Quantum enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate - Archive ouverte HAL
Article Dans Une Revue Nature Phys. Année : 2023

Quantum enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate

Tian-Wei Mao
  • Fonction : Auteur
Xin-Wei Li
  • Fonction : Auteur
Jia-Hao Cao
  • Fonction : Auteur
Feng Chen
  • Fonction : Auteur
Wen-Xin Xu
  • Fonction : Auteur
Meng Khoon Tey
  • Fonction : Auteur
Yi-Xiao Huang
  • Fonction : Auteur
Li You
  • Fonction : Auteur

Résumé

Quantum entanglement can provide enhanced precision beyond standard quantum limit (SQL), the highest precision achievable with classical means. It remains challenging, however, to observe large enhancement limited by the experimental abilities to prepare, maintain, manipulate and detect entanglement. Here, we present nonlinear interferometry protocols based on echoing spin-nematic squeezing to achieve record high enhancement factors in atomic Bose-Einstein condensate. The echo is realized by a state-flip of the spin-nematic squeezed vacuum, which serves as the probe state and is refocused back to the vicinity of the unsqueezed initial state while carrying out near noiseless amplification of a signal encoded. A sensitivity of $21.6\pm0.5$ decibels (dB) for a small-angle Rabi rotation beyond the two-mode SQL of 26400 atoms as well as $16.6\pm1.3$ dB for phase sensing in a Ramsey interferometer are observed. The absolute phase sensitivity for the latter extrapolates to $103~\rm{pT/\sqrt{Hz}}$ at a probe volume of $18~\mu\rm{m}^3$ for near-resonant microwave field sensing. Our work highlights the excellent many-body coherence of spin-nematic squeezing and suggests its possible quantum metrological applications in atomic magnetometer, atomic optical clock, and fundamental testing of Lorentz symmetry violation, etc.

Dates et versions

hal-03930894 , version 1 (09-01-2023)

Identifiants

Citer

Tian-Wei Mao, Qi Liu, Xin-Wei Li, Jia-Hao Cao, Feng Chen, et al.. Quantum enhanced sensing by echoing spin-nematic squeezing in atomic Bose-Einstein condensate. Nature Phys., 2023, 19 (11), pp.1585-1590. ⟨10.1038/s41567-023-02168-3⟩. ⟨hal-03930894⟩
41 Consultations
0 Téléchargements

Altmetric

Partager

More