qtphq “ eρt h and η8Qt “ eρt η8 or equivalently Φtpη8q “ η8. (24)

The eigenfunction h is sometimes called the ground state and the fixed point measure
η8 the quasi-invariant measure. For any x P E we also have the product series
formulation

0 ă hpxq :“
ź

ně0

 

1` e´ρτ rΦnτ pδxqpQτ p1qq ´ Φnτ pη8qpQτ p1qqs
(

.

In this context, choosing pµ,Hq “ pη8, hq in (21), we readily check that

T η8,hs,s`tpfq “ T pfq :“
h

η8phq
η8pfq and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇe´ρt Qt ´ T
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

V
ď chpη8q e

´bt.

For any η P PV pEq we have the conjugate formulae

ΨhpΦtpηqq “ ΨhpηqP
h
t (25)
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with the Doob h-transform of Qt defined by the Markov semigroup

P h
t : f P BV hpEq ÞÑ P h

t pfq :“ e´ρt
1

h
Qtphfq P BV hpEq.

Observe that

η8 “ Φtpη8q ðñ ηh8 :“ Ψhpη8q “ ηh8P
h
t .

The Markov semigroup P h
t is sometimes called the transition semigroup of the h-

process, a.k.a. the process evolving in the ground state.
We further assume that Qt is a sub-Markov semigroup of self-adjoint operators on

L2pνq with respect to some locally finite measure ν on E. In addition, there exists
an orthonormal basis pϕnqně1 associated with a decreasing sequence of eigenvalues
ρn ď 0 such that

Qtpx, dyq “
ÿ

ně1

eρnt ϕnpxq ϕnpyq νpdyq. (26)

In this context, the formulae (24) are satisfied with the parameters

pρ, hq “ pρ1, ϕ1q and η8pdxq “ Ψhpνqpdxq :“
1

νphq
hpxq νpdxq.

Note that in this case h has unit norm νph2q “ 1. The spectral resolution (26) yields
for any t ě 0 and f P L2pνq the following decomposition

e´ρtQtpfqpxq ´
hpxq

η8phq
η8pfq “

ÿ

ně2

eρ
h
nt ϕnpxq νpϕnfq with ρhn “ ρn ´ ρ1. (27)

This yields the following result.

Proposition 2.4. For any time horizon t ě 0 and any f P L2pνq we have the expo-
nential estimates

›

›

›

›

e´ρtQtpfq ´
h

η8phq
η8pfq

›

›

›

›

L2pνq

ď eρ
h
2 t

`

νpf 2
q ´ νphfq2

˘1{2
. (28)

Whenever Qt is a positive semigroup of self-adjoint operators on L2pνq the Doob
h-transform P h

t is a semigroup of self-adjoint operators on L2pη
h
8q and we have the

following spectral decomposition

Lemma 2.5. For any t ě 0 and f P L2pη
h
8q we have

P h
t px, dyq “ ηh8pdyq `

ÿ

ně2

eλnt hnpxq hnpyq η
h
8pdyq (29)

with the L2pη
h
8q orthonormal basis phnqně2 defined for any n ě 2 by

hn :“ ϕn{h and λn “ ρn ´ ρ1 ă 0 and ηh8 “ Ψh2pνq.
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Note that the density of the integral operator P h
t px, dyq w.r.t. ηh8pdyq is given by

pht px, yq “ e´ρ1t
qtpx, yq

hpxqhpyq
“ 1`

ÿ

ně2

eλnt hnpxq hnpyq. (30)

We further assume that h P B0pEq and P h
t is ultra contractive, in the sense that

for any t ą 0 we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇP h
t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pηh8qÞÑL8pηh8q
“ e´ρ1t sup

px,yqPE2

qtpx, yq

hpxqhpyq
“ sup
px,yqPE2

pht px, yq ă 8. (31)

Proposition 2.6. Assume that νpEq ă 8 and h P B0pEq. In addition, for any
t ą 0 (31) holds and the mapping x ÞÑ

ş

pht px, yq νpdyq is u.s.c. and locally lower
bounded. In this situation, the function V :“ 1{h P B8pEq and for any t ą 0 we have
QtpV q{V P B0pEq. In addition, for any t ą 0 we have

QtpV q{V ď ct{V
2
P B0pEq. (32)

2.4 Markov diffusion semigroups

This section is mainly concerned with the design of Lyapunov functions for continuous
time Markov semigroups. To simplify notation, we only consider time homogeneous
models. All the semigroups discussed in this section satisfy condition (8). Thus,
by (14) the contraction theorem, Theorem 2.1 applies to all the Markov semigroups
discussed in this section as soon as the transition semigroups have a continuous density
with respect to the Lebesgue measure.

Section 2.4.1 presents some elementary principles based on spectral conditions
on the drift function and a simple way to design Lyapunov functions in terms of
the generator of diffusion process. These generator-type techniques are illustrated
in Section 2.4.2 in the context of overdamped Langevin diffusions. The design of
Lyapunov functions for hypo-elliptic diffusions and Langevin diffusions are discussed
respectively in Section 2.4.3 and Section 2.4.4.

2.4.1 Some general principles

Consider the Markov semigroup Pt of a diffusion flow Xtpxq on E “ Rn defined by

dXtpxq “ bpXtpxqq dt` σpXtpxqq dBt. (33)

In the above display, Bt is a n1-dimensional Brownian motion starting at the origin for
some n ě 1, b is a differentiable drift function from Rn into itself with gradient-matrix
∇b “ pBxibjq1ďi,jďn, and σ stands for some diffusion function from Rn into Rnˆn1 . We
set Σ2 :“ σσ1, where σ1pxq :“ σpxq1 stands for the transposition of the matrix σpxq,
so that Σ2pxq :“ σpxqσ1pxq. The absolutely continuity of the transition semigroup
Ptpx, dyq “ PpXtpxq P dyq “ ptpx, yqνpdyq for some continuous transition densities
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ptpx, yq (w.r.t. the Lebesgue measure νpdyq) is ensured as soon as pb, σq are globally
Lipschitz continuous and the diffusion matrix is invertible or more generally satisfying
a parabolic Hörmander condition (see for instance [53, 58, 56] and references therein).
The generator L of the diffusion flow Xtpxq and its carré du champ operator ΓL are
given respectively by the formula

Lpfq :“ b1∇f ` 1

2
Tr

`

Σ2∇2f
˘

and ΓLpf, gq :“ p∇fq1Σ2∇g. (34)

The next proposition provides a rather elementary way to design a Lyapunov
function.

Proposition 2.7. Assume that σpxq “ σ0 for some σ0 P Rnˆn1 and we have

∇b` p∇bq1 ď ´2λ I for some λ ą 0. (35)

Then for any v ą 0 and t ą 0 there exists some δt ą 0 such that

V pxq :“ exp pv}x}q ùñ PtpV q{V ď ct{V
δt . (36)

The proof of the above proposition is rather technical, thus it is provided in the
appendix on page 63.

The next proposition is a slight extension of Theorem 2.6 [49] on reversible semi-
groups to stochastic flows in Euclidean spaces. It provides a rather simple way to
design Lyapunov functions in terms of generators.

Proposition 2.8. Assume there exists some α ą 0, β P R and 0 ă ε ă 1 such that

α W ` β ` LpW q ď ´ε ΓLpW,W q. (37)

In this situation, for any t ą 0 we have

V :“ exp p2εW q ùñ Pt pV q {V ď vt{V
δt (38)

with the parameters

vt “ exp
`

´2βε p1´ e´αtq{α
˘

and δt :“ p1´ e´αtq.

The proof of the above proposition follows word-for-word the proof of Theorem
2.6 in [49], thus it is provided in the appendix on page 64.

We further assume that Pt satisfies for any t ą 0 the sub-Gaussian estimate

Ptpx, dyq ď ct exp

ˆ

´
1

2σ2
t

}y ´mtpxq}
2

˙

dy (39)

for some parameters σt ą 0 and some some function mt on Rn such that

}mtpxq} ď ct p1` }x}q.
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In this situation, for any n ě 1 and t ě 0 we have

V pxq :“ 1` }x}n ùñ }PtpV q{V } ă 8.

More refined estimates can be found when the function mt is such that

|mtpxq| ď εt |x| with εt Ps0, 1r (40)

for some norm |.| on Rn. In this situation, observe that any v ě 0 and any centered
Gaussian random variable Y on Rn with identity covariance matrix In we have

e´v|x| E
´

ev|mtpxq`σ
2
t Y |

¯

ď ct e
´vp1´εtq|x|.

This yields the following lemma.

Lemma 2.9. Consider a Markov semigroup Pt satisfying the sub-Gaussian estimate
(39) as well as (40) for some norm |.| on Rn. Then for any v ě 0 and t ą 0 there
also exists some finite constant δt ą 0 such that

V pxq :“ exp pv|x|q ùñ PtpV q{V ď ct{V
δt .

2.4.2 Overdamped Langevin diffusion

Let W pxq be some twice differentiable potential function from Rn into R. The over-
damped Langevin diffusion is defined by choosing in (33) the drift function

bpxq :“ ´γ ∇W pxq and pn1, σpxqq “ pn, ρ Iq for some γ, ρ ą 0.

In this context, we have

p35q ðñ ∇2W ě pλ{γq I for some λ ą 0.

Also observe that

p37q ðñ α W ` β `
ρ2

2
Trp∇2W q ď

`

γ ´ ε ρ2
˘

}∇W }2.

The above condition is clearly met when W behaves as }x}m with m ě 1 at infinity;
that is, there exists some sufficiently large radius r such that for any }x} ě r we have

ˇ

ˇTrp∇2W pxqq
ˇ

ˇ ď c1 }x}
pm´2q` and }∇W pxq}2 ě c2 }x}

2pm´1q.
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2.4.3 Hypo-elliptic diffusions

Consider the Rn-valued diffusion (33) with pbpxq, σpxqq “ pAx,Σq, for some matrices
pA,Σq with appropriate dimensions. We assume that A is stable (a.k.a. Hurwitz);
that is its spectral abscissa ςpAq defined below is negative

ςpAq :“ sup tRe pλpAqq : λpAq P SpecpAqu ă 0. (41)

In the above display SpecpAq denotes the spectrum of the matrix A, and Re pλpAqq
the real part of λpAq. We also assume that R :“ ΣΣ1 is positive semi-definite and the
pair of matrices pA,R1{2q are controllable, in the sense that the pnˆ n2q-matrices

“

R1{2, AR1{2 . . . , Ar´1R1{2
‰

has rank n. (42)

Whenever ςpAq ă 0 we have

Ptpx, dyq “
1

a

detp2πCtq
exp

ˆ

´
1

2
py ´mtpxqq

1C´1
t py ´mtpxqq

˙

dy (43)

with the mean value function

x ÞÑ mtpxq :“ etAx ÝÑtÑ8 0

and the covariance matrices Ct defined for any t ą 0 by

0 ă Ct :“

ż t

0

esAResA
1

ds ÝÑtÑ8 C8 :“

ż 8

0

esAResA
1

ds.

Since A is stable, there exists some norm |.| on Rn such that the corresponding
operator norm satisfies |etA| ď elpAqt for some log-norm parameter lpAq ă 0. This
implies that

|mtpxq| “ |e
tAx| ď elpAqt |x|. (44)

This clearly shows that the semigroup Pt of the hypo-elliptic Ornstein-Ulhenbeck
diffusion satisfies (39) and (40).

Let Pt be the Markov semigroup of the Rn-valued linear diffusion

dXtpxq “ pAXtpxq ` apXtpxqqq dt` Σ dBt (45)

with some bounded drift function a on Rn, an pnˆ nq-matrix A satisfying (41), some
n1-valued Brownian motion Bt starting at the origin and some pn ˆ n1q-matrix Σ
satisfying the rank condition (42).

Using the stochastic interpolation formula (cf. Theorem 1.2 in [23]) given by

Xtpxq ´Xtpxq “

ż t

0

ept´sqA
1

a pXspxqq ds

we check the almost sure estimate

|Xtpxq ´ Xtpxq| ď c for some finite constant c ă 8.

This yields the following proposition.

Proposition 2.10. For any v ą 0 and t ą 0 there exists some δt ą 0 such that

V pxq :“ exp pv|x|q ùñ PtpV q{V ď ct{V
δt .
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2.4.4 Langevin diffusion

Consider the Langevin diffusion diffusion flow Xtpzq “ pXtpzq, Ytpzqq P pRr ˆ Rrq

starting at z “ px, yq P pRr ˆ Rrq and given by

dXtpzq “ Ytpzq{m dt

dYtpzq “ pbpXtpzqq ´ βYtpzq{mq dt` σ dBt.

In the above display, Bt stands for an r-dimensional Brownian motion Bt starting at
the origin, σ, β,m ą 0 some parameters and b a function of the form

bpxq :“ ´γ x` apxq with γ ą 0 and }a} ă 8.

In statistical physics, the above diffusion represents the evolution of N particles
Xtpzq “ pX

i
tpzqq1ďiďN P R3N with mass m ą 0, position Xtpzq P R3N and momenta

Ytpzq. In this context, γ ą 0 stands for some friction parameter, and the diffusion
parameter σ ą 0 is related to the Boltzmann constant and the temperature of the sys-
tem. In this context, the function bpxq “ ´∇W pxq is often described by the gradient
of some potential function W . For instance, for a quadratic confinement we have

W pxq :“ γ}x}2{2` wpxq with }∇w} ă 8

ùñ bpxq “ ´∇W pxq :“ ´γ x` apxq and apxq “ ∇wpxq.

Notice that Xtpzq can be rewritten in vector form as in (45) with n “ 2r, apx, yq “
ˆ

0
apxq

˙

and the matrices

A “

ˆ

0 m´1 Inˆn
´γ Inˆn ´βm´1 Inˆn

˙

and Σ :“

ˆ

0 0
0 σInˆn

˙

. (46)

It is a simple exercise to check that A satisfies (41) and (42).
Consider the R2-valued stochastic process Xt “ pqt, ptq defined by

$

’

&

’

%

dqt “ β
pt
m

dt

dpt “ ´β

ˆ

BW

Bq
pqtq `

σ2

2

pt
m

˙

dt` σ dBt

(47)

with some positive constants β,m, σ, a Brownian motion Bt, and a smooth positive
function W on R such that for sufficiently large r we have

@ |q| ě r q
BW

Bq
pqq ě δ

`

W pqq ` q2
˘

for some positive constant δ. This condition is clearly met when W behaves as q2l for
certain l ě 1 at infinity. We let V pq, pq be the function on R2 defined by

V pq, pq “ 1`
1

2m
p2
`W pqq `

ε

2

ˆ

σ2

2
q2
` 2pq

˙

with ε ă
σ2

2m
.
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In this situation, there exists some a ą 0 and c ă 8 such that

LpV q ď ´aV ` c. (48)

The proof of the above estimate is rather technical, thus it is provided in the appendix
on page 67.

2.5 Sub-Markov semigroups

Sub-Markov semigroups are prototype-based models of positive integral operators. In
time homogeneous settings, these stochastic models are defined in terms of a stochastic
flow Xtpxq evolving on some metric Polish space pE , dq, some non negative absorption
potential function U on some non necessarily bounded Borel subset E Ă E . For a
given x P E we denote by T pxq the exit time of the flow Xtpxq from E.

We associate with these objects, the sub-Markov semigroup Q
rUs
t defined for any

f P BbpEq and x P E by

Q
rUs
t pfqpxq “ E

ˆ

fpXtpxqq 1T pxqąt exp

ˆ

´

ż t

0

UpXspxqqds

˙˙

. (49)

The above model can be interpreted as the distribution of a stochastic flow evolving
in an absorbing medium with hard and soft obstacles. Before killing, the flow starts
at x P E and evolves as Xtpxq. Then, it is killed at rate U or as soon as it exits the
set E. In the case E “ E , the flow cannot exit the set E and it is only killed at rate
U . This situation is sometimes referred a sub-Markov semigroup with soft obstacles
represented by the absorbing potential function U on E. When the flow may exit the
set E Ă E , the complementary subset C :“ E ´ E is interpreted as an hard obstacle,
a.k.a. an infinite energy barrier.

We illustrate the V -positive semigroup analysis developed in this article through
three typical examples of solvable sub-Markov semigroups arising in physics and ap-
plied probability.

2.5.1 The harmonic oscillator

Consider the case E “ E “ R, and let Xtpxq “ Btpxq be a Brownian motion starting

at x P R and let Upxq “ x2{2. In this situation, the semigroup Q
rUs
t “ Qt defined

in (49) coincides with the one dimensional harmonic oscillator. For any t ą 0, the
integral operator Qt has a continuous density w.r.t. the uniform measure ν on E given
by

qtpx, yq “
ÿ

ně1

eρnt ϕnpxqϕnpyq (50)

with the L2pνq orthonormal basis eigenstates

ϕnpxq “ p2
n´1
pn´ 1q!

?
πq´1{2 e´x

2{2 Hn´1pxq
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associated with the eigenvalues

ρn “ ´pn´ 1{2q and the Hermite polynomials Hnpxq “ p´1qn ex
2

B
ne´x

2

.

