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Introduction

In order to meet the throughput constraints and ensure reliable transmission in Wireless Local Area Networks (WLANs) and cellular networks, digital radio communications turn to systems with multiple antennas for transmission and reception. Multiple-Input Multiple-Output (MIMO) systems are an effective way to increase the data rates and reliability by offering higher spectral efficiency thanks to diversity and Spatial 5 Multiplexing (SM) gains [START_REF] Wu | Nonbinary ldpc-coded spatial multiplexing for rate-2 mimo of dvb-ngh system[END_REF]. Research on MIMO digital communication systems initially focused on the determination of their theoretical performance and the proposal of transmitting and receiving sets to benefit from interest of multiple antennas.

Despite the existence of several MIMO detectors in literature [START_REF] Steingrimsson | Soft quasi-maximum-likelihood detection for multipleantenna wireless channels[END_REF], the computational complexity of the opti- mal Maximum Likelihood (ML) detector [START_REF] Chakiki | Performance analysis of dvb-t2 system based on mimo using low density parity check (ldpc) code technique and maximum likelihood (ml) detection[END_REF] and its latency remain as the main drawbacks of iterative MIMO receivers. In order to solve these problems, some sub-optimal detectors have been proposed as Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) [START_REF] Wubben | Mmse extension of v-blast based on sorted qr decomposition[END_REF] as linear detectors. Those require relatively low computational complexity, but they can involve performance penalties. Therefore, research studies on MIMO detection mainly focused on the so-called Sphere Decoding (SD) [START_REF] Burg | Vlsi implementation of mimo detection using the sphere decoding algorithm[END_REF]. These studies were dedicated to the application of sphere decoding detectors to MIMO systems; by exploiting the incursion order in the search tree [START_REF] Murugan | A unified framework for tree search decoding: rediscovering the sequential decoder[END_REF] and sphere radius update. Since full tree search has the same computational complexity as ML detection, a simplified version of the detection algorithm is applied by limit the search space in terms of the numbers of candidate symbols during each tree search stage [START_REF] Mansour | Reduced complexity soft-output mimo sphere detectors-part i: Algorithmic optimizations[END_REF]. However, to compute the soft decisions required for channel decoding, the reduction of the search space is limited. In addition, the hardware implementation of a sphere decoder is costly due to the tree search step. It has varying complexity, depending on the noise level and the channel conditions, which hinders its integration into a digital communication system. Meanwhile, a noteworthy new class of MIMO detection is based on a different approach called Belief Propagation (BP). This algorithm has been extensively studied for decoding of channel codes with a sparse parity matrix, such as Low Density Parity Check (LDPC) codes [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF]. The main purpose of the use of the BP algorithm in the detector and the decoder was to enable greater flexibility in the design of the receivers. Other MIMO detectors based on the BP algorithm have been successfully proposed in [START_REF] Kaynak | Belief propagation over mimo frequency selective fading channels[END_REF]. In [START_REF] Haroun | Symbol-based bp detection for mimo systems associated with non-binary ldpc codes[END_REF]- [START_REF] Haroun | Low-complexity soft detection of qam demapper for a mimo system[END_REF], a BP-based layered detection and decoding for non-binary LDPC codes associated with a MIMO system are studied so that the receiver works on a large Joint Factor Graph (JFG). The joint detection and decoding approach is studied in various researches [START_REF] Miao | A low complexity joint detection and decoding algorithm for mimo-ldpc system[END_REF], [START_REF] Yang | A novel jointed detection scheme for mimo-ldpc systems[END_REF]. It is particularly appealing especially when it relies on a Vertical Shuffle Schedule (VSS) which can reduce processing latency and therefore introduce greater flexibility in the receiver.

In this paper, a geometric approach is applied on the BP algorithm similarly as a sphere decoding. This approach is based on the principle of conditioned detection to limit the search space for the number of candidate symbols. This avoids the decomposition of the channel matrix as in a sphere decoding [START_REF] Burg | Vlsi implementation of mimo detection using the sphere decoding algorithm[END_REF]. The second difference compared to the sphere decoding is that the radius of the sub-region is not only related to Signal to Noise Ratio (SNR) but also to the reliability of the detected symbol. Thus, for an SNR value, different sizes of sub-regions are obtained depending on the reliability of the symbol detected. This can improve performance while reducing computational complexity. In other words, one of the objectives of this work is to propose algorithmic solutions to reduce the computational complexity of the Euclidean distance calculation during MIMO detection. To do this, a novel approach is proposed to calculate candidate symbols in a sub-region that surrounds the received symbol. In a first phase, only one point closest to the received symbol is determined. It avoids the computation of all Euclidean distances of candidate symbols. In a second phase, a complementary approach based on the recursive principle is proposed to calculate a limited number of Euclidean distances from the points which surround the nearest selected point. Consequently, the resulting algorithm offers a very good trade-off between performance and computational complexity.

The rest of this paper is organized as follows. In section II, the system model and, in particular, the iterative MIMO receiver is described. Then, the proposed dynamic algorithm to estimate the closest point to the channel observation is detailed in section III. In section IV, the dynamic approach to find the number of neighboring points to be searched around an estimated local minimum is studied. In section V, computational complexity analysis is discussed. Last but not least, performance results of the proposed algorithm are discussed in section VI. Section VII concludes the paper.

Iterative MIMO BP receiver

MIMO system model

A MIMO wireless communication system with N t transmission and N r receiving antennas are considered.

The proposed system is shown in Fig. 1. First, the source information is encoded by NB-LDPC Forward Error Correction (FEC) codes defined over the Galois Fields GF (q) with q=16 or 64. Then, the encoded code-words are mapped to complex symbols of the different constellations used in transmission. In this study, different types of modulations are applied such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM) and 64 QAM. After that, the complex symbols are spatially multiplexed (SM) over multiple antennas with N t = N r and then transmitted over MIMO channel. In this paper, 2x2, 3x3 and 4x4 MIMO scenarios are studied and considered and can then be extended to a massive number of antennas through the generic expansion of the equations. Thus, the received signal can be written as: Note that, NB-LDPC codes are chosen in this work due to their ability to combine high-order modulations with multiple antenna schemes. Thus, the proposed scheme can processing high data rate transmissions. In order to get more flexibility in the receiver, same order of Galois Field GF (q) has been used in the NB-LDPC code and the constellation mapper. In addition, a frame size of N = 384 Symbols was chosen in this study, in order to be in concordance with the WiMAX standard IEEE802.16. As far as, the chosen regular NB-LDPC code has a code rate R = 1/2 and has variable and check node degrees d v = 2 and d c = 4, respectively. More information about this Forward Error Correction (FEC) code can be found [START_REF] Haroun | Récepteur itératif pour système à multi-antennes basé sur l'algorithme de propagation de croyance[END_REF].