In this context, the eigenstate associated with the top eigenvalue ρ “ ρ1 “ ´1{2 is
given by the harmonic function

hpxq “ ϕ1pxq “ π´1{4 e´x
2{2. (51)

The spectral resolution of integral operator P h
t px, dyq and its density pht px, yq with

respect to the invariant measure

ηh8pdyq “
1
?
π
e´y

2

dy

are given as in (29) and (30) with L2pη
h
8q orthonormal basis defined for any n ě 2 by

hn “ p2
n´1
pn´ 1q!q´1{2 Hn´1 and ρhn “ ρn ´ ρ1 “ ´pn´ 1q.

In this context, the h-process is given by the Ornstein-Uhlenbeck diffusion

dXh
t pxq “ B log hpXh

t pxqq dt` dBt “ ´X
h
t pxq dt` dBt. (52)

In the above display, Bt “ Btp0q stands for the one dimensional Brownian motion
starting at the origin. The conjugate formula

Qtphfq{Qtphq “ P h
t pfq ðñ Qtpfq “ eρth P h

t pf{hq (53)

yields the following proposition.

Proposition 2.11. For any time horizon t ě 0 we have

Qtpx, dyq “
1

a

coshptq
exp

ˆ

´
x2

2
pt

˙

1
?

2πpt
exp

ˆ

´
py ´mtpxqq

2

2pt

˙

dy

with the mean and variance parameters pmtpxq, ptq defined by

mtpxq “ x{coshptq and pt “ tanhptq.

The proof of the above proposition is a direct consequence of the conjugate formula,
thus it is provided in the appendix, on page 65.

Choosing V pxq “ 1` |x|n, for some n ě 1, we readily check that

V P C8pEq and QtpV q{V ď vt Qtp1q P C0pEq (54)

where vt is a constant depending only on t.
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2.5.2 The half-harmonic oscillator

Consider the case E “s0,8rĂ E “ R, and let Xtpxq “ Btpxq be a Brownian motion

starting at x P R and let Upxq “ x2{2. In this situation, the semigroup Q
rUs
t “ Qt

defined in (49) coincides with the harmonic oscillator with an infinite barrier at the
origin BE “ t0u (a.k.a. the half-harmonic oscillator). Using the fact that

ex
2{2 1

2
B

2 e´x
2{2
“ Upxq ´ 1{2

we have the conjugate formula

Qtpfqpxq “ e´t{2 e´x
2{2 E

´

fpYtpxqq e
Ytpxq2{2 1TY pxqąt

¯

with the Ornstein-Uhlenbeck diffusion

dYtpxq “ ´Ytpxq dt` dBt and T Y pxq :“ inf tt ě 0 : Ytpxq P BEu . (55)

Note that the stochastic flow Ytpxq coincides with the h-process of the harmonic
oscillator discussed in (52). Thus, by reflection arguments we have

QY
t pfqpxq :“ E

`

fpYtpxqq 1TY pxqąt
˘

“ E
`

fpBσtpεtxqq 1T pεtxqąt
˘

“

ż 8

0

fpyq qYt px, yq dy with qYt px, yq :“ prtpx, yq ´ rtpx,´yqq.

In the above display, pεt, σtq stands for the parameters

pεt, σtq :“

˜

e´t,

c

1´ ε2t
2

¸

and rtpx, yq “
1

a

2πσ2
t

exp

ˆ

´
1

2σ2
t

py ´ εtxq
2

˙

.

This yields the following proposition.

Proposition 2.12. For any t ą 0 and x P E “s0,8r we have

Qtpx, dyq “
sinh py mtpxqq

P
`

0 ď Z ď mtpxq{
?
pt
˘ ˆ

1
?

2πpt
exp

ˆ

´
y2 `mtpxq

2

2pt

˙

νpdyq.

In the above display, νpdyq :“ 1r0,8rpyq dy stands for the trace of the Lebesgue measure
on the half-line, Z is a centered Gaussian variable with unit variance and pmtpxq, ptq
are the mean and variance parameters defined in Proposition 2.11. In addition, the
total mass function Qtp1qpxq is given by the formula

Qtp1qpxq “ 2
e´

x2

2
pt

a

coshptq
ˆ P p0 ď Z ď mtpxq{

?
ptq P C0pEq.
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The proof of the above proposition follows the same lines of arguments as the
proof of Proposition 2.11; it is provided in the appendix, on page 66.

Choosing V pxq “ xn ` 1{x, for some n ě 1, we readily check that

V P C8pEq and QtpV q{V ď ct{V P C0pEq. (56)

The proof of the above estimate follows elementary but lengthly calculations, thus it
is provided in the appendix on page 68.

For any t ą 0, the integral operator Qt has a continuous density w.r.t. the uniform
measure ν on E given by

qtpx, yq “
ÿ

ně1

eρnt ϕnpxq ϕnpyq

with the L2pνq orthonormal basis eigenstates

ϕnpxq “
?

2 p22n´1
p2n´ 1q!

?
πq´1{2 e´x

2{2 H2n´1pxq

associated with the eigenvalues

ρn “ ´pp2n´ 1q ` 1{2q.

In this context, the eigenstate associated with the top eigenvalue ρ “ ρ1 “ ´3{2 is
given for any x Ps0,8r by the harmonic function

hpxq “ ϕ1pxq “ 2π´1{4 x e´x
2{2
“ h0pxq H1pxq

with the ground state h0 of the harmonic oscillator discussed in (51). Note that h
coincides with the restriction on s0,8r of the first excited state of the harmonic-
oscillator (negative on s ´ 8, 0s and crossing the origin at x “ 0).

The spectral resolution of integral operator P h
t px, dyq and its density pht px, yq with

respect to the invariant measure

ηh8pdyq “
4
?
π
y2 e´y

2

1s0,8rpyq dy

are given for any x, y Ps0,8r as in (29) and (30) with L2pη
h
8q orthonormal basis defined

for any n ě 2 and x Ps0,8r by the odd Hermite functions

hnpxq “ p2
2n
p2n´ 1q!q´1{2 H2n´1pxq{x and ρhn “ ´2pn´ 1q.

In this context, the h-process is given by the diffusion

dXh
t pxq “ B log hpXh

t pxqq dt` dBt “

ˆ

1

Xh
t pxq

´Xh
t pxq

˙

dt` dBt. (57)
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2.5.3 The Dirichlet heat kernel

Let Xtpxq “ Btpxq be a Brownian motion starting at x P E :“s0, 1rĂ E :“ R and
T pxq be the first time t ě 0 the process Btpxq P BE :“ t0, 1u. Choosing U “ 0 in

(49), the semigroup Q
rUs
t “ Qt takes the following form

Qtpfqpxq :“ EpfpBtpxqq 1T pxqątq.

For any t ą 0, the integral operator Qt has a continuous density w.r.t. the uniform
measure ν on E given by the Dirichlet heat kernel

qtpx, yq “
ÿ

ně1

eρnt ϕnpxqϕnpyq (58)

with the L2pνq orthonormal basis eigenstates

ϕnpxq “
?

2 sin pnπxq associated with the eigenvalues ρn “ ´pnπq
2
{2.

In this context, the eigenstate hpxq “ ϕ1pxq “
?

2 sin pπxq associated with the top
eigenvalue ρ “ ρ1 “ ´π2{2 is strictly positive except at the boundary t0, 1u. By
removing the boundary, the semigroup P h

t of the process evolving in the ground state
hpxq on the open interval E :“s0, 1r is a self-adjoint operators on L2pη

h
8q with

ηh8pdxq “ h2
pxq νpdxq “ 2 sin2

pπxq 1Epxq dx.

In addition, we have the spectral decomposition (29) with the L2pη
h
8q orthonormal

basis eigenstates
hnpxq :“ sin pnπxq{ sin pπxq

associated with the eigenvalues

λn “ ´π
2
pn2

´ 1q{2 ă 0.

Our next objective is to estimate the density pht px, yq of the integral operator P h
t px, dyq

w.r.t. ηh8 defined in (30). Recalling that | sin pnyq| ď n| sin pyq|, for any n ě 1 and
y P R, for any x P E we have the diagonal estimate

pht px, xq ´ 1 “
ÿ

ně2

eρ
h
nt hnpxq

2

with

hnpxq
2
“

ˆ

sin pnπxq

sin pπxq

˙2

ď n2 so that condition (31) is satisfied.

Observe that the function

V : x P E ÞÑ V pxq :“
?

2{hpxq P r1,8r
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is locally bounded with compact level sets given for any 0 ă ε ď 1 by the formulae

Kε :“ tx Ps0, 1r : V pxq ď 1{εu “ tx : sin pπxq ě εu Ă E.

In any dimension we can use the intrinsic ultracontractivity to produce a Lyapunov
function V . Let E be a bounded domain of Rn for some n ě 1 and assume that it is
a C1,α domain for some α ą 0. Denote by qtpx, yq the Dirichlet heat kernel on E. By
[57] one has

qtpx, yq ď ct dpx, BEqdpy, BEq

for some constant ct independent of x and y. Here dpx, BEq denotes the distance from
x to the boundary of E. Set V pxq “ 1

dpx,BEq
. The above intrinsic ultracontractivity

implies

QtpV qpxq “

ż

E

qtpx, yqV pyqdy ď ct|E| dpx, BEq

which in turn gives QtpV q{V ď ct|E|{V
2 P B0pEq, where |E| stands for the volume of

the bounded set E.

3 Lyapunov design principles

The aim of this section is to present some general principles to construct Lyapunov
functions for positive semigroups. Section 3.1 provides equivalent formulations of
the Lyapunov condition in (1) encountered in the literature in terms of exhausting
sequences of compact level sets. This section also presents simple ways to design
Lyapunov functions for sub-Markov semigroups on normed spaces in terms of their
generators. Section 3.2 presents some principles to construct Lyapunov functions
for positive semigroups dominated by semigroups with known Lyapunov functions.
Section 3.3 is dedicated to the design of Lyapunov functions for conjugate semigroups.
All the principles discussed in this section are illustrated in Section 5 as well as in
Section 6 in the context of conditional diffusions.

3.1 Foster-Lyapunov conditions

For time homogeneous models Qs,s`t :“ Qt, the l.h.s. condition in (1) takes the form
Qτ pV q{V ď Θτ P B0pEq. In terms of the compact sets Kε :“ tΘτ ě εu, the l.h.s
Lyapunov condition in (1) yields for any τ ą 0 the estimate

Qτ pV qpxq ď ε V pxq ` 1Kεpxq cε (59)

for any ε ą 0 with the parameter cε :“ supKεpVΘτ q ă 8. This implies that for any
n ě 1 we have

Qτ pV qpxq ď εn V pxq ` 1Kεn pxq cεn (60)
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where Kεn Ă E stands for some increasing sequence of compacts sets and cεn some
finite constants, indexed by a decreasing sequence of parameters εn P r0, 1s such that
εn ÝÑ 0 as nÑ 8. In the reverse angle, assume that Qτ pV q{V is locally lower
bounded and lower semicontinuous. In this situation, condition (60) ensures that
Qτ pV q{V P B0pEq for any τ ą 0. Indeed, for any δ ą 0, there exists some n ě 1 such
that εn ă δ and we have

tQτ pV q{V ě δu Ă tQτ pV q{V ą εnu Ă Kεn .

Since tQτ pV q{V ě δu is a closed subset of a compact set it is also compact.
More generally, whenever (60) is met for some exhausting sequence of compact

sets Kεn , in the sense that for any compact subset K Ă E there exists some n ě 1
such that K Ă Kεn we have

inf
K
Qτ pV q{V ě inf

Kεn
Qτ pV q{V ě εn.

This ensures that the function Qτ pV q{V is necessarily locally lower bounded. In this
situation, we have Qτ pV q{V P B0pEq as soon as Qτ pV q{V is lower semicontinuous.

Notice that the sub-level set Vprq :“ tV ď ru of the Lyapunov function V P B8pEq
and the ε-super-level sets Kε :“ tΘτ ě εu of Θτ P B0pEq are equivalent compact
exhausting sequences, in the sense that for any r ě 1 we have

Vprq Ă Kεr Ă Vprεq with εr :“ inf
Vprq

Θτ and rε :“ sup
Kεr

V.

Whenever E is a locally compact Polish space, the abstract sequence Cn :“ Kεn

in (60) is automatically exhausting; that is, we have that E “ Yně0Cn with Cn is
included in the interior C˝n`1 of the compact set Cn`1. To check this claim, observe
that for any n ě 1 there exists some mn ě n such that

Cn Ă tΘτ ě inf
Cn

Θu Ă Cmn Ă tΘτ ě inf
Cmn

Θu.

Thus, the exhausting sequence Cn is equivalent to the one defined by the super-level
sets of Θτ .

The rather abstract condition (60) is often presented in the literature as an initial
condition to check on a case-by-case basis to analyze the stability property of time
homogenous sub-Markov semigroups (see for instance [31, 36], as well as Section 17.5
in [22] in the context of Markov semigroups and the references therein).

We end this section with a brief discussion on condition (60) in the context of the
sub-Markov semigroup discussed in (49). Note that this semigroup can be turned into
a Markov semigroup by sending the killed process into a cemetery state, say ∆, at
the killing time. In this interpretation, functions on E are extended to E∆ “ EYt∆u
by setting fp∆q “ 0. More interestingly, whenever E is locally compact its topology
coincides with the weak topology induced by C0pEq :“ B0pEqXCbpEq, and inversely (cf.
Proposition 2.1 in [1]). In this context a continuous function f vanishes at infinity
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if and only if its extension to the one point compactification (a.k.a. Alexandroff
compactification) E∆ :“ E Y t∆u (obtained by setting fp∆q “ 0) is continuous. For
locally compact spaces, we also recall that the one point extension E∆ is compact.

Whenever it exists, the generator LU of these sub-Markov semigroups Q
rUs
t are de-

fined on domain of functions DpLUq Ă B0pEq. As expected, the analysis of this class
of models in terms of generators often requires to develop a sophisticated analysis tak-
ing into account the topological structure of the set E. To the best of our knowledge,
there is no simple sufficient condition to check (60) in terms of these generators.

The situation is greatly simplified for sub-Markov semigroups with soft obstacles.
When E “ E is a locally compact normed space pE, }.}q we let L be the generator of

the flow Xtpxq. In this situation, the generator of the sub-Markov semigroup Q
rUs
t is

given by LU “ L´U . We further assume that L and LU are defined on some common
domain DpLq Ă BpEq.

Lemma 3.1 ([31]). Let V, V0 P DpLq be a couple of functions such that V, V0 ě 1 and

V pxq ÝÑ}x}Ñ8 8 and V pxq{V0pxq ÝÑ}x}Ñ8 8. (61)

In this situation, condition (60) is satisfied as soon as there exists some finite constant
c0 ă 8 such that

LUpV0q{V0 ď c0 and LUpV qpxq{V pxq ÝÑ}x}Ñ8 ´8. (62)

Note that in this context, the compact sets in (60) are given for some sufficiently
large radii rε ą 0 by the closed balls:

Kε “ Bp0, rεq :“ tx P E : }x} ď rεu. (63)

3.2 Semigroup domination

For a given p ě 1 we clearly have

V P B8pEq ðñ V p
P B8pEq and BV 1{ppEq Ă BV pEq Ă BV ppEq.

We say that a V -positive semigroup Qs,t is p-dominated by a collection of integral
operators Qs,t on BV ppEq and we write Q !p Q as soon as for any non negative
function f P BV pEq and any s ď t we have

Qs,tpfq ď ct´sppq Qs,tpf
p
q
1{p.

To simplify notation, when p “ 1 we write Q ! Q instead of Q !1 Q. Observe that

Q !p Q ùñ @s ď t pQs,tpV q{V q
p
ď ct´sppq

p Qs,tpV
p
q{V p.

This yields for any τ ą 0 and θτ P B0pEq the Lyapunov estimate

Qs,s`τ pV
p
q{V p

ď θpτ ùñ Qs,s`τ pV q{V ď cτ θτ . (64)
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We illustrate the above domination property with the Langevin diffusion flow X paq
t pzq “

pXtpzq, Ytpzqq P pRnˆRnq starting at z “ px, yq P pRnˆRnq and defined by the hypo-
elliptic diffusion

dXtpzq “ Ytpzq{m dt

dYtpzq “ papXtpzqq ´ γXtpzq ´ βYtpzq{mq dt` σ dBt. (65)

In the above display, σ, γ, β,m ą 0 stands for some parameters and a some Lipschitz
function on Rn, with n ě 1. Notice that when a “ 0, the flow X p0q

t pzq resumes to
an hypo-elliptic Ornstein-Ulhenbeck on R2n. Consider a bounded open connected
domain D Ă Rn and set

@z P E :“ D ˆ Rn T paqpzq :“ inf
!

t ě 0 : X paq
t pzq P BE

)

.

We associate with these objects, the sub-Markov semigroup defined for any f P BbpEq
and z “ px, yq P E by

Qpaq
t pfqpzq :“ E

´

fpX paq
t pzqq 1T paqpzqąt

¯

.