Y = H * S + n, (1) 
Although different types of modulations and different number of antennas are applied in this study, it should be noted that we will first focus on the case of 64 QAM with N t = N r = 2. One can note that this type of modulation is more consistent with the NB-LDPC code defined over GF(64). In this case, each symbol detected is composed of 6 bits as well as the decoded symbol that keeps the system more flexible. Similarly, the emphasis on 2x2 MIMO is to take the simpler case when studying such complex systems in order to further generalize the study to reach 3x3 and 4x4 cases.

Joint Factor Graph representation

A joint factor graph representation of a 2x2 MIMO-BP detector associated with an NB-LDPC decoder is given in Fig. 2. It consists of two separate parts. The upper part is the graphical representation of the MIMO-BP detector. The lower part corresponds to the graphic representation of the NB-LDPC decoder.

The connections of such JFG are structured by the fact that each set of N r received symbol nodes have to be connected to N t candidate symbol nodes thanks to the spatial multiplexing process [START_REF] Feng | Nonbinary ldpc-coded spatial modulation[END_REF]. In order to simplify the notation, let us consider the case of a 2x2 MIMO system where S 1 and S 2 (resp. Y 1 or Y 2 ) represent all the symbols transmitted (resp. received) of a frame. On the other side, the candidate symbols are connected
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Figure 2: The JFG representation of the 2x2 MIMO-BP receiver

to their associated variable nodes of the NB-LDPC graph. The connections between the variable nodes and the check nodes, r = 1, 2, ...M , depend on the parity check matrix of the NB-LDPC code constrained by M = N -K check nodes. M is the number of redundant symbols in the frame and K represents the information symbols to be sent.

In this study, a Vertical Shuffle Schedule (VSS) is applied over the JFG. Indeed, this schedule enables a fast iterative process convergence [START_REF] Haroun | On the implementation of vertical shuffle scheduling decoder for joint mimo detection and channel decoding system[END_REF]. This is due to the fact that some variable nodes, due to connections with common check nodes, can benefit from the updating and exchange of information performed during the first decoding steps. The main advantage of this type of schedule is low decoding latency and good Word

Error Rate (WER) performance compared to a flooding Horizontal Shuffle Schedule (HSS) [START_REF] Haroun | Symbol-based bp detection for mimo systems associated with non-binary ldpc codes[END_REF]. By using a VSS, extrinsic information can be exchanged between the FEC decoder and the MIMO detector before the end of a full iteration. For instance, in the case of a 2x2 MIMO system, the soft information generated from the first N t = 2 symbols detected is sent to N t = 2 variable nodes of the NB-LDPC decoder. During the decoding step, the BP algorithm is applied over these variable nodes which must be updated by the connected check nodes. Afterward, soft extrinsic information can be sent back as a priori information to the detector side of the JFG.

MIMO-BP detection

Belief Propagation principle starts by computing the Log-Likelihood Ratio (LLR) vectors associated with the candidate symbols connected to each received node. For the considered MIMO system, N t candidate symbols noted S i , where i = 1, 2, ..N t , have to be detected for each channel observation Y j , where j = 1, 2, ..N r .

The detection algorithm is based on the conditioned detection. In other words, the detection of S i is performed for every possible value of S m =i , where m = 1, 2, ..N t , ∈ GF(q). For instance, in the case of 2x2 MIMO, two symbols S 1 and S 2 have to be detected. To do this, we assume that all 64 symbol values of S 2 are known. Then, the detection of S 1 is performed for each possible value of S 2 ∈ GF(q) and vice versa.

The same processes are applied for the case of 3x3 MIMO and 4x4 MIMO.

Thus, the steps of the MIMO-BP detector over the JFG, are applied as follows:

1-) First step: at the received node Y j , and for each possible combination between the candidate symbols, one LLR vector must be calculated by computing the Euclidean distances between the considered possible combination and the channel observation Y j . Then, the message sent at the current iteration (t) from Y j to the connected candidate symbol S i can be expressed by the following LLR-vector:

L (t) [Yj →Si] = [L [Yj →Si|Si=α 0 ] , ..L [Yj →Si|Si=α q-1 ] ] T , (2) 
where L [Yj →Si|Si=α u ] , u = 0, 1, ..q -1, represents the reliability between the received symbol, Y j , and the candidate symbol S i = α u , where α u ∈ GF (q):

L [Yj →Si|Si=α u ] = log P (S i = α u ) P (S i = α 0 ) . (3) 
By considering other connected candidate symbols S m ∈ GF (q) with respect to (m = i) ∈ 1, 2.., N t , equation

(3) can be re-written as:

L [Yj →Si|Si=α u ] = log      Si=α u S m =i ∈GF (q) P (Y j |S, H)×P (S m ) Si=α 0 S m =i ∈GF (q) P (Y j |S, H)×P (S m )      , (4) 
where

P (Y j |S, H) = 1 √ πσ w 2 exp   - 1 σ w 2 | Y j -h i,j .S i - Nt m =i m=1 h m,j .S m | 2    , (5) 
with σ w 2 is the variance of the AWGN and h i,j is the channel coefficient of a non-frequency selective channel with Rayleigh fading between the i th transmitting antenna to the j th receiving antenna.

Note that P (S m ) represents the reliability that S m , m = i, is equal to α u ∈ GF (q). Based on equation

(3), P (S m = α u ) can be expressed as:

P (Sm = α u ) = P (Sm = α 0 ). exp (L [Yj→Sm|Sm=α u ] ) . (6) 
By using ( 5) and ( 6), a new expression for equation ( 4) can be obtained:

L [Yj →Si|Si=α u ] = log      Si=α u S m =i ∈GF (q)
exp( Ψ

(Si,Sm) + L [Yj →Sm] ) Si=α 0 S m =i ∈GF (q)
exp( Ψ

(Si,Sm) + L [Yj →Sm] )      , (7) 
where

Ψ (Si,Sm) = - 1 σ w 2 | Y j -h i,j .S i - Nt m =i m=1 h m,j .S m | 2 . ( 8 
)
and L [Yj →Sm] denotes the LLR-vector extrinsic information from the j th received symbol to the m th candidate symbol.

To simplify the computation of equation ( 7), the max-log approximation log(e x + e y ) ≈ max(x, y) is applied. Thus, equation ( 7) can be simplified as follows:
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L [Yj →Si|Si=α u ] ≈ max Si=α u S m =i ∈GF (q) Ψ (Si,Sm) + L [Yj →Sm] -max Si=α 0 S m =i ∈GF (q) Ψ (Si,Sm) + L [Yj →Sm] . (9) 
2-) Second step: the candidate symbol S i is updated.

L (t) Si = Nr j=1 L (t) [Yj →Si] + L (t-1) [V N p →Si] (10) 
where

Nr j=1 L (t)
[Yj →Si] denotes the LLR-vector extrinsic information from the received symbols.