In this situation, we have

sup
D
a ă 8 ùñ @p ą 1 Qpaq

!p Qp0q. (66)

The proof of the above assertion is a direct consequence of Girsanov’s theorem and
Hölder’s inequality. For the convenience of the reader, a detailed proof is provided in
the appendix on page 70.

To emphasize the role of the absorption in sub-Markov semigroups we return to the
class of models discussed in (49). We let Pt be the free evolution Markov semigroup

associated with the stochastic flow Xtpxq. Assume that Q
rUs
t p1q P B0pEq and

}Q
rUs
t pV q{V } ă 8 for some t ą 0 and V P B8pEq. (67)

Applying Hölder’s inequality and choosing Vp :“ V 1{p P B8pEq with p ą 1 we readily
check the estimate

Q
rUs
t pVpq{Vp ď ctppq Q

rUs
t p1q1´1{p

P B0pEq. (68)

The next lemma provides several practical conditions to check the uniform estimate
(67) for sub-Markov semigroups associated with soft obstacles.

Lemma 3.2. Consider the sub-Markov semigroup discussed in (49) when E “ E is
a locally compact normed space pE, }.}q. Assume that the generators L and LU of

the flows Pt and Q
rUs
t are defined on some common domain DpLq Ă BpEq. In this

situation, for any V P B8pEq XDpLq and parameter a ą 0 we have

LUpV q ď ´aV ` c ùñ @t ě 0 }Q
rUs
t pV q{V } ă 8. (69)

Whenever U P B8pEq XDpLq, for any a0 ě 0 and a1 P R we have

LpUq ď a0 ` a1U ùñ @t ě 0 }Q
rUs
t pUq} ă 8. (70)
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The proof of the above lemma follows essentially the same lines of arguments as
the proof of Lemma 3.1; thus it is provided in the appendix, on page 69.

Whenever E “ E and the absorption potential function U is bounded, we have
P ! QrUs ! P . In this context, there is no hope to have that Q

rUs
t p1q P B0pEq for

some t ą 0. Nevertheless, for any V P B8pEq and any time horizon t ą 0 we have

Q
rUs
t pV q{V P B0pEq ðñ PtpV q{V P B0pEq.

In this situation, the design of Lyapunov functions V satisfying (1) or equivalently
Foster-Lyapunov conditions of the form (60) is equivalent to the problem of finding a
Lyapunov function for the Markov semigroup Pt.

Whenever Pt is stable, in the sense that it has a Lyapunov V P B8pEq such that
PtpV q{V P B0pEq for some t ą 0, then the domination property QrUs ! P yields

automatically a Lyapunov function for Q
rUs
t .

Whenever Pt is not necessarily stable but we have }PtpV q{V } ă 8 for some t ą 0
and V P B8pEq, applying (68) the domination property QrUs ! P ensures that for
any p ą 1 we have Vp :“ V 1{p P B8pEq and

Q
rUs
t p1q P B0pEq ùñ Q

rUs
t pVpq{Vp P B0pEq.

Last, but not least, note that the above discussion extends without difficulties to
time varying models.

3.3 Some conjugacy principles

For any given V P B8pEq, observe that for any positive function H,

H P B0,V pEq ðñ V H :“ V {H P B8pEq.

Thus, Qt is a V -positive semigroup on BV pEq if and only if the H-conjugate semigroup
QH
t pfq :“ QtpfHq{H is a V H-positive semigroup on BV H pEq. In this situation, any

semigroup Q ! QH dominated by QH yields for any s ě 0 and t ą 0 the Lyapunov
estimate

Qs,s`tpV
H
q{V H

ď ct QtpV q{V P B0pEq.

To get one step further, observe that

QtpV q{V “ Qtp1q QtpV q{V.

In this notation, for any H P B0,V pEq and any V -positive semigroup Qt on BV pEq
such Qtp1q P B0pEq and

ˇ

ˇ

ˇ

ˇ

ˇ

ˇQt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

V
ă 8 we have

Q ! QH
ùñ Qs,s`tpV

H
q{V H

ď ct Qtp1q P B0pEq. (71)
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We illustrate the above comparison principles with an elementary example. Let
E :“ R and W P B8pRq be some non negative function. Consider the stochastic flow
XW
t pxq of a one-dimensional Langevin diffusion on E with generator

Lpfq “
1

2
e2W

B
`

e´2W
Bf

˘

. (72)

We associate with a given open connected interval E Ă E , the sub-Markov semigroup
Qt on BbpEq defined by

Qtpfqpxq :“ EpfpXW
t pxqq 1TW

BEpxqąt
q with TWBEpxq :“ inf

 

t ě 0 : XW
t pxq P BE

(

.

(73)

Observe that

H :“ e´W ùñ U :“ H´1 1

2
B

2H “
1

2

`

pBW q2 ´ B2W
˘

. (74)

When W “ 0 the flow X0
t pxq “ Btpxq coincides with the Brownian flow Btpxq starting

at x. Thus, by a change of probability we check that

Qt “ QH
t with Qtpfqpxq :“ E

´

fpBtpxqq 1T 0
BEpxqąt

e´
şt
0 UpBspxqq ds

¯

. (75)

Whenever E “s0, 1r the semigroup Qt is dominated by the Dirichlet heat kernel on
s0, 1r. When E “ R, respectively E “s0,8r, and Upxq ě c ` ς x2{2, for some c ă 8
and ς ą 0, the semigroup Qt is dominated by the harmonic oscillator, respectively the
half-harmonic oscillator. All of these dominating semigroups are completely solvable
with Qtp1q P B0pEq and known Lyapunov functions.

4 Boundary problems

Let pE , dq be a locally compact Polish space with a distinguish complete metric d :
px, yq P E2 ÞÑ dpx, yq P R`. We recall that these metric spaces are complete σ-
compact and locally compact metric spaces, thus they have the Heine-Borel property,
that is each closed and bounded subsets in E are compact.

We also recall that a subspace E Ă E is Polish if and only if it is the intersection
of a countable collection of open subsets. The distance from x P E to a measurable
subset A Ă E is denoted by

dpx,Aq :“ inf tdpx, yq : y P Au.

We also denote by BE :“ E´E˝ the boundary of some domain (open and connected)
E Ă E , where E and E˝ stand for the closure and the interior of a subset E.

In the further development of the article, χ stands for some decreasing positive
function χ on s0,8r such that for any 0 ă α ă 1 we have

lim
αÑ0

χpαq “ `8 χpαq ă 1{α and χpαq :“

ż α

0

χpuqdu ă 8.
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Definition 4.1. We associate with χ the function VB P CpEq defined by

VB : x P E ÞÑ VBpxq :“ χpdpx, BEqq Ps0,8r. (76)

For instance, we can choose χpuq “ 1{u1´ε, for some ε Ps0, 1r. For any r ą 0 the
r-sub-level sets of VB are given by the closed subsets

VBprq :“ tx P E : VBpxq ď ru “ tx P E : dpx, BEq ě χ´1
prqu.

Note that VB P C8pEq as soon as E is compact.

4.1 Bounded domains

Let E Ă E :“ Rn be some bounded domain with locally Lipschitz boundary BE, for
some n ě 1. Consider a semigroup of integral operators

Qtpx, dyq “ qtpx, yq dy (77)

having for any t ą 0 a bounded density px, yq P E2 ÞÑ qtpx, yq P r0,8r w.r.t. the trace
of the Lebesgue measure νpdyq “ dy on E. In this situation, we have the following
lemma.

Lemma 4.2. For any t ą 0 we have

VB P C8pEq and }QtpVBq} ď ct

ż

E

χpdpx, BEqq dx ă 8. (78)

The proof of the above lemma follows from an elementary change of variable
formulae, thus it is provided in the appendix, on page 70.

The estimate (78) clearly applies to the class of sub-Markov semigroups Q
rUs
t de-

fined in (49) for any choice of the absorption potential function, as soon as the semi-
group QrUs ! Q is dominated by a collection of integral operators Qtpx, dyq having
a bounded density qtpx, yq on E2 w.r.t. the Lebesgue measure on E. For instance,
when the transition semigroup of the free evolution flow Xtpxq in (49) has a density
ptpx, yq for any non negative function f on E and any x P E we have

Q
rUs
t pfqpxq ď

ż

qtpx, yq fpyq dy with qtpx, yq :“ ptpx, yq 1Epyq.

We summarize the above discussion with the following proposition.

Proposition 4.3. Assume that QrUs ! Q is dominated by a collection of integral
operators Qt satisfying (77). Then,

Q
rUs
t pVBq{VB ď ct{VB P B0pEq.
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The choice of the Lyapunov function V is clearly not unique. For instance, when
E “s0, 1r instead of VB we can choose V pxq :“ 1{

?
x ` 1{

?
1´ x. For the Dirichlet

heat kernel discussed in Section 2.5.3 we can also choose V pxq “ 1{ sin pπxq.
We emphasize that sub-Markov integral operators on the compact interval E “

r0, 1s with a positive continuous density w.r.t. the Lebesgue measure on E arise when
the free evolution process is reflected at both sides of the interval. In this context
the process is not conditioned by any type of non absorption at the boundaries. In
this context, the unit function V “ 1 belongs to B8pEq. In the same vein, sub-
Markov integral operators with mixed boundary conditions on the left-closed interval
E “ r0, 1r, or respectively on the right-closed interval E “s0, 1s arise when the free
evolution process is reflected at the Neumann boundary BNE :“ t0u and non absorbed
at the Dirichlet boundary BDE “ t1u, or respectively reflected at BNE :“ t1u and non
absorbed at BDE “ t0u. More generally, consider a bounded domain Ω Ă Rn with
Lipschitz boundary BΩ “ BDΩYBNΩ consisting of two disjoint connected components
BDΩ and BNΩ closed in Rn, and set E :“ Ω Y BNΩ. In this notation, the function
VBpxq :“ χ pdpx, BDEqq belongs to C8pEq. In addition, for any bounded density qtpx, yq
on E2 we have the uniform estimate

ż

E

qtpx, yq VBpyq dy ď ct

ż

E

VBpyq dy ă 8.

The above estimate also holds for the function VBpxq “ χ pdpx, BEqq.

4.2 Unbounded domains

When the domain E is not bounded the function VB R B8pEq. In this context, one
natural way to design a Lyapunov function V P B8pEq is to consider an auxiliary
function VE P C8pEq with VEpxq ě 1 for any x P E. In this situation, we have

V :“ VB ` VE P C8pEq.

To check this claim, observe that the sub-level sets of VB are given by the closed
subsets

VBprq :“ tVB ď ru “ tx P E : dpx, BEq ě χ´1
prqu Ă E

and we have the compact inclusion

Vprq :“ tV ď ru Ă VEprq X VBprq with VEprq :“ tx P E : VEpxq ď ru.

This yields the following easily checked proposition.

Proposition 4.4. For any t ą 0 we have

}QtpVBq} _ }QtpVEq} ă 8 ùñ QtpV q{V ď ct{V P B0pEq.

When Qtp1q P B0pEq we also have

}QtpVBq} _ }QtpVEq{VE} ă 8 ùñ QtpV q{V ď ct Qtp1q P B0pEq.
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The design of a function VE is rather flexible. For instance, assume that Q ! P is
dominated by some Markov integral operators Pt on BbpEq such that }PtpVEq{VE} ă 8
for some VE P B8pEq. In this situation, we have }QtpVEq{VE} ă 8 as well as

}VE Qtp1q} ă 8 ùñ }QtpVEq} ă 8.

For instance, when Pt satisfies the sub-Gaussian estimates (39) on E “ Rn we can
choose VEpxq :“ 1`}x}k, for some k ě 1, as soon as the function Qtp1qpxq ÝÑ}x}Ñ8 0
faster than }x}´k.

When the domain E and its boundary BE are both non necessarily bounded, it
may happens that Qtp1q P B0pEq but QtpVBq R BbpEq. In this situation, we can use
the following proposition.

Proposition 4.5. Assume there exists some VE P C8pEq with VEpxq ě 1 for any x P E
and such that

}QtpVBq{VE} _ }QtpVEq{VE} _ }Qtp1qVE} ă 8.

Then we have
QtpV q{V ď ct{V P B0pEq.

Proof. Using the following decompositions

QtpVBq “ Qtp1qVE QtpVBq{VE and QtpVEq “ Qtp1qVE QtpVEq{VE

and applying Proposition 4.4 we have

}QtpVBq} _ }QtpVEq} ă 8 and therefore QtpV q{V ď ct{V P B0pEq.

This ends the proof of the proposition.

The case Qtp1q R B0pEq can also be handle whenever the pair pVB, VEq can be
chosen so that

@δ ą 0 VB V
δ
E P C8pEq. (79)

For instance we can choose for some v ą 0 and ε Ps0, 1r the functions

VEpxq :“ exp pv}x}q and χpuq :“ 1{u1´ε.

Observe that

dpx, BEq ď }x} ` dp0, BEq and VBpxq ě χp}x} ` p1_ dp0, BEqqq

and for any m ě 0 and δ ą 0 we have

VEpxq ě cvpm, δq p1` }x}q
pm`1q{δ.
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This implies that

VEpxq
δVBpxq ě c2

p1` }x}qm`1

p}x} ` p1_ dp0, BEqqq1´ε
ě c p1` }x}qm`ε.

Using the fact that VEpxq ě 1 for any x P E, this implies that

tx P E : VEpxq
δVBpxq ď ru Ă tx P E : c p1` }x}qm`ε ď ru X tx P E : VBpxq ď ru.

We conclude that V δ
E VB has compact level sets and (79) is satisfied.

In this context, we have the following proposition.

Proposition 4.6. Consider a couple of functions pVB, VEq satisfying (79). Assume
there exists some parameters t ą 0, δt ą 0 and ε ě 0 such that

QtpVEq{VE ď ct{V
δt
E and QtpVBq ď ct V

ε δt
E . (80)

In this situation, for any p ą 1` ε we have

V :“ V
1´1{p
E V

1{p
B P C8pEq

as well as

Qt pV q {V ď ct{pV
δtεp
E V

1{p
B q P C0pEq with εp :“ p1´ p1` εq{pq ą 0.

Proof. Observe that for any p ą 1` ε we have

VBV
p´1
E P C8pEq and therefore V :“ V

1{p
B V

1´1{p
E P C8pEq.

In the same vein, for any ε ě 0 we have

p79q ùñ VBV
pδtεp
E P C8pEq and therefore V

1{p
B V

δtεp
E P C8pEq.

On the other hand, using Hölder’s inequality, we have

Qt pV q {V ď pQtpVEq{VEq
1´1{p

pQtpVBq{VBq
1{p

ď ctp1qpQtpVBq{pV
δtpp´1q
E VBqq

1{p
ď ctp2qp1{pV

pδtp1´p1`εq{pq
E VBqq

1{p.

This ends the proof of the proposition.

The design of a function VE satisfying (80) is rather flexible. For instance, (80) is
automatically satisfied when Q ! P is dominated by some Markov integral operators
Pt on BbpEq such that

PtpVEqpxq{VEpxq ď ctp1q{VEpxq
δt .

Section 2.4 discusses a variety of Lyapunov functions VE satisfying the above condi-
tion for Markov diffusion semigroups. These Lyapunov functions can also be designed
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using the domination principles presented in Section 3.2. For instance, consider the
semigroup Qt :“ Qpaq

t associated with the Langevin diffusion flow on a cylinder dis-
cussed in (66). In this situation, combining (64) with Proposition 2.9, for any v ě 0
and t ą 0 there exists some finite constant δt ą 0 such that

VEpxq :“ exp pv|x|q ùñ QtpVEq{VE ď ct{V
δt
E .

Next, we illustrate the r.h.s. condition in (80) when qt are sub-Gaussian densities;
in the sense that for any x, y P E we have

qtpx, yq ď ct gtpx, yq with gtpx, yq :“
1

p2πσ2
t q
n{2

exp

ˆ

´
1

2σ2
t

}y ´mtpxq}
2

˙

(81)

for some parameter σt ą 0 and some non necessarily bounded function mt on E.

Proposition 4.7. Let ϕ be a Lipschitz function on Rn´1 with uniformly bounded
gradient and set

E :“ tx “ pxiq1ďiďn P Rn : xn ą ϕpx´nqu with x´n :“ pxiq1ďiăn P Rn´1.

Then the r.h.s. condition in (80) is met with ε “ 0 for any positive semigroup sat-
isfying (81). The same property holds when the boundary BE can be decomposed as
a finite union of graphs of differentiable functions on Rn´1 with uniformly bounded
gradients.

Proof. We choose α ą 0 sufficiently small so that for any

x P DαpEq :“ tx P E : dpx, BEq ď αu

there exists a projection x P BE with dpx, BEq “ }x ´ x}. Let C$pxq be an interior
cone with a given base vertex x “ px´n, ϕpx´nqq P BE and a given half-opening angle
$ around the axis Apxq :“ tpx´n, xnq : xn ě ϕpx´nqu. For any x P Apxq there exists
a projection px P BC$pxq on the boundary BC$pxq with

dpx, BC$pxqq “ dpx, pxq “ cos
´π

2
´$

¯

pxn ´ ϕpx´nqq ď dpx, xq

On the other hand, for any y P BE we have

z :“ py´n, ϕpx´nqq ùñ 0 ď
π

2
´$ ď yyxz and tanpyyxzq “

|ϕpx´nq ´ ϕpy´nq|

}x´n ´ y´n}
.

This yields the estimate

cos
´π

2
´$

¯

ě cos
´

yyxz
¯

“
1

b

1` tan2pyyxzq
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from which we conclude that

0 ď xn ´ ϕpx´nq ď κ dpx, xq

with
κ :“

a

1` }∇ϕ}2 and }∇ϕ} :“ sup
yPRn´1

}∇ϕpyq} ă 8.

This implies that

ż

DαpEq

χ pdpy, BEqq qtpx, yq dy

ď ctp1q

ż

DαpEq

χ ppyn ´ ϕpy´nqq {κqq exp

ˆ

´
1

2σ2
t

ppyn ´ ϕpy´nqq ` pϕpy´nq ´ pmtpxqqnqq
2

˙

ˆ exp

ˆ

´
1

2σ2
t

}y´n ´ pmtpxqq´n}
2

˙

dyndy´n.

Using the change of variables

z :“ pyn ´ ϕpy´nqq {κ ùñ dyn “ κ dz

we find that
ż

DαpEq

χ pdpy, BEqq qtpx, yq dy

ď κ ctp1q χpαq

ż

Rn´1

exp

ˆ

´
1

2σ2
t

}y´n ´ pmtpxqq´n}
2

˙

dy´n ď ctp2q.

On the other hand, for any α ą 0 we have

ż

E´DαpEq

χ pdpy, BEqq qtpx, yq dy ď χ pαq }Qtp1q} ď ctp3q.

This ends the proof of the proposition.

4.3 Smooth boundaries

Next, we illustrate the Lyapunov conditions on VB in the context of absolutely con-
tinuous sub-Markov semigroup of the form (77) with a bounded density qtpx, yq on
a non necessarily bounded domain E Ă Rn with smooth non necessarily bounded
C2-boundary with uniformly bounded interior curvature.
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We assume that there exists α ą 0 sufficiently small so that every point of the
α-offset of BE (a.k.a. α-tubular neighborhood) defined by

TubαpBEq :“ tx P Rn : dpx, BEq ď αu

lies on some normal ray passing through a point on BE and no two normal rays passing
through different points of BE intersect in TubαpBEq. We let Npzq be the unit normal
vector at z P TubαpBEq pointing inward E, and let DrpEq the closed subset defined
for any r ď α by

DrpEq :“ tx P E : dpx, BEq ď ru and D´rpEq :“ tx P Rn
´ E : dpx, BEq ď ru.

In this notation, the inverse of the normal coordinate map

F : pz, rq P BE ˆ r´α, αs ÞÑ F pz, rq “ z ` r Npzq P TubαpBEq (82)

is given for any x P TubαpBEq by

F´1
pxq “ pprojBEpxq, dαpx, BEqq

where projBEpxq stands for the projection of x P TubαpBEq onto BE and dαpx, BEq
stands for the signed distance function

dαpx, BEq :“ dpx, BEq 1DαpEqpxq ´ dpx, BEq 1D´αpEqpxq P r´α, αs.

In addition, the inward normal Npxq at any x on the C2 boundary BE is given by

∇dαpx, BEq “ Npxq.

The Hessian of the signed distance function on the boundary BE gives the Weingarten
map Wpxq. With this notation at hand, we have

ż

DαpEq
fpdpy, BEqq qtpx, yq dy “

ż α

0

fprq qBt px, rq dr

with the level-set density function

qBt px, rq :“

ż

BEr

qtpx, yq σB,rpdyq (83)

“

ż

BE

qt px, z ` rNpzqq |det pI ´ r Wpzqq| σBpdzq.

In the above display, σB,rpdzq stands for the Riemannian volume measure on the r-
extended boundary

BEr :“ tx P E : dpx, BEq “ ru.
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Moreover, since E has uniformly bounded interior curvature, for any r ď α we
have

κBpαq :“ sup |det pI ´ r Wpzqq| ă 8 and κ´B pαq :“ sup |det pI ` r Wpyqq| ă 8.

In the above display, the supremum is taken over all z P BE, y P BEr, and r ď
α. Several examples of hypersurface boundaries satisfying the above conditions are
discussed in Section 7 (cf. for instance Proposition 7.4).

We denote by qBt ě qBt the function defined as qBt by replacing qt by qt. Using the
fact that

QtpVBqpxq ď χpαq `

ż α

0

χprq qBt px, rq dr

we readily check the following proposition.

Proposition 4.8. For any t ą 0 we have

sup
0ďrďα

sup
xPE

qBt px, rq ă 8 ùñ QtpVBq ď χpαq Qtp1q ` ctpαq χpαq

sup
0ďrďα

sup
xPE

qBt px, rq ă 8 ùñ QtpVBq ď χpαq ` ctpαq χpαq. (84)

When the boundary BE is bounded, for any t ą 0 we have the estimate

}QtpVBq} ď ctpαq

ˆ

χpαq ` χpαq sup
0ďrďα

σB,r pBErq

˙

. (85)

We end this section with some practical tools to estimate the level-set density
functions discussed in Section 4.3. Most of our estimates are based on the following
technical lemma.

Lemma 4.9. Consider a couple of non negative functions f, g on Rn and some pa-
rameter α ą 0 such that

sup
}u}ďα

fpz ` uq ď ιpαq gpzq for some ιpαq ă 8.

In this situation, we have the uniform estimate

sup
0ďrďα

ż

BEr

fpzq σB,rpdzq ď ιpαq κBpαq

ż

BE

g pzq σBpdzq

as well as the co-area estimate
ż

BE

fpzq σBpdzq ď
1

α
ιpαq κ´B pαq

ż

DαpEq
gpzq dz.

The proof of the above lemma is provided in the appendix, on page 72.
Note that the level-set density function defined in (83) can be estimated for any

0 ď r ď α by the formula

qBt px, rq ď κBpαq

ż

BE

qt px, z ` rNpzqq σBpdzq.
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Proposition 4.10. Assume that qtpx, yq ď $t gtpx, yq is dominated by some proba-
bility density y ÞÑ gtpx, yq on Rn for some t ą 0 and some parameter $t ă 8. In
addition, we have

sup
}u}ďα

gtpx, y ` uq ď ιtpαq gα,tpx, yq (86)

for some probability density y ÞÑ gα,tpx, yq and some ιtpαq ă 8. In this situation, we
have the uniform density estimates

sup
0ďrďα

sup
xPE

qBt px, rq ď $t ιtpαqκ
´
B pαqκBpαq{α. (87)

Proof. By (86) for any 0 ď r ď α we have

qBt px, rq ď $t κBpαq

ż

BE

gt px, z ` rNpzqq σBpdzq.

On the other hand, we have
ż

DαpEq
gt,αpx, yq dy ď 1.

The estimate (87) is now a direct consequence of the co-area estimate stated in
Lemma 4.9. This ends the proof of the proposition.

We illustrate the above condition when qt are the sub-Gaussian densities discussed in
(81). In this situation, using the fact that 2a1b ď 1

ε
}a}2 ` ε}b}2 for any 0 ă ε ă 1 and

}u} ď α we check that

´
1

2σ2
t

}py ` uq ´mtpxq}
2
ď ´

p1´ εq

2σ2
t

}y ´mtpxq}
2
`

1

2σ2
t

ˆ

1

ε
´ 1

˙

α2.

In this context, condition (86) is met with the gaussian density

gα,tpx, yq :“
e
´ 1

2σtpεq
2 }y´mtpxq}2

p2πσtpεq2qn{2

with

ιtpαq :“ ct e
α2{ε

2σtpεq
2 and σtpεq

2 :“ σ2
t {p1´ εq.

5 Riccati type processes

5.1 Positive diffusions

Consider the Riccati type diffusion on E “s0,`8r defined for any x P E by

dXtpxq “
`

a0 ` a1 Xtpxq ´ b Xtpxq
2
˘

dt`σ1pXtpxqq dB
1
t `σ2pXtpxqq dB

2
t , X0pxq “ x
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for some Brownian motion pB1
t , B

2
t q on R2, the diffusion functions

σ1pxq :“ ς1
?
x σ2pxq :“ ς2 x

and the parameters

a1 P R a0 ą ς2
1 b ą 0 and ς1, ς2 ě 0.

Applying Itô’s formula, we readily check that

BtEpXtpxqq ď Ricc pEpXtpxqqq and BtEp1{Xtpxqq ď Ricc´ pEp1{Xtpxqqq

with the Riccati drift functions defined by

Riccpzq :“ a0 ` a1z ´ bz
2 and Ricc´pzq :“ a´0 ` a

´
1 z ´ b

´z2 (88)

with the parameters

a´0 :“ b a´1 :“ pς2
2 ´ a1q and b´ :“ a0 ´ ς

2
1 .

Consider the Lyapunov function V P B8pEq defined by V pxq :“ x ` 1{x. By well
known properties of Riccati flows, for any t ą 0 we have }PtpV q} ă 8. For a more
thorough discussion on this class of one-dimensional Riccati diffusions, we refer to the
article [4].

5.2 Matrix valued diffusions

Let E and E be the space of pn ˆ nq-positive semi-definite and definite matrices
respectively. Also let λ1pxq ě . . . ě λnpxq denote the ordered eigenvalues of x P E.
Let Wt denotes an pnˆ nq-matrix with independent Brownian entries. Also let A be
an pnˆ nq-matrix with real entries and let R, S P E. We associate with these objects
the E-valued diffusion

dXt “ pAXt `XtA
1
`R ´XtSXtq dt `

ε

2

”

X
1{2
t dWtR

1{2
`R1{2 dW 1

tX
1{2
t

ı

.

Whenever ε ď 2{
?
n` 1, the diffusion Xt has a unique strong solution that never

hits the boundary BE “ E ´ E. In addition, the transition semigroup Pt of Xt is
strongly Feller and admits a smooth density w.r.t. the Lebesgue measure on E, thus
it is irreducible. Furthermore, when ε2p1 ` nq{2 ď λnpRq{λ1pRq then the function
V pxq “ Trpxq ` Trpx´1q is a Lyapunov function with compact level subsets. For a
detailed proof of the above assertion for more general classes of Riccati matrix valued
diffusions we refer to [5] (see for instance the stability Theorem 2.4 and Section 5.4
in [5]).
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5.3 Logistic birth and death process

Let Xtpxq be the stochastic flow on E :“ N ´ t0u with generator L defined for any
f P BbpEq and x ě 2 by

Lpfqpxq “ Jpx, x´ 1q pfpx´ 1q ´ fpxqq ` Jpx, x` 1q pfpx` 1q ´ fpxqq

and for x “ 1 by
Lpfqp1q “ Jp1, 2qpfp2q ´ fp1qq.

In the above display, the birth and death rates in the above display are given by

Jpx, x` 1q :“ λb x` υb and Jpx, x´ 1q :“ λd x` λl xpx´ 1q ` υd (89)

for some non negative parameters λd, λb, υb, υd ě 0 and λl ą 0. Consider the identity
function V : x P E ÞÑ V pxq “ x. For any x ě 2 we have

LpV qpxq “ Jpx, x` 1q ´ Jpx, x´ 1q “ pF ˝ V q pxq

with the concave function

z P R` ÞÑ F pzq :“ pυb ´ υdq ` pλb ` λl ´ λdq z ´ λl z
2
P R. (90)

Observe that

LpV qp1q ´ F pV p1qq “ Jp1, 2q ´ F p1q “ Jp1, 0q “ υd ` λd.

This yields the estimate

PtpLpV qqpxq “ Ptp1r2,8r LpV qqpxq ` Ptp1t1u LpV qqpxq

“ PtppF ˝ V qqpxq ` Ptp1t1uqpxq pLpV qp1q ´ F pV p1qqq

ď F pPtpV qqpxq ` Jp1, 0q

from which we check that

BtPtpV qpxq ď Ricc pPtpV qpxqq

with the Riccati drift function defined in (88) with the parameters

a0 :“ υb ` λd a1 :“ λb ` λl ´ λd and b :“ λl ą 0.

By well known properties of Riccati flows, for any t ą 0 we conclude that }PtpV q} ă 8.
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5.4 Multivariate birth and death processes

We denote by e :“ tei, 1 ď i ď nu the collection of column vector ei on t0, 1un with
entries eipjq “ 1i“j and with a slight abuse of notation we denote by 0 the null state
in Nn. Let Xtpxq be a stochastic flow on E “ Nn ´ t0u with generator L defined by

Lpfqpxq :“
ÿ

yPE

Jpx, yq pfpyq ´ fpxqq. (91)

Let λ, µ, υ, ς be some column vectors and let C,D some pd ˆ dq-matrices with real
entries such that for any 1 ď i ď d and any x P E we have

Jpx, x` eiq :“ υi`xi pλi`pCxqiq ě 0 and Jpx, x´ eiq :“ ςi`xi pµi`pDxqiq ě 0.

We also set
Jpx, yq “ 0 as soon as |x´ y| ě 2.

We further assume that

|υ| ě |ς| B :“ pD ´ Cq ě b I ą 0 for some b ą 0.

and we set
a0 :“ |υ| ´ |ς| ě 0 a1 :“ _1ďiďnpλi ´ µiq

and for any x P Nn

}x} :“

˜

ÿ

1ďiďn

x2
i

¸1{2

ě |x| :“
ÿ

1ďiďn

xi.

Consider the Lyapunov function

x P E ÞÑ V pxq “ |x| P N`.

Note that V is locally bounded with finite level sets and for any x P E ´ e we have

LpV qpxq “
ÿ

1ďiďn

ppυi ` xi pλi ` pCxqiqq ´ pςi ` xi pµi ` pDxqiqqq .

In this situation, we have the formula

LpV qpxq “ a0 ` pλ´ µq
1x´ x1Bx ď a0 ` a1|x| ´ b}x}

2. (92)

On the other hand, for any y “ ej we have

LpV qpyq “
ÿ

1ďiďn

Jpy, y ` eiq.
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This implies that

PtpLpV qq “ Ptp1E´e LpV qq ` Ptp1e LpV qq

“ a0 ` a1 PtpV q ´ b PtpV
2
q

`
ÿ

1ďjďn

Ptp1ejq
`

LpV qpejq ´
`

a0 ` pλ´ µq
1ej ´ e

1
jBej

˘˘

from which we readily check that

BtEpV pXtpxqqq ď a`0 ` a1EpV pXtpxqqq ´ b pEpV pXtpxqqqq
2

with

a`0 :“ a0 `
ÿ

1ďjďd

˜

ÿ

1ďiďd

Jpej, ej ` eiq ´
`

|υ| ´ |ς| ` pλ´ µq1ej ´ e
1
jpD ´ Cqej

˘

¸

“ a0 `
ÿ

1ďjďd

`

|ς| ` µ1ej ` e
1
jDej

˘

.

We conclude that }PtpV q} ă 8. The semigroup analysis discussed above can be
extended without difficulties to more general process on countable spaces models
satisfying condition (92). The extension to time varying models can also be handle
using a more refined analysis on time varying Riccati equations.

We also mention, that the case |υ| “ 0 “ |ς| coincides with the competitive and
multivariate Lotka-Volterra birth and death process discussed in Theorem 1.1 in [10].

6 Some conditional diffusions

6.1 Coupled harmonic oscillators

Consider the Rn-valued diffusion (33) with pbpxq, σpxqq “ pAx,Σq, for some non neces-
sarily stable drift matrix A and some diffusion matrix Σ with appropriate dimensions.
We associate with a given semi-definite positive pn ˆ nq matrix S ě 0 the potential
function

Upxq :“
1

2
x1Sx and we set R “ ΣΣ1. (93)

We assume that the pairs pA,R1{2q and pA1, S1{2q are both controllable. Let Qt “ Q
rUs
t

be the sub-Markov semigroup defined in (49) on the Euclidean space E “ E “ Rn.
As shown in [13], the leading-triple pρ, h, η8q discussed in (24) is given by

ρ “ ´TrpRq8q{2 “ ´Trpp8Sq{2

hpxq “ exp p´x1q8x{2q and η8pdxq “
exp p´x1p´1

8 x{2q
a

detp2πp8q
dx, (94)
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with the positive fixed points p8 and q8 of the dual algebraic Riccati matrix equation

Ap8 ` p8A
1
`R ´ p8Sp8 “ 0 and A1q8 ` q8A` S ´ q8Rq8 “ 0.

In this context, the h-process, denoted pXh
t pxqqtě0 and defined by the stochastic dif-

ferential equation

dXh
t pxq “ AhXh

t pxq dt` Σ dBt with Ah :“ A´R q8. (95)

Our controllability conditions ensures that Ah is a stable matrix. Note that Xh
t pxq

is an Rn-valued Gaussian random variable with mean mh
t pxq and covariance matrix

pht P Rnˆn given for any t ą 0 by

mh
t pxq “ exp

`

Aht
˘

x and pht “

ż t

0

exp
`

Ahs
˘

R exp
`

pAhq1s
˘

ds ą 0.