L (t-1) [V N p →Si] ,
p = 1, 2, .., N -1, N , represents the a priori LLR-vector extrinsic information obtained from the connected variable node (VN) within the NB-LDPC decoder during the previous iteration. Finally, the candidate symbol sends extrinsic information to the NB-LDPC decoder as follows:

L (t) [Si→V N p ] = L (t) Si -L (t-1) [V N p →Si] (11) 
Note that by applying VSS on the JFG, an iteration is applied to each group of symbols during MIMO-BP detection before transmitting extrinsic information to the decoder.

NB-LDPC decoding

On the decoder side, the decoding process of NB-LDPC codes consists of two steps: the first is to update the variable nodes and the second is the calculation performed within the check nodes. These steps correspond to the Extended Min Sum (EMS) decoding algorithm [START_REF] Declercq | Decoding algorithms for nonbinary ldpc codes over gf(q)[END_REF] which offers a good trade-off between performance and computational complexity. During a preliminary inter-iteration between the detector and the decoder, incoming messages of all connected CNs are initialized to zero, then:

1-) First step: the update of the V N p should take advantage of the extrinsic information coming from the detector, L

[Si→V N p ] , and from the connected CN r . Note that p ∈ {1, 2, ..., N } and r ∈ {1, 2, ..., M } where N (resp. M ) represents the total number of variable (resp. check) nodes of the parity check matrix associated with the decoder.

Therefore, the LLR-vector of the p th variable node at the t th iteration, with respect to d v = 2 and d c = 4 for the chosen NB-LDPC codes, can be expressed as follows:

L (t) V N p = L (t-1) [CNr1→V N p ] + L (t-1) [CNr2→V N p ] + L (t) [Si→V N p ] , (12) 
where r 1 , r 2 ∈ r and

L (t-1) [CNr 1 →V N p ] (resp. L (t-1) [CNr 2 →V N p]
) denotes the message passing from r th 1 (resp. r th 2 )

CN to

V N P . L (t) [Si→V N p ]
is the incoming message from the detector. Then, the variable node V N p sends the a posteriori information to the d v -1 connected CNs: Once the decoding step has been performed for a group of VNs, extrinsic information is sent back to the detector to start the second cycle of inter-iterations between the detector and the decoder. The incoming 125 messages from the decoder are exploited as a priori information by the detector to perform the next iteration.

L (t) [V N p →CN r 1 (resp.r 2 ) ] = L (t-1) [CN r 2 (resp.r 1 ) →V N p ] + L (t) [Si→V N p ] (13) 
3. Proposed dynamic algorithm to detect the point closest to the observation of the channel

Limitations and objectives

First of all, it should be noted that all the detection algorithms proposed in this paper to reduce the computational complexity are advantageous mainly for the large types of constellations. Since the small types of constellations, such as QPSK, the complexity remains reasonable by increasing the number of antennas in transmission and reception.

Thus, as the number of bits per symbol increases, the number of candidate symbols also increases. Thus, the computation of Euclidean distances based on the equation ( 9) becomes quite expensive in terms of computational complexity. Therefore, the cost of estimating L Si vector must be reduced since it requires the calculation of Euclidean distances between the received symbol and all the points of the constellation. For high order constellations such as 64 QAM with N t transmitting antennas (N t ≥ 2), the complexity of calculating Euclidean distances becomes expensive. It represents a large part of the total complexity of the calculations. Indeed, it requires the estimation of 64 N t values for each symbol received. Therefore, it is essential to reduce the number of estimated points without affecting performance.

In order to reduce the computational complexity, the work is oriented towards two objectives. The first is applied on the MIMO-BP detector aiming to reduce the number of points calculated as Euclidean distances by computing the point closest to the observation of the channel among all the candidate points of the constellation. The second consists in reducing the number of points to be updated during each inter-iteration between the detector and the decoder which is applied on the receiver side. Note that, in order to simplify the notation and the explanation of the proposed algorithm, 64 QAM constellation with N t = N r = 2 is considered in the rest of this section. Of course, the approach can be extended to 3x3 and 4x4 MIMO systems.

Motivations

In order to provide sufficient soft output information to the decoder, the detector must generate LLR vectors for a large number of combinations of {S i , S m } as explained in the previous section. In the case of 2x2 MIMO system where two symbols S 1 and S 2 must be detected for each channel observation, all combinations of {S 1 , S 2 } based on the principle of conditioned detection have to be calculated. To do this, an original approach has been proposed in [START_REF] Haroun | Low-complexity layered bp-based detection and decoding for a nb-ldpc coded mimo system[END_REF]. It begins by performing the detection of the first transmitted symbol S 1 (resp. S 2 ) conditioned by the assumption of knowledge of the second symbol S 2 (resp. S 1 ). After that and in order to reduce the complexity of detection computational, the search space is reduced so that all the constellation points are no longer considered during the Euclidean distance estimations. In [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF], the search space is divided into four static sub-regions. On the basis of the signs of the real and imaginary parts of the observed symbol, one of these sub-regions is selected. The calculation of Euclidean distances is therefore limited to points in this sub-region. But, if a symbol is received at the border of the selected sub-region, the search space is not centered. Therefore, the search space does not consider all the candidate symbols closest to the received symbol.

To solve this problem, the constellation point of the first dimension S 1 closest to the received symbol must first be detected by the assumption of the knowledge of the second dimension S 2 . To do this, a novel technique is proposed in this paper to find the symbol closest to the received observation when S 1 is conditioned by the value of S 2 . It avoids the calculation and comparison of all Euclidean distances. By applying this technique, one candidate point among 64 in the constellation must be chosen for S 1 as the symbol closest to the received observation for each possible value of S 2 . The selected point is called the local conditioned minimum value. This process is repeated to cover all possible values of S 2 . The same process should be followed to detect the conditioned local minimum values of S 2 .

Based on the ML detection principle and in order to improve the performance of the proposed system, a region which includes a limited number of lattice points should be chosen in close vicinity to the received observation. This region space is concentrated around each local minimum. Therefore, the computation of Euclidean distances between the received observation and lattice points, in each of these regions, can be computed recursively by adding a constant term to the Euclidean distance as proposed in [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF].

Fig. 3 illustrates the principle of two-dimensional detection of the 64-QAM constellation when considering a 2x2 MIMO system. Each color set represents all candidate symbols of S 1 for a possible value of S 2 ∈ GF (64). For a received symbol and for a chosen color, a point corresponding to the local minimum of S 1 is detected as the point closest to the received symbol. For example, the dark blue (resp. green) set represents the 64 candidate symbols of S 1 when S 2 = α 0 (resp. S 2 = α 63 ) and so on. For such a set, the large dark blue triangle represents the point closest to the received symbol (light blue circle). It represents the local minimum of S 1 at the symbol received when S 2 = α 0 . The same process is repeated by changing the color set to detect any local minimum of S 1 . Finally, a vector corresponding to S 1 is created. It contains the 64 local minimums (one for each value of S 2 ). It represents the set of points of S 1 closest to the symbol received for each value of the symbol S 2 . The ML solution is a particular couple of these 64 candidates which minimizes the Euclidean distance. Indeed, observing Fig. 3, and starting from a local minimum (for instance the large dark blue triangle), it is possible to deduce the Euclidean distances of the set of points of the lattice which are around the associated local minimum (tiny dark blue triangle). In fact, a simple operation of shifting a constant term is necessary as detailed in [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF].

After having explained the theoretical background of the proposed approach, the detailed steps for detecting the local minimum point closest to the channel observation will be explained below. Then, the calculation of the Euclidean distance from the detected local minimum will be explained. Finally, a description that details how to derive the Euclidean distances of lattice points in a specific region from the Euclidean distance of the associated local minimum. Note that this technique can be applied in the case of 3x3 and 4x4 MIMO systems by the assumption of knowledge of the dimensions N t -1 in order to estimate the point closest to the dimension. For example, in the case of a 3x3 MIMO system, the local minimum points of S 1 can be estimated by the conditioned values of S 2 and S 3 and so on.

First step: In-phase and Quadrature estimations of the local minimum point

The detection of local minimum values without calculating all the possible candidate symbols in a given constellation is presented in this sub-section. For this and to simplify the approach, a reformulation of the Euclidean distance calculations must be taken into account. From the complex symbol expression, S i can take values from the following set:

S i = S I i + i * S Q i , ( 14 
)
where i is used to represent complex numbers of Quadrature, S I i (resp. S Q i ) is the real (resp. imaginary) part of the complex symbol S i which is ∈ A c :

A c = 1 σ s (- √ M + 1 + 2 × P ), ( 15 
)
with P is an integer value ∈ {0, 1, .., √ M -1}, M is the number of candidate symbols within a given constellation. σ s is a normalization factor of such constellation.

To introduce the proposed approach in a simple way, the algorithm is first explained for the case of 2x2

MIMO system with 64 QAM. After that, a generalization for N t antennas with M constellation is included in this section. First, when the mapping is a 64-QAM with N t = N r = 2, σ s is equal to √ 42, M is equal to 64 and then P ∈ {0, 1, .., 7}. For example, consider the first received symbol where j = 1, the complex symbol received by the j th = 1 antenna can be expressed as:

     Y I 1 Y Q 1      =      h I 1,1 -h Q 1,1 h I 2,1 -h Q 2,1 h Q 1,1 h I 1,1 h Q 2,1 h I 2,1                       S I 1 S Q 1 S I 2 S Q 2                  +      n I 1 n Q 1      , (16) 
where h I i,j (resp. h Q i,j ) represents the in-phase I (resp. quadrature Q) channel coefficient of a non-frequencyselective channel with Rayleigh fading of the i th transmit antenna to the j th receive antenna. n j = n I j + J.n Q j represents the AWGN associated to the j th receive antenna.

Based on equation ( 16), the symbol received by the first antenna can be rewritten as:

Y I 1 = h I 1,1 .S I 1 -h Q 1,1 .S Q 1 + h I 2,1 .S I 2 -h Q 2,1 .S Q 2 + n I 1 Y Q 1 = h Q 1,1 .S I 1 + h I 1,1 .S Q 1 + h Q 2,1 .S I 2 + h I 2,1 .S Q 2 + n Q 1 , (17) 
In order to reduce computational complexity while detecting the point closest to the received symbol, the equation ( 17) can be reformulated by replacing S I i and S Q i in functions of P I i and P Q i . This leads to detecting an integer value instead of detecting a real value. The relation between P I i and S I i is given in the equations ( 14) and [START_REF] Haroun | Récepteur itératif pour système à multi-antennes basé sur l'algorithme de propagation de croyance[END_REF]. Based on these equations, the equation ( 17) can be expressed as follows:

Y I 1 = A + h I 1,1 .P I 1 -h Q 1,1 .P Q 1 + h I 2,1 .P I 2 -h Q 2,1 .P Q 2 + n I 1 Y Q 1 = B + h Q 1,1 .P I 1 + h I 1,1 .P Q 1 + h Q 2,1 .P I 2 + h I 2,1 .P Q 2 + n Q 1 , (18) 
where A, B and h i,j are terms that have to be estimated once per received observation:

A = 1 σ s - √ M + 1 . h I 1,1 -h Q 1,1 + h I 2,1 -h Q 2,1 B = 1 σ s - √ M + 1 . h Q 1,1 + h I 1,1 + h Q 2,1 + h I 2,1 , (19) 
and

h i,j = 2.h i,j σ s , P ∈ {0, 1, ...7}.
From the equation ( 18), the ML estimations of P I 1 and P Q 1 for a given value of P I 2 and P Q 2 are obtained when the noises n I 1 and n Q 1 tend towards zero (in order to obtain the minimum Euclidean distance) so that the equation ( 18) can be rewritten as:

h I 1,1 .P I 1 = Y I 1 -A + h Q 1,1 .P Q 1 -h I 2,1 .P I 2 + h Q 2,1 .P Q 2 h Q 1,1 .P I 1 = Y Q 1 -B -h I 1,1 .P Q 1 -h Q 2,1 .P I 2 -h I 2,1 .P Q 2 . ( 20 
)
Solve the system of linear equations in [START_REF] Voicila | Benchmark non-binary ldpc codes: Report and software[END_REF] by multiplying the first line by h I 1,1 , the second by h Q 1,1 then add them, P I 1 can be expressed by the following equation:

P I 1 = C h I 1,1 .(Y I 1 -A) + h Q 1,1 .(Y Q 1 -B) - D h I 1,1 . h I 2,1 + h Q 1,1 . h Q 2,1 .P I 2 + E h I 1,1 . h Q 2,1 -h Q 1,1 . h I 2,1 .P Q 2 , (21) 
with h I 1,1 = h I 1,1 h I 1,1 2 + h Q 1,1 2 and h Q 1,1 = h Q 1,1 h I 1,1 2 + h Q 1,1 2 .
In order to calculate the expression of P Q 1 , the same approach can be repeated by multiplying the first 235 line of the equation ( 20) by -h Q 1,1 , the second by h I 1,1 then add them.