This yields the explicit formula

P h
t px, dyq “

1
a

detp2πpht q
exp

ˆ

´
1

2
py ´mh

t pxqq
1
ppht q

´1
py ´mh

t pxqq

˙

dy.

Moreover the invariant measure ηh8 “ ηh8Ph
t is unique and given by

ηh8pdxq “
1

a

detp2πph8q
exp

ˆ

´
1

2
y1pph8q

´1y

˙

dy

with the limiting covariance matrix

ph8 :“

ż 8

0

exp
`

Ahs
˘

Σ2 exp
`

pAhq1s
˘

ds “ pp´1
8 ` q8q

´1
ą 0.

For any time horizon t ě 0 and any measurable function F on the set Cpr0, ts,Rnq

of continuous paths from r0, ts into Rn we have the path space exponential change of
measure Feynman-Kac formula

E
ˆ

F pXtpxqq exp

ˆ
ż t

0

UspXspxqq ds

˙˙

“ eρt hpxq E
`

F pXh
t pxqq{hpX

h
t pxqq

˘

with the historical processes

Xtpxq :“ pXspxqq0ďsďt, Xh
t pxq :“ pXh

s pxqq0ďsďt and UspXspxqq :“ UspXspxqq.

This yields the conjugate formulae

Qtpfq “ eρt h P h
t pf{hq.

We denote by pmtpxq, ptq P pRnˆRnˆnq the mean and covariance parameters satisfying
the linear evolution and the Riccati matrix differential equations

$

&

%

Btmtpxq “ pA´ ptSq mtpxq

Btpt “ Apt ` ptA
1 ` Σ2 ´ ptSpt with pm0pxq, p0q “ px, 0q.

(96)

The next proposition provides an explicit description of these semigroups.
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Proposition 6.1 ([13]). For any time horizon t ą 0 we have pt ą 0 and

Qtpx, dyq “
1

a

detp2πptq
exp

ˆ

´
1

2
py ´mtpxqq

1p´1
t py ´mtpxqq

˙

dy (97)

as well as

´2 logQtp1qpxq “ x1
ˆ
ż t

0

F 1sSFs ds

˙

x`

ż t

0

TrpSpsq ds

with the fundamental matrix semigroup Ft starting at F0 “ I given by

BtFt “ pA´ ptSq Ft.

Observe that the normalized Markov operator Qt satisfies (39) and (40) with the
parameters

ct “
1

a

detp2πptq
, σ2

t “ λmaxpptq and ετ “ |e
τpA´p8Sq| ÝÑ 0 as τ Ñ 8 (98)

for some matrix norm |.|. The r.h.s. assertion is a direct consequence of the Floquet
representation theorem presented in [3] (cf. (1.3) and Theorem 1.1) and the fact that
pA´ p8Sq is a stable matrix. Applying Lemma 2.9 for any v ě 0 and t ą 0 there also
exists some finite constant δt ą 0 such that

V pxq :“ exp pv|x|q ùñ QtpV q{V ď ct{V
δt .

Using Proposition 6.1, for any k ě 0 and t ě 0 it is also readily checked that

V pxq :“ p1` }x}qk ùñ }QtpV q{V } ă 8 and }QtpV q} ă 8.

6.2 Half-harmonic linear diffusions

For one dimensional models, the coupled harmonic oscillator discussed in Section 6.1
resumes to one dimensional linear diffusion

dXtpxq “ aXtpxq dt` dBt and the potential Upxq “ ςx2
{2 (99)

for some parameters ς ą 0 and a P R. We set β :“ a`
?
a2 ` ς. In this notation, the

leading pair pρ, hq “ pρ1, ϕ1q is given by

ρ “ ´β{2 and hpxq “ ppβ ´ aq{πq1{4 exp
`

´βx2
{2
˘

. (100)

The quasi-invariant measure is therefore given by

η8pdxq “

c

ς

2πβ
exp

`

´ςx2
{p2βq

˘

dx.
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Therefore, the h-process resumes to the Ornstein-Uhlenbeck diffusion

dXh
t pxq “ ´b X

h
t pxq dt` dBt (101)

with the invariant measure

ηh8pdxq :“

c

b

π
exp

`

´b x2
˘

dx with b :“ pβ ´ aq “
a

a2 ` ς ą 0.

Note that any Ornstein-Uhlenbeck process can be seen as the h-process associated
with a non absorbed (possibly transient) linear diffusion evolving in some quadratic
potential well.

In this context, Proposition 6.1 is also satisfied with the mean and variance pa-
rameters

$

&

%

Btmtpxq “ pa´ ptςq mtpxq

Btpt “ 2apt ` 1´ ςp2
t with pm0pxq, p0q “ px, 0q.

(102)

We also have

´
2

ς
logQtp1qpxq “ pt ` χt x

2 (103)

with

χt :“

ż t

0

exp

ˆ

´2

ż s

0

pa´ puςqdu

˙

ds and pt :“

ż t

0

psds.

The half-harmonic semigroup associated with the flow Xtpxq is defined for any
x P E :“s0,8r and f P BbpEq by the formulae

Qtpfqpxq :“ E
ˆ

fpXtpxqq 1T pxqąt exp

"

´

ż t

0

UpXspxqq ds

*˙

. (104)

In the above display, T pxq stands for the hitting time of the origin. In terms of
the h-process of the flow in the harmonic potential (101) we also have the conjugate
formula

Qtpfqpxq “ etρ e´βx
2{2 E

´

fpYtpxqq e
βYtpxq2{2 1TY pxqąt

¯

(105)

with the parameters pρ, βq defined in (100) and the Ornstein-Uhlenbeck diffusion flow
defined by

dYtpxq “ ´b Ytpxq dt` dBt with b :“ pβ ´ aq ą 0.

In the above display, T Y pxq stands for the hitting time of the origin by the flow Ytpxq
starting at x ą 0. Arguing as in Section 2.5.2 we check that

Qtpx, dyq

“ sinh py mtpxqq exp
`

´ ς
2
pχt x

2 ` ptq
˘

ˆ

c

2

πpt
exp

ˆ

´
y2 `mtpxq

2

2pt

˙

1s0,8rpyq dy
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with the parameters pmtpxq, ptq and pχt, ptq defined in (102) and (103).
Arguing as in (56), choosing the Lyapunov function V pxq “ xn ` 1{x, for some

n ě 1, we readily check that

V P C8pEq and QtpV q{V ď ct{V P C0pEq. (106)

6.3 Linear diffusions in some domains

Consider the one-dimensional stochastic flow Ytpxq of an Ornstein-Uhlenbeck

dYtpxq “ ´b Ytpxq dt` dBt for some b ą 0.

In the above display, Bt is a one-dimensional Brownian motion starting at the origin.
For a given x P E :“s0,8r, we let T Y pxq be the hitting time of the origin by the flow
Ytpxq starting at x ą 0. Consider the semigroup

QY
t pfqpxq :“ EpfpYtpxqq 1TY pxqątq.

Choosing pa, ς, β, ρq “ p0, b2, b,´b{2q in (100), formula (105) takes the form

QY
t pfqpxq “ e´ρt Hpxq´1QtpfHqpxq with Hpxq “ exp

`

´bx2
{2
˘

with the semigroup Qt defined in (104) with Upxq “ b2x{2.
For any given n ě 1 we have

V pxq :“ xn ` 1{x ùñ V P C8pEq and V H :“ V {H P C8pEq.

Using (106) we conclude that

V H
P C8pEq and QY

t pV
H
q{V H

“ e´ρt QtpV q{V ď ct{V P C0pEq.

The long time behavior of the positive semigroup QY
t is also studied in [46], and

more recently in [55] in terms of the tangent of the h-process.
More generally, consider the Rn-valued diffusion flow Xtpxq defined in (33) with

pbpxq, σpxq “ pAx,Σq, for some matrices pA,Σq with appropriate dimensions. Assume
that R :“ ΣΣ1 is positive semi-definite and the pair of matrices pA,R1{2q are control-
lable. In this situation, the Markov semigroup Pt of the stochastic flow Xtpxq satisfies
the sub-Gaussian estimate (81) for some parameters pσt,mtpxqq.

Consider a domain E Ă Rn with C2-boundary with uniformly bounded interior
curvature. For any given x P E, let Qt be the sub-Markov semigroup

Qtpfqpxq :“ EpfpXtpxqq 1T pxqątq with T pxq :“ inf tt ě 0 : Xtpxq P BEu . (107)

We clearly have QtpVBq ď PtpVBq, with the function VB defined in (76). When E is
non necessarily bounded but its boundary BE is bounded we known from (85) that
}QtpVBq} ă 8. For non necessarily bounded boundaries the sub-gaussian property
(81) ensures that }QtpVBq} ă 8.
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When E is bounded, applying Lemma 4.2 (see also Proposition 4.3) we have

VB P C8pEq and QtpVBq{VB ď ct{VB P C0pEq.

For unbounded domains we need to ensure that A is stable so that (44) is satisfied
for some norm |.| on Rn. In this situation, applying Proposition 2.10 for any t ą 0
there exists some δt ą 0 such that

VEpxq :“ exp pv|x|q ùñ QtpVEq{VE ď ct{V
δt
E .

Applying Proposition 4.6 with ε “ 0, for any p ą 1 we conclude that

Vp :“ V
1´1{p
E V

1{p
B P C8pEq and Qt pVpq {Vp ď ct Θp,t (108)

with the function
Θp,t :“ 1{pV

δtp1´1{pq
E V

1{p
B q P C0pEq.

6.4 Langevin diffusions in some domains

Consider the semigroup Qt of the one-dimensional Langevin diffusion defined in (73)
with E “s0,8r and a quadratic confinement potential

W pxq “ x2
{2 ùñ Hpxq :“ e´W pxq “ e´x

2{2 and U :“
1

2

`

x2
` 1

˘

.

In this case, the semigroup Qt defined in (75) coincides with the semigroup of the
half-harmonic oscillator discussed in Section 2.5.2. By (56) for any n ě 1 we have

V pxq :“ xn ` 1{x ùñ QtpV q{V ď ct{V P C0pEq.

Notice that

V H
pxq :“ V pxq{Hpxq “ xn ex

2{2
`
ex

2{2

x
. (109)

Using (75) we conclude that

V H
P C8pEq and QtpV

H
q{V H

“ QtpV q{V ď ct{V P C0pEq.

More generally, consider the case E “s0,8r with at least a quadratic confinement
potential U , in the sense that

Upxq “
1

2

`

pBW q2 ´ B2W
˘

pxq ě U2pxq :“ c` ς x2
{2 for some ς ą 0.

In this situation, Qt ! QrU2s is dominated by the semigroup QrU2s of the half-harmonic
oscillator discussed in Section 2.5.2. Arguing as in (109) we have

H :“ e´W V H :“ V {H P C8pEq and QtpV
H
q{V H

ď ct{V P C0pEq.
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For instance, whenever the confinement potential W is chosen so that

W pxq ě ε0 log x`W1pxq for some 0 ď ε0 ă 1

and some function W1 ě 1 such that W1pxq ÝÑxÑ8 8 we have

H “ e´W ùñ V H
pxq :“ V pxq{Hpxq “ xn eW pxq `

eW pxq

x
ě xn eW pxq `

eW1pxq

x1´ε0
.

Using (75) we conclude that

V H
P C8pEq and QtpV

H
q{V H

“ QtpV q{V ď ct{V P C0pEq.

We illustrate the above result, with the logistic diffusion discussed in [9]. Consider
the generalized Feller diffusion

dYtpxq :“
`

2a Ytpxq ´ p8b{σ
2
q Ytpxq

2
˘

dt` σ
a

Ytpxq dBt

starting at x P E :“s0,8r. In the above display, Bt is a one dimensional Brownian
motion starting at the origin and a, b, σ ą 0 some parameters. Observe that

Xtpxq :“ p2{σq
a

Ytpxq ùñ dXtpxq “ ´BW pXtpxqq dt` dBt

with the potential function

BW pxq “
1

2x
´ a x` b x3 with a, b ą 0.

Thus, choosing

W pxq “
1

2
log x` b

x4

4
´ a

x2

2
we readily check that

V H
pxq :“ eW pxqpxn ` 1{xq “ pxn´1{2

` 1{
?
xq eb

x4

4
´ax

2

2 ùñ V H
P C8pEq.

More generally, consider the Langevin diffusion flow

Xtpzq “ pXtpzq, Ytpzqq P pRn
ˆ Rn

q

starting at z “ px, yq P pRn ˆRnq and defined by the hypo-elliptic diffusion (65). We
further assume that supD a ă 8 for some bounded open connected domain D Ă Rn

with C2-boundary, and for any z P E :“ D ˆ Rn and f P BbpEq we set

Qtpfqpzq :“ E
`

fpXtpzqq 1T paqpzqąt
˘

with T pzq :“ inf tt ě 0 : Xtpzq P BDu .

We know from (66) that for any q ą 1 we have Q !q Q is q-dominated by the sub-
Markov semigroup Qt associated with the Ornstein-Uhlenbeck diffusion on E defined
in (107), with the matrices pA,Σq defined in (46). In terms of the functions pVp,Θp,tq

defined in (108), combining (64) with (108) for any p, q ą 1 we conclude that

QtpVp,qq{Vp,q ď ctpp, qq Θp,q,t

with the collection of Lyapunov functions

Vp,q :“ V 1{q
p P C8pEq and the function Θp,q,t :“ Θ

1{q
p,t P C0pEq.
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6.5 Coupled oscillators in some domains

Consider the Rn-valued diffusion Xtpxq and the quadratic potential function U dis-
cussed in Section 6.1, for some n ě 2 and set E :“s0,8rˆRn´1. Let Qt be the
semigroup defined for any f P BbpEq and x P E by the formulae

Qtpfqpxq :“ E
ˆ

fpXtpxqq 1T pxqąt exp

ˆ

´

ż t

0

UpXspxqqds

˙˙

(110)

with the quadratic function U in (93) and the exit time T pxq given by

T pxq :“ inf tt ě 0 : Xtpxq P BEu with BE “ t0u ˆ Rn´1.

In terms of the h-process Ytpxq :“ Xh
t pxq associated with the leading pair pρ, hq defined

in (95) we also have the conjugate formula

Qtpfq “ eρt h QY
t pf{hq with QY

t pfqpxq :“ E
`

fpYtpxqq 1TY pxqąt
˘

.

In the above display, T Y pxq stands for the boundary hitting time

T Y pxq :“ inf tt ě 0 : Ytpxq P BEu .

When n “ 2, the linear diffusion Xtpxq associated to the matrices A1,2 “ A2,1 “

A2,2 “ 0 and A1,2 “ 1 and Σ1,1 “ Σ1,2 “ Σ2,1 “ 0 and Σ2,2 “ 1 coincides with the
integrated Wiener process model discussed in [45, 35, 48]. In a seminal article [48],
McKean obtained the joint distribution of the pair pT pxq, X2

T pxqq in the absence of soft
absorption, that is when U “ 0. To the best of our knowledge, an explicit descrip-
tion of the distribution of this pair and the corresponding sub-Markov semigroup is
unknown in more general situations.

Observe that for any x P E and any non negative function f P BbpRnq we have

Qtpfqpxq ď Qtpfqpxq :“ eρt hpxq E pfpYtpxqq{hpYtpxqqq .

The semigroup Qt defined above coincides with the semigroup of the coupled harmonic
oscillator discussed in Section 6.1. We know from (98) that Qt satisfies the sub-
Gaussian estimates (39) with

ct “
1

a

detp2πptq
and σ2

t “ λmaxpptq

with the solution pt of the Riccati-matrix equation (96). Using Proposition 6.1 for
any k ě 1 we have

VEpxq :“ 1` }x}k ùñ }QtpVEq{VE} ă 8 ùñ QtpVEq ď ct Qtp1qVE .

Recalling that Qtp1qpxq tends to 0 exponentially fast as }x} Ñ 8, this implies that

@t ą 0 }QtpVEq} ă 8.
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On the other hand for any y “ py1, y´1q P E “ ps0,8rˆRn´1q, the distance to the
boundary is given by dpy, BEq “ y1. In terms of the function VB defined in (76) his
implies that

QtpVBqpxq ď

ż

Qtpx, dyq 1s0,1rpy1q χpy1q ` χp1q Qtp1qpxq

from which we check that }QtpVBq} ă 8. Applying Proposition 4.4 we conclude that

V :“ VB ` VE P C8pEq and QtpV q{V ď ct{V P C0pEq.

The same analysis applies by replacing the half line E1 by the unit interval E1 :“s0, 1r.
In this context, the boundary is given by the two infinite potential walls

BE “ pt0u ˆ Rn´1
q Y pt1u ˆ Rn´1

q and dpx, BEq “ x1 ^ p1´ x1q.

More generally, consider a domain E Ă Rn with C2-boundary with uniformly bounded
interior curvature. In this situation, the sub-Gaussian property (81) ensures that
}QtpVBq} ă 8 and therefore

}QtpVBq} ď }QtpVBq} “ }Qtp1qQtpVBq} ă 8.