To extend this study to N t × N r , the same context must be followed. Thus, the preceding equations are generalized as follows. Firstly, the equation ( 17) can be written as:

Y I j = Nt i=1 h I i,j .S I i -h Q i,j .S Q i + n I j Y Q j = Nt i=1 h Q i,j .S I i + h I i,j .S Q i + n Q j . (22) 
Then, the symbol received by the j th antenna, equation [START_REF] Declercq | Decoding algorithms for nonbinary ldpc codes over gf(q)[END_REF], is expressed in terms of P i as:

240 Y I j = A + Nt i=1 h I i,j .P I i -h Q i,j .P Q i + n I j Y Q j = B + Nt i=1 h Q i,j .P I i + h I i,j .P Q i + n Q j , (23) 
where

A = 1 σ s - √ M + 1 . Nt i=1 h I i,j -h Q i,j B = 1 σ s - √ M + 1 . Nt i=1 h I i,j + h Q i,j . (24) 
Finally, P I k , {i, k ∈ 1, 2, ..N t }, is formulated from (21) as:

P I k = C h I k,j .(Y I j -A ) + h Q k,j .(Y Q j -B ) - Nt i =k i=1 Di h I k,j . h I i,j + h Q k,j . h Q i,j .P I i + Nt i =k i=1 Ei h I k,j . h Q i,j -h Q k,j . h I i,j .P Q i . (25) 
By analyzing the equation ( 25), we can notice that C , D i and E i are terms which must be calculated once for each received MIMO observation. In other words, they are computed once for the M conditioned values of the symbols S i =k corresponding to all the combinations of P I i and

P Q i ∈ {0, 1.. √ M }.
Indeed, for each real value of P I k and for each k ∈ N t , the computation of the term C requires 2 Real Multiplications (RM). D i and E i require 4(N t -1) RM. Moreover, to consider the M possible values of the symbol S i , {D i × P I i } and

{E i × P Q i } need √ M × 2(N t -1) RM.
For example, when considering a 2x2 MIMO with 64 QAM, a specific local minimum is calculated for each conditioned detection as shown in Fig. 4.

To summarize, to find all the real and imaginary parts of the local minima of a system having N t × N r antennas, the equation ( 25) needs a number of RMs that can be expressed as:

2 + 4(N t -1) + √ M × 2(N t -1) × 2 × N t . (26) 
Rounding the value of P I k (resp. P Q k ) to the closest integer is equivalent to finding the value of S I k (resp. S Q k ) which minimizes the Euclidean distance calculated due to the equivalence between the particular integer value and the real I (resp. imaginary Q) value of a constellation of M points. The rounded value of P I k is considered to be the local minimum obtained by a simple integer domain rounding operation:

P I k = round(P I k ). ( 27 
)
To conclude the first step of the proposed approach, a linear transformation is performed on the search space. It allows to formulate the S I and S Q components of all constellation symbols as positive integers which are candidate values for the estimation of P I and P Q . After that, thanks to the linear relation between 245 the value of the signal S and the integer values P I and P Q , the ML terms of P I and P Q can be obtained by a simple integer domain rounding operation. Afterward, the Euclidean distances of detected symbols can be calculated as will be detailed later.

Second step: Euclidean distance computation between received observation and estimated local minimum

for a conditioned value of

{S i = α u } 250
When the first step is completed, a series of calculations based on the estimated values of P I k and P Q k are needed to find the real and imaginary parts of associated Euclidean distances. Note that these Euclidean 

D EU C (S k , S i ) 2 = {S k |Si=α u } D I EU C 2 [Y I j -A -h I k,j . P I k -h Q k,j . P Q k - Nt i =k i=1 h I i,j .P I i -h Q i,j .P Q i ] 2 + D Q EU C 2 [Y Q j -B -h Q k,j . P I k + h I k,j . P Q k - Nt i =k i=1 h Q i,j .P I i + h I i,j .P Q i ] 2 . ( 28 
)
Based on equation (28), the term Y I j -A (resp. Y Q j -B ) is calculated once during the first step. In addition, the multiplication of h i,j by P i requires 4 × (N t -1) RMs for the real and imaginary parts of the Euclidean distance of each conditioned value among M possible candidate points in the constellation. (29) Expression (29) can be written as:

Likewise, the multiplication of

[4 × N t + 2] × M. (30) 
Finally, a vector of M Euclidean distances is obtained for each candidate symbol S k . This vector contains all Euclidean distances of local minimums of S k closest to the received symbol with respect to S i = {α 0 , α 1 , ..α M -1 }.

Third step: recursive calculation of the lattice point's Euclidean distances in close vicinity of the local minimum

In the previous step, the equation ( 28) is applied to calculate the Euclidean distance of an estimated local minimum. Indeed, the Euclidean distances of the M estimated local minimums of symbol S k have been computed. Consequently, from these values, the neighboring points around the estimated local minimums can be deduced recursively. This will be explained in this section.

Based on the method proposed in [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF], one can notice that the difference between two Euclidean distances of two adjacent points of a lattice located on the same axis I (resp. Q) is equal to 2 × h I i,j (resp. 2 × h Q i,j ) as shown in Fig. 5. Therefore, the computation of an Euclidean distance via the recursion method can be obtained from the computed values of its adjacent point. Then, it only requires one real addition to add the term 2 × h I i,j (resp. 2 × h Q i,j ) to the adjacent calculated point and an RM to provide the square of one of ). Thus, the Euclidean distance for neighboring points can be deduced recursively. It only requires one additional RM.

In the following section, the number of neighboring points necessary to have a good exchange between the detector and the decoder will be studied. Indeed, in the worst case, all the LLR vectors of all the possible combinations will have to be exchanged between the detector and the decoder. For example, in the case of a 2 × 2 64-QAM MIMO receiver, up to 4096 LLRs should be exchanged between the detector and the decoder at each iteration of the BP process. This will greatly increase the complexity and latency of the system. For that, in the following section, we will find the minimum number necessary to have a good exchange between the detector and the decoder in order to reduce this quantity of information exchanged at each iteration.

4. Dynamic approach to find the minimum number of neighboring points required around the local minimum

Reduction of information exchanged between the detector and the decoder

The criterion which defines the number of points to be estimated and then to be updated around a received symbol, taking account of their reliability, allows a detection process without calculating all the candidate points of a constellation. The objective of this section is to find the smallest required number of points in the detector to be updated by the decoder while maintaining good performance. To do this, an approach based on two contributions is proposed and explained in this section. The first is based on calculations performed at the NB-LDPC decoder. The second is derived from the initial calculation of Euclidean distances at the MIMO-BP detector, which is detailed in the previous section.

Regarding the first contribution, the EMS algorithm, proposed in [START_REF] Voicila | Benchmark non-binary ldpc codes: Report and software[END_REF], has been applied to perform the decoding steps of the NB-LDPC decoder as detailed before. Thus, at the soft output of the decoder, a limited number composed of n m LLR is available for both dimensions (S k and S i ), classified according to their reliability. Based on these limited index values and upon re-iteration of the detection process, n v vectors relative to the first dimension, S k , can be chosen among the proposed n m LLRs from the decoder, where (n v < n m ). These vectors are chosen to perform the update by the n m LLR values relative to the second dimension S i , coming from the decoder. In other words, thanks to the indexes of the intrinsic information of the symbol S k coming from the decoder, n v vectors would be selected in the detector to be updated by n m extrinsic information of the symbol S i coming from the decoder as shown in Fig. 6.a, where i = k ∈ {0, 1..N t } and n c , n v and n m are positive integers ∈ {0, 1..M } to be calculated in the next section.

For the second contribution and in order to maintain a good performance, a set of n c vectors can be added to the previous selected set. They represent the most reliable n c values of the Euclidean distances initially calculated in the MIMO-BP detector, as explained in the previous section. Thus, thanks to the indices of the intrinsic information of the symbol S k coming from the initial calculation of the Euclidean distances, n c vectors would be added to the updated set of the symbol S k . They are updated later by n m extrinsic information of the symbol S i coming from the decoder as shown in Fig. 6.b.

Finally, the most interesting part of the proposed approach is to update at each iteration a sufficient number of points represented by the n c most reliable vectors relative to the MIMO-BP detector and by the n v most reliable vectors relative to NB-LDPC decoder. Note that the n c index vectors are not computed on each iteration. They are set once for each received MIMO symbol thanks to the initial calculation of Euclidean distances. However, the n v index vectors may change during each iteration between the MIMO-BP detector and NB-LDPC decoder. Thus, at each iteration, n v index vectors are exchanged.

Non-Binary EXIT chart analysis

EXtrinsic Information Transfer (EXIT) chart analysis [START_REF] Brink | Convergence behavior of iteratively decoded parallel concatenated codes[END_REF] is an efficient tool to analyze the convergence of iterative processes. In [START_REF] Grant | Convergence of non-binary iterative decoding[END_REF], it was extended to non-binary iterative processes. In this section, EXIT chart is employed on two different directions to analyze the convergence behavior of the proposed low complexity iterative system. The first direction is when we search vertically to find n c , n v and n m as explained previously and the second is when we search horizontally to find the number of neighboring points to recursively compute around the local minimum. These neighboring points are necessary for the exchange of information between the MIMO-BP detector and the NB-LDPC decoder. It should be noted that the proposed iterative receiver is simulated for 32 global iterations between the detector and the decoder as proposed in [START_REF] Haroun | Symbol-based bp detection for mimo systems associated with non-binary ldpc codes[END_REF]. On the other hand, the n v indexes sent by the decoder can vary from one iteration to another. For this, the EXIT chart study showed that there are common indexes among the n v indexes sent from the decoder to the detector during the 32 global iterations. In this case and after taking into account the common indexes sent from the decoder through different iterations, we have noticed that only eight different indexes are sent by the decoder during the 32 iterations as the worst case. In other words, n c = 2 vectors fixed by the detector and eight vectors, as the worst case, selected by the decoder have to be updated through the 32 iteration process.

Horizontal searching: After selecting the vectors to update through the vertical search, in this section, the number of required points to compute around the chosen point, as the point closest to the observation, will be found. For this, EXIT chart study is applied to find the neighboring points necessary as initial Eu- To summarize, EXIT Chart analysis enables to reduce the computational complexity of the iterative receiver by reducing the number of points to be computed by the detector and then updated by the decoder.

This reduction complexity is analyzed in the next section.

Dynamic identification of the threshold region

Obviously, for high SNR values, the impact of noise on the transmitted symbol decreases. Then, the number of neighboring points to be calculated around the local minimum must also be reduced and vice versa. For the two most reliable local minimums selected by the detector and for the eight ones selected by the decoder, the number of points required to calculate around the received symbol must be represented as a dynamic function of SNR values, which will be proposed in this article. The main objective of the proposed approach is to find a relation between the threshold and the number of points required around a local minimum. For instance, to consider a point as the closest to the observation, it must be received in the small square surrounding the point under consideration, as illustrated in Fig. 9. In the worst case, the observation is obtained on one of the four corners around the small square.

In Fig. 9. Thus, to calculate a generic threshold based on the previous EXIT Chart study, we consider that the observation is received on the far corner of the small square (worst case). The distance is calculated between this point and the one furthest from the large square (opposite point). Note that the small square has a width (resp. length) equal to 2h I σs×σw (resp. 2h Q σs×σw ). The large square has a width (resp. length) equal to 8h I σs×σw (resp. 8h Q σs×σw ). Note that σ w 2 represents the variance of the AWGN and σ s is a normalization factor of the constellation. Therefore, the distance between the observation on the far corner of the small square to the opposite corner of the large square (worst case) can be expressed as:

T hS(15dB) 2 ≤ 5 × h I i,j σ s × σ w(15dB) 2 + 5 × h Q i,j σ s × σ w(15dB) 2 , (31) 
with σ w(15dB) 2 is the variance for a SNR value that is equal to 15 dB:

σ w15dB 2 = 10 -15 10 , (32) 
where h I i,j and h Q i,j are the Rayleigh coefficients that are independent of the SNR values. Thus, the threshold can be calculated as:

T hS(15dB) 2 ≤ 25 σ s 2 × 10 -15 10 
× (h I i,j 2 + h Q i,j 2 
) .

Indeed, for other values of SNR, the threshold can be estimated from the following equation:

T hS(SN RdB) 2 ≤ X points σ s 2 × 10 -SN R 10 × (h I i,j 2 + h Q i,j 2 
),

where X points is the number of sufficient points to be calculated around the two most reliable local minimums selected by the detector and around the eight most reliable vectors selected by the decoder. Based on the above equations and by applying the same principle with an approximation, equation (33) and equation (34) can be expressed as:

X points σ s 2 × 10 -SN R 10 = 25 
σ s 2 × 10 - 15 10 
.

Finally, X points can be expressed as: .

X points = 25 
(36) Let us consider an example with the SNR value is equal to 20 dB. In this case, the number of points to be computed, for the two most reliable local minimums selected by the detector and for the eight most reliable vectors selected by the decoder, is obtained by substituting the value of SNR in equation (36) by 20. In In the case of 3x3 and 4x4 MIMO systems with a 2 q QAM demapper, the number of sufficient points to be calculated around the local minimums can be expressed as follows:

X points = (q -1) 2 10 -G 10 × 10 -SN R 10 , (37) 
where G represents the SNR convergence threshold when WER is equal to a value between 10 -2 and 10 -3

and q is the number of bits per received symbol in a M = 2 q QAM constellation.

Computational Complexity analysis of the proposed dynamic detection algorithm

The computational complexities of the steps which constitute the proposed algorithm are summarized in Table 2. It recapitulates the complexity for the case of 2×2 MIMO systems with 64 QAM and for a generic case represented by N t ×N r MIMO systems with M constellation points. In this Table, the proposed algorithm is compared to the one based on a static region proposed in [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF]. A comparison with the iterative conventional BP and with the iterative conventional ML are taken into account. One can be noted that the computational complexity of the proposed algorithm is distributed over several axes. The first is when computing the local minimums closest to the received symbol using equation [START_REF] Zhang | Evaluation of mmse-based iterative soft detection schemes for coded massive mimo system[END_REF]. The second is when calculating the Euclidean distances of the estimated local minimum by applying the equation (30). The last is, when detecting neighboring points after finding X points from the equation (37).