Applying Proposition 4.4, we conclude that

V :“ VB ` VE P C8pEq and and QtpV q{V ď ct{V P C0pEq.

7 Some hypersurface boundaries

7.1 Defining functions and charts

Consider a smooth function y P Rn´1 ÞÑ ϕpyq P R with non empty and connected
level set, for some n ě 2. Consider a domain E in Rn with a smooth boundary
BE “ ϕ´1pt0uq defined as the null level set of the function

x “ pxiq1ďiďn P Rn
ÞÑ ϕpxq :“ ϕpx´nq ´ xn with x´n :“ pxiq1ďiăn P Rn´1.

Consider the column vectors ∇ϕpx´nq :“ pBxiϕpx´nqq1ďiăn. In this notation, the unit
normal vector Npxq at x P BE is given by the column vectors

Npxq “
∇ϕpxq
}∇ϕpxq}

“
1

a

1` }∇ϕpx´nq}2

ˆ

∇ϕpx´nq
´1

˙

.

Observe that the vector Npxq is the outward-pointing normal direction to E as soon
as E “ ϕ´1 ps ´ 8, 0rq and the inward-pointing normal direction to E when E “

ϕ´1 ps0,`8rq.
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Consider the column vectors ei :“ p1ipjqq1ďiăn, with 1 ď i ă n. In this notation,
the pn´ 1q tangential column vectors Tipxq at x P BE are given for any 1 ď i ă n by
the column vectors

Tipxq :“

ˆ

ei
Bxiϕpx´nq

˙

.

The inner product gpxq on the tangent space TxpBEq (a.k.a. the first fundamental
form on BE) is given by the Gramian matrix

gpxq “ pTipxq
1Tjpxqq1ďi,jăn “ T pxqT pxq1 with T pxq1 :“ pT1pxq, . . . , Tn´1pxqq .

This yields the matrix formula

gpxq “
`

I,∇ϕpx´nq
˘

ˆ

I
∇ϕpx´nq1

˙

“ I `∇ϕpx´nq∇ϕpx´nq1.

In this notation, the projection projTxpBEq on the tangent space TxpBEq is defined for
any column vector V “ pV iq1ďiďn P Rn by

projTxpBEqpV q :“ pT1pxq, . . . , Tn´1pxqq gpxq
´1

¨

˚

˝

T1pxq
1

...
Tn´1pxq

1

˛

‹

‚

¨

˚

˝

V 1

...
V n

˛

‹

‚

.

In matrix notation, the projection of m column vectors Vi P Rn, with i P t1, . . . ,mu
and any m ě 1 takes the synthetic form

projTxpBEqpV1, . . . , Vmq “
`

T pxq1gpxq´1T pxq
˘

pV1, . . . , Vmq

“
`

projTxpBEqpV1q, . . . , projTxpBEqpVmq
˘

.

Equivalently, if gpxqi,j denotes the pi, jq-entry of the inverse matrix gpxq´1, the pro-
jection of a column vector V P Rn onto TxpBEq is defined by

projTxpBEqpV q “
ÿ

1ďi,jăn

gpxqi,j pTjpxq
1V q Tipxq.

7.2 The shape matrix

Consider the Monge parametrization

ψ : θ “ pθiq1ďiăn P S :“ Rn´1
ÞÑ ψpθq “

ˆ

θ
ϕpθq

˙

P BE Ă Rn. (111)

In this chart, the tangent vectors and the normal unit vector at x “ ψpθq are given
for any 1 ď i ă n by

Tψi pθq :“ Bθiψpθq “ Ti pψpθqq P TxpBEq and Nψ
pθq :“ Npψpθqq P TKx pBEq.
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For any 1 ď i, j ă n we have

pBθiψpθqq
1Nψpθq “ 0

ùñ Ωpψpθqqi,j :“
`

Bθi,θjψpθq
˘1
Nψpθq “ ´ pBθiψpθqq

1
BθjN

ψpθq.

Observe that for x “ ψpθq,

BθiN
ψ
pθq “

ÿ

1ďkďn

pBxkNq pxq Bθiψ
k
pθq “ p∇Npxqq1 Bθiψpθq

from which we check that for any 1 ď i, j ă n the coefficients of the second funda-
mental form can be computed as follows:

Ωpxqi,j “ ´pBθiψpθqq
1
p∇Npxqq1 Bθiψpθq.

We set
`

BNψ
pθq

˘1
:“

`

Bθ1N
ψ
pθq, . . . , Bθn´1N

ψ
pθq

˘

P
`

TψpθqpBEq
˘n´1

.

In this notation, for any x “ ψpθq we have the matrix formulation

Ωpxq :“ ´Bψpθq
`

BNψ
pθq

˘1
“

´

`

Bθi,θjψpθq
˘1
Npxq

¯

1ďi,jăn

“ ´
∇2ϕpθq

a

1` }∇ϕpθq}2
with ∇2ϕpθq :“

`

Bθi,θjϕpθq
˘

1ďi,jăn
.

We also readily check the matrix formulation of the Weingarten’s equations
`

BNψ
pθq

˘1
“

`

pBψpθqq1 gpψpθqq´1
˘

pBψpθqq
`

BNψ
pθq

˘1
“ ´pBψpθqq1W pxq .

In the above display, Wpxq stands for the shape matrix (a.k.a. the Weingarten map
or the mixed second fundamental form) defined by

Wpxq :“ gpxq´1Ωpxq

“ ´
1

a

1` }∇ϕpx´nq}2
pI `∇ϕpx´nq∇ϕpx´nq1q´1 ∇2ϕpx´nq.

We summarize the above discussion in the following proposition.

Proposition 7.1. For any 1 ď i ă n we have the Weingarten’s equations

BθiN
ψ
pθq “ ´

ÿ

1ďkăn

W pψpθqqk,i Bθkψpθq P TψpθqpBEq.

Example 7.2. For n “ 2 we have x P R ÞÑ ϕpxq “ ϕpxq ´ x, so that the boundary
BE “ ϕ´1pt0uq coincides with the graph of the function ϕ. In this context, the metric
and Weingarten map at x P BE “ tx “ px1, x2q P R2 : x2 “ ϕpx1qu take the form

gpxq “ 1` }Bϕpx1q}
2 and Wpxq “ ´ 1

p1` }Bϕpx1q}
2q

3{2
B

2ϕpx1q.
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Example 7.3. For n “ 3, the boundary BE is given by the surface in R3 defined

BE :“ tx “ pxiq1ďiď3 P R3 : x3 “ ϕpx1, x2qu.

The Monge parametrization is given by

ψ : θ “ pθ1, θ2q P R2
ÞÑ ψpθq “

¨

˝

θ1

θ2

ϕpθ1, θ2q

˛

‚P BE Ă R3.

In this situation, the tangent vectors at x P BE are given by

T1pxq “

¨

˝

1
0

Bx1ϕpxq

˛

‚ and T2pxq “

¨

˝

0
1

Bx2ϕpxq

˛

‚.

In the same vein, whenever E “ tx P R3 : ϕpx1, x2q ď x3u the outward pointing unit
normal at x P BE is given by

Npxq “
1

a

1` pBx1ϕpxqq
2 ` pBx2ϕpxqq

2

¨

˝

Bx1ϕpxq
Bx2ϕpxq
´1

˛

‚.

The inner product gpxq is easily computed and given by

gpxq “

ˆ

1` pBx1ϕpxqq
2 pBx1ϕpxqqpBx2ϕpxqq

pBx1ϕpxqqpBx2ϕpxqq 1` pBx2ϕpxqq
2

˙

.

The inverse metric is given by

gpxq´1
“

1

detpgpxqq

ˆ

1` pBx2ϕpxqq
2 ´pBx1ϕpxqqpBx2ϕpxqq

´pBx1ϕpxqqpBx2ϕpxqq 1` pBx1ϕpxqq
2

˙

with
detpgpxqq “ 1` pBx1ϕpxqq

2
` pBx2ϕpxqq

2
“ 1` }∇ϕpxq}2.

The second fundamental form is also given by

Ωpxq “ ´
1

a

1` }∇ϕpxq}2

ˆ

B2
x1
ϕpxq Bx1,x2ϕpxq

Bx1,x2ϕpxq B2
x2
ϕpxq

˙

and the Weingarten map is defined by

Wpxq “ ´ 1

p1` }∇ϕpxq}2q3{2

ˆ

¨

˝

p1` pBx2ϕpxqq
2qB2

x1
ϕpxq ´ pBx1ϕpxqqpBx2ϕpxqqBx1,x2ϕpxq p1` pBx2ϕpxqq

2qBx1,x2ϕpxq ´ ´pBx1ϕpxqqpBx2ϕpxqqB
2
x2
ϕpxq

´pBx1ϕpxqqpBx2ϕpxqqB
2
x1
ϕpxq ` p1` pBx1ϕpxqq

2qBx1,x2ϕpxq ´pBx1ϕpxqqpBx2ϕpxqqBx1,x2ϕpxq ` p1` pBx1ϕpxqq
2qB2

x2
ϕpxq

˛

‚.
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7.3 Surface and volume forms

The surface form σB on the boundary BE expressed in the chart ψ introduced in (111)
is given by

`

σB ˝ ψ
´1
˘

pdθq “
a

det pgpψpθqqq dθ

with the Gramian of the coordinate chart

gpψpθqq :“ Gram
`

Bθ1ψpθq, . . . , Bθn´1ψpθq
˘

:“ pBψpθqq pBψpθqq1 “ I `∇ϕpθqp∇ϕpθqq1

with the coordinates tangent vectors Bψpθq “ Tψpθq :“ T pψpθqq. To check this claim
recall that the surface area spaced by the column vectors

Bψpθq1 :“
`

Bθ1ψpθq, . . . , Bθn´1ψpθq
˘

is equal to the volume of the parallelepided generated by the column vectors

pBψpθq1, Npψpθqqq :“
`

Bθ1ψpθq, . . . , Bθn´1ψpθq, Npψpθqq
˘

which is given by the determinant of the column vectors, so that
`

σB ˝ ψ
´1
˘

pdθq “ |det pBψpθq1, Npψpθqqq | dθ.

On the other hand, we have
ˆ

Bψpθq
Npψpθqq1

˙

`

Bψpθq1, Npψpθqq
˘

“

¨

˚

˚

˚

˝

pBθ1ψpθqq
1

...
pBθ1ψpθqq

1

Npψpθqq1

˛

‹

‹

‹

‚

`

Bθ1ψpθq, . . . , Bθ1ψpθq, Npψpθqq
˘

“

ˆ

pBψpθqq pBψpθqq1 0n´1,1

01,n´1 1

˙

.

This implies that

|det pBψpθq1, Npψpθqqq | “
b

|det
`

pBψpθq1, Npψpθqqq1 pBψpθq1, Npψpθqqq
˘

|

“

b

det
`

pBψpθqq pBψpθqq1
˘

.

Using the determinant perturbation formula w.r.t. rank-one matrices det pI ` uv1q “
1` v1u which is valid for any column vectors u, v P Rn we check that

det pI `∇ϕpθq∇ϕpθq1q “ 1` }∇ϕpθq}2.

This yields the formula
`

σB ˝ ψ
´1
˘

pdθq “
a

1` }∇ϕpθq}2 dθ.
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The mapping F defined in (82) can also be rewritten as a chart ψ on DrpEq defined
for any pθ, uq P pS ˆ r0, rsq defined by

ψpθ, uq :“ F pψpθq, uq “ ψpθq ` u Npψpθqq P DrpEq.

The Jacobian matrix of ψ is given by

Jacpψqpθ, uq “
`

Bθ1ψpθ, uq, . . . , Bθn´1ψpθ, uq, Npψpθqq
˘

.

By Proposition 7.1 we have

Bθiψpθ, uq “ Bθiψpθq ` u BθiN
ψ
pθq

“ Bθiψpθq ´ u
ÿ

1ďkăn

Bθkψpθq W pψpθqqk,i .

This yields the formula
`

Bθ1ψpθ, uq, . . . , Bθn´1ψpθ, uq
˘

“
`

Bθ1ψpθ, uq, . . . , Bθn´1ψpθq
˘

pI ´ u Wpψpθqqq

from which we check that

|det
`

Jacpψqpθ, uq
˘

| “
a

detpgpψpθqq |det pI ´ u Wpψpθqqq| .

Note that ψpθ, 0q “ ψpθq, and for any given u ă r, the mapping θ ÞÑ ψpθ, uq is a chart
on BEu. This yields the following proposition. For the convenience of the reader, a
more detailed proof of the next proposition is provided in the appendix on page 72.

Proposition 7.4. For any u ď r, the surface form σB,u on the boundary BEu expressed
in the chart θ P S ÞÑ ψpθ, uq :“ F pψpθq, uq is given by the formula

`

σB,u ˝ ψp., uq´1
˘

pdθq “ |det pI ´ u Wpψpθqqq|
`

σB ˝ ψ
´1
˘

pdθq

with
|det pI ´ u Wpψpθqqq|

“ |det

˜

I `
u

a

1` }∇ϕpθq}2
pI `∇ϕpθq∇ϕpθq1q´1 ∇2ϕpθq

¸

|.

In addition, the volume form σDrpEq on DrpEq expressed in the chart ψ is given by
´

σDrpEq ˝ ψ
´1
¯

pdpθ, uqq “ |det pI ´ u Wpψpθqqq|
`

σB ˝ ψ
´1
˘

pdθq du.

Using Jacobi’s formula for the derivative of determinants, we also have

Bu log det pI ´ u Wpxqq “ ´Tr
`

pI ´ u Wpxqq´1 Wpxq
˘

.

The level-set density function defined in (83) expressed in the chart ψ is given by
the formula

qBt px, rq

“

ż

S
qt px, ψpθq ` r Npψpθqqq |det pI ´ r Wpψpθqqq|

a

detpgpψpθqqq dθ.
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7.4 Boundary decompositions

For some given coordinate index k P t1, . . . , nu and x “ pxiq1ďiďn P Rn we set

x´k :“ pxiqiPI with I :“ t1, . . . , nu ´ tku

We further assume that

BE “ tx P Rn : x´k P S and ϕpx´kq “ xku “ ϕ´1
pt0uq

is defined as the null level set of some global defining function of the form

ϕ : x P tpxiq1ďiďn P Rn : x´k P Su ÞÑ ϕpxq :“ ϕpx´kq ´ xk P R

for some open domain S Ă Rn´1.

Example 7.5 (Cylindrical boundaries). Let 1 ď k ď n1 and n “ n1 ` n2 for some

n1 ą 1 and n2 ě 1. Consider a domain S of the form S “ p pS ˆRn2q with pS Ă Rn1´1

and assume that

@y P Rn1 s.t. y´k P pS and @z P Rn2 we have ϕpy´k, zq :“ pϕpy´kq.

In this situation, the set BE is a cylindrical boundary given by the formula

BE “ B pE ˆ Rn2 with B pE :“
!

y P Rn1 : y´k P pS and pϕpy´kq “ yk

)

.

In this context, the coordinates of the outward normal by

N j
pxq “

ε
a

1` }∇ϕpx´kq}2
`

1Ipjq Bxjϕpx´kq ` 1kpjq p´1q
˘

with the orientation parameter ε “ 1 when E “ ϕ´1ps ´ 8, 0rq; and ε “ ´1 when
E “ ϕ´1ps0,`8rq. In the same vein, the entries T ji pxq of the tangent vectors Tipxq
indexed by i P I are given for any 1 ď j ď n by

T ji pxq “ 1ipjq ` 1kpjq Bxiϕpx´kq.

Consider the pnˆ pn´ 1qq-matrix

T pxq1 :“ pT1pxq, . . . , Tk´1pxq, Tk`1pxq, . . . , Tnpxqq .

In this notation, the inner product gpxq on the tangent space TxpBEq is given by the
ppn´ 1q ˆ pn´ 1qq-square Gramian matrix

gpxq “ T pxqT pxq1 “ I `∇ϕpx´kq∇ϕpx´kq1
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with the gradient column vector

∇ϕpx´kq :“ pBxiϕ px´kqqiPI “

¨

˚

˚

˚

˚

˚

˚

˚

˝

Bx1ϕ px´kq
...

Bxk´1
ϕ px´kq

Bxk`1
ϕ px´kq
...

Bxnϕ px´kq

˛

‹

‹

‹

‹

‹

‹

‹

‚

P Rn´1.

We check this claim using the fact that for any i1, i2 P I we have

Ti1pxq
1Ti2pxq “

ÿ

1ďjďn

`

1i1pjq ` 1kpjq Bxi1ϕpx´kq
˘ `

1i2pjq ` 1kpjq Bxi2ϕpx´kq
˘

“ 1i1“i2 ` Bxi1ϕpx´kq Bxi2ϕpx´kq.

The parametrization of the hyper surface BE is now given by the chart function

ψ : θ “ pθiqiPI P S ÞÑ ψpθq P BE

with
@1 ď j ď n ψjpθq :“ 1Ipjq θj ` 1kpjq ϕpθq.

For any 1 ď j ď n and i1, i2 P I observe that

Bθi1ψpθq “ Tψi1 pθq :“ Ti1pψpθqq and Bθi1,θi2
ψjpθq “ 1kιpjq Bθi1 ,θi2ϕpθq.

This implies that

´

Bθi1,θi2
ψpθq

¯1

Npψpθqq “ ´ε
p∇2ϕpθqqi1,i2

a

1` }∇ϕpx´kq}2
with ∇2ϕpθq :“

`

Bθi1 ,θi2ϕpθq
˘

pi1,i2qPI2
.

We set pBψpθqq1 :“ T pψpθqq1 and Nψpθq :“ Npψpθqq. In this notation, we also have

`

BNψ
pθq

˘1

:“
`

Bθ1N
ψ
pθq, . . . , Bθkι´1

Nψ
pθq, Bθkι`1

Nψ
pθq, . . . , BθnN

ψ
pθq

˘

“ ´Wpψpθqq :“ ´gpψpθqq´1Ωpψpθqq with Ωpψpθqq “ ´ε
∇2ϕpθq

a

1` }∇ϕpθq}2
.

Example 7.6. For the cylindrical boundary discussed in Example 7.5, the inner prod-
uct and the Weingarten map on the boundary B pE are given for any y P B pE by the
matrices

pgpyq “ Ipn1´1,n1´1q `∇pϕpy´kq∇pϕpy´kq
1 and xWpyq :“ ε pgpyq´1 ∇2

pϕpy´kq
a

1` }∇pϕpy´kq}2
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with the gradient column vector and the Hessian matrix given by

∇pϕpy´kq :“ pByi pϕpy´kqqiPpI

∇2
pϕpy´kq :“

`

Byi1 ,yi´2
pϕpy´kq

˘

i1,i2PpI
with pI :“ t1, . . . , n1u ´ tku.

Observe that

detppgpyqq “ 1` }∇pϕpy´kq}
2 and ∇2ϕpy´k, zq “

ˆ

∇2
pϕpy´kq 0pn1´1,n2q

0pn2,n1´1q 0pn2,n2q

˙

.

In this case, the inner product and the Weingarten map on the boundary BE are given
for any point x “ py, zq P pB pE ˆ Rn2q by the matrices

gpxq “

ˆ

pgpyq 0pn1´1,n2q

0pn2,n1´1q Ipn2,n2q

˙

and Wpxq “
ˆ

xWpyq 0pn1´1,n2q

0pn2,n1´1q 0pn2,n2q

˙

.

Observe that the above matrices are bounded (w.r.t. any matrix norm) as soon as B pE
is bounded.

More generally, assume that the boundary BE Ă YιPJOpιq Ă Rn admits a finite
covering by open connected subsets Opιq Ă Rn indexed by some finite set J . In
addition, there exists some local defining smooth functions ϕι with non vanishing
gradients on Opιq such that

BEpιq :“ BE XOpιq “ ϕ´1
ι pt0uq and Epιq :“ E XOpιq “ ϕ´1

ι ps0,8rq .

Up to shrinking the set Opιq, by the implicit function theorem there is no loss of
generality to assume that the defining functions are given by

ϕι : x “ pxiq1ďiďn P Opιq ÞÑ ϕιpxq “ ϕιpx´kιq ´ xkι

for some parameter 1 ď kι ď n and some smooth function ϕι on some ball Spιq Ă Rn´1.
We set Iι :“ t1, . . . , nu ´ tkιu. In this notation, the parametrization of the hyper
surface BEpιq is now given by the smooth homeomorphism

ψι : θ “ pθiqiPIι P Spιq ÞÑ ψιpθq P BEpιq with ψjι pθq :“ 1Iιpjq θj ` 1kιpjq ϕιpθq.
(112)

The first and second fundamental forms on Tx pBEpιqq as well as the Weingarten map
at x P BEpιq are given by

gιpxq “ I `∇ϕιpx´kιq∇ϕpx´kιq1

Ωιpxq “ ´
∇2ϕιpx´kιq

a

1` }∇ϕιpx´kιq}2
and Wιpxq :“ gιpxq

´1Ωιpxq.
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The atlas A “ pψι,SιqιPJ represents a collection of local coordinate systems of the
boundary BE “ YιPJ BEpιq. In this situation, the surface form on BE and the volume
form σDrpEq on DrpEq expressed in the atlas A are defined by the formulae

σA
B pdθq :“

ÿ

ιPJ
πι pψιpθqq 1Spιqpθq

a

1` }∇ϕιpθq}2 dθ

σA
DrpEqpdpθ, uqq :“

ÿ

ιPJ
πι pψιpθqq 1Spιqpθq |det pI ´ u Wιpψιpθqqq|

a

1` }∇ϕιpθq}2 du.

In the above display, πι : BE ÞÑ r0, 1s stands for some partition of unity subordinate
to the open cover of the boundary induced by the atlas.

Example 7.7. Observe that the metric in the graph model discussed in Example 7.2
is not necessarily bounded. In this context, we can also use for any a ă a` ă b´ ă b
a covering of the form

Op0q “sa, brˆR Op´1q “sb´,`8rˆR and Op1q “s ´ 8, a`rˆR.

For instance when ϕpzq “ z2 and pa, a`, b´, bq “ p´2,´1, 1, 2q we have

BEp0q “ tpx1, x2q Ps ´ 2, 2rˆs4,8r : x2 “ ϕ0px1qu

BEp1q “ tpx1, x2q Ps ´ 8,´1rˆs1,`8r : x1 “ ϕ1px2qu

BEp´1q “ tpx1, x2q Ps1,8rˆs1,`8r : x1 “ ϕ´1px2qu

with the functions

ϕ0pzq “ z2 and @ε P t´1, 1u ϕεpzq “ ´ε
?
z.

Whenever E is the sub-graph of ϕ, the parameter ε P t´1, 1u plays the role of the
orientation and the outward pointing unit normal vector at x P BEp0q and y P BEpεq
are given by

N0pxq “
1

a

1` 4x2
1

ˆ

2x1

´1

˙

and Nεpyq “
ε

a

1` 1{p4y2q

ˆ

´1
´ε{

?
4y2

˙

.

The tangent vectors at x P BEp0q and at y P BEpεq are defined by

T0pxq “

ˆ

1
2x1

˙

and Tεpyq “

ˆ

´ε{p
?

4y2q

1

˙

.

The above sub-graphs can be described with 3 charts tψ0, ψ`1, ψ´1u defined for any
ε P t´1, 1u by

ψ0 : θ Ps ´ 2, 2rÞÑ ψ0pθq “

ˆ

θ
θ2

˙

and ψε : θ Ps1,8rÞÑ ψεpθq :“

ˆ

´ε
?
θ

θ

˙

.
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In this situation, the tangent vectors are given by

Bθψ0pθq “ T0pψ0pθqq “

ˆ

1
2θ

˙

and Bθψεpθq “ Tε pψεpθqq “

ˆ

´ε{p
?

4θq
1

˙

.

In this context, for any θ Ps ´ 2, 2r we have

gpψ0pθqq “ 1` 4θ2 and Wpψ0pθqq “ ´2
`

1` 4θ2
˘´3{2

.

In addition, for any θ Ps1,8r we have

gpψεpθqq “ 1` 1{p4θq and Wpψεpθqq “ ´2ε p1` 4θq´3{2 .

Observe that the metric expressed in the chart tψ0, ψ`1, ψ´1u is defined in terms of
bounded functions.

Example 7.8. Consider the hyperbolic paraboloid boundary

BE “ tpy1, y2, y3q P R3 : y3 “ y2
1 ` y

2
2u

“ BEp0q Y BEp1, 1q Y BEp1,´1q Y BEp2, 1q Y BEp2,´1q.

In the above display, BEp0q and BEpi, εq with i P t1, 2u and ε P t´1, 1u stands for the
partition defined for any ε P t´1, 1u by

BEp0q :“ ty P R3 : py1, y2q P S0 y3 “ ϕ0py1, y2q :“ y2
1 ` y

2
2u

BEp1, εq :“ ty P R3 : py1, y3q P S y2 “ ϕ1,εpy1, y3q :“ ε
b

y3 ´ y2
1u

BEp2, εq :“ ty P R3 : py2, y3q P S y1 “ ϕ2,εpy1, y2q :“ ε
b

y3 ´ y2
2u

with the sets

S0 :“ tpy1, y2q P R2 : y2
1 ` y

2
2 ă 2u

S :“ tpy2, y3q P R2 : y3 ą 1 & |y2| ă
a

3y3{4u.

On the truncated boundary BEp0q we use a single chart defined by

ψ0 : θ “ pθ1, θ2q P S0 ÞÑ ψ0pθq “

¨

˝

θ1

θ2

θ2
1 ` θ

2
2

˛

‚P BEp0q.

On BEp1, εq we use the chart defined by

ψ1,ε : θ “ pθ1, θ3q P S ÞÑ ψ1,εpθq “

¨

˝

θ1

ε
a

θ3 ´ θ2
1

θ3

˛

‚P BEp1, εq.
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Finally, on BEp2q we use the chart defined by

ψ2,ε : θ “ pθ2, θ3q P S ÞÑ ψ2,εpθq “

¨

˝

ε
a

θ3 ´ θ2
2

θ2

θ3

˛

‚P BEp2, εq.

For any θ “ pθ1, θ2q P S0 we have

Bθ1ψ0pθq “

¨

˝

1
0

2θ1

˛

‚ and Bθ2ψ0pθq “

¨

˝

0
1

2θ2

˛

‚.

In this chart, the metric is given by

gpψ0pθqq “

ˆ

1` 4θ2
1 4θ1θ2

4θ1θ2 1` 4θ2
2

˙

and gpψ0pθqq
´1
“

1

1` 4pθ2
1 ` θ

2
2q

ˆ

1` 4θ2
2 ´4θ1θ2

´4θ1θ2 1` 4θ2
1

˙

.

In addition, the outward pointing unit normal at ψ0pθq P BEp0q is given by

N0 pψ0pθqq “
1

a

1` 4pθ2
1 ` θ

2
2q

¨

˝

2θ1

2θ2

´1

˛

‚ and Ω0 pψ0pθqq “
1

a

1` 4pθ2
1 ` θ

2
2q

ˆ

´2 0
0 ´2

˙

.

For any θ “ pθ1, θ3q P S we have

Bθ1ψ1,εpθq “

¨

˚

˝

1
´εθ1?
θ3´θ21

0

˛

‹

‚

and Bθ3ψ1,εpθq “

¨

˚

˝

0
ε

2
?
θ3´θ21

1

˛

‹

‚

.

In this chart, the metric is given by

gpψ1,εpθqq “

˜

1`
θ21

θ3´θ21
´ θ1

2pθ3´θ21q

´ θ1
2pθ3´θ21q

1` 1
4pθ3´θ21q

¸

and gpψ1,εpθqq
´1
“

1

1`
θ21

θ3´θ21
` 1

4pθ3´θ21q

˜

1` 1
4pθ3´θ21q

θ1
2pθ3´θ21q

θ1
2pθ3´θ21q

1`
θ21

θ3´θ21

¸

.

In addition, the outward pointing unit normal at ψ1,εpθq P BEp1, εq is given by

N1,ε pψ1,εpθqq “
´ε

b

1`
θ21

θ3´θ21
` 1

4pθ3´θ21q

¨

˚

˝

´εθ1?
θ3´θ21

´1
ε

2
?
θ3´θ21

˛

‹

‚

and Ω1,ε pψ1,εpθqq “
´ε

b

1`
θ21

θ3´θ21
` 1

4pθ3´θ21q

˜

εθ3
pθ3´θ21q

3{2
´εθ1

pθ3´θ21q
3{2

´εθ1
pθ3´θ21q

3{2 ´ ε
4pθ3´θ21q

3{2

¸

.

Finally, for any θ “ pθ2, θ3q P S we have

Bθ2ψ2,εpθq “

¨

˚

˝

´εθ2?
θ3´θ22

1
0

˛

‹

‚

and Bθ3ψ2,εpθq “

¨

˚

˝

ε

2
?
θ3´θ22

0
1

˛

‹

‚

.

In this chart, the metric and the outward pointing unit normal at ψ2,εpθq P BEp2, εq
are given by

gpψ2,εpθqq “

˜

1`
θ22

θ3´θ22
´ θ2

2pθ3´θ22q

´ θ2
2pθ3´θ22q

1` 1
4pθ3´θ22q

¸

and N2,ε pψ2,εpθqq “ ´
ε

b

1`
θ22

θ3´θ22
` 1

4pθ3´θ22q

¨

˚

˝

´1
´εθ2?
θ3´θ22
ε

2
?
θ3´θ22

˛

‹

‚

.
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Appendix

Proof of (9)

We have

Ps,s`tpV q ď V `

ż s`t

s

p´aPs,upV q ` cq du “ V ` ct´ a

ż t

0

Ps,s`upV q du

and
ż t

0

Ps,s`upV q du “ tPs,s`tpV q ´

ż t

0

uPs,s`upLs`upV qq du ě tPs,s`tpV q ´ ct
2
{2.

Combining the above estimates, we readily check that

Ps,s`tpV q ď p1` atq
´1V ` ct

1` at{2

1` at
ď p1` atq´1V ` ct.

This ends the proof of (9).

Proof of Proposition 2.7

We have the following almost sure estimate }∇Xτ pxq}2 ď e´λτ , where }A}2 stands
for the spectral norm of a matrix A. This yields for any x, y P Rn the almost sure
estimate

}Xτ pxq ´Xτ pyq} ď e´λτ }x´ y}. (113)

Applying the above to y “ 0 we find that

Pτ pV qpxq ď Pτ pV qp0q V pxq
1´δ with δ “ 1´ e´λτ .

Next, we check that PX
τ pV qp0q ă 8. We have

Xup0q “

ż u

0

pbp0q ds` σ dBsq `

ż u

0

ż 1

0

∇bpεXsp0qq
1 Xsp0q dε ds.

This implies that

}Xup0q} ď β pu` }Bu}q ` β

ż u

0

}Xsp0q} ds

with β :“ σ _ }bp0q} _ }∇b}. Applying Grönwall lemma we check that

}Xup0q}
law
ď β pu` }Bu}q ` β

2

ż u

0

ps` }Bs}q e
βpu´sq ds.
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On the other hand, we have
ż u

0

}Bs} ds “ u

ż 1

0

}Bus} ds
law
“ u3{2

ż 1

0

}Bs} ds.

This yields the rather crude estimate

}Xup0q}
law
ď β

`

u` u1{2
}B1}

˘

` β2 u2
{2` β2eβu u3{2

ż 1

0

}Bs} ds.

For any a ě 0 by Jensen’s inequality

E
´

ea
ş1
0 }Bs} ds

¯

ď

ż 1

0

E
`

ea}Bs}
˘

ds ď ea
2r{2.

It is now an elementary exercise to check that Epev}Xτ p0q}q ă 8. This ends the proof
of the proposition.

Proof of Proposition 2.8

Consider the function

ftpxq :“ exp

ˆ

2ε

ˆ

e´αt W pxq ´ β
1´ e´αt

α

˙˙

ùñ ´Bt log ftpxq “ 2ε e´αt pαW ` βq.

In the same vein, we check that

Bxiftpxq{ftpxq “ 2ε e´αt BxiW

Bxi,xjftpxq{ftpxq “ 2ε e´αt
`

2ε e´αt BxiWBxjW ` Bxi,xjW
˘

.

This implies that

pLpftq ´ Btftq {ft

“ 2ε e´αt
`

pαW ` βq ` LpW q ` ε e´αt ΓLpW,W q
˘

.

Combining the above with (37) we find that

pLpftqpxq ´ Btftpxqq ď ´2 ε2 e´αt
`

1´ e´αt
˘

ΓLpW,W q ftpxq ď 0.

This yields the interpolation formula

E pf0pXtpxqqq ´ ftpxq “

ż t

0

E pBsft´spXspxqqq ds ď 0.

We check (38) after some elementary manipulations, thus there are skipped. This
ends the proof of the proposition.
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Proof of Proposition 2.11

Notice that

Xh
t pxq

law
“ εt x` σt Z “ Bσt pεt xq with εt :“ e´t and σt :“

c

1´ ε2t
2

and some centered Gaussian random variable Z with unit variance. The conjugate
formula (53) yields the integral operator equation

Qtpx, dyq “ e´t{2 e´x
2{2 1

a

2πσ2
t

exp

ˆ

´
py ´ εtxq

2

2σ2
t

`
y2

2

˙

dy.

Observe that

´
py ´ εtxq

2

σ2
t

` y2
“ ´

1

pt

ˆ

y ´
εt

1´ σ2
t

x

˙2

` x2 ε2t
1´ σ2

t

with

pt :“
1´ ε2t
1` ε2t

“ tanhptq ðñ Btpt “ 1´ p2
t with p0 “ 0. (114)

We check this claim using the fact that

1

σ2
t

“
2

1´ ε2t
“ 1`

1` ε2t
1´ ε2t

“ 1`
1

pt
.

On the other hand, we have

1´ σ2
t

εt
“ coshptq and Bt log coshptq “ pt “ tanhptq.