First of all, one can notice that the computational complexity of the proposed dynamic algorithm is negligible compared to the iterative conventional ML. Indeed, the application of a dynamic region in the proposed algorithm enables a reduction of 98,5% of the total number of RMs. In other words, the complexity of the overall calculation is divided by forty in terms of RMs. Last but not least, there appears a fourfold decrease in the number of RMs by applying the proposed dynamic region compared to the detection of a static region proposed in [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF]. 3x3 and 4x4 spatial multiplexing techniques with 32 global iterations between detector and decoder.

Firstly and before comparing the performances of the proposed dynamic algorithm to the state of the art, a validation of the combination found in the previous section is necessary by comparing its performance to the conventional BP and ML proposed in [START_REF] Haroun | Symbol-based bp detection for mimo systems associated with non-binary ldpc codes[END_REF]. Thus, the performances of the dynamic algorithm for the case of an iterative 2x2 MIMO receiver with a constellation of 64 QAM are given in Fig. 10. One can observe that the combination (2 × 24) + (8 × 24) + (10 × 4) + (44 × 0) of the proposed dynamic BP has the performances closest to the conventional detection while by greatly reducing the number of computational complexity. Therefore, the penalty of using such a combination is a loss of 0.1 dB compared to conventional BP. In addition, 0.75 dB gain is observed using iterative dynamic detection over conventional non-iterative ML in [START_REF] Haroun | Symbol-based bp detection for mimo systems associated with non-binary ldpc codes[END_REF].

Moreover, the performances of different uncoded MIMO systems for different detection algorithms are discussed. In Fig. 11, the performances of the proposed dynamic BP are compared to a conventional sphere decoding. It also includes comparisons between conventional non-iterative ML and BP presented in [START_REF] Sezginer | A high-rate full-diversity 2x2 space-time code with simple maximum likelihood decoding[END_REF] and [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF], respectively. In order to evaluate the performance of the proposed dynamic BP algorithm, an iterative ML detector and a genius curve of the BP algorithm are considered as references. Note that the genius curve was obtained using a correctly decoded frame as input to the detector. For a non-iterative process, the conventional BP algorithm studied in [START_REF] Haroun | Low-complexity layered bp-based detection and decoding for a nb-ldpc coded mimo system[END_REF] and [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF] achieves exactly the same performances as the sphere decoding in [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF]. It also achieves the same performance as the conventional non-iterative ML in [START_REF] Sezginer | A high-rate full-diversity 2x2 space-time code with simple maximum likelihood decoding[END_REF]. The Computational complexity for 2x2 MIMO with 64 QAM RM Non-iterative Conventional ML [START_REF] Sezginer | A high-rate full-diversity 2x2 space-time code with simple maximum likelihood decoding[END_REF] 40906

Conventional SD 2x2 [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF] 5000

Proposed SD [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF] 1800

Non-iterative Conventional BP [START_REF] Haroun | Low-Complexity LDPC-coded Iterative MIMO Receiver Based on Belief Propagation algorithm for Detection[END_REF] 4106

Proposed low complexity BP [(2x24)+(8x24)+(10x4)+(44x0)] 1008 impact of applying an iterative process between detector and decoder was also observed. In this case, 32 global iterations are applied. Comparisons are made for BER values between 10 -3 and 10 -4 .

Furthermore, by applying the proposed dynamic BP algorithm, the same performances as the iterative ML are achieved. Indeed, a gain of more than 4 dB is observed compared to a sphere decoding [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF]. Moreover, the performances of the proposed BP algorithm are the closest to the Genius curve. It illustrates the maximum performance achievable in the case of a BP algorithm. For the computational complexity point of view, it is clear that the proposed algorithm achieves a smaller number of RMs compared to the other algorithms and particularly to the 2x2 proposed in [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF] as shown in Table 3. Indeed, a 44 % reduction in the number of RMs is achieved with better performance in the case of an iterative process compared to the proposed SD in [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF].

Otherwise, the performances of the proposed dynamic algorithm are also compared, in Fig. 12, to the Duo-Binary Turbo Codes (DBTC) and DaVinci codes [START_REF] Boutillon | Performance measurement of davinci code by emulation[END_REF], implemented with a detector based on the Mini- mum Mean Square Error (MMSE) [START_REF] Zhang | Evaluation of mmse-based iterative soft detection schemes for coded massive mimo system[END_REF]. Thus, we are using the same DaVinci codes of length N=2304 bits, rate R=1/2 and designed on GF(64) in a 2x2 MIMO system using a BP-based detector rather than MMSE.

Similarly, the DBTC code used in this comparison is of length N=2304 bits and rate R=1/2. It should be noted that the LDPC codes used in the proposed system are by nature Non-Binary since they are designed over GF(q >> 2), while the DBTC is a binary code designed on GF [START_REF] Steingrimsson | Soft quasi-maximum-likelihood detection for multipleantenna wireless channels[END_REF]. In order to give a fair comparison, we have considered the same code length in terms of bits and the same code rate. The performance curves of the different systems are illustrated in Fig. 12. As shown in this figure, the proposed algorithm outperforms both MMSE-based systems for all constellation sizes with a gain ranging from 0.8 dB with a QPSK modulation scheme and reaching 1.8 dB when a 64 QAM is employed.

Moreover, the proposed algorithm is extended to 3x3 and 4x4 as explained previously. In this phase, different sizes of constellation with different Galois field were applied in the proposed algorithm while keeping an NB-LDPC decoder defined on GF( 16) and on GF(64). This is due to the fact that the use of a GF field different from the size of the M -ary of the modulation being employed involves the implementation of an LLR converter between the detector and the decoder. This converter is necessary in order to have LLR values of symbols of size log 2 (q) bits to be fed to the NB-LDPC decoder. This increases the complexity and latency of the proposed system, which is avoided in this work. In order to alleviate this drawback, we have associated a GF( 16) decoder of frame length N =816 with 16 QAM and a GF(64) decoder of frame length N =2304 with 64-QAM. The performances of the extended dynamic algorithms are tested with these NB-LDPC codes for different MIMO sizes. As illustrated in Fig. 13, in the case of 16 QAM with GF( 16) NB-LDPC code, the extended version 3x3 of the proposed algorithm outperforms the 2x2 version by 1.2 dB. This gain goes up to 2 dB with a MIMO size 4x4. These gains are slightly reduced to 0.7 and 1.7 dB respectively in the case of 64 QAM with GF(64) NB-LDPC code.

This enables to verify the scalability of the proposed algorithm. It can be extended to higher MIMO sizes with a remarkable performance gain.

Conclusion

In this paper, a new approach to detect-decode vertical shuffle scheduling for generic iterative MIMO receivers associated with non-binary LDPC codes is presented. First, a dynamic algorithm is proposed to detect the point closest to the channel observation. This approach aims to estimate the point closest to the received symbol without calculating all the possible Euclidean distances. Moreover, this approach making it possible to define a sufficient dynamic sub-region around the received symbol. It aims to find firstly the number of neighboring points to search around the local minimum and secondly to calculate their Euclidean distances by recursion, starting from an initial point of the constellation. Thus, an EXIT chart study was performed to find the sufficient number of neighboring points as well as to identify the threshold region of the generic MIMO. By applying the proposed detection algorithm, a reduction of 98% in the number of real multiplications is achieved with a reasonable degradation in terms of performance compared to the non-iterative ML in [START_REF] Sezginer | A high-rate full-diversity 2x2 space-time code with simple maximum likelihood decoding[END_REF]. Comparisons in terms of performance between different detection algorithms of the state of the art and the proposed algorithm are performed. They show that the proposed algorithm outperforms the sphere decoding algorithm proposed in [START_REF] Azzam | Reduced complexity sphere decoding for square qam via a new lattice representation[END_REF], the DBTC and DaVinci codes in [START_REF] Boutillon | Performance measurement of davinci code by emulation[END_REF] while achieving a smaller number of real multiplications. Moreover, the extended 3x3 and 4x4 versions of the proposed receiver achieve a gain more than 1 dB compared to the 2x2 system.
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 1 Figure 1: Block diagram of the proposed MIMO system
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 2 ) Second step: during this step the update of the associated CN r1 and CN r2 is performed. After that, extrinsic messages are sent back to the remaining d v -1 VNs that connected to CN r1 and CN r2 .
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 3 Figure 3: Illustration of the two dimensional proposed detection in the case of 64-QAM mapping with Nt = Nr = 2.

…Figure 4 :

 4 Figure 4: Detection of P I 1 and P Q 1 that correspond to symbol S 1 conditioned by S 2 = α u for a 2x2 MIMO system with 64 QAM.
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 2 h k,j by P k requires 4 RMs for the real and imaginary part of each Euclidean distance. In addition, two more RMs are necessary to compute D I EU C 2 and D Q EU C Then, the computation of the Euclidean distances of M local minimums, for a M point constellation, needs a number of RMs that can be expressed as: [2 + (4 × (N t -1) + 4)] × M.
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 5 Figure 5: Illustration of the recursive estimation of the Euclidean distances for 64 QAM.
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 126 Figure6: Two contributions applied on the exchanged messages at the receiver.
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 7 Figure 7: EXIT Charts of different BP detection schemes at SNR=15 dB for a 2x2 MIMO system with 64 QAM.

  clidean distance for the two vectors fixed by the detector and for the eight selected by the decoder (during the 32 global iterations). The results are shown in Fig.7. In this Figure, the non-binary EXIT chart for mutual information values between 0 and 6 is representing. Note that the study is performed on the value of SN R = 15 dB. This SNR value represents the convergence threshold of the iterative system. I A represents the mutual information at the input of the detector which is the output of the decoder. I E denotes the mutual information at the output of the detector corresponding to the input of the decoder. The goal was to • For the others remaining vectors, (M -(2 + 8 + 10)), no neighboring point around the detected symbol is necessary. Only the closest points (local minimums) computed during steps I and II of the previous section are considered.

Figure 9 :

 9 Figure 9: Dynamic identification of the threshold region based on the EXIT Chart for the case of 64 QAM.
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 6 Simulation results of the proposed dynamic detection algorithm The performance of the NB-LDPC coded MIMO system with the proposed dynamic BP algorithm based on a vertical shuffle scheduling is presented in this section. It is measured in terms of BER (Bit Error Rate) and WER (Word Error Rate) on a Rayleigh flat fading channel with different mappers as QPSK, 16 QAM and 64 QAM. Two NB-LDPC codes are simulated in this study. The first is based on GF(16) with N = 816 440 bits while the second is based on GF(64) with N = 2304 bits. Both have a code rate R = 1/2 and apply 2x2,
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 10 Figure 10: WER performance of the proposed dynamic BP for a 2x2 MIMO system with 64 QAM.
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 11 Figure 11: BER Performance of different proposed detection algorithms for uncoded MIMO systems.

Figure 12 :

 12 Figure 12: WER performance of the proposed dynamic BP for the case of 2x2 MIMO system with different constellations.
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 13 Figure 13: WER performance of the proposed dynamic BP for the case of 2x2, 3x3 and 4x4 MIMO system with different GF of NB-LDPC codes.

  the previous section, thanks to the EXIT Chart study for an SNR value, equal to 15 dB, it was shown that twenty-four neighboring points are sufficient around the closest point as illustrated the dashed circle in
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Table 1 :

 1 Adequate number of points depending on the SNR.

	SNR dB Number of sufficient points
	15	25
	16	20
	17	16
	18	12
	19	10
	20	08

Table 1

 1 some numbers of points are computed based on different SNR values.

Table 2 :

 2 Computational complexity comparison between different detection algorithms

	D EU C(Sk,Si) 2	Real Multiplications		
		2 × 2 MIMO systems with 64 QAM	N t × N r MIMO systems with M constellation points
	Iterative conventional ML [11]	[64 × 64 2 ]= 262144	[M × M Nt ]
	Iterative conventional BP [11]	[10 × 64 2 ] = 40960	[10 × M Nt ]
	Proposed BP [19]	[10 + (1 × 64 2 )] = 4106	[10 + (1 × M Nt )]
	Proposed dynamic BP:				
	Closest points detection	88	2 + 4(N t -1) +	√	M × 2(N t -1) × 2 × N t
		+			+
	Euclidean distances computations	640	[4 × N t + 2] × M
		+			+
	Neighboring points computations [(2 × 24) + (8 × 24)+ (10 × 4) + (44 × 0)] [(2 × X points ) + (8 × X points )+ (10 × 4) + (44 × 0)]

Table 3 :

 3 Complexity comparison in terms of RM for different detection approaches of 2x2 MIMO with 64 QAM.
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Local Minimum

The ten most reliable vectors that follow n c and n v vectors boring points is also required for the total number of n v vectors, updated during the 32 global iterations.

In addition, we have managed to minimize the number of neighbors that are necessary for the remaining 54 vectors (64 -2 -8), other than n c and n v . Indeed, 4 neighboring points are enough for the most reliable ten vectors that follow n c and n v among the remaining 54 vectors as illustrated in Fig. 8.

In the case of 3x3 and 4x4 MIMO systems with a 2 q = M QAM demapper, where q is the number of bits per received symbol and M is the number of points in a constellation, the final combination is described as follows:

• For the n c = 2 most reliable selected by the detector and for the n v = 8 most reliable selected by the decoder during the 32 global iterations, (q -1) 2 neighboring points around the detected symbol have to be considered by recursion.

• For the ten most reliable vectors that follow the above selected ones (n c and n v ), four neighboring points around the detected symbol have to be computed by recursion.