This implies that
ż t

0

ps ds “ log coshptq and
εt

1´ σ2
t

“
1

coshptq
“ exp

ˆ

´

ż t

0

psds

˙

.

We also have

1´ σ2
t “ 1´

1´ ε2t
2

“
1` ε2t

2
ùñ 1´

ε2t
1´ σ2

t

“
1´ ε2t
1` ε2t

“ pt.

This implies that

Qtp1qpxq “ e´t{2
?
pt

σt
exp

ˆ

´
x2

2
pt

˙

“ e´t{2 hpxq P h
t p1{hqpxq.

Notice that

e´t{2
?
pt

σt
“

d

εt
1´ ε2t
1` ε2t

2

1´ ε2t
“

d

2

1{εt ` εt
“

1
a

coshptq

and

Btmtpxq “ ´pt mtpxq and Btpt “ 1´ p2
t with pm0pxq, p0q “ px, 0q.

This ends the proof of the proposition.
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Proof of Proposition 2.12

Notice that

et{2 ex
2{2 Qtpx, dyq

“
1

a

2πσ2
t

ˆ

exp

ˆ

´
py ´ εtxq

2

2σ2
t

`
y2

2

˙

´ exp

ˆ

´
py ` εtxq

2

2σ2
t

`
y2

2

˙˙

1r0,8rpyq dy.

This implies that

Qtp1qpxq “
e´

x2

2
tanhptq

a

coshptq

ˆ

ż 8

0

1
?

2πpt

ˆ

exp

ˆ

´
py ´mtpxqq

2

2pt

˙

´ exp

ˆ

´
py `mtpxqq

2

2pt

˙˙

dy.

We conclude that

Qtp1qpxq “
e´

x2

2
tanhptq

a

coshptq
ˆ P p´mtpxq{

?
pt ď Z ď mtpxq{

?
ptq

“ 2
e´

x2

2
tanhptq

a

coshptq
ˆ P

˜

0 ď Z ď
x

a

sinhptq coshptq

¸

ÝÑ 0 as xÑ 8 or xÑ 0 or as tÑ 8.

In the above display, Z stands for some centered Gaussian random variable with unit
variance. Note that we have used the fact that

mtpxq{
?
pt “

x

coshptq
a

tanhptq
“

x
a

sinhptq coshptq
.

In addition, we have

Qtpx, dyq “
1

P
´

0 ď Z ď x{
a

sinhptq coshptq
¯

ˆ
1

2
?

2πpt

ˆ

exp

ˆ

´
py ´mtpxqq

2

2pt

˙

´ exp

ˆ

´
py `mtpxqq

2

2pt

˙˙

1r0,8rpyq dy.

This ends the proof of the proposition.
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Proof of (48)

The generator of the process (47) is defined by

Lpfqpq, pq “ β
p

m

Bf

Bq
´ β

ˆ

BW

Bq
`
σ2

2

p

m

˙

Bf

Bp
`
σ2

2

B2f

Bp2
.

Recalling that 2pq ď p2 ` q2, we prove that

V pq, pq ď
1

2

ˆ

1

m
` ε

˙

p2
`
ε

2

ˆ

σ2

2
` 1

˙

q2
`W pqq

ď C‹pεq
`

1` p2
` q2

`W pqq
˘

with

C‹pεq :“ max

"

1

2

ˆ

1

m
` ε

˙

,
ε

2

ˆ

σ2

2
` 1

˙

, 1

*

.

On the other hand, we have

LpV q “ β
p

m

ˆ

BW

Bq
` ε

σ2

2
q ` ε p

˙

´β

ˆ

BW

Bq
`
σ2

2

p

m

˙

´ p

m
` ε q

¯

`
σ2

2m

“ ´β

„

1

m

ˆ

σ2

2m
´ ε

˙

p2
` ε q

BW

Bq



`
σ2

2m
.

Under our assumptions, this implies that for any |q| ě r we have

LpV q ď ´β

„

1

m

ˆ

σ2

2m
´ ε

˙

p2
` ε δ

`

W pqq ` q2
˘



`
σ2

2m

ď ´C‹pε, δq
`

1` p2
` q2

`W pqq
˘

` cmpε, δq

with

C‹pε, δq :“ β min

"ˆ

1

m

ˆ

σ2

2m
´ ε

˙

, ε δ

˙*

and cmpε, δq :“ C‹pε, δq `
σ2

2m
.

We conclude that for any |q| ą r,

pV ´1LpV qqpq, pq ď ´
C‹pε, δq p1` p

2 ` q2 `W pqqq ´ cmpε, δq

V pq, pq

ď ´
C‹pε, δq p1` p

2 ` q2 `W pqqq ´ cmpε, δq

C‹pεq p1` p2 ` q2 `W pqqq

“ ´
C‹pε, δq

C‹pεq
`
cmpε, δq

C‹pεq

1

1` p2 ` q2 `W pqq

ď ´

„

C‹pε, δq

C‹pεq
´
cmpε, δq

C‹pεq

1

1` p2 ` q2



.
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We choose r sufficiently large to satisfy

|p| ą r or |q| ą r

ñ
C‹pε, δq

C‹pεq
´
cmpε, δq

C‹pεq

1

p2 ` q2
ě
C‹pε, δq

C‹pεq
´
cmpε, δq

C‹pεq

1

r2
ě a :“

C‹pε, δq

2C‹pεq
ą 0,

and we set
Kr :“ tpq, pq P R2 : |p| _ |q| ď ru.

In this notation, we have

LpV q ď ´aV 1E´Kr ` sup
Kr

LpV q ď ´aV ` c with c :“ sup
Kr

LpV q ` a sup
Kr

V.

Proof of (56)

Observe that for any 0 ă y ď 1 and z P E “s0,8r we have

sinh pyzq ď y sinh pzq and sinh pzq ď
1

2
ez.

This implies that

ż 8

0

Qtpx, dyq
1

y
ď sinh pmtpxqq

e´
x2

2
ppt`e´2t{ptq

a

coshptq
ˆ

ż 8

0

c

2

πpt
exp

ˆ

´
y2

2pt

˙

dy.

from which we check that

ż 8

0

Qtpx, dyq
1

y
1s0,1spyq ď

exp
´

´

´

x2

2
ppt `

e´2t

pt
q ´ e´tx

¯¯

2
a

coshptq
.

On the other hand, for any n ě 1 we have
ż 8

0

Qtpx, dyq y
n

ď
1

2

1
a

coshptq

c

2

πpt
exp

ˆ

´
ε2tx

2

2pt
´
x2

2
pt

˙
ż 8

0

yn exp

ˆ

yεtx´
y2

2pt

˙

dy.

Notice that

yεtx´
y2

2pt
“ ´

1

2pt
py ´ εtxptq

2
`
x2

2
ε2t pt

so that
ż 8

0

Qtpx, dyq y
n
ď

1

2

1
a

coshptq

c

2

πpt

ˆ exp

ˆ

´
x2

2

ˆ

p1´ ε2t q pt `
ε2t
pt

˙˙
ż 8

0

yn exp

ˆ

´
1

2pt
py ´ εtxptq

2

˙

dy.
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For any n ě 1, we conclude that

V pxq :“ xn ` 1{x ùñ V P C8pEq and }QtpV q} ă 8.

This ends the proof of (56).

Proof of Lemma 3.2

To simplify notation, we write Qt instead of Q
rUs
t . For any V P B8pEq X DpLq we

have

QtpV q “ V `

ż t

0

QspLpV q ´ UV q ds

ď V `

ż t

0

r´a QspV q ` c Qsp1qs ds “ V ` c

ż t

0

Qsp1q ds´ a

ż t

0

QspV qds.

On the other hand, through integration by parts we have
ż t

0

QspV qds “ rs QspV qs
t
0 ´

ż t

0

s
d

ds
QspW q ds

“ t QtpV q ´

ż t

0

s QspLpV q ´ UV
looooomooooon

ďc

q ds ě t QtpV q ´ c

ż t

0

s Qsp1qds.

This implies that

QtpV q ď V ` c

ż t

0

Qsp1q ds´ a

ˆ

t QtpV q ´ c

ż t

0

s Qsp1qds

˙

from which we conclude that

QtpV q ď
V

1` at
` c

ż t

0

Qsp1qds ùñ QtpV q ď
V

1` at
` ct.

This ends the proof of (69). Now, we come to the proof of (70). We have the forward
evolution equation given for any f P DpLq by

BtQtpfq “ QtpL
U
pfqq.

Applying the above to f “ U we readily check that

BtQtpUq ď a0 ` a1 QtpUq ´QtpU
2
q ď a0 ` a1 QtpUq ´ pQtpUqq

2
{Qtp1q

from which we find the Riccati estimates

BtQtpUq ď a0 ` a1 QtpUq ´ pQtpUqq
2
ùñ @t ą 0 }QtpUq} ă 8.

This ends the proof of the lemma.
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Proof of (66)

By Girsanov theorem we have

Qpaq
t pfqpzq “ E

`

fpX 0
t pzqq Ztpzq 1T 0pzqąt

˘

with the exponential martingale

Ztpzq “ exp

ˆ

1

σ

ż t

0

apXspzqq
1 dBu ´

1

2σ2

ż t

s

}apXspzqq}
2 du

˙

.

By Hölder’s inequality, for any non negative function f on E, any z P E and any
conjugate parameters p, q ą 1 with 1{p` 1{q “ 1 we have

Qpaq
t pfqpzq ď E

`

Ztpzq
q 1T 0pzqąt

˘1{q Qpaq
t pf

p
qpzq1{p.

On the other hand, we have

E
`

Ztpzq
q 1T 0pzqąt

˘

“ E
ˆ

Ztpzq exp

ˆ

qpq ´ 1q

2σ2

ż t

s

}apXspzqq}
2 du

˙

1T 0pzqąt

˙

ď ctppq :“ exp

ˆ

pt

2ppp´ 1qσq2
sup
D
a

˙

with the exponential martingale

Ztpzq “ exp

ˆ

q

σ

ż t

0

apXspzqq
1 dBu ´

q2

2σ2

ż t

s

}apXspzqq}
2 du

˙

.

This ends the proof of roof of (66).

Proof of Lemma 4.2

For any z P BE there exists some open ball Bpz, rq Ă Rn with r ą 0 and some
C1-mapping g from Rn´1 into R such that

E X Bpz, rq “ tx P Bpz, rq : xn ă gpx´nqu

BE X Bpz, rq “ tx P Bpz, rq : xn “ gpx´nqu with x´n :“ px1, . . . , xn´1q.

We make the change of variables

Epz, rq :“ E X Bpz, rq

ÞÑ ςpxq :“ px´n, xn ´ gpx´nqq P Opz, rq :“ ςpEpz, rqq Ă pRn´1 ˆ R`q

with Jacobian

∇ςpxq “
ˆ

Ipn´1qˆpn´1q ´∇gpx´nq
0 1

˙

.
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Observe that

ς : x P E0pz, rq :“ pBE X Bpz, rqq

ùñ ςpxq “ px´n, 0q P O0pz, rq :“ ςpE0pz, rqq Ă pRn´1 ˆ t0uq.

The inverse is given by

y P Opz, rq ÞÑ ς´1pyq “ py´n, yn ` gpy´nqq P Epz, rq

ùñ ∇ς´1pyq “

ˆ

Ipn´1qˆpn´1q ∇gpy´nq
0 1

˙

.

On the other hand we have

}ςpxq ´ ςpxq} “
`

}x´n ´ x´n}
2
` p|xn ´ xn| ` |gpx´nq ´ gpx´nq|q

2
˘1{2

ď
`

}x´n ´ x´n}
2
` 2|xn ´ xn|

2
` 2}∇g}2}x´n ´ x´n}2

˘1{2

ď cpgq }x´ x} with cpgq :“
a

2_ p1` 2}∇g}2q ě 1.

In the same vein, we have

}ς´1
pyq ´ ς´1

pyq} ď cpgq }y ´ y} so that
1

cpgq
}y ´ y} ď }ς´1

pyq ´ ς´1
pyq}.

For any x P Epz, rq and x P E0pz, rq we have ςpxq P O0pz, rq and

}x´ x} “ }ς´1
pςpxqq ´ ς´1

pςpxqq} ě
1

cpgq
}ςpxq ´ ςpxq} ě

1

cpgq
|ςpxqn|.

Taking the infimum of all x P E0pz, rq this implies that

dpx, E0pz, rqq ě
1

cpgq
|ςpxqn| and dpς´1

pyq, E0pz, rqq ě
1

cpgq
|yn|

for any x P Epz, rq and y P Opz, rq. We conclude that
ż

Epz,rq
χ pdpx, E0pz, rqqq dx

“

ż

Opz,rq
χ
`

dpς´1
pyq, E0pz, rqq

˘

|det
`

ς´1
pyq

˘

| dy

ď
1

cpgq
sup

yPOpz,rq
|det

`

ς´1
pyq

˘

|

ż

Opz,rq
χpynq dy ă 8.

We end the proof of the lemma by covering BE by finitely many boundary coordinates
patches pEpzi, riq, giq1ďiďn, for some zi P BE, ri ą 0 and some local defining functions
gi.
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Proof of Lemma 4.9

Using the change of variable formulae

ż

BEr

fpzq σB,rpdzq “

ż

BE

f pz ` rNpzqq |det pI ´ r Wpzqq | σBpdzq

and
ż

BE

fpzq σBpdzq “

ż

BEr

f pz ´ rNpzqq |det pI ` r Wpzqq | σB,rpdzq

we check that
ż

BEr

fpzq σB,rpdzq ď κBpαq

ż

BE

f pz ` rNpzqqq σBpdzq

and
ż

BE

fpzq σBpdzq ď κ´B pαq

ż

BEr

f pz ´ rNpzqq σB,rpdzq.

This yields the estimate

ż

BEr

fpzq σB,rpdzq ď ιpαq κBpαq

ż

BE

gpzq σBpdzq.

In the same vein, we have

ż

BE

fpzq σBpdzq ď ιpαqκ´B pαq

ż

BEr

g pzq σB,rpdzq.

Integrating w.r.t. the parameter r P r0, αs we check the co-area estimate

α

ż

BE

fpzq σBpdzq ď ιpαqκ´B pαq

ż α

0

dr

ż

BEr

gpzq σB,rpdzq

“ ιpαq κ´B pαq

ż

DαpEq
gpzq dz.

This ends the proof of the lemma.

Proof of Proposition 7.4

For any given θ :“ pθ1, . . . , θnq P pRn´1 ˆ r0, rsq we set θ´n :“ pθ1, . . . , θn´1q. In this
notation, we have

ψ : θ P pRn´1 ˆ r0, rsq ÞÑ ψpθq :“ F pψpθ´nq, θnq

“ ψpθ´nq ` θn Npψpθ´nqq P DrpEq.
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The volume form σDrpEq on DrpEq expressed in the chart ψ is given by

´

σDrpEq ˝ ψ
´1
¯

pdθq “ |det
`

Jacpψqpθq
˘

| “

c

det
´

`

Bψpθq
˘ `

Bψpθq
˘1
¯

dθ.

Arguing as above, we have

`

Bψpθq
˘1
“

ˆ

´

Bθ´nψpθq
¯1

, Bθnψpθq

˙

P

´

TψpθqpDrpEqq
¯n

with the tangent vectors

´

Bθ´nψpθq
¯1

:“
´

Bθ1ψpθq, . . . , Bθn´1
ψpθq

¯

and Bθnψpθq “ Npψpθ´nqq.

In addition, we have

´

Bθ´nψpθq
¯1

“
`

Bψpθ´nq
˘1
` θn

`

BpNpψpθ´nqqq
˘1
“
`

Bψpθ´nq
˘1 `

I ´ θn Wpψpθ´nqq
˘

.

This yields the formula

´

Bθ´nψpθq
¯´

Bθ´nψpθq
¯1

“ gpψpθ´nqq
`

I ´ θn Wpψpθ´nqq
˘2

from which we check that

`

Bψpθq
˘ `

Bψpθq
˘1
“

ˆ

gpψpθ´nq
`

I ´ θn Wpψpθ´nqq
˘2

0n´1

0 1

˙

.

We conclude that
c

det
´

`

Bψpθq
˘ `

Bψpθq
˘1
¯

“

b

detpgpψpθ´nqq
ˇ

ˇdet
`

I ´ θn Wpψpθ´nqq
˘
ˇ

ˇ

and therefore
´

σDrpEq ˝ ψ
´1
¯

pdθq “
ˇ

ˇdet
`

I ´ θn Wpψpθ´nqq
˘
ˇ

ˇ dθn
`

σB,0 ˝ ψ
´1
˘

pdθ´nq.

For any given θn “ u P r0, rs, the volume form σB,u on the boundary BEu expressed
in the boundary chart

ψp., uq : θ P Rn´1
ÞÑ ψpθ, uq “ F pψpθq, uq P BEu

is given by

`

σB,u ˝ ψp., uq´1
˘

pdθq “ |det pI ´ u Wpψpθqqq| pσB,0 ˝ ψ´1q pdθq.

This ends the proof of the proposition.
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